-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy path03_terrestrial_flux_daily_null.R
360 lines (276 loc) · 11.8 KB
/
03_terrestrial_flux_daily_null.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#'# Ecological Forecasting Initiative Null Model
#'## Set-up
print(paste0("Running Creating Daily Terrestrial Forecasts at ", Sys.time()))
#'Load renv.lock file that includes the versions of all the packages used
#'You can generate using the command renv::snapshot()
#' Required packages.
#' EFIstandards is at remotes::install_github("eco4cast/EFIstandards")
library(tidyverse)
library(lubridate)
library(rjags)
library(tidybayes)
library(modelr)
library(aws.s3)
library(EFIstandards)
library(EML)
library(jsonlite)
#' set the random number for reproducible MCMC runs
set.seed(329)
#'Generate plot to visualized forecast
generate_plots <- FALSE
#' List of team members. Used in the generation of the metadata
team_list <- list(list(individualName = list(givenName = "Quinn", surName = "Thomas"),
id = "https://orcid.org/0000-0003-1282-7825"),
list(individualName = list(givenName = "Alex", surName ="Young")),
list(individualName = list(givenName = "George", surName ="Burba")),
list(individualName = list(givenName = "Jamie", surName ="Cleverly")),
list(individualName = list(givenName = "Ankur", surName ="Desai")),
list(individualName = list(givenName = "Mike", surName ="Dietze")),
list(individualName = list(givenName = "Andy", surName ="Fox")),
list(individualName = list(givenName = "William", surName ="Hammond")),
list(individualName = list(givenName = "Danica", surName ="Lombardozzi"))
)
#'Team name code
team_name <- "persistence"
#'Download target file from the server
download.file("https://data.ecoforecast.org/neon4cast-targets/terrestrial_daily/terrestrial_daily-targets.csv.gz",
"terrestrial_daily-targets.csv.gz")
#'Read in target file. The guess_max is specified because there could be a lot of
#'NA values at the beginning of the file
terrestrial_targets <- read_csv("terrestrial_daily-targets.csv.gz", guess_max = 10000)
terrestrial_targets |>
group_by(variable) |>
summarize(mean = quantile(observed, 0.75, na.rm = TRUE))
terrestrial_targets <- terrestrial_targets #%>%
#filter(time < as_date("2020-12-01"))
#download.file("https://data.ecoforecast.org/neon4cast-targets/terrestrial_30min/terrestrial_30min-targets.csv.gz",
# "terrestrial_30min-targets.csv.gz")
#terrestrial_targets_30min <- read_csv("terrestrial_30min-targets.csv.gz", guess_max = 10000)
#variable_sd <- terrestrial_targets_30min |>
# mutate(sd = (sqrt(2) * sd_intercept) * ((12 / 1000000) * (60 * 60 * 24)) / sqrt(48)) |>
# group_by(site_id, variable) |>
# summarize(sd = mean(sd, na.rm = TRUE), .groups = "drop")
#'Focal sites
sites <- read_csv("https://raw.githubusercontent.com/eco4cast/neon4cast-targets/main/NEON_Field_Site_Metadata_20220412.csv") |>
dplyr::filter(terrestrial == 1)
site_names <- sites$field_site_id
#'Generic random walk state-space model is JAGS format. We use this model for
#'both the NEE and LE null forecasts
RandomWalk = "
model{
# Priors
x[1] ~ dnorm(x_ic,tau_add)
sd_add ~ dunif(0.0000001, 100)
tau_add <- 1/ pow(sd_add, 2)
# Process Model
for(t in 2:n){
x[t]~dnorm(x[t-1],tau_add)
#Data Model
y[t] ~ dnorm(x[t],tau_obs)
}
}
"
#'## NEE Model
#'Create variable for combined forecasts across sites
forecast_saved_nee <- NULL
nee_figures <- list()
#+ message = FALSE
#' Loop through sites
for(s in 1:length(site_names)){
message(paste0("NEE: ", site_names[s]))
#site_sd <- variable_sd |>
# filter(site_id == site_names[s],
# variable == "nee") |>
# pull(sd)
# Select site
site_data_var <- terrestrial_targets %>%
filter(variable == "nee") |>
filter(site_id == site_names[s],
time >= lubridate::as_date("2020-01-01"))
# Find the last day in the observed data and add one day for the start of the
# forecast
start_forecast <- max(site_data_var$time) + days(1)
# This is key here - I added 35 days on the end of the data for the forecast period
full_time <- tibble(time = seq(min(site_data_var$time), max(site_data_var$time) + days(35), by = "1 day"))
# Join the full time with the site_data_var so there aren't gaps in the time column
site_data_var <- left_join(full_time, site_data_var)
#observed NEE: Full time series with gaps
y_wgaps <- site_data_var$observed
time <- c(site_data_var$time)
#observed NEE: time series without gaps
y_nogaps <- y_wgaps[!is.na(y_wgaps)]
#Index: time series with gaps
y_wgaps_index <- 1:length(y_wgaps)
#Index: the index of the non-NA values in time series with gaps
y_wgaps_index <- y_wgaps_index[!is.na(y_wgaps)]
#Generate starting initial conditions for latent states
init_x <- approx(x = time[!is.na(y_wgaps)], y = y_nogaps, xout = time, rule = 2)$y
#Create a list of the data for use in JAGS. Include vector lengths (nobs, n)
data <- list(y = y_wgaps,
tau_obs = 1/(0.05 ^ 2),
n = length(y_wgaps),
x_ic = 0.0)
#Initialize parameters
nchain = 3
chain_seeds <- c(200,800,1400)
init <- list()
for(i in 1:nchain){
init[[i]] <- list(sd_add = sd(diff(y_nogaps)),
.RNG.name = "base::Wichmann-Hill",
.RNG.seed = chain_seeds[i],
x = init_x)
}
#Initialize JAGS model
j.model <- jags.model (file = textConnection(RandomWalk),
data = data,
inits = init,
n.chains = 3)
#Run JAGS model as the burn-in
jags.out <- coda.samples(model = j.model,variable.names = c("sd_add"), n.iter = 10000)
#Run JAGS model again and sample from the posteriors
m <- coda.samples(model = j.model,
variable.names = c("y","sd_add"),
n.iter = 10000,
thin = 5)
#Use TidyBayes package to clean up the JAGS output
model_output <- m %>%
spread_draws(y[day]) %>%
filter(.chain == 1) %>%
rename(ensemble = .iteration) %>%
mutate(time = full_time$time[day]) %>%
ungroup() %>%
select(time, y, ensemble)
if(generate_plots){
#Pull in the observed data for plotting
obs <- tibble(time = full_time$time,
obs = y_wgaps)
#Post past and future
model_output %>%
group_by(time) %>%
summarise(mean = mean(y),
upper = quantile(y, 0.975),
lower = quantile(y, 0.025),.groups = "drop") %>%
ggplot(aes(x = time, y = mean)) +
geom_line() +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.2, color = "lightblue", fill = "lightblue") +
geom_point(data = obs, aes(x = time, y = obs), color = "red") +
labs(x = "Date", y = "nee")
ggsave(paste0("nee_daily_",site_names[s],"_figure.pdf"), device = "pdf")
}
#Filter only the forecasted dates and add columns for required variable
forecast_saved_tmp <- model_output %>%
filter(time >= start_forecast) %>%
rename(predicted = y) %>%
mutate(variable = "nee",
site_id = site_names[s]) %>%
mutate(forecast_iteration_id = start_forecast) %>%
mutate(forecast_project_id = team_name)
# Combined with the previous sites
forecast_saved_nee <- bind_rows(forecast_saved_nee, forecast_saved_tmp)
}
#'## Latent heat model
#'
#' See notes from the NEE section above
#+ message = FALSE
forecast_saved_le <- NULL
le_figures <- list()
for(s in 1:length(site_names)){
message(paste0("LE: ", site_names[s]))
site_data_var <- terrestrial_targets %>%
filter(variable == "le") |>
filter(site_id == site_names[s],
time >= lubridate::as_date("2020-01-01"))
#site_sd <- variable_sd |>
# filter(site_id == site_names[s],
# variable == "le") |>
# pull(sd)
max_time <- max(site_data_var$time) + days(1)
start_forecast <- max_time
full_time <- tibble(time = seq(min(site_data_var$time), max(site_data_var$time) + days(35), by = "1 day"))
site_data_var <- left_join(full_time, site_data_var)
y_wgaps <- site_data_var$observed
time <- c(site_data_var$time)
y_nogaps <- y_wgaps[!is.na(y_wgaps)]
y_wgaps_index <- 1:length(y_wgaps)
y_wgaps_index <- y_wgaps_index[!is.na(y_wgaps)]
init_x <- approx(x = time[!is.na(y_wgaps)], y = y_nogaps, xout = time, rule = 2)$y
data <- list(y = y_wgaps,
tau_obs = 1/(0.1 ^ 2),
n = length(y_wgaps),
x_ic = 0.0)
nchain = 3
chain_seeds <- c(200,800,1400)
init <- list()
for(i in 1:nchain){
init[[i]] <- list(sd_add = sd(diff(y_nogaps)),
.RNG.name = "base::Wichmann-Hill",
.RNG.seed = chain_seeds[i],
x = init_x)
}
j.model <- jags.model (file = textConnection(RandomWalk),
data = data,
inits = init,
n.chains = 3)
jags.out <- coda.samples(model = j.model,variable.names = c("sd_add"), n.iter = 10000)
m <- coda.samples(model = j.model,
variable.names = c("y","sd_add"),
n.iter = 10000,
thin = 5)
model_output <- m %>%
spread_draws(y[day]) %>%
filter(.chain == 1) %>%
rename(ensemble = .iteration) %>%
mutate(time = full_time$time[day]) %>%
ungroup() %>%
select(time, y, ensemble)
if(generate_plots){
obs <- tibble(time = full_time$time,
obs = y_wgaps)
model_output %>%
group_by(time) %>%
summarise(mean = mean(y),
upper = quantile(y, 0.975),
lower = quantile(y, 0.025),.groups = "drop") %>%
ggplot(aes(x = time, y = mean)) +
geom_line() +
geom_ribbon(aes(ymin = lower, ymax = upper), alpha = 0.2, color = "lightblue", fill = "lightblue") +
geom_point(data = obs, aes(x = time, y = obs), color = "red") +
labs(x = "Date", y = "le")
ggsave(paste0("le_daily_",site_names[s],"_figure.pdf"), device = "pdf")
}
forecast_saved_tmp <- model_output %>%
filter(time >= start_forecast) %>%
rename(predicted = y) %>%
mutate(variable = "le",
site_id = site_names[s]) %>%
mutate(forecast_iteration_id = start_forecast) %>%
mutate(forecast_project_id = team_name)
forecast_saved_le <- bind_rows(forecast_saved_le, forecast_saved_tmp)
}
#'Combined the NEE and LE forecasts together and re-order column
forecast_saved <- bind_rows(forecast_saved_nee, forecast_saved_le) %>%
select(time, site_id, ensemble, variable, predicted)
#'Save file as CSV in the
#'[theme_name]-[year]-[month]-[date]-[team_name].csv
forecast_file_name_base <- paste0("terrestrial_daily-",as_date(Sys.Date()),"-",team_name)
forecast_file <- paste0(forecast_file_name_base, ".csv.gz")
write_csv(forecast_saved, forecast_file)
#'#Generate metadata
#'Get system time for setting the issue time of the forecast
curr_time <- with_tz(Sys.time(), "UTC")
#forecast_issue_time <- format(curr_time,format = "%Y-%m-%d %H:%M:%SZ", usetz = F)
forecast_issue_time <- as_date(curr_time)
forecast_iteration_id <- start_forecast
#' The team name is the `forecast_model_id`
forecast_model_id <- team_name
#source("generate_metadata.R")
#meta_data_filename <- generate_metadata(forecast_file = forecast_file,
# metadata_yaml = "metadata.yml",
# forecast_issue_time = as_date(with_tz(Sys.time(), "UTC")),
# forecast_iteration_id = start_forecast,
# forecast_file_name_base = forecast_file_name_base)
neon4cast::submit(forecast_file = forecast_file,
metadata = NULL,
ask = FALSE)
unlink(forecast_file)
#unlink(meta_data_filename)