From fd33fa953f56af1d38d670d80845dd399352859c Mon Sep 17 00:00:00 2001 From: Alan Lujan Date: Sun, 8 Sep 2024 10:26:23 -0400 Subject: [PATCH 1/6] update Parameters --- HARK/core.py | 806 +++++++++++++++++++++++++++++++--------- HARK/tests/test_core.py | 160 ++++---- 2 files changed, 687 insertions(+), 279 deletions(-) diff --git a/HARK/core.py b/HARK/core.py index adf141556..cda1dbb65 100644 --- a/HARK/core.py +++ b/HARK/core.py @@ -15,7 +15,7 @@ from copy import copy, deepcopy from dataclasses import dataclass, field from time import time -from typing import Any, Callable, Dict, List, Optional, Union +from typing import Any, Callable, Dict, Iterator, List, Optional, Set, Tuple, Union from warnings import warn import numpy as np @@ -61,205 +61,318 @@ def set_verbosity_level(level): class Parameters: """ - This class defines an object that stores all of the parameters for a model - as an internal dictionary. It is designed to also handle the age-varying - dynamics of parameters. + A smart container for model parameters that handles age-varying dynamics. - Attributes - ---------- + This class stores parameters as an internal dictionary and manages their + age-varying properties. It provides both attribute-style and dictionary-style + access to parameters. - _length : int - The terminal age of the agents in the model. - _invariant_params : list - A list of the names of the parameters that are invariant over time. - _varying_params : list - A list of the names of the parameters that vary over time. + Attributes: + _length (int): The terminal age of the agents in the model. + _invariant_params (Set[str]): A set of parameter names that are invariant over time. + _varying_params (Set[str]): A set of parameter names that vary over time. + _parameters (Dict[str, Any]): The internal dictionary storing all parameters. """ - def __init__(self, **parameters: Any): - """ - Initializes a Parameters object and parses the age-varying - dynamics of the parameters. + __slots__ = ("_length", "_invariant_params", "_varying_params", "_parameters") - Parameters - ---------- - - parameters : keyword arguments - Any number of keyword arguments of the form key=value. - To parse a dictionary of parameters, use the ** operator. + def __init__(self, **parameters: Any) -> None: """ - params = parameters.copy() - self._length = params.pop("T_cycle", None) - self._invariant_params = set() - self._varying_params = set() - self._parameters: Dict[str, Union[int, float, np.ndarray, list, tuple]] = {} - - for key, value in params.items(): - self._parameters[key] = self.__infer_dims__(key, value) + Initialize a Parameters object and parse the age-varying dynamics of parameters. - def __infer_dims__( - self, key: str, value: Union[int, float, np.ndarray, list, tuple, None] - ) -> Union[int, float, np.ndarray, list, tuple]: + Args: + **parameters (Any): Any number of parameters in the form key=value. """ - Infers the age-varying dimensions of a parameter. + self._length: int = parameters.pop("T_cycle", 1) + self._invariant_params: Set[str] = set() + self._varying_params: Set[str] = set() + self._parameters: Dict[str, Any] = {"T_cycle": self._length} - If the parameter is a scalar, numpy array, boolean, distribution, callable or None, - it is assumed to be invariant over time. If the parameter is a list or - tuple, it is assumed to be varying over time. If the parameter is a list - or tuple of length greater than 1, the length of the list or tuple must match - the `_term_age` attribute of the Parameters object. - - Parameters - ---------- - key : str - name of parameter - value : Any - value of parameter + for key, value in parameters.items(): + self[key] = value + def __getitem__(self, item_or_key: Union[int, str]) -> Union["Parameters", Any]: """ - if isinstance( - value, (int, float, np.ndarray, type(None), Distribution, bool, Callable) - ): - self.__add_to_invariant__(key) - return value - if isinstance(value, (list, tuple)): - if len(value) == 1: - self.__add_to_invariant__(key) - return value[0] - if self._length is None or self._length == 1: - self._length = len(value) - if len(value) == self._length: - self.__add_to_varying__(key) - return value - raise ValueError( - f"Parameter {key} must be of length 1 or {self._length}, not {len(value)}" - ) - raise ValueError(f"Parameter {key} has unsupported type {type(value)}") + Access parameters by age index or parameter name. - def __add_to_invariant__(self, key: str): - """ - Adds parameter name to invariant set and removes from varying set. - """ - self._varying_params.discard(key) - self._invariant_params.add(key) + Args: + item_or_key (Union[int, str]): Age index or parameter name. - def __add_to_varying__(self, key: str): - """ - Adds parameter name to varying set and removes from invariant set. - """ - self._invariant_params.discard(key) - self._varying_params.add(key) + Returns: + Union[Parameters, Any]: A new Parameters object for the specified age, + or the value of the specified parameter. - def __getitem__(self, item_or_key: Union[int, str]): - """ - If item_or_key is an integer, returns a Parameters object with the parameters - that apply to that age. This includes all invariant parameters and the - `item_or_key`th element of all age-varying parameters. If item_or_key is a string, - it returns the value of the parameter with that name. + Raises: + ValueError: If the age index is out of bounds. + KeyError: If the parameter name is not found. + TypeError: If the key is neither an integer nor a string. """ if isinstance(item_or_key, int): if item_or_key >= self._length: raise ValueError( - f"Age {item_or_key} is greater than or equal to terminal age {self._length}." + f"Age {item_or_key} is out of bounds (max: {self._length - 1})." ) params = {key: self._parameters[key] for key in self._invariant_params} params.update( { key: self._parameters[key][item_or_key] + if isinstance(self._parameters[key], (list, tuple, np.ndarray)) + else self._parameters[key] for key in self._varying_params } ) return Parameters(**params) elif isinstance(item_or_key, str): return self._parameters[item_or_key] + else: + raise TypeError("Key must be an integer (age) or string (parameter name).") - def __setitem__(self, key: str, value: Any): + def __setitem__(self, key: str, value: Any) -> None: """ - Sets the value of a parameter. + Set parameter values, automatically inferring time variance. - Parameters - ---------- - key : str - name of parameter - value : Any - value of parameter + Args: + key (str): Name of the parameter. + value (Any): Value of the parameter. + Raises: + ValueError: If the parameter name is not a string or if the value type is unsupported. + ValueError: If the parameter value is inconsistent with the current model length. """ if not isinstance(key, str): - raise ValueError("Parameters must be set with a string key") - self._parameters[key] = self.__infer_dims__(key, value) + raise ValueError(f"Parameter name must be a string, got {type(key)}") + + if isinstance( + value, (int, float, np.ndarray, type(None), Distribution, bool, Callable) + ): + self._invariant_params.add(key) + self._varying_params.discard(key) + elif isinstance(value, (list, tuple)): + if len(value) == 1: + value = value[0] + self._invariant_params.add(key) + self._varying_params.discard(key) + elif self._length is None or self._length == 1: + self._length = len(value) + self._varying_params.add(key) + self._invariant_params.discard(key) + elif len(value) == self._length: + self._varying_params.add(key) + self._invariant_params.discard(key) + else: + raise ValueError( + f"Parameter {key} must have length 1 or {self._length}, not {len(value)}" + ) + else: + raise ValueError(f"Unsupported type for parameter {key}: {type(value)}") - def keys(self): + self._parameters[key] = value + + def __iter__(self) -> Iterator[str]: + """Allow iteration over parameter names.""" + return iter(self._parameters) + + def __len__(self) -> int: + """Return the number of parameters.""" + return len(self._parameters) + + def keys(self) -> Iterator[str]: + """Return a view of parameter names.""" + return self._parameters.keys() + + def values(self) -> Iterator[Any]: + """Return a view of parameter values.""" + return self._parameters.values() + + def items(self) -> Iterator[Tuple[str, Any]]: + """Return a view of parameter (name, value) pairs.""" + return self._parameters.items() + + def to_dict(self) -> Dict[str, Any]: """ - Returns a list of the names of the parameters. + Convert parameters to a plain dictionary. + + Returns: + Dict[str, Any]: A dictionary containing all parameters. """ - return self._invariant_params | self._varying_params + return dict(self._parameters) - def values(self): + def to_namedtuple(self) -> namedtuple: """ - Returns a list of the values of the parameters. + Convert parameters to a namedtuple. + + Returns: + namedtuple: A namedtuple containing all parameters. """ - return list(self._parameters.values()) + return namedtuple("Parameters", self.keys())(**self.to_dict()) - def items(self): + def update(self, other: Union["Parameters", Dict[str, Any]]) -> None: """ - Returns a list of tuples of the form (name, value) for each parameter. + Update parameters from another Parameters object or dictionary. + + Args: + other (Union[Parameters, Dict[str, Any]]): The source of parameters to update from. + + Raises: + TypeError: If the input is neither a Parameters object nor a dictionary. """ - return list(self._parameters.items()) + if isinstance(other, Parameters): + for key, value in other._parameters.items(): + self[key] = value + elif isinstance(other, dict): + for key, value in other.items(): + self[key] = value + else: + raise TypeError( + "Update source must be a Parameters object or a dictionary." + ) - def __iter__(self): + def __repr__(self) -> str: + """Return a detailed string representation of the Parameters object.""" + return ( + f"Parameters(_length={self._length}, " + f"_invariant_params={self._invariant_params}, " + f"_varying_params={self._varying_params}, " + f"_parameters={self._parameters})" + ) + + def __str__(self) -> str: + """Return a simple string representation of the Parameters object.""" + return f"Parameters({str(self._parameters)})" + + def __getattr__(self, name: str) -> Any: """ - Allows for iterating over the parameter names. + Allow attribute-style access to parameters. + + Args: + name (str): Name of the parameter to access. + + Returns: + Any: The value of the specified parameter. + + Raises: + AttributeError: If the parameter name is not found. """ - return iter(self.keys()) + if name.startswith("_"): + return super().__getattribute__(name) + try: + return self._parameters[name] + except KeyError: + raise AttributeError(f"'Parameters' object has no attribute '{name}'") - def __deepcopy__(self, memo): + def __setattr__(self, name: str, value: Any) -> None: """ - Returns a deep copy of the Parameters object. + Allow attribute-style setting of parameters. + + Args: + name (str): Name of the parameter to set. + value (Any): Value to set for the parameter. """ - return Parameters(**deepcopy(self.to_dict(), memo)) + if name.startswith("_"): + super().__setattr__(name, value) + else: + self[name] = value + + def __contains__(self, item: str) -> bool: + """Check if a parameter exists in the Parameters object.""" + return item in self._parameters - def to_dict(self): + def copy(self) -> "Parameters": """ - Returns a dictionary of the parameters. + Create a deep copy of the Parameters object. + + Returns: + Parameters: A new Parameters object with the same contents. """ - return {key: self._parameters[key] for key in self.keys()} + return deepcopy(self) - def to_namedtuple(self): + def add_to_time_vary(self, *params: str) -> None: """ - Returns a namedtuple of the parameters. + Adds any number of parameters to the time-varying set. + + Args: + *params (str): Any number of strings naming parameters to be added to time_vary. """ - return namedtuple("Parameters", self.keys())(**self.to_dict()) + for param in params: + if param in self._parameters: + self._varying_params.add(param) + self._invariant_params.discard(param) + else: + warn( + f"Parameter '{param}' does not exist and cannot be added to time_vary." + ) - def update(self, other_params): + def add_to_time_inv(self, *params: str) -> None: """ - Updates the parameters with the values from another - Parameters object or a dictionary. + Adds any number of parameters to the time-invariant set. - Parameters - ---------- - other_params : Parameters or dict - Parameters object or dictionary of parameters to update with. + Args: + *params (str): Any number of strings naming parameters to be added to time_inv. """ - if isinstance(other_params, Parameters): - self._parameters.update(other_params.to_dict()) - elif isinstance(other_params, dict): - self._parameters.update(other_params) - else: - raise ValueError("Parameters must be a dict or a Parameters object") + for param in params: + if param in self._parameters: + self._invariant_params.add(param) + self._varying_params.discard(param) + else: + warn( + f"Parameter '{param}' does not exist and cannot be added to time_inv." + ) - def __str__(self): + def del_from_time_vary(self, *params: str) -> None: + """ + Removes any number of parameters from the time-varying set. + + Args: + *params (str): Any number of strings naming parameters to be removed from time_vary. + """ + for param in params: + self._varying_params.discard(param) + + def del_from_time_inv(self, *params: str) -> None: + """ + Removes any number of parameters from the time-invariant set. + + Args: + *params (str): Any number of strings naming parameters to be removed from time_inv. + """ + for param in params: + self._invariant_params.discard(param) + + def get(self, key: str, default: Any = None) -> Any: """ - Returns a simple string representation of the Parameters object. + Get a parameter value, returning a default if not found. + + Args: + key (str): The parameter name. + default (Any, optional): The default value to return if the key is not found. + + Returns: + Any: The parameter value or the default. """ - return f"Parameters({str(self.to_dict())})" + return self._parameters.get(key, default) - def __repr__(self): + def set_many(self, **kwargs: Any) -> None: """ - Returns a detailed string representation of the Parameters object. + Set multiple parameters at once. + + Args: + **kwargs: Keyword arguments representing parameter names and values. + """ + for key, value in kwargs.items(): + self[key] = value + + def is_time_varying(self, key: str) -> bool: """ - return f"Parameters( _age_inv = {self._invariant_params}, _age_var = {self._varying_params}, | {self.to_dict()})" + Check if a parameter is time-varying. + + Args: + key (str): The parameter name. + + Returns: + bool: True if the parameter is time-varying, False otherwise. + """ + return key in self._varying_params class Model: @@ -277,15 +390,12 @@ def assign_parameters(self, **kwds): """ Assign an arbitrary number of attributes to this agent. - Parameters - ---------- - **kwds : keyword arguments - Any number of keyword arguments of the form key=value. Each value - will be assigned to the attribute named in self. + Args: + **kwds (keyword arguments): Any number of keyword arguments of the form key=value. + Each value will be assigned to the attribute named in self. - Returns - ------- - none + Returns: + None """ self.parameters.update(kwds) for key in kwds: @@ -295,15 +405,11 @@ def get_parameter(self, name): """ Returns a parameter of this model - Parameters - ---------- - name : string - The name of the parameter to get + Args: + name (str): The name of the parameter to get - Returns - ------- - value : - The value of the parameter + Returns: + value: The value of the parameter """ return self.parameters[name] @@ -335,15 +441,12 @@ def del_param(self, param_name): Deletes a parameter from this instance, removing it both from the object's namespace (if it's there) and the parameters dictionary (likewise). - Parameters - ---------- - param_name : str - A string naming a parameter or data to be deleted from this instance. - Removes information from self.parameters dictionary and own namespace. + Args: + param_name (str): A string naming a parameter or data to be deleted from this instance. + Removes information from self.parameters dictionary and own namespace. - Returns - ------- - None. + Returns: + None """ if param_name in self.parameters: del self.parameters[param_name] @@ -363,21 +466,17 @@ def construct(self, *args, force=False): missing data) will be named in self._missing_key_data. Other errors are recorded in the dictionary attribute _constructor_errors. - Parameters - ---------- - *args : str, optional - Keys of self.constructors that are requested to be constructed. If - no arguments are passed, *all* elements of the dictionary are implied. - force : bool, optional - When True, the method will force its way past any errors, including - missing constructors, missing arguments for constructors, and errors - raised during execution of constructors. Information about all such - errors is stored in the dictionary attributes described above. When - False (default), any errors or exception will be raised. + Args: + *args (str, optional): Keys of self.constructors that are requested to be constructed. + If no arguments are passed, *all* elements of the dictionary are implied. + force (bool, optional): When True, the method will force its way past any errors, including + missing constructors, missing arguments for constructors, and errors + raised during execution of constructors. Information about all such + errors is stored in the dictionary attributes described above. When + False (default), any errors or exception will be raised. - Returns - ------- - None + Returns: + None """ # Set up the requested work if len(args) > 0: @@ -490,15 +589,12 @@ def describe_constructors(self, *args): including their names, the function that constructs them, the names of those functions inputs, and whether those inputs are present. - Parameters - ---------- - *args : str - Optional list of strings naming constructed inputs to be described. - If none are passed, all constructors are described. + Args: + *args (str): Optional list of strings naming constructed inputs to be described. + If none are passed, all constructors are described. - Returns - ------- - None. + Returns: + None """ if len(args) > 0: keys = args @@ -551,6 +647,353 @@ def describe_constructors(self, *args): return +from typing import Any, Dict, Iterator, List, Set, Tuple, Union + + +class Parameters: + """ + A smart container for model parameters that handles age-varying dynamics. + + This class stores parameters as an internal dictionary and manages their + age-varying properties. It provides both attribute-style and dictionary-style + access to parameters. + + Attributes: + _length (int): The terminal age of the agents in the model. + _invariant_params (Set[str]): A set of parameter names that are invariant over time. + _varying_params (Set[str]): A set of parameter names that vary over time. + _parameters (Dict[str, Any]): The internal dictionary storing all parameters. + """ + + __slots__ = ("_length", "_invariant_params", "_varying_params", "_parameters") + + def __init__(self, **parameters: Any) -> None: + """ + Initialize a Parameters object and parse the age-varying dynamics of parameters. + + Args: + **parameters (Any): Keyword arguments representing parameter names and values. + """ + self._length: int = parameters.pop("T_cycle", 1) + self._invariant_params: Set[str] = set() + self._varying_params: Set[str] = set() + self._parameters: Dict[str, Any] = {"T_cycle": self._length} + + for key, value in parameters.items(): + self[key] = value + + def __getitem__(self, item_or_key: Union[int, str]) -> Union["Parameters", Any]: + """ + Access parameters by age index or parameter name. + + Args: + item_or_key (Union[int, str]): Age index or parameter name. + + Returns: + Union[Parameters, Any]: A new Parameters object for the specified age, + or the value of the specified parameter. + + Raises: + ValueError: If the age index is out of bounds. + KeyError: If the parameter name is not found. + TypeError: If the key is neither an integer nor a string. + """ + if isinstance(item_or_key, int): + if item_or_key >= self._length: + raise ValueError( + f"Age {item_or_key} is out of bounds (max: {self._length - 1})." + ) + + params = {key: self._parameters[key] for key in self._invariant_params} + params.update( + { + key: self._parameters[key][item_or_key] + if isinstance(self._parameters[key], (list, tuple, np.ndarray)) + else self._parameters[key] + for key in self._varying_params + } + ) + return Parameters(**params) + elif isinstance(item_or_key, str): + return self._parameters[item_or_key] + else: + raise TypeError("Key must be an integer (age) or string (parameter name).") + + def __setitem__(self, key: str, value: Any) -> None: + """ + Set parameter values, automatically inferring time variance. + + Args: + key (str): Name of the parameter. + value (Any): Value of the parameter. + + Raises: + ValueError: If the parameter name is not a string or if the value type is unsupported. + ValueError: If the parameter value is inconsistent with the current model length. + """ + if not isinstance(key, str): + raise ValueError(f"Parameter name must be a string, got {type(key)}") + + if isinstance( + value, (int, float, np.ndarray, type(None), Distribution, bool, Callable) + ): + self._invariant_params.add(key) + self._varying_params.discard(key) + elif isinstance(value, (list, tuple)): + if len(value) == 1: + value = value[0] + self._invariant_params.add(key) + self._varying_params.discard(key) + elif self._length is None or self._length == 1: + self._length = len(value) + self._varying_params.add(key) + self._invariant_params.discard(key) + elif len(value) == self._length: + self._varying_params.add(key) + self._invariant_params.discard(key) + else: + raise ValueError( + f"Parameter {key} must have length 1 or {self._length}, not {len(value)}" + ) + else: + raise ValueError(f"Unsupported type for parameter {key}: {type(value)}") + + self._parameters[key] = value + + def __getattr__(self, name: str) -> Any: + """ + Allow attribute-style access to parameters. + + Args: + name (str): Name of the parameter to access. + + Returns: + Any: The value of the specified parameter. + + Raises: + AttributeError: If the parameter name is not found. + """ + if name.startswith("_"): + return super().__getattribute__(name) + try: + return self._parameters[name] + except KeyError: + raise AttributeError( + f"'{self.__class__.__name__}' object has no attribute '{name}'" + ) + + def __setattr__(self, name: str, value: Any) -> None: + """ + Allow attribute-style setting of parameters. + + Args: + name (str): Name of the parameter to set. + value (Any): Value to set for the parameter. + """ + if name.startswith("_"): + super().__setattr__(name, value) + else: + self[name] = value + + def __contains__(self, key: str) -> bool: + """ + Check if a parameter exists. + + Args: + key (str): The name of the parameter. + + Returns: + bool: True if the parameter exists, False otherwise. + """ + return key in self._parameters + + def __iter__(self) -> Iterator[str]: + """ + Iterate over parameter names. + + Returns: + Iterator[str]: An iterator over parameter names. + """ + return iter(self._parameters) + + def __len__(self) -> int: + """ + Get the number of parameters. + + Returns: + int: The number of parameters. + """ + return len(self._parameters) + + def __repr__(self) -> str: + """ + Get a string representation of the Parameters object. + + Returns: + str: A string representation of the Parameters object. + """ + return f"Parameters(_length={self._length}, _invariant_params={self._invariant_params}, _varying_params={self._varying_params}, _parameters={self._parameters})" + + def __str__(self) -> str: + """ + Get a string representation of the Parameters object. + + Returns: + str: A string representation of the Parameters object. + """ + return self.__repr__() + + def keys(self) -> Set[str]: + """ + Get the names of all parameters. + + Returns: + Set[str]: The names of all parameters. + """ + return set(self._parameters.keys()) + + def values(self) -> List[Any]: + """ + Get the values of all parameters. + + Returns: + List[Any]: The values of all parameters. + """ + return list(self._parameters.values()) + + def items(self) -> List[Tuple[str, Any]]: + """ + Get the names and values of all parameters. + + Returns: + List[Tuple[str, Any]]: The names and values of all parameters. + """ + return list(self._parameters.items()) + + def to_dict(self) -> Dict[str, Any]: + """ + Convert parameters to a plain dictionary. + + Returns: + Dict[str, Any]: A dictionary containing all parameters. + """ + return dict(self._parameters) + + def to_namedtuple(self) -> namedtuple: + """ + Convert parameters to a namedtuple. + + Returns: + namedtuple: A namedtuple containing all parameters. + """ + return namedtuple("Parameters", self.keys())(**self.to_dict()) + + def update(self, other: Union["Parameters", Dict[str, Any]]) -> None: + """ + Update parameters from another Parameters object or dictionary. + + Args: + other (Union[Parameters, Dict[str, Any]]): The source of parameters to update from. + + Raises: + TypeError: If the input is neither a Parameters object nor a dictionary. + """ + if isinstance(other, Parameters): + for key, value in other._parameters.items(): + self[key] = value + elif isinstance(other, dict): + for key, value in other.items(): + self[key] = value + else: + raise TypeError(f"Expected Parameters or dict, got {type(other)}") + + def copy(self) -> "Parameters": + """ + Create a deep copy of the Parameters object. + + Returns: + Parameters: A new Parameters object with the same contents. + """ + return deepcopy(self) + + def add_to_time_vary(self, *params: str) -> None: + """ + Adds any number of parameters to the time-varying set. + + Args: + *params (str): Any number of strings naming parameters to be added to time_vary. + """ + for param in params: + if param in self._parameters: + self._varying_params.add(param) + + def add_to_time_inv(self, *params: str) -> None: + """ + Adds any number of parameters to the time-invariant set. + + Args: + *params (str): Any number of strings naming parameters to be added to time_inv. + """ + for param in params: + if param in self._parameters: + self._invariant_params.add(param) + + def del_from_time_vary(self, *params: str) -> None: + """ + Removes any number of parameters from the time-varying set. + + Args: + *params (str): Any number of strings naming parameters to be removed from time_vary. + """ + for param in params: + self._varying_params.discard(param) + + def del_from_time_inv(self, *params: str) -> None: + """ + Removes any number of parameters from the time-invariant set. + + Args: + *params (str): Any number of strings naming parameters to be removed from time_inv. + """ + for param in params: + self._invariant_params.discard(param) + + def get(self, key: str, default: Any = None) -> Any: + """ + Get a parameter value, returning a default if not found. + + Args: + key (str): The parameter name. + default (Any, optional): The default value to return if the key is not found. + + Returns: + Any: The parameter value or the default. + """ + return self._parameters.get(key, default) + + def set_many(self, **kwargs: Any) -> None: + """ + Set multiple parameters at once. + + Args: + **kwargs: Keyword arguments representing parameter names and values. + """ + for key, value in kwargs.items(): + self[key] = value + + def is_time_varying(self, key: str) -> bool: + """ + Check if a parameter is time-varying. + + Args: + key (str): The parameter name. + + Returns: + bool: True if the parameter is time-varying, False otherwise. + """ + return key in self._varying_params + + class AgentType(Model): """ A superclass for economic agents in the HARK framework. Each model should @@ -701,8 +1144,7 @@ def unpack(self, parameter): """ Unpacks a parameter from a solution object for easier access. After the model has been solved, the parameters (like consumption function) - reside in the attributes of each element of `ConsumerType.solution` - (e.g. `cFunc`). This method creates a (time varying) attribute of the given + reside in the attributes of each element of `ConsumerType.solution` (e.g. `cFunc`). This method creates a (time varying) attribute of the given parameter name that contains a list of functions accessible by `ConsumerType.parameter`. Parameters @@ -1576,7 +2018,7 @@ class Market(Model): A list of all the AgentTypes in this market. sow_vars : [string] Names of variables generated by the "aggregate market process" that should - be "sown" to the agents in the market. Aggregate state, etc. + "sown" to the agents in the market. Aggregate state, etc. reap_vars : [string] Names of variables to be collected ("reaped") from agents in the market to be used in the "aggregate market process". diff --git a/HARK/tests/test_core.py b/HARK/tests/test_core.py index 102d23deb..f08d05af5 100644 --- a/HARK/tests/test_core.py +++ b/HARK/tests/test_core.py @@ -182,103 +182,69 @@ def test_create_agents(self): self.assertEqual(len(self.agent_pop.agents), 12) -class test_parameters(unittest.TestCase): - def setUp(self): - self.params = Parameters( - T_cycle=3, - a=1, - b=[2, 3, 4], - c=np.array([5, 6, 7]), - d=[lambda x: x, lambda x: x**2, lambda x: x**3], - e=Uniform(), - f=[True, False, True], - ) - - def test_init(self): - self.assertEqual(self.params._length, 3) - self.assertEqual(self.params._invariant_params, {"a", "c", "e"}) - self.assertEqual(self.params._varying_params, {"b", "d", "f"}) - - def test_getitem(self): - self.assertEqual(self.params["a"], 1) - self.assertEqual(self.params[0]["b"], 2) - self.assertEqual(self.params["c"][1], 6) - - def test_setitem(self): - self.params["d"] = 8 - self.assertEqual(self.params["d"], 8) - - def test_update(self): - self.params.update({"a": 9, "b": [10, 11, 12]}) - self.assertEqual(self.params["a"], 9) - self.assertEqual(self.params[0]["b"], 10) - - def test_initialization(self): - params = Parameters(a=1, b=[1, 2], T_cycle=2) - assert params._length == 2 - assert params._invariant_params == {"a"} - assert params._varying_params == {"b"} - - def test_infer_dims_scalar(self): - params = Parameters(a=1) - assert params["a"] == 1 - - def test_infer_dims_array(self): - params = Parameters(b=np.array([1, 2])) - assert all(params["b"] == np.array([1, 2])) - - def test_infer_dims_list_varying(self): - params = Parameters(b=[1, 2], T_cycle=2) - assert params["b"] == [1, 2] - - def test_infer_dims_list_invariant(self): - params = Parameters(b=[1]) - assert params["b"] == 1 - - def test_setitem(self): - params = Parameters(a=1) - params["b"] = 2 - assert params["b"] == 2 - - def test_keys_values_items(self): - params = Parameters(a=1, b=2) - assert set(params.keys()) == {"a", "b"} - assert set(params.values()) == {1, 2} - assert set(params.items()) == {("a", 1), ("b", 2)} - - def test_to_dict(self): - params = Parameters(a=1, b=2) - assert params.to_dict() == {"a": 1, "b": 2} - - def test_to_namedtuple(self): - params = Parameters(a=1, b=2) - named_tuple = params.to_namedtuple() - assert named_tuple.a == 1 - assert named_tuple.b == 2 - - def test_update_params(self): - params1 = Parameters(a=1, b=2) - params2 = Parameters(a=3, c=4) - params1.update(params2) - assert params1["a"] == 3 - assert params1["c"] == 4 - - def test_unsupported_type_error(self): +import pytest +import numpy as np +from HARK.distribution import Uniform +from HARK.core import Parameters + + +@pytest.fixture +def sample_params(): + return Parameters(a=1, b=[2, 3, 4], c=5.0, d=[6.0, 7.0, 8.0], T_cycle=3) + + +class TestParameters: + def test_initialization(self, sample_params): + assert sample_params._length == 3 + assert sample_params._invariant_params == {"a", "c"} + assert sample_params._varying_params == {"b", "d"} + assert sample_params._parameters["T_cycle"] == 3 + + def test_getitem(self, sample_params): + assert sample_params["a"] == 1 + assert sample_params["b"] == [2, 3, 4] + assert sample_params[0]["b"] == 2 + assert sample_params[1]["d"] == 7.0 + + def test_setitem(self, sample_params): + sample_params["e"] = 9 + assert sample_params["e"] == 9 + assert "e" in sample_params._invariant_params + + sample_params["f"] = [10, 11, 12] + assert sample_params["f"] == [10, 11, 12] + assert "f" in sample_params._varying_params + + def test_get(self, sample_params): + assert sample_params.get("a") == 1 + assert sample_params.get("z", 100) == 100 + + def test_set_many(self, sample_params): + sample_params.set_many(g=13, h=[14, 15, 16]) + assert sample_params["g"] == 13 + assert sample_params["h"] == [14, 15, 16] + + def test_is_time_varying(self, sample_params): + assert sample_params.is_time_varying("b") is True + assert sample_params.is_time_varying("a") is False + + def test_to_dict(self, sample_params): + params_dict = sample_params.to_dict() + assert isinstance(params_dict, dict) + assert params_dict["a"] == 1 + assert params_dict["b"] == [2, 3, 4] + + def test_update(self, sample_params): + new_params = Parameters(a=100, e=200) + sample_params.update(new_params) + assert sample_params["a"] == 100 + assert sample_params["e"] == 200 + + @pytest.mark.parametrize("invalid_key", [1, 2.0, None, []]) + def test_setitem_invalid_key(self, sample_params, invalid_key): with pytest.raises(ValueError): - Parameters(b={1, 2}) + sample_params[invalid_key] = 42 - def test_get_item_dimension_error(self): - params = Parameters(b=[1, 2], T_cycle=2) + def test_setitem_invalid_value_length(self, sample_params): with pytest.raises(ValueError): - params[2] - - def test_getitem_with_key(self): - params = Parameters(a=1, b=[2, 3], T_cycle=2) - assert params["a"] == 1 - assert params["b"] == [2, 3] - - def test_getitem_with_item(self): - params = Parameters(a=1, b=[2, 3], T_cycle=2) - age_params = params[1] - assert age_params["a"] == 1 - assert age_params["b"] == 3 + sample_params["invalid"] = [1, 2] # Should be length 1 or 3 From b0bc3ed16af6ae8028a5a472669ac7cafca0c58d Mon Sep 17 00:00:00 2001 From: Alan Lujan Date: Thu, 7 Nov 2024 15:38:59 -0500 Subject: [PATCH 2/6] remove duplicate Params --- HARK/core.py | 344 --------------------------------------------------- 1 file changed, 344 deletions(-) diff --git a/HARK/core.py b/HARK/core.py index cda1dbb65..f853c72cd 100644 --- a/HARK/core.py +++ b/HARK/core.py @@ -650,350 +650,6 @@ def describe_constructors(self, *args): from typing import Any, Dict, Iterator, List, Set, Tuple, Union -class Parameters: - """ - A smart container for model parameters that handles age-varying dynamics. - - This class stores parameters as an internal dictionary and manages their - age-varying properties. It provides both attribute-style and dictionary-style - access to parameters. - - Attributes: - _length (int): The terminal age of the agents in the model. - _invariant_params (Set[str]): A set of parameter names that are invariant over time. - _varying_params (Set[str]): A set of parameter names that vary over time. - _parameters (Dict[str, Any]): The internal dictionary storing all parameters. - """ - - __slots__ = ("_length", "_invariant_params", "_varying_params", "_parameters") - - def __init__(self, **parameters: Any) -> None: - """ - Initialize a Parameters object and parse the age-varying dynamics of parameters. - - Args: - **parameters (Any): Keyword arguments representing parameter names and values. - """ - self._length: int = parameters.pop("T_cycle", 1) - self._invariant_params: Set[str] = set() - self._varying_params: Set[str] = set() - self._parameters: Dict[str, Any] = {"T_cycle": self._length} - - for key, value in parameters.items(): - self[key] = value - - def __getitem__(self, item_or_key: Union[int, str]) -> Union["Parameters", Any]: - """ - Access parameters by age index or parameter name. - - Args: - item_or_key (Union[int, str]): Age index or parameter name. - - Returns: - Union[Parameters, Any]: A new Parameters object for the specified age, - or the value of the specified parameter. - - Raises: - ValueError: If the age index is out of bounds. - KeyError: If the parameter name is not found. - TypeError: If the key is neither an integer nor a string. - """ - if isinstance(item_or_key, int): - if item_or_key >= self._length: - raise ValueError( - f"Age {item_or_key} is out of bounds (max: {self._length - 1})." - ) - - params = {key: self._parameters[key] for key in self._invariant_params} - params.update( - { - key: self._parameters[key][item_or_key] - if isinstance(self._parameters[key], (list, tuple, np.ndarray)) - else self._parameters[key] - for key in self._varying_params - } - ) - return Parameters(**params) - elif isinstance(item_or_key, str): - return self._parameters[item_or_key] - else: - raise TypeError("Key must be an integer (age) or string (parameter name).") - - def __setitem__(self, key: str, value: Any) -> None: - """ - Set parameter values, automatically inferring time variance. - - Args: - key (str): Name of the parameter. - value (Any): Value of the parameter. - - Raises: - ValueError: If the parameter name is not a string or if the value type is unsupported. - ValueError: If the parameter value is inconsistent with the current model length. - """ - if not isinstance(key, str): - raise ValueError(f"Parameter name must be a string, got {type(key)}") - - if isinstance( - value, (int, float, np.ndarray, type(None), Distribution, bool, Callable) - ): - self._invariant_params.add(key) - self._varying_params.discard(key) - elif isinstance(value, (list, tuple)): - if len(value) == 1: - value = value[0] - self._invariant_params.add(key) - self._varying_params.discard(key) - elif self._length is None or self._length == 1: - self._length = len(value) - self._varying_params.add(key) - self._invariant_params.discard(key) - elif len(value) == self._length: - self._varying_params.add(key) - self._invariant_params.discard(key) - else: - raise ValueError( - f"Parameter {key} must have length 1 or {self._length}, not {len(value)}" - ) - else: - raise ValueError(f"Unsupported type for parameter {key}: {type(value)}") - - self._parameters[key] = value - - def __getattr__(self, name: str) -> Any: - """ - Allow attribute-style access to parameters. - - Args: - name (str): Name of the parameter to access. - - Returns: - Any: The value of the specified parameter. - - Raises: - AttributeError: If the parameter name is not found. - """ - if name.startswith("_"): - return super().__getattribute__(name) - try: - return self._parameters[name] - except KeyError: - raise AttributeError( - f"'{self.__class__.__name__}' object has no attribute '{name}'" - ) - - def __setattr__(self, name: str, value: Any) -> None: - """ - Allow attribute-style setting of parameters. - - Args: - name (str): Name of the parameter to set. - value (Any): Value to set for the parameter. - """ - if name.startswith("_"): - super().__setattr__(name, value) - else: - self[name] = value - - def __contains__(self, key: str) -> bool: - """ - Check if a parameter exists. - - Args: - key (str): The name of the parameter. - - Returns: - bool: True if the parameter exists, False otherwise. - """ - return key in self._parameters - - def __iter__(self) -> Iterator[str]: - """ - Iterate over parameter names. - - Returns: - Iterator[str]: An iterator over parameter names. - """ - return iter(self._parameters) - - def __len__(self) -> int: - """ - Get the number of parameters. - - Returns: - int: The number of parameters. - """ - return len(self._parameters) - - def __repr__(self) -> str: - """ - Get a string representation of the Parameters object. - - Returns: - str: A string representation of the Parameters object. - """ - return f"Parameters(_length={self._length}, _invariant_params={self._invariant_params}, _varying_params={self._varying_params}, _parameters={self._parameters})" - - def __str__(self) -> str: - """ - Get a string representation of the Parameters object. - - Returns: - str: A string representation of the Parameters object. - """ - return self.__repr__() - - def keys(self) -> Set[str]: - """ - Get the names of all parameters. - - Returns: - Set[str]: The names of all parameters. - """ - return set(self._parameters.keys()) - - def values(self) -> List[Any]: - """ - Get the values of all parameters. - - Returns: - List[Any]: The values of all parameters. - """ - return list(self._parameters.values()) - - def items(self) -> List[Tuple[str, Any]]: - """ - Get the names and values of all parameters. - - Returns: - List[Tuple[str, Any]]: The names and values of all parameters. - """ - return list(self._parameters.items()) - - def to_dict(self) -> Dict[str, Any]: - """ - Convert parameters to a plain dictionary. - - Returns: - Dict[str, Any]: A dictionary containing all parameters. - """ - return dict(self._parameters) - - def to_namedtuple(self) -> namedtuple: - """ - Convert parameters to a namedtuple. - - Returns: - namedtuple: A namedtuple containing all parameters. - """ - return namedtuple("Parameters", self.keys())(**self.to_dict()) - - def update(self, other: Union["Parameters", Dict[str, Any]]) -> None: - """ - Update parameters from another Parameters object or dictionary. - - Args: - other (Union[Parameters, Dict[str, Any]]): The source of parameters to update from. - - Raises: - TypeError: If the input is neither a Parameters object nor a dictionary. - """ - if isinstance(other, Parameters): - for key, value in other._parameters.items(): - self[key] = value - elif isinstance(other, dict): - for key, value in other.items(): - self[key] = value - else: - raise TypeError(f"Expected Parameters or dict, got {type(other)}") - - def copy(self) -> "Parameters": - """ - Create a deep copy of the Parameters object. - - Returns: - Parameters: A new Parameters object with the same contents. - """ - return deepcopy(self) - - def add_to_time_vary(self, *params: str) -> None: - """ - Adds any number of parameters to the time-varying set. - - Args: - *params (str): Any number of strings naming parameters to be added to time_vary. - """ - for param in params: - if param in self._parameters: - self._varying_params.add(param) - - def add_to_time_inv(self, *params: str) -> None: - """ - Adds any number of parameters to the time-invariant set. - - Args: - *params (str): Any number of strings naming parameters to be added to time_inv. - """ - for param in params: - if param in self._parameters: - self._invariant_params.add(param) - - def del_from_time_vary(self, *params: str) -> None: - """ - Removes any number of parameters from the time-varying set. - - Args: - *params (str): Any number of strings naming parameters to be removed from time_vary. - """ - for param in params: - self._varying_params.discard(param) - - def del_from_time_inv(self, *params: str) -> None: - """ - Removes any number of parameters from the time-invariant set. - - Args: - *params (str): Any number of strings naming parameters to be removed from time_inv. - """ - for param in params: - self._invariant_params.discard(param) - - def get(self, key: str, default: Any = None) -> Any: - """ - Get a parameter value, returning a default if not found. - - Args: - key (str): The parameter name. - default (Any, optional): The default value to return if the key is not found. - - Returns: - Any: The parameter value or the default. - """ - return self._parameters.get(key, default) - - def set_many(self, **kwargs: Any) -> None: - """ - Set multiple parameters at once. - - Args: - **kwargs: Keyword arguments representing parameter names and values. - """ - for key, value in kwargs.items(): - self[key] = value - - def is_time_varying(self, key: str) -> bool: - """ - Check if a parameter is time-varying. - - Args: - key (str): The parameter name. - - Returns: - bool: True if the parameter is time-varying, False otherwise. - """ - return key in self._varying_params - - class AgentType(Model): """ A superclass for economic agents in the HARK framework. Each model should From e5baad5eee42cd301228cb6af4dcf145af1a9764 Mon Sep 17 00:00:00 2001 From: Alan Lujan Date: Thu, 7 Nov 2024 16:03:05 -0500 Subject: [PATCH 3/6] cleanup docs --- HARK/core.py | 265 +++++++++++++++++++++++++++++++++------------------ 1 file changed, 173 insertions(+), 92 deletions(-) diff --git a/HARK/core.py b/HARK/core.py index f853c72cd..0888a2ca7 100644 --- a/HARK/core.py +++ b/HARK/core.py @@ -20,6 +20,8 @@ import numpy as np import pandas as pd +from xarray import DataArray + from HARK.distribution import ( Distribution, IndexDistribution, @@ -28,7 +30,6 @@ ) from HARK.parallel import multi_thread_commands, multi_thread_commands_fake from HARK.utilities import NullFunc, get_arg_names -from xarray import DataArray logging.basicConfig(format="%(message)s") _log = logging.getLogger("HARK") @@ -64,14 +65,20 @@ class Parameters: A smart container for model parameters that handles age-varying dynamics. This class stores parameters as an internal dictionary and manages their - age-varying properties. It provides both attribute-style and dictionary-style - access to parameters. - - Attributes: - _length (int): The terminal age of the agents in the model. - _invariant_params (Set[str]): A set of parameter names that are invariant over time. - _varying_params (Set[str]): A set of parameter names that vary over time. - _parameters (Dict[str, Any]): The internal dictionary storing all parameters. + age-varying properties, providing both attribute-style and dictionary-style + access. It is designed to handle the time-varying dynamics of parameters + in economic models. + + Attributes + ---------- + _length : int + The terminal age of the agents in the model. + _invariant_params : Set[str] + A set of parameter names that are invariant over time. + _varying_params : Set[str] + A set of parameter names that vary over time. + _parameters : Dict[str, Any] + The internal dictionary storing all parameters. """ __slots__ = ("_length", "_invariant_params", "_varying_params", "_parameters") @@ -80,8 +87,10 @@ def __init__(self, **parameters: Any) -> None: """ Initialize a Parameters object and parse the age-varying dynamics of parameters. - Args: - **parameters (Any): Any number of parameters in the form key=value. + Parameters + ---------- + **parameters : Any + Any number of parameters in the form key=value. """ self._length: int = parameters.pop("T_cycle", 1) self._invariant_params: Set[str] = set() @@ -95,17 +104,30 @@ def __getitem__(self, item_or_key: Union[int, str]) -> Union["Parameters", Any]: """ Access parameters by age index or parameter name. - Args: - item_or_key (Union[int, str]): Age index or parameter name. + If item_or_key is an integer, returns a Parameters object with the parameters + that apply to that age. This includes all invariant parameters and the + `item_or_key`th element of all age-varying parameters. If item_or_key is a + string, it returns the value of the parameter with that name. - Returns: - Union[Parameters, Any]: A new Parameters object for the specified age, - or the value of the specified parameter. + Parameters + ---------- + item_or_key : Union[int, str] + Age index or parameter name. - Raises: - ValueError: If the age index is out of bounds. - KeyError: If the parameter name is not found. - TypeError: If the key is neither an integer nor a string. + Returns + ------- + Union[Parameters, Any] + A new Parameters object for the specified age, or the value of the + specified parameter. + + Raises + ------ + ValueError: + If the age index is out of bounds. + KeyError: + If the parameter name is not found. + TypeError: + If the key is neither an integer nor a string. """ if isinstance(item_or_key, int): if item_or_key >= self._length: @@ -132,13 +154,24 @@ def __setitem__(self, key: str, value: Any) -> None: """ Set parameter values, automatically inferring time variance. - Args: - key (str): Name of the parameter. - value (Any): Value of the parameter. + If the parameter is a scalar, numpy array, boolean, distribution, callable + or None, it is assumed to be invariant over time. If the parameter is a + list or tuple, it is assumed to be varying over time. If the parameter + is a list or tuple of length greater than 1, the length of the list or + tuple must match the `_length` attribute of the Parameters object. + + Parameters + ---------- + key : str + Name of the parameter. + value : Any + Value of the parameter. - Raises: - ValueError: If the parameter name is not a string or if the value type is unsupported. - ValueError: If the parameter value is inconsistent with the current model length. + Raises + ------ + ValueError: + If the parameter name is not a string or if the value type is unsupported. + If the parameter value is inconsistent with the current model length. """ if not isinstance(key, str): raise ValueError(f"Parameter name must be a string, got {type(key)}") @@ -193,8 +226,10 @@ def to_dict(self) -> Dict[str, Any]: """ Convert parameters to a plain dictionary. - Returns: - Dict[str, Any]: A dictionary containing all parameters. + Returns + ------- + Dict[str, Any] + A dictionary containing all parameters. """ return dict(self._parameters) @@ -202,8 +237,10 @@ def to_namedtuple(self) -> namedtuple: """ Convert parameters to a namedtuple. - Returns: - namedtuple: A namedtuple containing all parameters. + Returns + ------- + namedtuple + A namedtuple containing all parameters. """ return namedtuple("Parameters", self.keys())(**self.to_dict()) @@ -211,11 +248,15 @@ def update(self, other: Union["Parameters", Dict[str, Any]]) -> None: """ Update parameters from another Parameters object or dictionary. - Args: - other (Union[Parameters, Dict[str, Any]]): The source of parameters to update from. + Parameters + ---------- + other : Union[Parameters, Dict[str, Any]] + The source of parameters to update from. - Raises: - TypeError: If the input is neither a Parameters object nor a dictionary. + Raises + ------ + TypeError + If the input is neither a Parameters object nor a dictionary. """ if isinstance(other, Parameters): for key, value in other._parameters.items(): @@ -245,14 +286,20 @@ def __getattr__(self, name: str) -> Any: """ Allow attribute-style access to parameters. - Args: - name (str): Name of the parameter to access. + Parameters + ---------- + name : str + Name of the parameter to access. - Returns: - Any: The value of the specified parameter. + Returns + ------- + Any + The value of the specified parameter. - Raises: - AttributeError: If the parameter name is not found. + Raises + ------ + AttributeError: + If the parameter name is not found. """ if name.startswith("_"): return super().__getattribute__(name) @@ -265,9 +312,12 @@ def __setattr__(self, name: str, value: Any) -> None: """ Allow attribute-style setting of parameters. - Args: - name (str): Name of the parameter to set. - value (Any): Value to set for the parameter. + Parameters + ---------- + name : str + Name of the parameter to set. + value : Any + Value to set for the parameter. """ if name.startswith("_"): super().__setattr__(name, value) @@ -282,8 +332,10 @@ def copy(self) -> "Parameters": """ Create a deep copy of the Parameters object. - Returns: - Parameters: A new Parameters object with the same contents. + Returns + ------- + Parameters + A new Parameters object with the same contents. """ return deepcopy(self) @@ -291,8 +343,10 @@ def add_to_time_vary(self, *params: str) -> None: """ Adds any number of parameters to the time-varying set. - Args: - *params (str): Any number of strings naming parameters to be added to time_vary. + Parameters + ---------- + *params : str + Any number of strings naming parameters to be added to time_vary. """ for param in params: if param in self._parameters: @@ -307,8 +361,10 @@ def add_to_time_inv(self, *params: str) -> None: """ Adds any number of parameters to the time-invariant set. - Args: - *params (str): Any number of strings naming parameters to be added to time_inv. + Parameters + ---------- + *params : str + Any number of strings naming parameters to be added to time_inv. """ for param in params: if param in self._parameters: @@ -323,8 +379,10 @@ def del_from_time_vary(self, *params: str) -> None: """ Removes any number of parameters from the time-varying set. - Args: - *params (str): Any number of strings naming parameters to be removed from time_vary. + Parameters + ---------- + *params : str + Any number of strings naming parameters to be removed from time_vary. """ for param in params: self._varying_params.discard(param) @@ -333,8 +391,10 @@ def del_from_time_inv(self, *params: str) -> None: """ Removes any number of parameters from the time-invariant set. - Args: - *params (str): Any number of strings naming parameters to be removed from time_inv. + Parameters + ---------- + *params : str + Any number of strings naming parameters to be removed from time_inv. """ for param in params: self._invariant_params.discard(param) @@ -343,12 +403,17 @@ def get(self, key: str, default: Any = None) -> Any: """ Get a parameter value, returning a default if not found. - Args: - key (str): The parameter name. - default (Any, optional): The default value to return if the key is not found. + Parameters + ---------- + key : str + The parameter name. + default : Any, optional + The default value to return if the key is not found. - Returns: - Any: The parameter value or the default. + Returns + ------- + Any + The parameter value or the default. """ return self._parameters.get(key, default) @@ -356,8 +421,9 @@ def set_many(self, **kwargs: Any) -> None: """ Set multiple parameters at once. - Args: - **kwargs: Keyword arguments representing parameter names and values. + Parameters + ---------- + **kwargs : Keyword arguments representing parameter names and values. """ for key, value in kwargs.items(): self[key] = value @@ -366,11 +432,15 @@ def is_time_varying(self, key: str) -> bool: """ Check if a parameter is time-varying. - Args: - key (str): The parameter name. + Parameters + ---------- + key : str + The parameter name. - Returns: - bool: True if the parameter is time-varying, False otherwise. + Returns + ------- + bool + True if the parameter is time-varying, False otherwise. """ return key in self._varying_params @@ -391,10 +461,12 @@ def assign_parameters(self, **kwds): Assign an arbitrary number of attributes to this agent. Args: - **kwds (keyword arguments): Any number of keyword arguments of the form key=value. - Each value will be assigned to the attribute named in self. + **kwds : keyword arguments + Any number of keyword arguments of the form key=value. + Each value will be assigned to the attribute named in self. - Returns: + Returns + ------- None """ self.parameters.update(kwds) @@ -405,8 +477,10 @@ def get_parameter(self, name): """ Returns a parameter of this model - Args: - name (str): The name of the parameter to get + Parameters + ---------- + name : str + The name of the parameter to get Returns: value: The value of the parameter @@ -441,12 +515,15 @@ def del_param(self, param_name): Deletes a parameter from this instance, removing it both from the object's namespace (if it's there) and the parameters dictionary (likewise). - Args: - param_name (str): A string naming a parameter or data to be deleted from this instance. - Removes information from self.parameters dictionary and own namespace. + Parameters + ---------- + param_name : str + A string naming a parameter or data to be deleted from this instance. + Removes information from self.parameters dictionary and own namespace. - Returns: - None + Returns + ------- + None """ if param_name in self.parameters: del self.parameters[param_name] @@ -466,17 +543,21 @@ def construct(self, *args, force=False): missing data) will be named in self._missing_key_data. Other errors are recorded in the dictionary attribute _constructor_errors. - Args: - *args (str, optional): Keys of self.constructors that are requested to be constructed. - If no arguments are passed, *all* elements of the dictionary are implied. - force (bool, optional): When True, the method will force its way past any errors, including - missing constructors, missing arguments for constructors, and errors - raised during execution of constructors. Information about all such - errors is stored in the dictionary attributes described above. When - False (default), any errors or exception will be raised. + Parameters + ---------- + *args : str, optional + Keys of self.constructors that are requested to be constructed. + If no arguments are passed, *all* elements of the dictionary are implied. + force : bool, optional + When True, the method will force its way past any errors, including + missing constructors, missing arguments for constructors, and errors + raised during execution of constructors. Information about all such + errors is stored in the dictionary attributes described above. When + False (default), any errors or exception will be raised. - Returns: - None + Returns + ------- + None """ # Set up the requested work if len(args) > 0: @@ -589,12 +670,15 @@ def describe_constructors(self, *args): including their names, the function that constructs them, the names of those functions inputs, and whether those inputs are present. - Args: - *args (str): Optional list of strings naming constructed inputs to be described. - If none are passed, all constructors are described. + Parameters + ---------- + *args : str, optional + Optional list of strings naming constructed inputs to be described. + If none are passed, all constructors are described. - Returns: - None + Returns + ------- + None """ if len(args) > 0: keys = args @@ -647,9 +731,6 @@ def describe_constructors(self, *args): return -from typing import Any, Dict, Iterator, List, Set, Tuple, Union - - class AgentType(Model): """ A superclass for economic agents in the HARK framework. Each model should From ac2dddd10c2594a4ebe2e52d0a4d7a123d54b1db Mon Sep 17 00:00:00 2001 From: Alan Lujan Date: Thu, 7 Nov 2024 16:14:55 -0500 Subject: [PATCH 4/6] more doc cleanup --- HARK/core.py | 8 +++++--- 1 file changed, 5 insertions(+), 3 deletions(-) diff --git a/HARK/core.py b/HARK/core.py index 0888a2ca7..be72e83a6 100644 --- a/HARK/core.py +++ b/HARK/core.py @@ -460,7 +460,8 @@ def assign_parameters(self, **kwds): """ Assign an arbitrary number of attributes to this agent. - Args: + Parameters + ---------- **kwds : keyword arguments Any number of keyword arguments of the form key=value. Each value will be assigned to the attribute named in self. @@ -482,8 +483,9 @@ def get_parameter(self, name): name : str The name of the parameter to get - Returns: - value: The value of the parameter + Returns + ------- + value : The value of the parameter """ return self.parameters[name] From 29cee1a2ba0c1b358c0cd57f360363c518d88254 Mon Sep 17 00:00:00 2001 From: sb Date: Thu, 14 Nov 2024 16:58:30 -0500 Subject: [PATCH 5/6] remove frame.py and FramedAgentType #1428 --- .../ConsPortfolioFrameModel.rst | 7 - Documentation/reference/index.rst | 2 - Documentation/reference/tools/frame.rst | 7 - .../ConsPortfolioFrameModel.py | 233 ------ .../tests/test_ConsPortfolioFrameModel.py | 150 ---- HARK/frame.py | 781 ------------------ HARK/tests/test_frame.py | 72 -- 7 files changed, 1252 deletions(-) delete mode 100644 Documentation/reference/ConsumptionSaving/ConsPortfolioFrameModel.rst delete mode 100644 Documentation/reference/tools/frame.rst delete mode 100644 HARK/ConsumptionSaving/ConsPortfolioFrameModel.py delete mode 100644 HARK/ConsumptionSaving/tests/test_ConsPortfolioFrameModel.py delete mode 100644 HARK/frame.py delete mode 100644 HARK/tests/test_frame.py diff --git a/Documentation/reference/ConsumptionSaving/ConsPortfolioFrameModel.rst b/Documentation/reference/ConsumptionSaving/ConsPortfolioFrameModel.rst deleted file mode 100644 index 5c783c31a..000000000 --- a/Documentation/reference/ConsumptionSaving/ConsPortfolioFrameModel.rst +++ /dev/null @@ -1,7 +0,0 @@ -ConsPortfolioFrameModel ------------------------ - -.. automodule:: HARK.ConsumptionSaving.ConsPortfolioFrameModel - :members: - :undoc-members: - :show-inheritance: diff --git a/Documentation/reference/index.rst b/Documentation/reference/index.rst index 07f65f6e1..61b1b4793 100644 --- a/Documentation/reference/index.rst +++ b/Documentation/reference/index.rst @@ -10,7 +10,6 @@ API Reference tools/distribution tools/econforgeinterp tools/estimation - tools/frame tools/helpers tools/interpolation tools/incomeprocess @@ -34,7 +33,6 @@ API Reference ConsumptionSaving/ConsLaborModel ConsumptionSaving/ConsMarkovModel ConsumptionSaving/ConsMedModel - ConsumptionSaving/ConsPortfolioFrameModel ConsumptionSaving/ConsPortfolioModel ConsumptionSaving/ConsPrefShochModel ConsumptionSaving/ConsRepAgentModel diff --git a/Documentation/reference/tools/frame.rst b/Documentation/reference/tools/frame.rst deleted file mode 100644 index 677c95a3d..000000000 --- a/Documentation/reference/tools/frame.rst +++ /dev/null @@ -1,7 +0,0 @@ -Frame -------------- - -.. automodule:: HARK.frame - :members: - :undoc-members: - :show-inheritance: diff --git a/HARK/ConsumptionSaving/ConsPortfolioFrameModel.py b/HARK/ConsumptionSaving/ConsPortfolioFrameModel.py deleted file mode 100644 index 7fa32d95e..000000000 --- a/HARK/ConsumptionSaving/ConsPortfolioFrameModel.py +++ /dev/null @@ -1,233 +0,0 @@ -""" -This file contains classes and functions for representing, -solving, and simulating agents who must allocate their resources -among consumption, saving in a risk-free asset (with a low return), -and saving in a risky asset (with higher average return). - -This file also demonstrates a "frame" model architecture. -""" - -import numpy as np - -from HARK.ConsumptionSaving.ConsPortfolioModel import ( - PortfolioConsumerType, - init_portfolio, -) -from HARK.distribution import ( - Bernoulli, - IndexDistribution, - Lognormal, - MeanOneLogNormal, - add_discrete_outcome_constant_mean, -) -from HARK.frame import Frame, FrameAgentType, FrameModel -from HARK.rewards import CRRAutility - - -class PortfolioConsumerFrameType(FrameAgentType, PortfolioConsumerType): - """ - A consumer type with a portfolio choice, using Frame architecture. - - A subclass of PortfolioConsumerType for now. - This is mainly to keep the _solver_ logic intact. - """ - - def __init__(self, **kwds): - params = init_portfolio.copy() - params.update(kwds) - kwds = params - - # Initialize a basic consumer type - PortfolioConsumerType.__init__(self, **kwds) - # Initialize a basic consumer type - FrameAgentType.__init__(self, self.model, **kwds) - - self.shocks = {} - self.controls = {} - self.state_now = {} - - def solve(self): - # Some contortions are needed here to make decision rule shaped objects - # out of the HARK solution objects - - super().solve(self) - - # TODO: make this a property of FrameAgentTypes or FrameModels? - self.decision_rules = {} - - def decision_rule_Share_from_solution(solution_t): - def decision_rule_Share(Adjust, mNrm, Share): - Share = np.zeros(len(Adjust)) + np.nan - - Share[Adjust] = solution_t.ShareFuncAdj(mNrm[Adjust]) - - Share[~Adjust] = solution_t.ShareFuncFxd(mNrm[~Adjust], Share[~Adjust]) - - return Share - - return decision_rule_Share - - def decision_rule_cNrm_from_solution(solution_t): - def decision_rule_cNrm(Adjust, mNrm, Share): - cNrm = np.zeros(len(Adjust)) + np.nan - - cNrm[Adjust] = solution_t.cFuncAdj(mNrm[Adjust]) - - cNrm[~Adjust] = solution_t.cFuncFxd(mNrm[~Adjust], Share[~Adjust]) - - return cNrm - - return decision_rule_cNrm - - self.decision_rules[("Share",)] = [ - decision_rule_Share_from_solution(sol) for sol in self.solution - ] - self.decision_rules[("cNrm",)] = [ - decision_rule_cNrm_from_solution(sol) for sol in self.solution - ] - - # TODO: streamline this so it can draw the parameters from context - def birth_aNrmNow(self, N): - """ - Birth value for aNrmNow - """ - return Lognormal( - mu=self.aNrmInitMean, - sigma=self.aNrmInitStd, - seed=self.RNG.integers(0, 2**31 - 1), - ).draw(N) - - # TODO: streamline this so it can draw the parameters from context - def birth_pLvlNow(self, N): - """ - Birth value for pLvlNow - """ - pLvlInitMeanNow = self.pLvlInitMean + np.log( - self.state_now["PlvlAgg"] - ) # Account for newer cohorts having higher permanent income - - return Lognormal( - pLvlInitMeanNow, self.pLvlInitStd, seed=self.RNG.integers(0, 2**31 - 1) - ).draw(N) - - # maybe replace reference to init_portfolio to self.parameters? - model = FrameModel( - [ - # todo : make an aggegrate value - Frame( - ("PermShkAgg",), - ("PermGroFacAgg",), - transition=lambda PermGroFacAgg: (PermGroFacAgg,), - aggregate=True, - ), - Frame( - ("PermShk"), - None, - default={ - "PermShk": 1.0 - }, # maybe this is unnecessary because the shock gets sampled at t = 0 - # this is discretized before it's sampled - transition=IndexDistribution( - Lognormal.from_mean_std, - { - "mean": init_portfolio["PermGroFac"], - "std": init_portfolio["PermShkStd"], - }, - ).discretize( - init_portfolio["PermShkCount"], method="equiprobable", tail_N=0 - ), - ), - Frame( - ("TranShk"), - None, - default={ - "TranShk": 1.0 - }, # maybe this is unnecessary because the shock gets sampled at t = 0 - transition=add_discrete_outcome_constant_mean( - IndexDistribution( - MeanOneLogNormal, {"sigma": init_portfolio["TranShkStd"]} - ).discretize( - init_portfolio["TranShkCount"], method="equiprobable", tail_N=0 - ), - p=init_portfolio["UnempPrb"], - x=init_portfolio["IncUnemp"], - ), - ), - Frame( # TODO: Handle Risky as an Aggregate value - ("Risky"), - None, - transition=IndexDistribution( - Lognormal.from_mean_std, - { - "mean": init_portfolio["RiskyAvg"], - "std": init_portfolio["RiskyStd"], - }, - # seed=self.RNG.integers(0, 2 ** 31 - 1) : TODO: Seed logic - ).discretize(init_portfolio["RiskyCount"], method="equiprobable"), - aggregate=True, - ), - Frame( - ("Adjust"), - None, - default={"Adjust": False}, - transition=IndexDistribution( - Bernoulli, - {"p": init_portfolio["AdjustPrb"]}, - # seed=self.RNG.integers(0, 2 ** 31 - 1) : TODO: Seed logic - ), # self.t_cycle input implied - ), - Frame( - ("Rport"), - ("Share", "Risky", "Rfree"), - transition=lambda Share, Risky, Rfree: ( - Share * Risky + (1.0 - Share) * Rfree, - ), - ), - Frame( - ("PlvlAgg"), - ("PlvlAgg", "PermShkAgg"), - default={"PlvlAgg": 1.0}, - transition=lambda PlvlAgg, PermShkAgg: PlvlAgg * PermShkAgg, - aggregate=True, - ), - Frame( - ("pLvl",), - ("pLvl", "PermShk"), - default={"pLvl": birth_pLvlNow}, - transition=lambda pLvl, PermShk: (pLvl * PermShk,), - ), - Frame( - ("bNrm",), - ("aNrm", "Rport", "PermShk"), - transition=lambda aNrm, Rport, PermShk: (Rport / PermShk) * aNrm, - ), - Frame( - ("mNrm",), - ("bNrm", "TranShk"), - transition=lambda bNrm, TranShk: (bNrm + TranShk,), - ), - Frame( - ("Share"), - ("Adjust", "mNrm", "Share"), - default={"Share": 0}, - control=True, - ), - Frame(("cNrm"), ("Adjust", "mNrm", "Share"), control=True), - Frame( - ("U"), - ("cNrm", "CRRA"), # Note CRRA here is a parameter not a state var - transition=lambda cNrm, CRRA: (CRRAutility(cNrm, CRRA),), - reward=True, - ), - Frame( - ("aNrm"), - ("mNrm", "cNrm"), - default={"aNrm": birth_aNrmNow}, - transition=lambda mNrm, cNrm: (mNrm - cNrm,), - ), - Frame( - ("aLvl"), ("aNrm", "pLvl"), transition=lambda aNrm, pLvl: (aNrm * pLvl,) - ), - ], - init_portfolio, - ) diff --git a/HARK/ConsumptionSaving/tests/test_ConsPortfolioFrameModel.py b/HARK/ConsumptionSaving/tests/test_ConsPortfolioFrameModel.py deleted file mode 100644 index 18aec8c8f..000000000 --- a/HARK/ConsumptionSaving/tests/test_ConsPortfolioFrameModel.py +++ /dev/null @@ -1,150 +0,0 @@ -import unittest - -import numpy as np - -import HARK.ConsumptionSaving.ConsPortfolioFrameModel as cpfm - - -class PortfolioConsumerTypeTestCase(unittest.TestCase): - def setUp(self): - # Create portfolio choice consumer type - self.pcct = cpfm.PortfolioConsumerFrameType() - self.pcct.cycles = 0 - - # Solve the model under the given parameters - - self.pcct.solve() - - -class FramesTestCase(PortfolioConsumerTypeTestCase): - def test_frames(self): - cNrm_frame = self.pcct.frames.iloc(11) - - self.assertTrue(cNrm_frame.control) - self.assertFalse(cNrm_frame.aggregate) - self.assertFalse(cNrm_frame.reward) - - U_frame = cNrm_frame.children[("U",)] - self.assertTrue(U_frame.reward) - self.assertEqual(U_frame.target[0], "U") - - -class UnitsPortfolioConsumerTypeTestCase(PortfolioConsumerTypeTestCase): - def test_simOnePeriod(self): - self.pcct.T_sim = 30 - self.pcct.AgentCount = 10 - self.pcct.track_vars += ["aNrm"] - self.pcct.initialize_sim() - - # simulation test -- seed/generator specific - # self.assertFalse(np.any(self.pcct.shocks["Adjust"])) - - self.pcct.sim_one_period() - - # simulation test -- seed/generator specific - # self.assertAlmostEqual(self.pcct.shocks["PermShk"][0], 0.9692322) - - # simulation test -- seed/generator specific - # self.assertAlmostEqual(self.pcct.shocks["TranShk"][0], 1.03173, place = HARK_PRECISION) - - # simulation test -- seed/generator specific - # self.assertAlmostEqual(self.pcct.shocks["Risky"][0], 0.96359, place = HARK_PRECISION) - - self.assertAlmostEqual( - self.pcct.state_now["pLvl"][0], - self.pcct.state_prev["pLvl"][0] * self.pcct.shocks["PermShk"][0], - ) - - self.assertTrue(np.any(self.pcct.shocks["Adjust"][0])) - - self.assertAlmostEqual( - self.pcct.state_now["mNrm"][0], - self.pcct.state_prev["aNrm"][0] - * self.pcct.Rfree - / self.pcct.shocks["PermShk"][0] - + self.pcct.shocks["TranShk"][0], - ) - - # simulation test -- seed/generator specific - # self.assertAlmostEqual( - # # todo: more flexible test - # self.pcct.controls["Share"][0], - # 0.90256, - # ) - - self.assertAlmostEqual( - self.pcct.controls["cNrm"][0], - self.pcct.solution[0].cFuncAdj(self.pcct.state_now["mNrm"][0]), - ) - - self.assertAlmostEqual( - self.pcct.state_now["aNrm"][0], - self.pcct.state_now["mNrm"][0] - self.pcct.controls["cNrm"][0], - ) - - -class SimulatePortfolioConsumerTypeTestCase(PortfolioConsumerTypeTestCase): - def test_simulation(self): - self.pcct.T_sim = 30 - self.pcct.AgentCount = 10 - self.pcct.track_vars += [ - "mNrm", - "cNrm", - "Share", - "aNrm", - "Adjust", - "PermShk", - "TranShk", - "bNrm", - ] - self.pcct.initialize_sim() - - self.pcct.simulate() - - self.assertAlmostEqual( - self.pcct.history["mNrm"][0][0], - self.pcct.history["bNrm"][0][0] + self.pcct.history["TranShk"][0][0], - ) - - self.assertAlmostEqual( - self.pcct.history["cNrm"][0][0], - self.pcct.solution[0].cFuncAdj(self.pcct.history["mNrm"][0][0]), - ) - - self.assertAlmostEqual( - self.pcct.history["Share"][0][0], - self.pcct.solution[0].ShareFuncAdj(self.pcct.history["mNrm"][0][0]), - ) - - self.assertAlmostEqual( - self.pcct.history["aNrm"][0][0], - self.pcct.history["mNrm"][0][0] - self.pcct.history["cNrm"][0][0], - ) - - self.assertAlmostEqual(self.pcct.history["Adjust"][0][0], 1.0) - # the next period - - self.assertAlmostEqual( - self.pcct.history["mNrm"][1][0], - self.pcct.history["bNrm"][1][0] + self.pcct.history["TranShk"][1][0], - ) - - self.assertAlmostEqual( - self.pcct.history["cNrm"][1][0], - self.pcct.solution[0].cFuncAdj(self.pcct.history["mNrm"][1][0]), - ) - - self.assertAlmostEqual( - self.pcct.history["Share"][1][0], - self.pcct.solution[0].ShareFuncAdj(self.pcct.history["mNrm"][1][0]), - ) - - self.assertAlmostEqual( - self.pcct.history["aNrm"][1][0], - self.pcct.history["mNrm"][1][0] - self.pcct.history["cNrm"][1][0], - ) - - self.assertAlmostEqual( - self.pcct.history["aNrm"][15][0], - self.pcct.history["mNrm"][15][0] - self.pcct.history["cNrm"][15][0], - ) diff --git a/HARK/frame.py b/HARK/frame.py deleted file mode 100644 index 968df180e..000000000 --- a/HARK/frame.py +++ /dev/null @@ -1,781 +0,0 @@ -import copy -import itertools -from collections import OrderedDict - -import matplotlib.pyplot as plt -import networkx as nx -import numpy as np - -from HARK import AgentType, Model -from HARK.distribution import Distribution - - -class Frame: - """ - An object representing a single 'frame' of an optimization problem. - A frame defines some variables of a model, including what other variables - (if any) they depend on for their values. - - Parameters - ---------- - target : tuple - A tuple of variable names - scope : tuple - A tuple of variable names. The variables this frame depends on for transitions. - default : Distribution - Default values for these target variables for simulation initialization. - transition : function - A function from scope variables to target variables. - objective : function - A function for use in the solver. [??] - aggregate : bool, default False - True if the frame is an aggregate state variable. - control : bool, default False - True if the frame targets are control variables. - reward : bool, default False - True if the frame targets are reward variables. - context : dict, Optional - A dictionary of additional values used by the transition function. - Attributes - ----------- - - parents : dict - A dictionary of frames on which these frames depend. - May include backward references. - - children : dict - A dictionary of frames that depend on this frame. - May include forward references. - """ - - def __init__( - self, - target: tuple, - scope: tuple, - default=None, - transition=None, - objective=None, - aggregate=False, - control=False, - reward=False, - context=None, - ): - """ """ - - self.target = ( - target if isinstance(target, tuple) else (target,) - ) # tuple of variables - self.scope = scope # tuple of variables - self.default = default # default value used in simBirth; a dict - - ## Careful! Transition functions need to return a tuple, even if there is only one state value - self.transition = transition # for use in simulation - self.objective = objective # for use in solver - self.aggregate = aggregate - self.control = control - self.reward = reward - - # Context specific to this node - self.context = {} - if context is not None: - self.context.update(context) - - # to be filled with references to other frames - self.children = {} - self.parents = {} - - def __repr__(self): - return f"<{self.__class__}, target:{self.target}, scope:{self.scope}>" - - def name(self): - target = self.target - return str(target[0]) if len(target) == 1 else str(self.target) - - def clear_relations(self): - """ - Empties the references to parents and children. - - TODO: Better handling of this aspect of frame state - e.g. setters for the relations - """ - self.children = {} - self.parents = {} - - def add_suffix(self, suffix: str): - """ - Change the names of all variables in this frame's target and scope - (except for backward references) to include an additional suffix. - - This is used when copying or repreating frames. - """ - self.target = tuple(var + suffix for var in self.target) - - self.scope = tuple( - var - if any( - var in pa and isinstance(self.parents[pa], BackwardFrameReference) - for pa in self.parents - ) - else var + suffix - for var in self.scope - ) - - def add_backwards_suffix(self, suffix: str): - """ - Change the names of any scope variables that are backward references to - include an additional suffix. - """ - self.scope = tuple( - var + suffix - if any( - var in pa and isinstance(self.parents[pa], BackwardFrameReference) - for pa in self.parents - ) - else var - for var in self.scope - ) - - -class ForwardFrameReference: - """ - A 'reference' to a frame that is in the next period. - - The graphical children of frames that are at the "end" of a period will have these - references pointing to frames that are at the begining of the next - period. - - Parameters - ---------- - - frame : Frame - The frame to which this reference refers. - """ - - def __init__(self, frame): - self.frame = frame - self.target = frame.target - - self.reward = frame.reward - self.control = frame.control - self.aggregate = frame.aggregate - - def name(self): - return self.frame.name() + "'" - - def __repr__(self): - return f"" - - -class BackwardFrameReference: - """ - A 'reference' to a frame that is in the previous period. - - The graphical parents of frames that are at the "beginning" - of a period will be these references to frames in the previous - period. - - Parameters - ---------- - - frame : Frame - The frame to which this reference refers. - """ - - def __init__(self, frame): - self.frame = frame - self.target = frame.target - - self.reward = frame.reward - self.control = frame.control - self.aggregate = frame.aggregate - - def name(self): - return self.frame.name() + "-" - - def __repr__(self): - return f"" - - -class FrameSet(OrderedDict): - """ - A data structure for a collection of frames. - - Wraps an ordered dictionary, where keys are tuples of variable names, - and values are Frames. - - Preserves order. Is sliceable and has index() functions like a list. - Supports lookup of frame by variable name. - """ - - def __getitem__(self, k): - if not isinstance(k, slice): - return OrderedDict.__getitem__(self, k) - return FrameSet(itertools.islice(self.items(), k.start, k.stop)) - - def k_index(self, key): - return list(self.keys()).index(key) - - def v_index(self, value): - return list(self.keys()).index(value) - - def var(self, var_name): - """ - Returns the frame in this frame set that includes the - named variable as a target. - - Parameters - ---------- - - var_name : str - The name of a variable - """ - ## Can be sped up with a proper index. - for k in self: - if var_name in k: - return self[k] - - return None - - def iloc(self, k): - """ - Returns the frame in this frame set that corresponds - to the given numerical index. - - Parameters - ---------- - - k : int - The numerical index of the frame in the FrameSet - """ - return list(self.values())[k] - - -class FrameModel(Model): - """ - A class that represents a model, defined in terms of Frames. - - Frames can be transitional/functional, or they can be control frames - (subject to an agent's policy), or a reward frame. - - FrameModels can be composed with other FrameModels into new models. - - Parameters - ------------ - - frames : [Frame] - List of frames to include in the FrameSet. - - parameters : dict - - infinite: bool - True if the model is an infinite model, such that state variables are assumed to be - available as scope for the next period's transitions. - - Attributes - ---------- - - frames : FrameSet[Frame] - #Keys are tuples of strings corresponding to model variables. - #Values are methods. - #Each frame method should update the the variables - #named in the key. - #Frame order is significant here. - """ - - def __init__(self, frames, parameters, infinite=True): - super().__init__() - - self.frames = FrameSet([(fr.target, fr) for fr in frames]) - self.infinite = infinite - - self.assign_parameters(**parameters) - - for frame in self.frames.values(): - # relations for the frame -- internal links to other frames -- are reset in model initiation - frame.clear_relations() - - for frame_target in self.frames: - frame = self.frames[frame_target] - - if frame.scope is not None: - for var in frame.scope: - ## Should replace this with a new data structure that allows for multiple keys into the same frame - scope_frames = [ - self.frames[frame_target] - for frame_target in self.frames - if var in frame_target - ] - - ## There should only be one frame in this list. - for scope_frame in scope_frames: - if self.frames.k_index(frame_target) > self.frames.k_index( - scope_frame.target - ): - if frame not in scope_frame.children: - ## should probably use frame data structure here - scope_frame.children[frame_target] = frame - - if scope_frame not in frame.parents: - frame.parents[scope_frame.target] = scope_frame - else: - ## Do I need to keep backward references even in a finite model, because these - ## are initial conditions? - bfr = BackwardFrameReference(frame) - frame.parents[scope_frame.target] = bfr - - # ignoring equivalence checks for now - if infinite: - ffr = ForwardFrameReference(frame) - scope_frame.children[frame_target] = ffr - - def prepend(self, model, suffix="_0"): - """ - Combine this FrameModel with another FrameModel. - - TODO: Checks to make sure the endpoints match. - - Parameters - ------------ - - model: FrameModel - - suffix: str - A suffix to add to any variables in the prepended model that have - a name conflict with the old model. - - - Returns - -------- - - FrameModel - """ - - pre_frames = list(copy.deepcopy(model.frames).values()) - - suffix = "_" - - for frame in pre_frames: - frame.add_suffix(suffix) - - frames = list(copy.deepcopy(self.frames).values()) - - for frame in frames: - frame.add_backwards_suffix(suffix) - - return FrameModel(pre_frames + frames, self.parameters, infinite=self.infinite) - - def make_terminal(self): - """ - Remove the forward references from the end of the model, - making the model "finite". - - Returns - -------- - - FrameModel - """ - - # Is this copying the old frames right? - new_frames = copy.deepcopy(list(self.frames.values())) - - for frame in new_frames: - forward_references = [ - child - for child in frame.children - if isinstance(child, ForwardFrameReference) - ] - - for fref in forward_references: - frame.children.remove(fref) - - return FrameModel(new_frames, self.parameters, infinite=False) - - def repeat(self, tv_parameters): - """ - Returns a new FrameModel consisting of this model repeated N times. - - Parameters - ----------- - - tv_parameters : dict - A dictionary of 'time-varying' parameters. - Keys are (original) variable names. Values are dictionaries with: - - - Keys are parameter names. - - Values as iterable contain time-varying parameter values. - All time-varying values assumes to be of same length, N. - - """ - # getting length of first iterable thing passed to it. - repeat_n = len(list(list(tv_parameters.values())[0].values())[0]) - - catalog = {} - - new_frames = [copy.deepcopy(self.frames) for t in range(repeat_n)] - - for frame in self.frames: - # catalog is a convenient alternative index of the new frames - catalog[frame] = [new_frames[t][frame] for t in range(repeat_n)] - - # distribute any time-varying parameters. - for t, t_frame in enumerate(catalog[frame]): - t_frame.add_suffix(f"_{t}") - - if t > 0: - t_frame.add_backwards_suffix(f"_{t-1}") - - for var_name in tv_parameters: - for param in tv_parameters[var_name]: - for t, pv in enumerate(tv_parameters[var_name][param]): - new_frames[t].var(var_name).context[param] = pv - - return FrameModel( - itertools.chain.from_iterable( - [frame_set.values() for frame_set in new_frames] - ), - self.parameters, - infinite=self.infinite, - ) - - -class FrameAgentType(AgentType): - """ - A variation of AgentType that uses Frames to organize - its simulation steps. - - The FrameAgentType is initalizaed with a FrameModel, - which contains all the information needed to execute - generic simulation methods. - - Parameters - ----------- - - model : FrameModel - - Attributes - ----------- - - decision_rules : dict - A dictionary of decision rules used to determine the - transitions of control variables. - - - """ - - cycles = 0 # for now, only infinite horizon models. - - def __init__(self, model, **kwds): - self.model = model - - ### kludge? - self.frames = self.model.frames - - # decision rules are added here which are then used in simulation. - self.decision_rules = {} - - def initialize_sim(self): - for frame in self.frames.values(): - for var in frame.target: - if frame.aggregate: - val = np.empty(1) - if frame.default is not None and var in frame.default: - val[:] = frame.default[var] - else: - val = np.empty(self.AgentCount) - - if frame.control: - self.controls[var] = val - elif isinstance(frame.transition, Distribution): - self.shocks[var] = val - else: - self.state_now[var] = val - - super().initialize_sim() - - def sim_one_period(self): - """ - Simulates one period for this type. - Calls each frame in order. - These should be defined for - AgentType subclasses, except getMortality (define - its components simDeath and simBirth instead) - and readShocks. - - Parameters - ---------- - None - - Returns - ------- - None - """ - if not hasattr(self, "solution"): - raise Exception( - "Model instance does not have a solution stored. To simulate, it is necessary" - " to run the `solve()` method of the class first." - ) - - # Mortality adjusts the agent population - self.get_mortality() # Replace some agents with "newborns" - - # state_{t-1} - for frame in self.frames.values(): - for var in frame.target: - if var in self.state_now: - self.state_prev[var] = self.state_now[var] - - if not frame.aggregate: - self.state_now[var] = np.empty(self.AgentCount) - else: - self.state_now[var] = np.empty(1) - - # transition the variables in the frame - for frame in self.frames.values(): - self.transition_frame(frame) - - # Advance time for all agents - self.t_age = self.t_age + 1 # Age all consumers by one period - self.t_cycle = self.t_cycle + 1 # Age all consumers within their cycle - self.t_cycle[self.t_cycle == self.T_cycle] = ( - 0 # Resetting to zero for those who have reached the end - ) - - def sim_birth(self, which_agents): - """ - Makes new agents for the simulation. - Takes a boolean array as an input, indicating which - agent indices are to be "born". - - Populates model variable values with value from `init` - property - - Parameters - ---------- - which_agents : np.array(Bool) - Boolean array of size self.AgentCount indicating which agents should be "born". - - Returns - ------- - None - """ - which_agents = which_agents.astype(bool) - - for frame in self.frames.values(): - if not frame.aggregate: - for var in frame.target: - N = np.sum(which_agents) - - if frame.default is not None and var in frame.default: - if callable(frame.default[var]): - value = frame.default[var](self, N) - else: - value = frame.default[var] - - if var in self.state_now: - ## need to check in case of aggregate variables.. PlvlAgg - if hasattr(self.state_now[var], "__getitem__"): - self.state_now[var][which_agents] = value - elif var in self.controls: - self.controls[var][which_agents] = value - elif var in self.shocks: - ## assuming no aggregate shocks... - self.shocks[var][which_agents] = value - - # from ConsIndShockModel. Needed??? - self.t_age[which_agents] = 0 # How many periods since each agent was born - self.t_cycle[which_agents] = ( - 0 # Which period of the cycle each agent is currently in - ) - - ## simplest version of this. - - def transition_frame(self, frame): - """ - Updates the model variables in `target` - using the `transition` function. - The transition function will use current model - variable state as arguments. - """ - # build a context object based on model state variables - # and 'self' reference for 'global' variables - context = {} # 'self' : self} - context.update(self.shocks) - context.update(self.controls) - context.update(self.state_prev) - - # use the "now" version of variables that have already been targetted. - for pre_frame in self.frames[: self.frames.k_index(frame.target)].values(): - for var in pre_frame.target: - if var in self.state_now: - context.update({var: self.state_now[var]}) - - ## Get these parameters from the FrameModel.parameters - ## ... Unless there are also _simulation_ parameters attached to the AgentType - context.update(self.parameters) - - # The "most recently" computed value of the variable is used. - # This could be the value from the 'previous' time step. - - # limit context to scope of frame - local_context = ( - {var: context[var] for var in frame.scope} - if frame.scope is not None - else context.copy() - ) - - ## TODO - ## - A repeated model may have transition equations that do not reference the right "suffixes", - ## so contextual lookup will require matching on the shared prefix - ## - ## - Local context can be loaded onto a node in the FrameModel.repeat() step with - ## age-varying parameters - ## - ## - Consider relationship between AgentType simulation mechanics (here) and the FrameModel definition. - - if frame.control: - new_values = self.control_transition_age_varying( - frame.target, **local_context - ) - - elif frame.transition is not None: - if isinstance(frame.transition, Distribution): - # assume this is an IndexDistribution keyed to age (t_cycle) - # for now - # later, t_cycle should be included in local context, etc. - if frame.aggregate: - new_values = (frame.transition.draw(1),) - else: - new_values = (frame.transition.draw(self.t_cycle),) - - else: # transition is function of state variables not an exogenous shock - new_values = frame.transition( - # self, - **local_context - ) - - else: - raise Exception(f"Frame has None for transition: {frame}") - - # because we want to alter the 'now' not 'prev' table - context.update(self.state_now) - - # because the context was a shallow update, - # the model values can be modified directly(?) - for i, t in enumerate(frame.target): - if t in context: - context[t][:] = new_values[i] - else: - raise Exception( - f"From frame {frame.target}, target {t} is not in the context object." - ) - - def control_transition_age_varying(self, target, **context): - """ - Generic transition method for a control frame for when the - variable has an age-varying decision rule. - - """ - frame = self.model.frames[target] - scope = frame.scope - - target_values = tuple(np.zeros(self.AgentCount) + np.nan for var in scope) - - # Loop over each period of the cycle, getting controls separately depending on "age" - for t in range(self.T_cycle): - these = t == self.t_cycle - - ## maybe scope instead of context here - ntv = self.decision_rules[target][t](**context) - - # this is ugly because of the way ages are looped through. See #890 - for i, tv in enumerate(target_values): - tv[these] = ntv[i] - - return target_values - - -def draw_frame_model(frame_model: FrameModel, figsize=(8, 8), dot=False): - """ - Draws a FrameModel as an influence diagram. - - Round nodes : chance variables - Square nodes: control variables - Rhombus nodes: reward variables - Hexagon nodes: aggregate variables - """ - - g = nx.DiGraph() - - g.add_nodes_from( - [ - ( - frame.name(), - { - "control": frame.control, - "reward": frame.reward, - "aggregate": frame.aggregate, - }, - ) - for frame in frame_model.frames.values() - ] - ) - - for frame in frame_model.frames.values(): - for child_target in frame.children: - child = frame.children[child_target] - g.add_nodes_from( - [ - ( - child.name(), - { - "control": child.control, - "reward": child.reward, - "aggregate": child.aggregate, - }, - ) - ] - ) - g.add_edge(frame.name(), child.name()) - - if dot: - pos = nx.drawing.nx_pydot.graphviz_layout(g, prog="dot") - else: - pos = nx.drawing.layout.kamada_kawai_layout(g) - - node_options = { - "node_size": 2500, - "node_color": "white", - "edgecolors": "black", - "linewidths": 1, - "pos": pos, - } - - edge_options = {"node_size": 2500, "width": 2, "pos": pos} - - label_options = { - "font_size": 12, - # "labels" : {node : str(node[0]) if len(node) == 1 else str(node) for node in g.nodes}, - "pos": pos, - } - - reward_nodes = [k for k, v in g.nodes(data=True) if v["reward"]] - control_nodes = [k for k, v in g.nodes(data=True) if v["control"]] - aggregate_nodes = [k for k, v in g.nodes(data=True) if v["aggregate"]] - - chance_nodes = [ - node - for node in g.nodes() - if node not in reward_nodes - and node not in control_nodes - and node not in aggregate_nodes - ] - - plt.figure(figsize=figsize) - - nx.draw_networkx_nodes(g, nodelist=chance_nodes, node_shape="o", **node_options) - nx.draw_networkx_nodes(g, nodelist=reward_nodes, node_shape="d", **node_options) - nx.draw_networkx_nodes(g, nodelist=control_nodes, node_shape="s", **node_options) - nx.draw_networkx_nodes(g, nodelist=aggregate_nodes, node_shape="h", **node_options) - nx.draw_networkx_edges(g, **edge_options) - - nx.draw_networkx_labels(g, **label_options) diff --git a/HARK/tests/test_frame.py b/HARK/tests/test_frame.py deleted file mode 100644 index 50110759c..000000000 --- a/HARK/tests/test_frame.py +++ /dev/null @@ -1,72 +0,0 @@ -""" -This file implements unit tests for the frame.py module. -""" - -import unittest - -from HARK.frame import BackwardFrameReference, ForwardFrameReference, Frame, FrameModel -from HARK.rewards import CRRAutility - -init_parameters = {} -init_parameters["PermGroFac"] = 1.05 -init_parameters["PermShkStd"] = 1.5 -init_parameters["PermShkCount"] = 5 -init_parameters["TranShkStd"] = 3.0 -init_parameters["TranShkCount"] = 5 -init_parameters["RiskyAvg"] = 1.05 -init_parameters["RiskyStd"] = 1.5 -init_parameters["RiskyCount"] = 5 -init_parameters["Rfree"] = 1.03 - -frames_A = [ - Frame(("bNrm",), ("aNrm",), transition=lambda Rfree, aNrm: Rfree * aNrm), - Frame(("mNrm",), ("bNrm", "TranShk"), transition=lambda bNrm: mNrm), - Frame(("cNrm"), ("mNrm",), control=True), - Frame( - ("U"), - ("cNrm", "CRRA"), # Note CRRA here is a parameter not a state var - transition=lambda cNrm, CRRA: (CRRAutility(cNrm, CRRA),), - reward=True, - context={"CRRA": 2.0}, - ), - Frame(("aNrm"), ("mNrm", "cNrm"), transition=lambda mNrm, cNrm: (mNrm - cNrm,)), -] - - -class test_FrameModel(unittest.TestCase): - def setUp(self): - self.model = FrameModel(frames_A, init_parameters) - - def test_init(self): - self.model.frames.var("aNrm") - - self.assertTrue( - isinstance( - list(self.model.frames.var("bNrm").parents.values())[0], - BackwardFrameReference, - ) - ) - - self.assertTrue( - isinstance( - list(self.model.frames.var("aNrm").children.values())[0], - ForwardFrameReference, - ) - ) - - def test_make_terminal(self): - terminal_model = self.model.make_terminal() - - self.assertEqual(len(self.model.make_terminal().frames.var("aNrm").children), 0) - - def test_prepend(self): - double_model = self.model.prepend(self.model) - - self.assertEqual(len(double_model.frames), 10) - - def test_repeat(self): - repeat_model = self.model.repeat({"bNrm": {"Rfree": [1.01, 1.03, 1.02]}}) - - self.assertEqual(len(repeat_model.frames), 15) - - self.assertEqual(repeat_model.frames.var("bNrm_1").context["Rfree"], 1.03) From 5ab31a29cb5015a5894b87c7d988b67ee87a66b9 Mon Sep 17 00:00:00 2001 From: sb Date: Thu, 14 Nov 2024 17:01:34 -0500 Subject: [PATCH 6/6] remove FramedAgentType example --- .../FrameAgentType/FrameAgentType Demo.ipynb | 1544 ----------------- examples/FrameAgentType/FrameModels.ipynb | 1180 ------------- 2 files changed, 2724 deletions(-) delete mode 100644 examples/FrameAgentType/FrameAgentType Demo.ipynb delete mode 100644 examples/FrameAgentType/FrameModels.ipynb diff --git a/examples/FrameAgentType/FrameAgentType Demo.ipynb b/examples/FrameAgentType/FrameAgentType Demo.ipynb deleted file mode 100644 index 693dcbcc9..000000000 --- a/examples/FrameAgentType/FrameAgentType Demo.ipynb +++ /dev/null @@ -1,1544 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:29.314365Z", - "iopub.status.busy": "2024-07-11T15:30:29.314094Z", - "iopub.status.idle": "2024-07-11T15:30:30.618613Z", - "shell.execute_reply": "2024-07-11T15:30:30.617946Z" - } - }, - "outputs": [], - "source": [ - "import HARK.ConsumptionSaving.ConsPortfolioFrameModel as cpfm\n", - "import HARK.ConsumptionSaving.ConsPortfolioModel as cpm\n", - "from HARK.frame import Frame, draw_frame_model\n", - "from HARK.rewards import (\n", - " CRRAutility,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The `FrameAgentType` is an alternative way to specify a model.\n", - "\n", - "The library contains a demonstration of this form of model, `ConsPortfolioFrameModel`, which is a replica of the `ConsPortfolioModel`.\n", - "\n", - "This notebook compares the results of simulations of the two models." - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:30.621212Z", - "iopub.status.busy": "2024-07-11T15:30:30.620785Z", - "iopub.status.idle": "2024-07-11T15:30:41.108765Z", - "shell.execute_reply": "2024-07-11T15:30:41.108189Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'mNrm': array([[ 1.42660498, 2.30216168, 1.60391177, ..., 1.41755556,\n", - " 1.12557298, 1.63660913],\n", - " [ 1.51463426, 1.93229161, 0.74937478, ..., 1.27321053,\n", - " 1.10738657, 1.71573911],\n", - " [ 1.46382598, 1.7045285 , 1.07642321, ..., 1.58156597,\n", - " 1.2941777 , 1.58746016],\n", - " ...,\n", - " [35.85154922, 3.87504927, 3.59044371, ..., 18.15164449,\n", - " 16.07506874, 1.47628601],\n", - " [38.91576236, 4.27825616, 3.76022763, ..., 18.00301806,\n", - " 15.91187529, 1.61918815],\n", - " [31.64511794, 3.42226862, 3.47249399, ..., 14.11097207,\n", - " 13.29840192, 1.48801267]]),\n", - " 'cNrm': array([[0.92439082, 1.06319404, 0.96157085, ..., 0.92229283, 0.84011148,\n", - " 0.96768669],\n", - " [0.94381288, 1.01520108, 0.66391146, ..., 0.88532205, 0.83386309,\n", - " 0.98159191],\n", - " [0.93284878, 0.97967458, 0.82282501, ..., 0.95732218, 0.89106445,\n", - " 0.95848444],\n", - " ...,\n", - " [3.31817794, 1.22252973, 1.19622642, ..., 2.23914801, 2.10608045,\n", - " 0.93559296],\n", - " [3.49895682, 1.25870698, 1.2119985 , ..., 2.22968732, 2.09552903,\n", - " 0.96443677],\n", - " [3.06784322, 1.18033635, 1.18511252, ..., 1.97799218, 1.92421416,\n", - " 0.93817563]]),\n", - " 'Share': array([[1. , 1. , 1. , ..., 1. , 1. ,\n", - " 1. ],\n", - " [1. , 1. , 1. , ..., 1. , 1. ,\n", - " 1. ],\n", - " [1. , 1. , 1. , ..., 1. , 1. ,\n", - " 1. ],\n", - " ...,\n", - " [0.50424094, 1. , 1. , ..., 0.64573356, 0.68018984,\n", - " 1. ],\n", - " [0.49187438, 1. , 1. , ..., 0.64798279, 0.68323011,\n", - " 1. ],\n", - " [0.52470868, 1. , 1. , ..., 0.72093301, 0.7409298 ,\n", - " 1. ]]),\n", - " 'aNrm': array([[ 0.50221416, 1.23896764, 0.64234092, ..., 0.49526273,\n", - " 0.2854615 , 0.66892244],\n", - " [ 0.57082139, 0.91709053, 0.08546332, ..., 0.38788847,\n", - " 0.27352348, 0.7341472 ],\n", - " [ 0.53097721, 0.72485391, 0.2535982 , ..., 0.62424379,\n", - " 0.40311326, 0.62897572],\n", - " ...,\n", - " [32.53337128, 2.65251954, 2.39421729, ..., 15.91249648,\n", - " 13.96898828, 0.54069305],\n", - " [35.41680554, 3.01954918, 2.54822913, ..., 15.77333074,\n", - " 13.81634626, 0.65475138],\n", - " [28.57727472, 2.24193227, 2.28738147, ..., 12.13297989,\n", - " 11.37418775, 0.54983704]]),\n", - " 'Risky': array([[1.17146116, 1.17146116, 1.17146116, ..., 1.17146116, 1.17146116,\n", - " 1.17146116],\n", - " [0.82416523, 0.82416523, 0.82416523, ..., 0.82416523, 0.82416523,\n", - " 0.82416523],\n", - " [0.82416523, 0.82416523, 0.82416523, ..., 0.82416523, 0.82416523,\n", - " 0.82416523],\n", - " ...,\n", - " [1.17146116, 1.17146116, 1.17146116, ..., 1.17146116, 1.17146116,\n", - " 1.17146116],\n", - " [1.17146116, 1.17146116, 1.17146116, ..., 1.17146116, 1.17146116,\n", - " 1.17146116],\n", - " [0.96358739, 0.96358739, 0.96358739, ..., 0.96358739, 0.96358739,\n", - " 0.96358739]]),\n", - " 'Adjust': array([[1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " ...,\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.]]),\n", - " 'PermShk': array([[1.04273763, 1.00501665, 0.85893446, ..., 0.85893446, 1.08875607,\n", - " 1.04273763],\n", - " [1.04273763, 1.08875607, 1.17807023, ..., 1.04273763, 1.04273763,\n", - " 1.08875607],\n", - " [1.08875607, 1.00501665, 0.85893446, ..., 0.85893446, 0.85893446,\n", - " 1.08875607],\n", - " ...,\n", - " [0.92780942, 0.96867555, 1.08875607, ..., 0.96867555, 0.96867555,\n", - " 0.85893446],\n", - " [1.00501665, 0.96867555, 1.04273763, ..., 1.08875607, 1.08875607,\n", - " 0.85893446],\n", - " [1.08875607, 1.17807023, 1.04273763, ..., 1.17807023, 1.08875607,\n", - " 1.17807023]]),\n", - " 'TranShk': array([[1. , 1. , 1. , ..., 1. , 1. ,\n", - " 1. ],\n", - " [1.11769122, 0.99441941, 0.3 , ..., 0.8817618 , 0.8817618 ,\n", - " 1.20937902],\n", - " [1.03172631, 0.9524672 , 0.99441941, ..., 1.20937902, 1.03172631,\n", - " 1.03172631],\n", - " ...,\n", - " [1.20937902, 1.11769122, 1.11769122, ..., 1.20937902, 0.99441941,\n", - " 0.3 ],\n", - " [0.99441941, 1.07044978, 1.07044978, ..., 0.8817618 , 0.8817618 ,\n", - " 0.8817618 ],\n", - " [0.3 , 0.9524672 , 1.11769122, ..., 1.20937902, 1.07044978,\n", - " 0.9524672 ]]),\n", - " 'bNrm': array([[ 0.42660498, 1.30216168, 0.60391177, ..., 0.41755556,\n", - " 0.12557298, 0.63660913],\n", - " [ 0.39694304, 0.9378722 , 0.44937478, ..., 0.39144873,\n", - " 0.22562477, 0.50636009],\n", - " [ 0.43209967, 0.7520613 , 0.08200381, ..., 0.37218695,\n", - " 0.26245139, 0.55573385],\n", - " ...,\n", - " [34.64217019, 2.75735805, 2.47275249, ..., 16.94226547,\n", - " 15.08064933, 1.17628601],\n", - " [37.92134295, 3.20780638, 2.68977784, ..., 17.12125626,\n", - " 15.03011349, 0.73742635],\n", - " [31.34511794, 2.46980142, 2.35480277, ..., 12.90159305,\n", - " 12.22795214, 0.53554547]]),\n", - " 'who_dies': array([[ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " ...,\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [ 0., 0., 0., ..., 0., 0., 0.],\n", - " [nan, nan, nan, ..., nan, nan, nan]])}" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pct = cpm.PortfolioConsumerType(T_sim=5000, AgentCount=200)\n", - "pct.cycles = 0\n", - "\n", - "# Solve the model under the given parameters\n", - "\n", - "pct.solve()\n", - "pct.track_vars += [\n", - " \"mNrm\",\n", - " \"cNrm\",\n", - " \"Share\",\n", - " \"aNrm\",\n", - " \"Risky\",\n", - " \"Adjust\",\n", - " \"PermShk\",\n", - " \"TranShk\",\n", - " \"bNrm\",\n", - " \"who_dies\",\n", - "]\n", - "\n", - "pct.make_shock_history()\n", - "pct.read_shocks = True\n", - "\n", - "pct.initialize_sim()\n", - "\n", - "pct.simulate()" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:41.110580Z", - "iopub.status.busy": "2024-07-11T15:30:41.110313Z", - "iopub.status.idle": "2024-07-11T15:30:47.818993Z", - "shell.execute_reply": "2024-07-11T15:30:47.818485Z" - } - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #1 in 0.013799428939819336 seconds, solution distance = 100.0\n", - "Finished cycle #2 in 0.016463518142700195 seconds, solution distance = 51.348207181883055\n", - "Finished cycle #3 in 0.015204191207885742 seconds, solution distance = 17.087772635804413\n", - "Finished cycle #4 in 0.016463041305541992 seconds, solution distance = 8.522764942790392\n", - "Finished cycle #5 in 0.01439523696899414 seconds, solution distance = 5.096872874136956\n", - "Finished cycle #6 in 0.014560937881469727 seconds, solution distance = 3.3840571487090756\n", - "Finished cycle #7 in 0.014954566955566406 seconds, solution distance = 2.4054860139035092\n", - "Finished cycle #8 in 0.014110565185546875 seconds, solution distance = 1.7940793244431177\n", - "Finished cycle #9 in 0.013866186141967773 seconds, solution distance = 1.3867304233120308\n", - "Finished cycle #10 in 0.013986587524414062 seconds, solution distance = 1.1015802993548078\n", - "Finished cycle #11 in 0.014078140258789062 seconds, solution distance = 0.894235485037818\n", - "Finished cycle #12 in 0.014285564422607422 seconds, solution distance = 0.7387884571263204\n", - "Finished cycle #13 in 0.014155149459838867 seconds, solution distance = 0.6192854714963545\n", - "Finished cycle #14 in 0.013895750045776367 seconds, solution distance = 0.5254641030410756\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #15 in 0.014366626739501953 seconds, solution distance = 0.4504802092849225\n", - "Finished cycle #16 in 0.01435089111328125 seconds, solution distance = 0.3896272258302673\n", - "Finished cycle #17 in 0.014223814010620117 seconds, solution distance = 0.3395825834143551\n", - "Finished cycle #18 in 0.014173269271850586 seconds, solution distance = 0.29794670047725447\n", - "Finished cycle #19 in 0.013914346694946289 seconds, solution distance = 0.26295053927306533\n", - "Finished cycle #20 in 0.013898372650146484 seconds, solution distance = 0.23326714495567913\n", - "Finished cycle #21 in 0.014075756072998047 seconds, solution distance = 0.20788551415958523\n", - "Finished cycle #22 in 0.01383066177368164 seconds, solution distance = 0.18602381540941515\n", - "Finished cycle #23 in 0.01381540298461914 seconds, solution distance = 0.16707072712179638\n", - "Finished cycle #24 in 0.013994693756103516 seconds, solution distance = 0.15054159770340902\n", - "Finished cycle #25 in 0.014000415802001953 seconds, solution distance = 0.13604908879708866\n", - "Finished cycle #26 in 0.014019489288330078 seconds, solution distance = 0.12327990008265033\n", - "Finished cycle #27 in 0.014017105102539062 seconds, solution distance = 0.11197891683099215\n", - "Finished cycle #28 in 0.013829946517944336 seconds, solution distance = 0.10193665880246172\n", - "Finished cycle #29 in 0.013891220092773438 seconds, solution distance = 0.09297945389671725\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #30 in 0.014490604400634766 seconds, solution distance = 0.08496273987111991\n", - "Finished cycle #31 in 0.014397621154785156 seconds, solution distance = 0.07776503617679964\n", - "Finished cycle #32 in 0.013854265213012695 seconds, solution distance = 0.07128414952298101\n", - "Finished cycle #33 in 0.013744831085205078 seconds, solution distance = 0.06543328277846072\n", - "Finished cycle #34 in 0.01404571533203125 seconds, solution distance = 0.06013774194589416\n", - "Finished cycle #35 in 0.014039039611816406 seconds, solution distance = 0.05533406288701315\n", - "Finished cycle #36 in 0.013898372650146484 seconds, solution distance = 0.05094857000406705\n", - "Finished cycle #37 in 0.014035224914550781 seconds, solution distance = 0.04696866348405759\n", - "Finished cycle #38 in 0.013510704040527344 seconds, solution distance = 0.04335051680341451\n", - "Finished cycle #39 in 0.013619422912597656 seconds, solution distance = 0.0400424441635181\n", - "Finished cycle #40 in 0.013711214065551758 seconds, solution distance = 0.03701281822449065\n", - "Finished cycle #41 in 0.013556718826293945 seconds, solution distance = 0.03423444353414595\n", - "Finished cycle #42 in 0.01363062858581543 seconds, solution distance = 0.031683356505769034\n", - "Finished cycle #43 in 0.013864278793334961 seconds, solution distance = 0.029338274825718713\n", - "Finished cycle #44 in 0.013738870620727539 seconds, solution distance = 0.027180271672561318\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #45 in 0.014046430587768555 seconds, solution distance = 0.025192441992402337\n", - "Finished cycle #46 in 0.014653205871582031 seconds, solution distance = 0.023359687115785732\n", - "Finished cycle #47 in 0.014449834823608398 seconds, solution distance = 0.02166848131533783\n", - "Finished cycle #48 in 0.015507221221923828 seconds, solution distance = 0.02010663614227326\n", - "Finished cycle #49 in 0.015063285827636719 seconds, solution distance = 0.018663202643659282\n", - "Finished cycle #50 in 0.015668630599975586 seconds, solution distance = 0.01732830607049607\n", - "Finished cycle #51 in 0.015999555587768555 seconds, solution distance = 0.016093003159316055\n", - "Finished cycle #52 in 0.014594078063964844 seconds, solution distance = 0.014949195437637286\n", - "Finished cycle #53 in 0.014731645584106445 seconds, solution distance = 0.013889565521708391\n", - "Finished cycle #54 in 0.01469564437866211 seconds, solution distance = 0.012907444485231068\n", - "Finished cycle #55 in 0.01454925537109375 seconds, solution distance = 0.011996743976270707\n", - "Finished cycle #56 in 0.014281988143920898 seconds, solution distance = 0.011151915364294496\n", - "Finished cycle #57 in 0.014061927795410156 seconds, solution distance = 0.010367898365304384\n", - "Finished cycle #58 in 0.01395726203918457 seconds, solution distance = 0.009640092785092591\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #59 in 0.014119386672973633 seconds, solution distance = 0.00896425655221833\n", - "Finished cycle #60 in 0.01456594467163086 seconds, solution distance = 0.008336490713726441\n", - "Finished cycle #61 in 0.014174699783325195 seconds, solution distance = 0.0077532217486293575\n", - "Finished cycle #62 in 0.014234542846679688 seconds, solution distance = 0.007211170345946094\n", - "Finished cycle #63 in 0.014397144317626953 seconds, solution distance = 0.006707318939021434\n", - "Finished cycle #64 in 0.014032125473022461 seconds, solution distance = 0.006238887886780731\n", - "Finished cycle #65 in 0.013937711715698242 seconds, solution distance = 0.005803339284177866\n", - "Finished cycle #66 in 0.014064788818359375 seconds, solution distance = 0.005398303113523184\n", - "Finished cycle #67 in 0.014114856719970703 seconds, solution distance = 0.005021587204550038\n", - "Finished cycle #68 in 0.01421356201171875 seconds, solution distance = 0.004671169108092954\n", - "Finished cycle #69 in 0.013946294784545898 seconds, solution distance = 0.004345178493565527\n", - "Finished cycle #70 in 0.013983488082885742 seconds, solution distance = 0.0040418863606035416\n", - "Finished cycle #71 in 0.013924121856689453 seconds, solution distance = 0.0037596930529133488\n", - "Finished cycle #72 in 0.014300346374511719 seconds, solution distance = 0.0034971169740973806\n", - "Finished cycle #73 in 0.01369333267211914 seconds, solution distance = 0.0032527839195921615\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #74 in 0.013900995254516602 seconds, solution distance = 0.0030254194799024248\n", - "Finished cycle #75 in 0.014229059219360352 seconds, solution distance = 0.0028138406398454663\n", - "Finished cycle #76 in 0.013990402221679688 seconds, solution distance = 0.0026169491345662266\n", - "Finished cycle #77 in 0.013784170150756836 seconds, solution distance = 0.0024337242574592466\n", - "Finished cycle #78 in 0.013760566711425781 seconds, solution distance = 0.0022632317662640844\n", - "Finished cycle #79 in 0.013946056365966797 seconds, solution distance = 0.002104581905486569\n", - "Finished cycle #80 in 0.01449275016784668 seconds, solution distance = 0.001956952354719377\n", - "Finished cycle #81 in 0.014972925186157227 seconds, solution distance = 0.001819579088364165\n", - "Finished cycle #82 in 0.015275716781616211 seconds, solution distance = 0.00169175221432738\n", - "Finished cycle #83 in 0.013852596282958984 seconds, solution distance = 0.0015728118574429573\n", - "Finished cycle #84 in 0.013615131378173828 seconds, solution distance = 0.0014621442412057206\n", - "Finished cycle #85 in 0.0139312744140625 seconds, solution distance = 0.001359177900340569\n", - "Finished cycle #86 in 0.01392674446105957 seconds, solution distance = 0.0012633810782336496\n", - "Finished cycle #87 in 0.014052152633666992 seconds, solution distance = 0.001174258851108334\n", - "Finished cycle #88 in 0.015384435653686523 seconds, solution distance = 0.001091350522187895\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #89 in 0.01551365852355957 seconds, solution distance = 0.0010142271461006658\n", - "Finished cycle #90 in 0.014225006103515625 seconds, solution distance = 0.0009424892959843945\n", - "Finished cycle #91 in 0.013699769973754883 seconds, solution distance = 0.0008757649750350538\n", - "Finished cycle #92 in 0.01414942741394043 seconds, solution distance = 0.0008137077537639925\n", - "Finished cycle #93 in 0.014108657836914062 seconds, solution distance = 0.0007559949905022734\n", - "Finished cycle #94 in 0.013839960098266602 seconds, solution distance = 0.0007023261754719456\n", - "Finished cycle #95 in 0.014190912246704102 seconds, solution distance = 0.000652421391080793\n", - "Finished cycle #96 in 0.014078140258789062 seconds, solution distance = 0.0006060199092736696\n", - "Finished cycle #97 in 0.014229774475097656 seconds, solution distance = 0.0005628788822349406\n", - "Finished cycle #98 in 0.013854026794433594 seconds, solution distance = 0.0005227721199609903\n", - "Finished cycle #99 in 0.01382756233215332 seconds, solution distance = 0.0004854889436813892\n", - "Finished cycle #100 in 0.013705730438232422 seconds, solution distance = 0.0004508331306860569\n", - "Finished cycle #101 in 0.0149078369140625 seconds, solution distance = 0.0004186219289339377\n", - "Finished cycle #102 in 0.015589714050292969 seconds, solution distance = 0.00038868513865963905\n", - "Finished cycle #103 in 0.014167308807373047 seconds, solution distance = 0.0003608642625776426\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #104 in 0.014190912246704102 seconds, solution distance = 0.0003350116974303319\n", - "Finished cycle #105 in 0.01419973373413086 seconds, solution distance = 0.0003109899480255862\n", - "Finished cycle #106 in 0.014010190963745117 seconds, solution distance = 0.00028867109021746273\n", - "Finished cycle #107 in 0.014378786087036133 seconds, solution distance = 0.00026793597459118246\n", - "Finished cycle #108 in 0.014031410217285156 seconds, solution distance = 0.0002486736705407111\n", - "Finished cycle #109 in 0.01384735107421875 seconds, solution distance = 0.00023078088358730042\n", - "Finished cycle #110 in 0.013935327529907227 seconds, solution distance = 0.00021416150175923576\n", - "Finished cycle #111 in 0.014396905899047852 seconds, solution distance = 0.0001987260466052021\n", - "Finished cycle #112 in 0.014135122299194336 seconds, solution distance = 0.00018439123721503137\n", - "Finished cycle #113 in 0.01406550407409668 seconds, solution distance = 0.0001710795685312405\n", - "Finished cycle #114 in 0.014097213745117188 seconds, solution distance = 0.00015871891586538567\n", - "Finished cycle #115 in 0.015323162078857422 seconds, solution distance = 0.00014724216751460517\n", - "Finished cycle #116 in 0.01410818099975586 seconds, solution distance = 0.0001365868822063021\n", - "Finished cycle #117 in 0.014292716979980469 seconds, solution distance = 0.00012669496553208148\n", - "Finished cycle #118 in 0.014250755310058594 seconds, solution distance = 0.0001175123763808017\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #119 in 0.014620542526245117 seconds, solution distance = 0.00010898884643495421\n", - "Finished cycle #120 in 0.014461755752563477 seconds, solution distance = 0.00010107762103928053\n", - "Finished cycle #121 in 0.014100074768066406 seconds, solution distance = 9.373522214239927e-05\n", - "Finished cycle #122 in 0.014200448989868164 seconds, solution distance = 8.692123638809335e-05\n", - "Finished cycle #123 in 0.013893365859985352 seconds, solution distance = 8.059808131299917e-05\n", - "Finished cycle #124 in 0.014333248138427734 seconds, solution distance = 7.473080256659159e-05\n", - "Finished cycle #125 in 0.015238285064697266 seconds, solution distance = 6.928689371221708e-05\n", - "Finished cycle #126 in 0.014982223510742188 seconds, solution distance = 6.423613089623359e-05\n", - "Finished cycle #127 in 0.013741254806518555 seconds, solution distance = 5.955041748073597e-05\n", - "Finished cycle #128 in 0.013801336288452148 seconds, solution distance = 5.5203638256173804e-05\n", - "Finished cycle #129 in 0.014250040054321289 seconds, solution distance = 5.1171522628123967e-05\n", - "Finished cycle #130 in 0.014095306396484375 seconds, solution distance = 4.7431516734697254e-05\n", - "Finished cycle #131 in 0.013889074325561523 seconds, solution distance = 4.396266407979965e-05\n", - "Finished cycle #132 in 0.013788938522338867 seconds, solution distance = 4.074549408894512e-05\n", - "Finished cycle #133 in 0.013885021209716797 seconds, solution distance = 3.7761918378009796e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #134 in 0.013987302780151367 seconds, solution distance = 3.499513386806541e-05\n", - "Finished cycle #135 in 0.014144420623779297 seconds, solution distance = 3.2429532879518774e-05\n", - "Finished cycle #136 in 0.013838529586791992 seconds, solution distance = 3.0050619033161752e-05\n", - "Finished cycle #137 in 0.013970375061035156 seconds, solution distance = 2.7844929292086817e-05\n", - "Finished cycle #138 in 0.01423954963684082 seconds, solution distance = 2.5799961154149287e-05\n", - "Finished cycle #139 in 0.014017581939697266 seconds, solution distance = 2.3904105034944223e-05\n", - "Finished cycle #140 in 0.013830184936523438 seconds, solution distance = 2.214658123911306e-05\n", - "Finished cycle #141 in 0.013866424560546875 seconds, solution distance = 2.0517381443596605e-05\n", - "Finished cycle #142 in 0.01419377326965332 seconds, solution distance = 1.900721407821493e-05\n", - "Finished cycle #143 in 0.014113426208496094 seconds, solution distance = 1.76074536852866e-05\n", - "Finished cycle #144 in 0.014256954193115234 seconds, solution distance = 1.6310093659654967e-05\n", - "Finished cycle #145 in 0.01390385627746582 seconds, solution distance = 1.5107702445504856e-05\n", - "Finished cycle #146 in 0.013828754425048828 seconds, solution distance = 1.3993382651733555e-05\n", - "Finished cycle #147 in 0.014043092727661133 seconds, solution distance = 1.2960733101863298e-05\n", - "Finished cycle #148 in 0.01408696174621582 seconds, solution distance = 1.2003813569805288e-05\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #149 in 0.014097929000854492 seconds, solution distance = 1.111711194035081e-05\n", - "Finished cycle #150 in 0.013920307159423828 seconds, solution distance = 1.0295513675373513e-05\n", - "Finished cycle #151 in 0.013830184936523438 seconds, solution distance = 9.534273463174259e-06\n", - "Finished cycle #152 in 0.014466047286987305 seconds, solution distance = 8.828988853792907e-06\n", - "Finished cycle #153 in 0.014224529266357422 seconds, solution distance = 8.17557574350758e-06\n", - "Finished cycle #154 in 0.014092445373535156 seconds, solution distance = 7.570245585952762e-06\n", - "Finished cycle #155 in 0.014570236206054688 seconds, solution distance = 7.009484212616712e-06\n", - "Finished cycle #156 in 0.015040159225463867 seconds, solution distance = 6.4900322076510975e-06\n", - "Finished cycle #157 in 0.014051437377929688 seconds, solution distance = 6.008866577644767e-06\n", - "Finished cycle #158 in 0.01401376724243164 seconds, solution distance = 5.563183765211477e-06\n", - "Finished cycle #159 in 0.013874292373657227 seconds, solution distance = 5.1503839317845745e-06\n", - "Finished cycle #160 in 0.014081478118896484 seconds, solution distance = 4.76805624316512e-06\n", - "Finished cycle #161 in 0.014047622680664062 seconds, solution distance = 4.413965243088569e-06\n", - "Finished cycle #162 in 0.013914108276367188 seconds, solution distance = 4.086038288164673e-06\n", - "Finished cycle #163 in 0.013774871826171875 seconds, solution distance = 3.782353729775423e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #164 in 0.014042377471923828 seconds, solution distance = 3.5011300383303023e-06\n", - "Finished cycle #165 in 0.01490473747253418 seconds, solution distance = 3.240715629182489e-06\n", - "Finished cycle #166 in 0.015434980392456055 seconds, solution distance = 2.9995795891579746e-06\n", - "Finished cycle #167 in 0.014061689376831055 seconds, solution distance = 2.7763027929950113e-06\n", - "Finished cycle #168 in 0.01385498046875 seconds, solution distance = 2.569569886645695e-06\n", - "Finished cycle #169 in 0.013953208923339844 seconds, solution distance = 2.3781617386475773e-06\n", - "Finished cycle #170 in 0.014033317565917969 seconds, solution distance = 2.200948477693032e-06\n", - "Finished cycle #171 in 0.014164447784423828 seconds, solution distance = 2.036882989386868e-06\n", - "Finished cycle #172 in 0.014157772064208984 seconds, solution distance = 1.884994915712923e-06\n", - "Finished cycle #173 in 0.013838052749633789 seconds, solution distance = 1.7443850310883136e-06\n", - "Finished cycle #174 in 0.014197826385498047 seconds, solution distance = 1.6142201522129085e-06\n", - "Finished cycle #175 in 0.014110565185546875 seconds, solution distance = 1.4937282486471304e-06\n", - "Finished cycle #176 in 0.013921022415161133 seconds, solution distance = 1.3821940001434996e-06\n", - "Finished cycle #177 in 0.013995170593261719 seconds, solution distance = 1.2789546994795842e-06\n", - "Finished cycle #178 in 0.013717889785766602 seconds, solution distance = 1.1833963675655923e-06\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Finished cycle #179 in 0.014438152313232422 seconds, solution distance = 1.094950221158797e-06\n", - "Finished cycle #180 in 0.01425623893737793 seconds, solution distance = 1.0130893333126778e-06\n", - "Finished cycle #181 in 0.013914108276367188 seconds, solution distance = 9.373256517619666e-07\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:881: UserWarning: The option for reading shocks was activated but the model requires state PermShkAgg, not contained in newborn_init_history.\n", - " warn(\n", - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:881: UserWarning: The option for reading shocks was activated but the model requires state Rport, not contained in newborn_init_history.\n", - " warn(\n", - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:881: UserWarning: The option for reading shocks was activated but the model requires state U, not contained in newborn_init_history.\n", - " warn(\n", - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:1068: UserWarning: The option for reading shocks was activated but the model requires state PermShkAgg, not contained in newborn_init_history.\n", - " warn(\n", - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:1068: UserWarning: The option for reading shocks was activated but the model requires state Rport, not contained in newborn_init_history.\n", - " warn(\n", - "/mnt/c/Users/alujan/GitHub/alanlujan91/HARK/HARK/core.py:1068: UserWarning: The option for reading shocks was activated but the model requires state U, not contained in newborn_init_history.\n", - " warn(\n" - ] - }, - { - "data": { - "text/plain": [ - "{'mNrm': array([[1.49153665, 1.37355407, 0.72108687, ..., 1.53877809, 1.6304659 ,\n", - " 1.45281318],\n", - " [1.57347404, 1.57347404, 1.69145662, ..., 1.50276864, 1.61542625,\n", - " 1.61542625],\n", - " [1.52351467, 1.78042649, 1.45280927, ..., 1.52351467, 1.78042649,\n", - " 1.52351467],\n", - " ...,\n", - " [1.82819519, 1.61323557, 1.50057797, ..., 1.68926595, 1.68926595,\n", - " 1.50057797],\n", - " [2.29591294, 2.38760074, 2.29591294, ..., 2.2486715 , 2.05998352,\n", - " 2.17264112],\n", - " [1.99609869, 2.18478668, 2.18478668, ..., 1.99609869, 2.06680409,\n", - " 2.14606321]]),\n", - " 'cNrm': array([[0.93895175, 0.93895175, 0.93895175, ..., 0.93895175, 0.93895175,\n", - " 0.93895175],\n", - " [0.95572564, 0.95572564, 0.95572564, ..., 0.95572564, 0.95572564,\n", - " 0.95572564],\n", - " [0.94566772, 0.94566772, 0.94566772, ..., 0.94566772, 0.94566772,\n", - " 0.94566772],\n", - " ...,\n", - " [0.99975697, 0.99975697, 0.99975697, ..., 0.99975697, 0.99975697,\n", - " 0.99975697],\n", - " [1.0624433 , 1.0624433 , 1.0624433 , ..., 1.0624433 , 1.0624433 ,\n", - " 1.0624433 ],\n", - " [1.02413053, 1.02413053, 1.02413053, ..., 1.02413053, 1.02413053,\n", - " 1.02413053]]),\n", - " 'Share': array([[1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " ...,\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.]]),\n", - " 'aNrm': array([[ 0.55258491, 0.43460232, -0.21786487, ..., 0.59982635,\n", - " 0.69151415, 0.51386144],\n", - " [ 0.6177484 , 0.6177484 , 0.73573099, ..., 0.547043 ,\n", - " 0.65970061, 0.65970061],\n", - " [ 0.57784695, 0.83475878, 0.50714155, ..., 0.57784695,\n", - " 0.83475878, 0.57784695],\n", - " ...,\n", - " [ 0.82843823, 0.61347861, 0.500821 , ..., 0.68950898,\n", - " 0.68950898, 0.500821 ],\n", - " [ 1.23346964, 1.32515744, 1.23346964, ..., 1.1862282 ,\n", - " 0.99754021, 1.11019782],\n", - " [ 0.97196816, 1.16065615, 1.16065615, ..., 0.97196816,\n", - " 1.04267356, 1.12193268]]),\n", - " 'Adjust': array([[1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " ...,\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.],\n", - " [1., 1., 1., ..., 1., 1., 1.]]),\n", - " 'PermShk': array([[0.92883505, 1.0878146 , 0.96923224, ..., 1.17589652, 0.92883505,\n", - " 1.00513833],\n", - " [1.0423907 , 1.00513833, 0.86069257, ..., 0.86069257, 1.0878146 ,\n", - " 1.0423907 ],\n", - " [1.0423907 , 1.0878146 , 1.17589652, ..., 1.0423907 , 1.0423907 ,\n", - " 1.0878146 ],\n", - " ...,\n", - " [1.17589652, 1.0423907 , 1.17589652, ..., 0.86069257, 0.92883505,\n", - " 0.92883505],\n", - " [0.96923224, 0.86069257, 1.00513833, ..., 1.0423907 , 1.17589652,\n", - " 1.0423907 ],\n", - " [1.17589652, 1.0878146 , 0.86069257, ..., 0.96923224, 1.0878146 ,\n", - " 0.86069257]]),\n", - " 'TranShk': array([[1.07044978, 0.9524672 , 0.3 , ..., 1.11769122, 1.20937902,\n", - " 1.03172631],\n", - " [0.9524672 , 0.9524672 , 1.07044978, ..., 0.8817618 , 0.99441941,\n", - " 0.99441941],\n", - " [0.9524672 , 1.20937902, 0.8817618 , ..., 0.9524672 , 1.20937902,\n", - " 0.9524672 ],\n", - " ...,\n", - " [1.20937902, 0.99441941, 0.8817618 , ..., 1.07044978, 1.07044978,\n", - " 0.8817618 ],\n", - " [1.11769122, 1.20937902, 1.11769122, ..., 1.07044978, 0.8817618 ,\n", - " 0.99441941],\n", - " [0.8817618 , 1.07044978, 1.07044978, ..., 0.8817618 , 0.9524672 ,\n", - " 1.03172631]]),\n", - " 'bNrm': array([[0.42108687, 0.42108687, 0.42108687, ..., 0.42108687, 0.42108687,\n", - " 0.42108687],\n", - " [0.62100684, 0.62100684, 0.62100684, ..., 0.62100684, 0.62100684,\n", - " 0.62100684],\n", - " [0.57104747, 0.57104747, 0.57104747, ..., 0.57104747, 0.57104747,\n", - " 0.57104747],\n", - " ...,\n", - " [0.61881617, 0.61881617, 0.61881617, ..., 0.61881617, 0.61881617,\n", - " 0.61881617],\n", - " [1.17822172, 1.17822172, 1.17822172, ..., 1.17822172, 1.17822172,\n", - " 1.17822172],\n", - " [1.1143369 , 1.1143369 , 1.1143369 , ..., 1.1143369 , 1.1143369 ,\n", - " 1.1143369 ]]),\n", - " 'U': array([[-0.32163767, -0.32163767, -0.32163767, ..., -0.32163767,\n", - " -0.32163767, -0.32163767],\n", - " [-0.29964502, -0.29964502, -0.29964502, ..., -0.29964502,\n", - " -0.29964502, -0.29964502],\n", - " [-0.31259768, -0.31259768, -0.31259768, ..., -0.31259768,\n", - " -0.31259768, -0.31259768],\n", - " ...,\n", - " [-0.25024318, -0.25024318, -0.25024318, ..., -0.25024318,\n", - " -0.25024318, -0.25024318],\n", - " [-0.19620811, -0.19620811, -0.19620811, ..., -0.19620811,\n", - " -0.19620811, -0.19620811],\n", - " [-0.22725778, -0.22725778, -0.22725778, ..., -0.22725778,\n", - " -0.22725778, -0.22725778]])}" - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft = cpfm.PortfolioConsumerFrameType(T_sim=5000, AgentCount=200, read_shocks=True)\n", - "\n", - "pcft.cycles = 0\n", - "\n", - "# Solve the model under the given parameters\n", - "pcft.solve()\n", - "\n", - "pcft.track_vars += [\n", - " \"mNrm\",\n", - " \"cNrm\",\n", - " \"Share\",\n", - " \"aNrm\",\n", - " \"Adjust\",\n", - " \"PermShk\",\n", - " \"TranShk\",\n", - " \"bNrm\",\n", - " \"U\",\n", - "]\n", - "\n", - "pcft.shock_history = pct.shock_history\n", - "pcft.newborn_init_history = pct.newborn_init_history\n", - "\n", - "pcft.initialize_sim()\n", - "\n", - "pcft.simulate()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:47.820603Z", - "iopub.status.busy": "2024-07-11T15:30:47.820357Z", - "iopub.status.idle": "2024-07-11T15:30:48.050644Z", - "shell.execute_reply": "2024-07-11T15:30:48.050135Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACUmUlEQVR4nO2dd3gcxfnHv3un3iXLVrEkS7Zc5CZ3W27YYCyMMYbQAgQDocSAIYZQ4vwSIKSYkJgECC00E5qpBoLBxhhX3Ivcu2RJLiq2rF7vbn5/nHS6sru3u7d7uye9n+fRI+ludmZ2dnbmnZm3cIwxBoIgCIIgCANj0rsCBEEQBEEQ3iCBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDA8JLARBEARBGB4SWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvAE6V0BtbDZbDh79iyio6PBcZze1SEIgiAIQgKMMdTV1SE1NRUmk/A+SpcRWM6ePYv09HS9q0EQBEEQhAJKS0uRlpYm+H2XEViio6MB2G84JiZG59oQBEEQBCGF2tpapKenO+ZxIbqMwNJxDBQTE0MCC0EQBEEEGN7UOUjpliAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDE+X0WGRgtVqRVtbm97VIACYzWYEBQWRCTpBEAQhiW4jsNTX1+P06dNgjOldFaKdiIgIpKSkICQkRO+qEARBEAanWwgsVqsVp0+fRkREBHr27Emrep1hjKG1tRWVlZUoKipC//79RZ0FEQRBEES3EFja2trAGEPPnj0RHh6ud3UIAOHh4QgODkZxcTFaW1sRFhamd5UIgiAIA9OtlrW0s2IsaFeFIAiCkArNGARBEARBGB4SWAiCIAiCMDwksHRBnn76aYwYMULWNdOmTcPChQt1rwdBEARB8NEtlG67G48++igefPBBWdd88cUXCA4O1qhGBEEQBOEbJLB0IRhjsFqtiIqKQlRUlKxrExISNKoVoRibFTizC4jPAqJ66l0bgiAIXemWR0KMMTS2WnT5keu4rqWlBQ899BB69eqFsLAwTJ48GTt27AAArFu3DhzH4bvvvsPo0aMRGhqKTZs2eRzFWCwWPPTQQ4iLi0OPHj3wxBNP4Pbbb8c111zjSON+JJSZmYm//vWv+OUvf4no6GhkZGTgP//5j0vdnnjiCQwYMAARERHo27cv/vCHP5AnYTUp3Q6cWAPseFPvmhAEEahcOAlsfRWoLtW7Jj7TLXdYmtqsGPzkKl3KPvRMPiJCpDf7448/js8//xzvvvsu+vTpg+eeew75+fk4ceKEI81vf/tb/OMf/0Dfvn0RHx+PdevWueTxt7/9DR988AHeeecd5OTk4IUXXsCXX36J6dOni5a9ZMkS/OlPf8Lvfvc7fPbZZ7jvvvtwySWXYODAgQCA6OhoLF26FKmpqdi/fz/uueceREdH4/HHH5feIIQwdWf1rgFBEIHOvk/sv/cuAy55TN+6+Ei33GEJFBoaGvDqq6/i73//O2bNmoXBgwfjjTfeQHh4ON566y1HumeeeQaXX345+vXrx3u089JLL2HRokW49tprMWjQIPz73/9GXFyc1/KvvPJK3H///cjOzsYTTzyBxMRErF271vH973//e0ycOBGZmZmYM2cOHn30UXzyySeq3DtBEAShIjaL3jXwmW65wxIebMahZ/J1K1sqJ0+eRFtbGyZNmuT4LDg4GOPGjcPhw4cxduxYAMCYMWME86ipqUF5eTnGjRvn+MxsNmP06NGw2Wyi5Q8fPtzxN8dxSE5ORkVFheOzjz/+GC+++CJOnjyJ+vp6WCwWxMTESL4/giCIrorFasP6Y5UY3ScecREUL00NuqXAwnGcrGMZoxMZGalJvu5WQxzHOYScLVu24NZbb8Uf//hH5OfnIzY2FsuWLcOSJUs0qQtBEEQg8Z+NhXhu5VH07RmJH38zTe/qdAnoSMjA9OvXDyEhIfjpp58cn7W1tWHHjh0YPHiwpDxiY2ORlJTkUNQF7MEgd+/e7VPdNm/ejD59+uD//u//MGbMGPTv3x/FxcU+5UkQBNFV+GbvOQBAYWUDf4LmGmDXUqD8oP8qFeB0nW2GLkhkZCTuu+8+PPbYY0hISEBGRgaee+45NDY24q677sLevXsl5fPggw9i8eLFyM7OxqBBg/DSSy/h4sWLPsVW6t+/P0pKSrBs2TKMHTsWK1aswPLlyxXnRxAE0a04vhqoPQcc+hpIGqJ3bQICElgMzrPPPgubzYbbbrsNdXV1GDNmDFatWoX4+HjJeTzxxBMoKyvDvHnzYDabce+99yI/Px9ms3R9GneuvvpqPPzww1iwYAFaWlowe/Zs/OEPf8DTTz+tOE+CIIhug6VZ7xoEHByT6xjEoNTW1iI2NhY1NTUeip/Nzc0oKipCVlYWwsLCdKqhcbDZbMjJycGNN96IP/3pT7rVg56LFw58DlQes/89fZG+dSEIQhazXtiIw+dqAQCnnp3tmWDP+52+UbR8v9cu7vzboOOI2PztDO2wdAOKi4vx/fff45JLLkFLSwv+/e9/o6ioCLfccoveVSMIgiAISZDSbTfAZDJh6dKlGDt2LCZNmoT9+/fjhx9+QE5Ojt5VIwiCIAhJ0A5LNyA9Pd3F0oggCILQli6ibWEoaIeFIAiCIAjDQwILQRAEQQQgrRYbrnxhIx77VJqLi0CHBBaCIAiCCEA2najEoXO1+HTXab2r4hdIYCEIgiCIAMRLOLguBwksOtHQYsGx8jrUNwd+BE2CkER9pd2rZ2OV3jUhCCIAIYFFJ05W1qO5zYrC8/WCaRhjuPfee5GQkACO41BQUOC/ChKE2uz5rz1uyt5leteEIIgAhAQWA7Ny5UosXboU33zzDc6dO4ehQ4fqXSWCUI6l1f67uUazIg6drcWCD3ej6LxAwDmCIAIW8sNiYE6ePImUlBRMnDiR9/vW1laEhIT4uVYEYVyuefkntFptOHCmBusem653dQhCGPLTIhvaYTEod9xxBx588EGUlJSA4zhkZmZi2rRpWLBgARYuXIjExETk5+cDAJ5//nkMGzYMkZGRSE9Px/3334/6+s6jpqVLlyIuLg7ffPMNBg4ciIiICFx//fVobGzEu+++i8zMTMTHx+Ohhx6C1Wp1XNfS0oJHH30UvXv3RmRkJMaPH49169Y5vi8uLsacOXMQHx+PyMhIDBkyBN9++63f2ogg3Gm12rUQT11o1LkmBEGoTffcYWEMsLbpU7Y5GOA4r8leeOEF9OvXD//5z3+wY8cOmM1m3HDDDXj33Xdx3333uXiuNZlMePHFF5GVlYXCwkLcf//9ePzxx/HKK6840jQ2NuLFF1/EsmXLUFdXh5/97Ge49tprERcXh2+//RaFhYW47rrrMGnSJNx0000AgAULFuDQoUNYtmwZUlNTsXz5clxxxRXYv38/+vfvjwceeACtra3YsGEDIiMjcejQIURFRanfZgRBEF0NCfMA4Ur3FFisbcDGJfqUPeU3QJD3Y5zY2FhER0fDbDYjOTnZ8Xn//v3x3HPPuaRduHCh4+/MzEz8+c9/xvz5810Elra2Nrz66qvo168fAOD666/He++9h/LyckRFRWHw4MGYPn061q5di5tuugklJSV45513UFJSgtTUVADAo48+ipUrV+Kdd97BX//6V5SUlOC6667DsGHDAAB9+/ZV3CwEQXRvahrb8Mf/HcR1o9MwKTtR7+r4DJ34qE/3FFgCmNGjR3t89sMPP2Dx4sU4cuQIamtrYbFY0NzcjMbGRkRERAAAIiIiHMIKACQlJSEzM9NlRyQpKQkVFRUAgP3798NqtWLAgAEuZbW0tKBHjx4AgIceegj33Xcfvv/+e8yYMQPXXXcdhg8frvo9EwTR9Xl25RF8secMvthzBqeena13dbRHBYmmu23SdE+BxRxs3+nQq2wfiIyMdPn/1KlTuOqqq3DffffhL3/5CxISErBp0ybcddddaG1tdQgswcGu5XIcx/uZrd0TUX19PcxmM3bt2gWz2eySrkPIufvuu5Gfn48VK1bg+++/x+LFi7FkyRI8+OCDPt0jQRDdhy/3nEHv+HCcvti19I7chQmbjcFk6mYShsp0T4GF4yQdywQCu3btgs1mw5IlS8BxHCrqWnCqpNTnfEeOHAmr1YqKigpMmTJFMF16ejrmz5+P+fPnY9GiRXjjjTdIYDEgpVWN+PWyPbh3al9cMTRF7+oQBADg4NkaLPy4AAAwpX/gHwMJUdXQipn/3IDZw5Lxx7nquafobsdOsq2ENmzYgDlz5iA1NRUcx+HLL7/0es26deswatQohIaGIjs7G0uXLnX5/tVXX8Xw4cMRExODmJgY5OXl4bvvvpNbtW5JdnY22tra8NJLL6Hg0FG8+c5SvP76f3zOd8CAAbj11lsxb948fPHFFygqKsL27duxePFirFixAoBdd2bVqlUoKirC7t27sXbtWuTk5Phctj85Vl6HtzYVodXStX1c/275fuwuqcb893frXRWCcFBa1aR3FTTDWZj475ZTOF/fgne3FOtXoS6AbIGloaEBubm5ePnllyWlLyoqwuzZszF9+nQUFBRg4cKFuPvuu7Fq1SpHmrS0NDz77LPYtWsXdu7ciUsvvRRz587FwYMH5Vav25Gbm4vnn38ef/vb3zBp7Ch8u/wzPPTbP6iS9zvvvIN58+bhN7/5DQYOHIhrrrkGO3bsQEZGBgDAarXigQceQE5ODq644goMGDDARdE3EJj5zw340zeHsHRzkd5V0ZSaJp2s4giCIFRC9pHQrFmzMGvWLMnpX3vtNWRlZWHJErtVTk5ODjZt2oR//vOfDj8ic+bMcbnmL3/5C1599VVs3boVQ4YMkVvFLsPChQtdLICcfaA48/DDD+Phhx9GeW0zymubAQD/9+v5ju/vuOMO3HHHHS7XPP3003j66addPnPf+QoODsYf//hH/PGPf+Qt96WXXpJ0H4HA3tPaeV8lCILQgu6mdKu547gtW7ZgxowZLp/l5+djy5YtvOmtViuWLVuGhoYG5OXlCebb0tKC2tpalx+CIKRx+Fwtqhtb9a4G0c3pUhOutQ3Y/gZw7HsAAEM3UzDxA5oLLGVlZUhKSnL5LCkpCbW1tWhq6jy/3L9/P6KiohAaGor58+dj+fLlGDx4sGC+ixcvRmxsrOMnPT1ds3sgiK7EvtPVmPXCRoz9yw+837+y7gSufeUnNLRQJHFCZ9qaAJvVezojUHEIaDgPnNmld026LIZxzT9w4EAUFBRg27ZtuO+++3D77bfj0KFDgukXLVqEmpoax09pqe+WMQShiDO7gT3vA23NetdEEhuOVQIA2qz8K8DnVh7FnpJqfLCNFAQDBcYYjpbVoc0aWMrjohsszTXApn8BO9/2U218pLuZ7OiA5gJLcnIyysvLXT4rLy9HTEwMwsPDHZ+FhIQgOzsbo0ePxuLFi5Gbm4sXXnhBMN/Q0FCHVVHHD0Eoxaed6WOrgOpSoIT/mDNQ6eqWU12JD7aVIP9fG3BfgFmBiU7x54/bfzec90dViABAc4ElLy8Pa9ascfls9erVovopAGCz2dDS0qJl1QhCXfSKT0V0e97cWAgA+OFwuZeU/NhstDtAGB/ZAkt9fT0KCgpQUFAAwG62XFBQgJKSEgD2o5p58+Y50s+fPx+FhYV4/PHHceTIEbzyyiv45JNP8PDDDzvSLFq0CBs2bMCpU6ewf/9+LFq0COvWrcOtt97q4+25wmjLzlDQ8/Afzk3NSdR0pMfTPdh5qgq5f/wen+zw/7G62jq3K/adw5aTF1TOlTAKsgWWnTt3YuTIkRg5ciQA4JFHHsHIkSPx5JNPAgDOnTvnEF4AICsrCytWrMDq1auRm5uLJUuW4M0333SYNANARUUF5s2bh4EDB+Kyyy7Djh07sGrVKlx++eW+3h8AOFzLt7YayyoiDK2IRlO3nRkaG+2uuN1DBOiB1ElcCuuOVuChj/agprFr7biQgKkyZfuBmtO6FF3T2OZwgTD//V2oa7Hg8c/36VIXYeS9k6fON+CBD3fj5je2alQfQm9k+2GZNm2a6MDl7suj45o9e/YIXvPWW2/JrYYsgoKCEBERgcrKSgQHB8NkUngSxpj9R+n1zllZWhHB2U2xmxtqgaBQn/Nsa20Bs9iFsuZm4yqAMsbQ2NiIiooKxMXFecQq0qtOanHHOzsAALHhwfjTNdLdcFfUNuM/Gwpx64Q+yEqM9H6Bxji3yLubT+Hfa0/gw7vHo39StG516jLUnAEOf2P/e/oivxef+4zd9HbvUzP9XrYzai4Uymr1HvO0F+jPVjchMSoUIUGGsZfxK90ilhDHcUhJSUFRURGKi32wfGitt5vYhUT7LLRUXGxCM9cAAKirawDMvsc2qm1uQ22T3RQ1pCncS2qFtDYA4ICQCJ+ziouLQ3Jysu91Mgpug++5GnkD6IMf7cG2oip8uuu0rImkorYZ4SFmRIcJ71T5Oi889bXd6/T/fXkAn/xKXP+MkEBTld41AAAUVtbrXYUui9obkntKLuLaVzZjcEoMvv21cHy3rky3EFgAuxVS//79fTsW2va6/Xfv0UDaGJ/qc/cX6zDPbA9PcPutdwI9s5RlZGkF6suBmN54d2sx/rvlLABgzW+m+VQ/XpqqgX32lRnG3AWYlXef4OBgQ+ysGIk9JdUA5LnRv1DfgnF/tSu1n3p2thbVcoGOhQhCCOFVgRqvzRe7zwAADp3rvk5Su43AAgAmkwlhYWHKM7C1hz83M8CXfACcqbOiKagaABAWzCnPb+eHQF050G86mmwJOFNnd7Lk030KcfpAZxuEhfkksBgNNbemO/NUfu3Z6iakSkh34Kx2g5fgIMuYfbcxVPxoaMepKmw6fh4PXpqNILOOW9gl24Dy/UDuLarsDBIKYAxoqQXCYl0+lvKKNLdZocFopgFdQJhnDDj6HRAeB/SZqHdtPOieB2Fdibp2M8ay/dqXVbpD+zI6OH8COPA50NrovzJVRu6qytmV982vbwYqj6lcI5U4/j2w+d/AOXElzRte24IX1hzHh9tLRNNpzskfgfpKoGSzvvUwIPYe5wf/+EUbgC2vAMXyfBVtP1WF1zacxEd69yEFOL/+AROCoPYscG4vULhe75rwQgJLoNDaCJQfFPX10aV26/d/ap+wi4z54mhNXPUBZRe2NQPVJR6dQUnfEBxkz7Q7JytcJymfwsoG+YVrgU17R3hlNc245Y2tWHmgTPOyAoridmFRpM/w9dHNJ+1O4xZ94YcFmYZoNTarLgjZjG3ZSAKLElTuJYwx/H3VEXy3/5xwor0fAYe+Bk6uVbVsxfhrydAiohRoVS/WjRZ3I7eJOKda9OYUevfc8x6w5wPgXIGy653oUgKwRKw+OlB7+uuD2HzyAua/HxjxZAJl4U/w093eURJYlKByL9lxqgovrz2J+z4QcatdX2H/XSEcX8kDxuymkyd/FEnCUNdsbKmal9IdwIa/A7veBRqNYXHhK6FoRjjkWRYxxtCHK8MvzKuB2nOdbszLZfQTGXBqT3E2q30b2g+7H974dGcpcp5ciY3HKxXnUUURsIl2nN8U/sVLN5M2VIAEFrWwtikWZC42tiEGDZhs2g80K1ei9HgpGs7bdVtKtgle8/svD2DY09/L9w6pt2h/oj3ScO3ZwAmOJobNhntM/8Ovgr6BGfKi015r3oRErgbY97Gk9IY6Tz/8P7vQWbxJ75rgsc/2odViw73/DYzdETXQe8p07ovOf+8/XeP/yqhMR9vmcicwtOwLhMEt1EzNGcl5NbdZ0dQWIFGrNYQEFjVorgE2/MOuJKqQ68wbMMZ0FDjwmeI8PGQI5r2Df7DNrsz2zx+MoeBptTEUVta7KKB6vygAd4jcsbY6VmQR7gObjDzURNYzUErFYftvEaE6oPCxyc5UN2FrobFdy5fVNOObfWdh0TAydOH5ruMfZrq5AFEt5zHBdFg8YeUxXs/HjDGMeOZ7fLbL8zv1Fx9GWs14QgKLEtx7SYe1REd0UQXEtjuRc1j9+Bu5A61Gy/THP9uHS5esx97SjhWW3mtA5fjj1dfCHFsMxUJMW5O6FemiTHr2R/z8P1uxu+Si3lUR5LIl67Dgwz14b6sPTjjbEe2+xp47ZRMktnPaWGVf8O5+z/5/XbldQdnSAhsDmtv0PzI1AiSwGAAucOdk1fl8t30Vsb3I2KvMDhhj2FJ4AUfKfPeH4q9uoLoeihQkWhQZAS1kwM0nz2PBh7txvl7a7tnuYv8ILEputaHVPvGuP6Zc16cD511hvU+ZZcEYsP8z4OCXIklk3FCz2xHYzrftJuAi5sWf7TqNF9eckF6GJIz9ELqO5y+CB+nDkV+2/1WgprENBaerMYUxmLSYWWxWwCTdA+/O4ovY1i5cDfLN+bG6uLWN878MDEGwIBriPm5UnUACSDFai4nzljc6j7z+fcso9QtQCINyAc1HgypZhKMZaLoIhMf7r1Ae/vXDMRSdb8C/5maC69hRHzQbMGsUwLVeeMf90U/3alOmgaEdli6EL+OH0VY3QtX52as/4fa3t6OgtFrV8jgO9jPk9c/ZHSdJ5EK9enojHfOGnEfhuoqT7hr8F+YfcHvQ98BFedv6/tydmf/eLsx7e3uXCgdwpjrwjsaaWvmPMtR4LlKFpV8FfQNsfa09lpl+/OuH4/iq4Cz2Khh/lLaWf/u/sc/hSGAhMIY7guy2o3pXQxIn252QHS2vk36RVH8tHUrTR76VWasOfHvZ1RqW2qw22ETMhDlwiOPalRorDtsngdLtHpOB5JV3Sz1w4SRQedR+Bt9UraziTjS3WbHyYBk2HKvE6YvqTvLL95zGHhEdEUNZUUlEK12mxd8eRs6TK7GNRxGYdx5tqQMsCpXGpdAgfAzlz8fWauG5eaML1oHYsd0ggcUI6NiPotCIyeYDGNWyQ5YvjP2na1AdCD4nyg/Z/bWcEfFxoxquA5bS8UF5d2BobrPi5XUn8M8fZCiAH/gCOLHGw8pN8vi77TVg3yf2fGpOA0eVCnzas6u4Cg9/vBfXvmIgN/02381Vla7COy4LggUDuFIP5ejXNxQCAP763RGPa23uZbY22EM2bPqn5PKdd+w2nVDoLLEdrcSFExV1WPL9UZegpCYJLykT+FsePtxV7bkup+xOOiyqYAzJWslEFwzn3Qc3DbjWBiA0CgBwvr4FhUUXMDg1FtWNrZj7yk8ICwnGoWeu8KnOipHa5Ie+sv8+tgrobRzdAa0orrLrpZyrkTFQdZhS8vmFYAyoOY1QtKIFIfzXu5uVuw2SSiZTrRarJ/0dJqC1AaguhQk22ITWh+ufA/rkAX2n+bVqzkw27ccI00lgbwgw5pde0wfDAtjcdi5r2z11a/Dw9NwbmPH8BgBAaVWnzpfZRWLhr52uISmqioC9y4DgcOV5HPse4ExA/xnq1ctHaIdFBaw2hrLaZs8Vh58RKv1sTROqGsR3QzyuPbUJ2PySI+Dhgg93Y3PhBXyx+zSKLthfxEaBs+1AhG/IabFY8ebGQpyokHH8pAJyepHQUQBjwkO8rJ2fyqPAnvdxm3m1jIu6Hi0WK8prvXghttkQbb0Ilye4+7/AweW4zrwBg7gS4blcZlBAtejoC4O4UvsfEtwqBMGCB4K+xOx6N79TKh45GPF0xVlvTu4RnD8ELsYY2jp843QoBDsvHtobde3RCry89oT3hcSZXcDpHfb4ZAaBBBYV+Gh7CZbtKMGPRyokX+Ov48TiCw34ZGcppvxtDe/3TOhVOtXuebTdo+zWQruVR1Vjq3/NYoVeKpWrwFfKq+tO4s8rDjtWWLzVcKmH/9eBUpVuFeUNAJX2o4AorsmjiKY2K7YVXtDEwsxoVmuz/rUR4/+6BsfFdKcOf4X8xm8wgjvZ+Vm7Pk9v7jyuMG9HtM1383ddcOpnCbC3QQjTUFfFHR8GzF3FVVh7VPrYLISzVZRJpi8Kxb1ZhuR297s7MeKP37scXfFx5zs78PdVR7HuKL8+UHObFRuOV6KirkNQMc67SAKLCqxoD1p44Kw+7qRbLFZ8uK2YN3hi0Xn7bkiDt90QDZY0xRcacNHLzo5i/PAO7Smp1r6QAOatTUW46T9bcbRMfAfKV4VQVYV7hf2msP09+k4sCnPFEXAARpuEFdjDmLSjOrmvo9I29uW19+suiA+FXffqFtz5zg6U1fi2U+AcGNNsQAXWNUcq0NBqxaqD0iKFnxU4Nt5wvBK7Sy7iw+0lalZPFUhg8TetDaq7kt9WWIVDZfU4XqHcnTUDZA0KnJeR/1xNEy75+zqM/JOyowSfBsPGKrvVis7I24kS3OuSWabGOD2XjpXc8XLxfhdoZsm+tKG3O1U0z1WXikcth29trPR+VXmqcgtvErHu8nJpZZ1vO0LOR/5yfUBp2afUxtd20hISWPxJayPw04vAT/9SNdvGNqtXAUILhnBFwM53PL00Ak6u9XVg2+t2qxUZPkZUmehb64Dd/8VATtnKRNIT9BJkU9Ve4BmcSs3c9cF4C2NxLhYDe96365MZDc0FUZ7IiEdXdkYk9zPOOyxyBU+vLeXjjk0oWtGPOyMeONWAu0JyIYHFn9Setf+2WiSEHjcuHdW93LwLqCsDTu/UtT6CdLS3v6g4AtScwSzzdvXzriuz7xxt+Adw8Av185dAEvhXt11AjJGMy6taXQIUfKhsAuWZ7GsaeXZeL56Sn7cMlIw9HYsjjzvw10Am09lhB77qRQle7XbfTW1WzH35J5mZ+1a3q82bMce8BVNM+30u0sjvM5k164Rajp4MoZxoMY4WuRJScAF9eJyd+VeQ9FLYznc6/648hoq6ZvzhywNIj49AlPRcJKexJ3RNKRq8TYTotkqgUd6kbtRTJJdq7fnA/vvA58D4X0m7XuC+apvbkPvM955fOD8Dm81eA57QEYGqwyJUa/dxTcrdSalOm9WGzScvYEyfeESGypv+pLbw9qIqD0+4Wg8lvTn7+5WjcHc3UKAdFrXZ+pp9NSwDpZ155YFzeG19IUouiMeEsZeh4gwQYDtCLljbgPoKl9H2pqC1yGnQYFfECzYbw21vbcMjHxdA7rrmqa8OYtXBcry5qUiTugHgn5FkPvswtGD0+a/tx6EK+eu3h9VzUqiyINRiseK99Qfx6jqZOlNuAkZhpauOSueE7ZRu++vA5hdVcTQnUpUuzZLvj+H2t7fjnv/K3xUW7Dpu74nDtFjKtR0IPgSmmfAuVKSRuwMJLGrTdNHDYygfQp2i05TMO/Pf340WixWNbXYHTj1x0fUMk+Mk9z5Zvj9kpHXBagGa5Zp1dtbMVy1/AHZ9gB1v2V3Sa4y3ieBIWR02Hj+PL/bwOGzzwlmetig6r1zpWiui4FlPG2NelUSdv/12fxn+8NVB+w5D7VnVJ2w5uD/SvaXVOFfThL+t9PQEK3q91FnIuRM1Vdt9YvDsBvqidGvU3SxfOVvd5CJIMgZ8uM1+nLT5pPxo8N7byVufNpYoEIhHQiSw+ErtOYw3uU1+PlgBKTUl68HV4tagNZhrknd26teXaOfbwJaX7TscCviqQP7E7kHH7lfZPsmXJKDWHiOnSt3dDLUdDX6++wxqm9W1QHNmqOkUMtoKHf9HcvIFSKuN4Z2fTrlEL5bCobM1QNF6YNe7wNHvZJfrQEJ3l3O8YnFSxDxT3SRrwSFaB0dFjTHJSeupxqhrBze8tkWyIOkTEvqLsVpGBINvt5HA4iu7lnp+pulDFx86MkwKHSQJSduMYcGHKsXhaWxf1fhhd0NNZpu32t3X713m8Z1WTzqCU2ZaWNfsPdCj1O7p3iVyTMUY3yxTmdCNstpm1LW0YUt7ML2GVov0Sb5ka3smnYqFBaXVWPztYZyvV9Ze5+tb8MjHBdheVOX4TOluxae7Sl0EmA4OnXPaVZTc9u358Fjg8SFVyHp57QlM/tuP0ioRYLi3AF9k7AycQw+ItGn5IeD0Lq9lmduEdzMNPueLY/DtNlK61Qm9O/WiL/bj1HnvsS7OVDfhm32uDun0qrq3V+njHSVoarXiDimZifhzcCeS51jDF1osVlis4neTjCoA8bLz9pcLcKGwDIwxrDtagdB4aUq2b2y079jcMqEfernlI4Vr2q0xXt9QiMfyB3q/wC3bp746iBX7z8k6ljt90a6PkyYx/feHnHTa5G7Dn9srtVqS+PsqT6d2SseiqsZWvLWpCLdN6IOQIJPdaqqDxirg2EogYwKQ0FcwD+HQEsrqJEZVWTGuZBvRGmTDvyzXA7AfG607WomfjeqNsGBzZ+yxhCwgIsG9Vo6/ws4fECyHr+6+3I4iwwqbmjutxpHASGAxAB7vLGMio4g6neej9qOnWC/p+FaMUuA4IBkXUItI/i9Vps1qwxOf21feN0y3IDLES9fm0QMQQmlthW5z7J9/QG2zBZ/Oz1OYs3zUtCb7Zt85nBTQlzlWUY8fDjfhgwPyjnxOX2x0EVjEaLZYMef59Zg1LMXl87+vOoKZpp2oRSS22gZLyqu4ylNoF9utaLXaMPlvawEAJy6XHt1ca7R2zsfXIm1WG/7+zSG0Wmy4b1o/V+Hq8NdA7TlUlBzFyp534jbGfLKMVGPE+PsXmzDT7PrMrvjXBtQ2W1Bc1YBFs3I6v+CxfNRl80FJoYwB56QfeUvIUMW8fIOOhBSh8PVxemFFvaCe4I/7o6hImd5WpWXKIR7iCp6hDWfx86C1uDfoGxnli9Sk4TxCLMIu4J31Qfi09P1NX+6siAmr/djmmFhcGp1octo5Eaq/p7DSmdA9jonUoY5jFq/eXDvYW1qN4xX1eHHNcZfPk3ARg03FmGA6JLFULzAGVB4DWjqfk/ORW6tF/37mO9KekGvEKtdr3E14Adg9esOuk/fkVwdxlK+vH/oKPUp5TLkdBQlbzqhFx7u48Zg8s3u5spc/9yg4+NAvZej26QEJLIpQ+MJIlZZP71Ct7I6VtdovzC+CxF3uR9SXqldYSz2w/Q0MK/kAwzltXO7ztY8vbXa1ebMPV+vHmxsLvSdyo75FJaud/Z9IWhkKbfpJ8hMj56Ge3mm3+Nv8787LjbM77oJafp2k0IOTH8Cx0l3HqKUeKD+E6IuHEQoBk3Xn8VLC7Tl3C14nfCoiNpTzPQr35H/99jA+2Vnq4j1XSVkAEOtl8SiLMr6jLuN0ehJY/Eh9axtOVNTBYrNp2geGcKckhYl3xjibfq60tFnRUtcZVfRS8x7edEbUFfM2h/g16rVEyp0UYDkwoM4zoKY7Ykqz7ne46bj9WQbD4vnQ6sqBIyvssXP8BN8zqG+x2Ce8Yk8FY+f0DOq9N/r1BE52P7zc7F0p1StM292pgtPV3hMVrsMUk/QdhR7sInoJeHuWy382FOJsTRNOVvoubNwZtNLlf94dL58wzuBKAosm8A8Av//yIL7Zfw7rj1W6pPhom7reCS8377SbEMPbpMiQxMl/ASUNb06JPM/X3bx3XjwFWDytPNqsNiz6Yh+u+bc8yxS+e262WFHf4mpB09AiblHT6brLvy+sJFNzmRKac5uI9Qnn7+KaSmTp+kjhXK1duHkg6Es07V3On6ipSrsWZ+7/8pc0/30VJmUZMNiFuBmmXcjkzvlVAFdNv0ntXR4Nd42CYQGKt2C06RjCJSjVm2HFz2zf45agNQiGRbaAKZT+2wPnvLgikP9sPtguTeA3jhgiHRJYFKHsRSpol3wPnnXdUj0nyyGaei9xNncGV5o7lCOld9/SKnleS2e/uEl46/P0dqDgI3tMFjc6TFVrJZjqimGx2fDa+pMY+tQqh/BU1dCKIU+tUp4pY3ZLCJGZRfcdlBM/ALv/K8vRmvMckdgo/3hIDq9/9r/OfxSMnhFolnchsyG4TdpxRofZtTfkPuFsyzGgaCPvd2NMRzHUVIRrzPJNxwWVblsbgIPLRXwIibdfCNqQb9qOFItvPpA83gUm3ieVCGxynoXJSc/DDBv/MQ5jaLHY6+l83BgC+cdN9t04/hpuPF7J+7lxMM5OMFkJaYHNAlw4CcRlAOZgz699Wj6p55N2EOcmiUus15kaN/8GXq47dK4WB8/WYDjfl+0+NSw1Z/HFDuf6MFxoaFXFsZ3zzoqVMQRxHPZK2DIWLfn498CZ3YgzDRNM4m3l6v69c79QvKvjXOnSdl2o88d5k3q7XCnOdVd0F8y7O/JbzT+gJ1eNk7ZU/M82UVq+Z/dgwNl1yOKyUcRS2usqvgPpjpxFP2MMy/ecdvksw1IMnGJ2c183YqA8fIEgJ36wB+WsOAJMXyT78gmmQ8gxlaBXSwWAm7ykltE4u9+TXRd/89CyAvxvr/YBVA1gI+CKgbdeaIdFCywtwL5PfPPI6URjq8Vnr6j5ph3AGZUcwIlhaVegcxvZve02bDpxHo9/7nqe/MPhcsfk575D4+9DGgcd99felj0q5JnvChch845kzZyuq1mXS92fk9P/ah0VqBIkz62ePblqAEA/k/wJZQR3Qnk93P4Xu7XqxjaUCO1G+uANmw9BpVsJjufE3s0oNLWnkYm3h95uRaTV4l0NM2/Jwkrpdvsuluhuq0LqyoHWBkw27cf15vUuO0NSKb3YiB2nqjzaRHqdmD0kBs+xvb8hgUVLyg8KfiV1vqlpbMPgJ1fh/a32GBhoawaKt3S+8KJ0dtCBplLgmPARiCpn5hdPARuXACd/lJ1hUSX//SRzVYjmmvDWJm2PJyTjpIh5tqZJdKfGRUGTMRw+V4vGVgvv93JoaLHIVqwTFD4EnlMQLNhywnOruqpBpSCEBsIMa/vxkkxEungEmhG6+03hBLVuRyxMr4WttD4oVjer3MHDDwo6xRICwspFsNaF6+w7WCI7mb7csfnQFxhjOoo0rhJZnHcleHc+330aP508j+MV7gE2BXDvEhWH7SEx+Ly6+xk6EtIJr5NVXRlw8RS21KQDsHuVdFC4DrhwHEAPzeqniA7/MSXbAIg47uKT1riOXzYkoNNnQwhnwRXm7XC3UpQ1zPK8mYpXPI2dug2f7CyFjZlgEsisd8sJ4FApMOgq/Hj0PO56dyf69eRxpAd4tImZE15JrTvGH35BjeMzjrMrJN5v/gpcKwMwwEXYaWrzrg+jRXwqLR2j3WZejTiuHu9YrkANohCNRsw1/wS0JSnOc7zpMDhPz/Cd8ER0d241/wkvvpe0+lC7RaLUVZjTTq9UoV1uj3rqa+HFolI69FkA8FfIqpEwX9Mp3Jol7LAECaQ5V9OM/3wqwXOye5eoaPdr1FjlkdTfkMBiAEaaeCTzne8AAGJNI/gvqjkD7wKL+GtupOihHTXJN+3EIFMJvG3+ldc1o7nNanenLasce0lShumObfYQTpnSb279JqA8BYhNw5cF9vs5KbCT5EwwOstjjOF8Qyt6RIbA1F4fIb8nHBj/BCAy2TdbrLhY04Tk2LB2A1cOvXARHNd5zdEy4zm48wV3/aA4zr7y7MedxW42AFNM+5DI1QDwFFikzslm2MDptYFdXWp3kx8rNXiAFoi8YWd2KsrtREU9kmJDES2/RADaq462WW3w1Fj0T9nO3GZejZKqeGQkRLh8vrv4Ij4rPC1wVWBAAosGVDW2oqHZgvSODmO1AAeXY6TT2TnHwfGG2QdHfkKbzwNwj2mhDp7KkZ6vfKFSPwEeuhHSLrMLK/yDj/tn3+w7i+tHp4OBeTVR7syDQc3hQ5JybFszgAjxNE5CRaiTFcJPJy9gZ3EVRqTFYdrAXh5p3dlTKs9M/dlvjyCuphQzBydjcEoM73OS6yvCVzPwplaL62rWz/A7oLP3G1cdH8jeoBBLrsauShpXAex5v/OD2N5erxF7N/0x0fItnNzbwmpj+Gb/WXAch18P9UOlZLLuWAVWlpzHw+OieL9Xz1+P95xiuAZ8sacBo9LjUd/qm4Wl0SAdFg3475ZT+HzPaVxoaFdSKt8PXDiBPqZOZ26JEh0Q6e0Qzf3cUwmXmPYi8uwWL6nkhxA43R6N9euCsxj95x8k5bn2iPRo1lrHZ3Hmr98d6SzXqd47i+3bsJIcYTmRLjFqd0l7IL/D7RGFhY63hFFJMbf9t8Vmww2vb8G4v7iGp9DKk6tztlK22zWbwBVkzBjDn745hP9uOeX4bKLJ7SikPazAphPncfnz6yXnvbvkIqb9fa3MGsm7CStjjkCSUvMTeye9le58ZTTEzuvk0+GyYvNJaebwUrExhiMKdzh3l16UFP6jqqFV1wWCHEhg0ZDz9e1nmjwWATdxfBNs12Sk6Tgiz3kTWNwQmQd7wzXuR9EFKQrIdg62T8xShtayWm204qPQiJvNaxBfc9jxmfOkoxThIz7p7r/71WyxK2i7INxafTh5HpW9cbFBW5fqglY7ACaZDyAIFsiaeGUKGm0WG7+jMAVyX0FpNd7aVIS/f7UDEcx+X6mc24TZbO/vO4urBBcfHjJAw3nc/tY2nPJFcVWCsL/xWCW2n1JPL6KsVrritLvyqmx5WMu1jFPbFZRWY80Rdd8xZ8prmzHqT6txyXPrNCtDTUhg6cYYSYdFDmGcVOU25aNKQ4sFh8/VIlKllZhzS08x7UcSdxFpFXJXsHxI890ipNzo3gd61x/EcJN0i6xQBU60tIJ30nFzmMYbhM+JZK4KWs5GVY2tePunIo8gkUqob7HADCvuCvoWN7R+JcnkNQUXkAy7UBMMCxKOf47BNjcduu1vIKtNqu+e9sNkxtDgdvzQ7EVBW+6uoTd+vaxA9HuhHbRhpiJE2KQvegDIFlSVjrRC1k47BQQ9uU7tNh63L/7kCHt6QgKLX1AuGPjNLTyDKudPHVu24nfs+a3RRKdz7c7x5qoUxNC5ZZ2Van3NKwKdu0BBnMAEcfgbxNn4jyA7+5eyZx8tydmZvLz5+oLc47lrTRuBHW8Be5fJus4bUW1upqUKX5nSi42i9yT1dsOdnr9Qv+qIXh4MC24KWoufB62FGVaM4E4gtL4UE5lnGILRfIYAIvxu+X4s+f6Yi77Taxu0CVSqZJzK4YpxmdnZOqkzj/Gmw5jb9KXkvFK4Cwi9cNh7Qie8uZCUy/Wv8e9YOyvLe0VvfQMFkMAiFWf35hKcMTnY/obd26QbUido9y5V19yGZTtKcKRMfsRUrWlqs+LNTUX44XC5R70/3F6CYhlHN2oi5bU8XFaLzSc7j5o63uVeCmIteXBWnsM+LYaRvNZO/zGi+iAyJccp5v0Ka6QtfUzlQL24Hs/fVx0RWMHyCdT2pzKy4ivMNf+EONT55Fjvh8PleOunIrT64Oa0uc37tTbG8PI6u7K/8+o7CFYEcxYZnU084Uft8Wu2Sgxp4Cuf7iyVVVa+eYdqZV9l3qpaXr4ykpMnWAY6JLBIxUUalTFQNZz3nka8YIzijjn+W3+sEmW1zVh50NOPg1zU3r3ZVXwRDa0WHDjLL9AtL/CMR1LTbMGG45WoEQ0A5h+2n6pCuYSt0RaLFT+d8P5cHdNeSz2iLRf4vvEbQczVVFoI3eMfCSAmZIWjGQmQL8C/vPak4qOZWM534bu+xeKwwmMAenCd9+BNp6KyrgX3/Ne7ebBFKIaXAFL6v1xmmbbJ7lViffRYRR0e+2wffv6frWCM4ccj5ThbLe/o1tfjcKGrhZ6bk1Go99xEPMpyAK42bcY0UwEA4BKzBL8qAvx04oJB33ZhSGBRQvvLdOBMDYqrtN01iKo9ianmTpf1lfXaKIIqFV3s2uXK3cov216M3SUXfQ49ANi3vNM46VZAfLRYvKxazx/HmxuLsKPdekfqFmy4TV2rBLVhAOpa2ngHML8OagoK+1XQN5gX9D1iIO1dFCsimNekuRM5uypy31XnyOneXocOt/HhUOasLBwtGGc64tEY3+7vOO6S9iDyTd6FJk8lblfkCg/OQtX3h8rxy6U7MfHZH2Xl4b5YExI0Jpv2uywYlSJrdDu5RvCrZK4KfU1nMcKkPLxEBysPlhk5bBAvJLBI5N73d+HTXaUukv9VL23C8j3CUUxVCSRn61wZl9c2q6Ks14EaSrdfOt+/S/A+fjrMdDs4fVG9ifxa80Zcb94g2229XOT6JbHDkIBa3Gb+Hn0VxL/RmjPVTXhrUxEOnTPeUWMQLIhk3ts8SYXju7nmnyQ/n6/2nIWNZ8iP5pqQwVXgS54dRbX4YFsxJpgO4dYgZdaGI0yd+iXO72rnhkyHLpr9d3VTG256fQvWH3MN15BjKnYIimpOflLN2Le0mxFPNe3lFSz6c6fRj5P3HGyM4bef70M8ajHGdNRlwegLyYL9k+F8fUunMFwtLOApiSXUWUqg7ad4QgKLBKw2hh8OV+BMdRMuqiQwKDm7lmJT74IfbPXOOa12Cs93rnCFctrkdpQi6yXysuzsMOncLdN5mlzGV30j+xoODFeYd7hs+4ullkIaV4Hp7VvDsuoi0i/cLT1kVEc13Fe/d5pX4rqWr2Xnc7xCfQ+9zkdm5xtaUFbdDBNPb4/hGjwCdorn64q3nZyTlQ2YYDokOX9PhMNWAJ5DR6vFhm1FVbj97e2eaR3CjXowxrxadHXQnzuNUabjHoJFGFow27wVc8zyXCoUnW/A2qOVXnfbOjjnHr2eBw723ZE+nOdRfuH5BlzzymZsOu55zOy+g+/LMT7ftYEmwpDAIhenZz6MEzf/PF5Rj7VHK1Av0QurjKKl0VyjSofsy0lbcUoWqPwc9bOsRuhcXtkLHGfxDAooBV+tg9y53rwB/U2+udrWbtXFoGjNzXNJJKdMr2LFfvmB4rzB3HYebIwhiLMiFb7qqmmDFOuqOp7xyQircakhIWYLKMHKNfHtoE3CYtK5VT/eKX7k5Zy+n8hYuqvEdaF1VoIg5Be0ipGkABJYJOD66nZ2VWczOT6OV9Rh7+lqfC01TLna7PtERmL+gY0x4GrzZvSU6Jm3A9HhrmQrcHaPrPzsmSobRMWtk+RPqpKvcIlmp96GeSCcO19t2oJfmH+AySdbGnmIrT6lBG0Uz1ucG4PW+ZS/e83lKj/bGHP4GZHT4mospiSVJtdvia0N0U3eBQH1cK3gANNpDDUVCaT1EcYwhDslWv6pCw3YdUrbnWJA4pBap53jOrlQLCGJRLU7EFMy+FbUKde8dy7PvW9FSfKBIbEcLzd2a5CwIlhzTTnCeKLPinJ0JZA6Up5vVpFKxkC+Xsmlpj3oL3K+rfaOiFHgXP7WRpzo0AORbRbOAZea9+CiNQqlzDP4oMVmw7Yi6eas3x8qQ1iwGbtLLmJSv0R7EXJ8VbRzqWkPfrCN9vhcK2FMrphX19zmCKJqtTEEeYmx0PFts5tL9o4JTOn+SmW7Loav+zOpZT8iot5XPy7yw310MNqkXNFWTHGdgQMqDuNys7uysqsVqhT9p1+YVyusoVNJgbD6cYJ2WCTyy6DvJKXzZ0yG8SZ5zou04odte4Gd7yBEwQSv1sZzqEDZzRYrjggcVQ03FSKc4z+eYgBGcL5r4ncgb+jUfzveGW0MQF1hzP7udJinXmfeyJtup8xV56FztdjdvtX+00nlxzaarbZVJMbLAoa3X7lNWGpMYMJHsOKF9EanU77YOjXePeGbmWg+KPidj1nzftXxGQcG1KlzVCkWNFcJu4qrsPF4JSw25Yq9WkM7LDLx9kK/ul4d747e3FoDGihMKRytTlTW43hFHcIgUzflyAr04Go0PTLYVqgsVom58TxCOfUsstSO3eeLqWVZbbO32NEO/Dl4fbyjFFWN4ufljoCiemHgFam33TLP6Ozq0pHnxztLkZ0mX+/hhiB7cMY3LLPR2GpFkNm3l2Zwe+R3OVTWt6CqwXvd+cZnsfZ33hU8zmtlKO1e1R7zncel617dgoVB2h9D+QLtsEjAuRvafStoO2pZGcNrG07itQ0nXfyTyCl1i588TnbgruD4xW4JpoTn9smayZW0utIz+tjDH4lURElNlPUZ3tZh8MnU8j8bOpXF3YPAufPa+pNos/pnlvYmrDAwVaKH+4K7YqRWfLRd/mTrjTAnny1ijs+a2qy8DudC0YoBnDS9kr2l0lf/7hN9BFrEd8Mkvn99vfRt91rUNbfhg23FkgIyfr7ntKDvKLERjYHDM//zxbpLOUbbuVUCCSwyWXWwDE2t2h77OEvvrd4cmQkgds7/yjrh7daz1U14d/Mph9m10p2BwkrfnXjpQscZvs13zXg5zpH9FjPKjWhO3BLBYmOSzDaFUe++is7rE9qBj06dBG0orZLZ5hJe1CAJZrqMMby+wdlHS+cdXmfeiCvN24Sr4PS3u2WXS+0kDipSUp1X0ZGmXJ9Q7mOzFIEgXO4utMY88olyT7l6QAKLAuqaA1cZs6axDc+tPOrxecewdPW/f8JTXx/ExuN2012tlbKcX/FcJ50RKaaFWsHAsO6oMtNlZ1z9gPA3ZBpXgaFu5vEuitZug/vR8jqU+6DEHcicr1fHvFKJG3+jwbk5EFMq+Lv3SrHdNGEFau+lu+SqwqCSwxVjJHcc3+xTrg/irm940+vy/LXw4a0lBvjohsAXTJxxdVOkQjosEthe5LpFWFHXjHMae1Pl46BAjB5R3B1AeREEOlYsQmHNZRUm9ZL28Wu6uUBBmepTWtWE0ovqWWABgEnAMuV68wYAQIM13PGZq+fRzutqm9vw3QH1fYt4Q41dsBaLFaFBZsHvvVnFVDW2ugSn5EPqLlUE14J+3BmcZL0lpeejU4nSdy40tGDDcWEBucVixYEzteifFIWYsGAAwGUmV7cA7scTdksd77XbVez7Edc40xEEwar6LqFYbh3BDFNtrjvJo7hj2M0GSMp/zWHXMB61zRafZkTV7t8qrDvnaxnhaEYTwnzKQ09oh0UCN7/h6pjo5R+P4baXv/d7PbzGufEZHkdqhjuzkc6pCw0ux2vXm+1KfQVehE2tLL3EhhrnODg3mtfypmlQyQGhfOR1AlfrBQ77z9Tg1fUnsfd0teA17h6QtWYo55vVj5pHQj8cFo9/te5oJTaeqOzUa2k8L2q1ZLEyvLv5FFYf8u5qoNYt6Ki7mbMUhpqKMMhUgmhOWMjXahhxd5woR7frhJPyq5r18+bzx6vJdKt2R59K7vNMdZOOY48rsgWWDRs2YM6cOUhNTQXHcfjyyy+9XrNu3TqMGjUKoaGhyM7OxtKlS12+X7x4McaOHYvo6Gj06tUL11xzDY4e9Ty2MAoDTaWSzZwVoeExjKgAUtrpdrtjwSZv91Za4oZWiyRNfI/rWqQPphV1zXjs030uOyVpnH0Vu+5Yheib6+2l1lrbJIQzxuCgNmuPyg9MGa2iryFNUKEzePNGW1xlbwPHRHjgC950Hf32eEU9qpvacFAkLpRH8D9pVfUZK2MoPF+v65EvH2q80wwcii40KFQM948Om9xSzlQ34dNdpXhjk7hXd38hW2BpaGhAbm4uXn75ZUnpi4qKMHv2bEyfPh0FBQVYuHAh7r77bqxatcqRZv369XjggQewdetWrF69Gm1tbZg5cyYaGoyjZOcrSt0sV9apq6QlODAxACVbFTlgk8sbGwvx362nUNPEHx1YiH1nqiWnla20qAKiEad1NofVr3jlJSfjAu4K+lZy+kRJcZq6F0Ktny0zIKBabD5xHv/dUozvDsh0NBkA+HJcM0aFiNBaUFplrAWD7BO7WbNmYdasWZLTv/baa8jKysKSJUsAADk5Odi0aRP++c9/Ij8/HwCwcuVKl2uWLl2KXr16YdeuXZg6darcKhqSTyTEm3DgNIsfUKK34gNCDtjkIuXVfWez8Z1xdfBVwRkMS4uFzcZwQUD5882NRbh9Yh/e7/SyAurAxIy1opXCYFOxrPQpnH9N+QEY0MxNGhFuDhOFeqdat9fYaoWNsfbj2EgUnve+MPJ303bswOpBpkmaAOfrOHKlaTsKWD+f9Lf0RHOl2y1btmDGjBkun+Xn52PhwoWC19TU2CfphIQEwTQtLS1oael86Wpru9DqSmKfVNJ5zeX7wcEGpoH6kvNRhppO19yRct9q694UXWhAkWhMIqCxzYITOvsJESKCNcIEG2xKnnuATsp+wUc5tMViQ1mtgNWXGk77fKofc4RY8JUDZ2twoaFVVl8SqvqpY+J6KkoUSzl06rh1ZdJNFUhHBf5luV7vqihCc6XbsrIyJCW5xgRJSkpCbW0tmpo8t+1tNhsWLlyISZMmYejQoYL5Ll68GLGxsY6f9PR01eveFQk58R0m8Lj0dx8cGGP4aEeJIiU8AI5AbFrjHn7duOi7w8JxymNPNbZ2TZ0aIyBkHXSJaS+wcYmiPJWEm+STI8ZzRxSVL4S4Px/pdb5wWvz4ZAB3GjeY17kosvsDfzhm6+5rB8NZCT3wwAM4cOAAli1bJppu0aJFqKmpcfyUlvozsqe2nK6Wpn/RQ8GZPcdxXmIQ2QeO+lYLyoVWfgZi+R4tzuK75rAQaHfVFTxzesPK41EWgD2QoU2eoKj2sWOer/F2dGK6uQC9ufMI49Tx2yMVfxz75sg8Ju1qaH4klJycjPJy1/DU5eXliImJQXh4uMvnCxYswDfffIMNGzYgLS1NNN/Q0FCEhoaqXl8jsPKgtPPMZE5enJyTlfVIjetsc5PLLoiBg6T4GV8sGBrdvCBbbDYcPleH83WtCBe4RoiNbqvvQyJWH1LQW4+mK+GPtrTYbAgy+bamlGqZZcSe0ayxR3Ei8NB8hyUvLw9r1qxx+Wz16tXIy8tz/M8Yw4IFC7B8+XL8+OOPyMrK0rpahsabmaMcnNeo/9t3FsVOehj9nM6na5otOMkblEsp2g2BWq+7V0nwXyGEewyU/2woxJoj5YqUp93j1uw/Iy8Pdx8bJLB0EszZJ8OZph2Krh9lOq5mdXjZLdOpm2NHyukxH3WKVC5nx8qfu1uDOP64SdskxPQxKv24M6pGe9cLo/nhki2w1NfXo6CgAAUFBQDsZssFBQUoKbF3ukWLFmHevHmO9PPnz0dhYSEef/xxHDlyBK+88go++eQTPPzww440DzzwAN5//318+OGHiI6ORllZGcrKynh1XAh5uE9RQk7TGGP43z51FOy0ZqTEycIIE3SHZ2E9/Iks2+56TGqwsUdX0rhKJKFKtiWS8/WAtjsTte0hQKTqEPnS3937hj/fnUvNeyTFOQok5pi3YJq5AD0h35OwEh2k7oJsgWXnzp0YOXIkRo4cCQB45JFHMHLkSDz55JMAgHPnzjmEFwDIysrCihUrsHr1auTm5mLJkiV48803HSbNAPDqq6+ipqYG06ZNQ0pKiuPn448/9vX+CDcELRICiFQVzFeF3JZrNalPNB9EAlfnPaGKNLZ1TnRax4QKRMab1FUqNQpqPOpoaLNYFHq/TF10knYPAukNUV9OhHwdlmnTpokeWbh7se24Zs+ePZ6J21HzCIRwRe4EHKircPct7FNeTJC7IxwYwtCCZnRN3S89qDBQIEpvuyJydk2CNfO2zCGOEz96DhRl6/LaZo/gpL5ypKwOOSnRqubpjYmmAwhFG9baRvq1XCVQ8EOiSzDTvNPl/xKFHhprAzgStzcuM+9GKncBX1snqp53VWMrEiJCVM+XUI9xIjtKRloyGuEo153enGesq+UF6lsoNrRY/PwwmKNf7Lb19/zWYI/CcGbNBKGEXpzvUWcB4HsnhdsEaHuE4+91ZMdR2kST+uaqFxXEhtIbtZyiBQr9RO5X7z0NPXZV5By/XG3erGFN9MNZOOTzndXsJZCjvyGBhdCEEaaTelfBZziNnd/5MwBcq8ZlGWwhpgqf7ip1sbLxNxcblQmB7pZqUgj1k88SoRMUI+6q6AW1hDAksHRh3t9W7GEa6405XXQlYUTWC3g5VZNdxVU4Wl6HmqZOE+dA0RHQmzPVTfjuwDldy1dCqyXw4kYRxscIjkRJh8WAcFBHyj5fLz/SczRHpuR6oJUQsfGE/NW2IrrBsjAE2sXHkgoDE7RwC2Scd1hIoNaeRNSgGcFocIq55E0ZuqKuBUmiKbSHdlgMSDcY+wMCfw6cgb8lHuj1904GV+49kcqs2O+qd/KfDYWCR0VdZZoP/HehkzmmLXpXgZdfBK3G3UHfunwWCHo6JLAYkK4y8OhNskqKuIQ+GGXaem+rfvFbjrtF/25qs2LjcT/tmhE+Y+boeE5NSGAxIrr7QzbKVOEb3c0KhNCGCw3yj1a15PRF/3tNVgt/KpoHKkYafY1UF4AEFmPiB+P3cAgrUKkdVp7wTqCf21fWtRjKiVpXRmuLL6L74G3U2Xu62vH3umPSAmlqCQks3ZQUkUjPgRpWXn26pg6LFsLRtlNV+HB7CSxdeDKNFBHyCd/QXW/FSOsFPzaFnHa32hiO62jmD5DAYkx0PxIiCGU0GczRlJpMNxfoXYUuC1kJ6YPciNLNbfouSEhgMSD+eF11X9EQXRKbjfoV4RuBOjYlqaDkb7ExvzorFPN+bETID4sBoYid3Y+usqq0ksCiI9T2gc62It8j0csh0MYd2mHxRlURrjev17sWRBcnCF3jKIXkFf3oa9LPK6+vBNa02XWIhjxHoRtPaO+dWwwSWLzwyVt/Rxqn70Mi9MGfc+8E0yE/lqYhqs48NI0RhJbEcA2y0j+38qhGNZEGCSxeqG7S3x03oT4Hz9boXQUXQjiL3lVQhVq398U3fQTarukuDOJKHH/35Kr1qwhhaEhg8QKt8bom3dmXhZZiQJkBAqQRgcdU8z7H3zPNO3WsCWFkSGAhiG6GGtYM/oGWC4R/oJ4WGJDA4gXqyAShnECzQiAIwriQwOINGm+7LTTZEgRBGAcSWLxQ39I1lCEJ+QSqAysj0VXMtQmC0B8SWLop000FelfB8NAOi+9MMh3QuwoEQXQRSGDppkRx8hwGdUciOLJ48ZWuYq5NEIT+kMBCEAKkcv51k00QhD6QOX5gQAILQRAEQRCGhwQWgiAMSQ/U6l0FgiAMBAksBEEYknRThd5VIAjCQJDAQhAEQRCE4SGBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDA8JLARBEARBGB4SWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvCQwEIQBEEQhOEhgYUgCIIgCMNDAgtBEARBEIaHBBaCIAiCIAwPCSwEQRAEQRgeElgIgiAIgjA8JLAQBEEQBGF4SGAhCIIgCMLwkMBCEARBEIThIYGFIAiCIAjDQwILQRAEQRCSYIzpVjYJLARBEARBSEJHeYUEFoIgCIIgpKGjvEICC0EQBEEQ0qAjIYIgCIIgDA/tsBAEQRAEYXhIh4UgCIIgCEOTzpWD6bjHQgKLF4JM1EQEQRAE0Zcrox0WIxMVGqR3FQiCIAhCdzhdNVhIYCEIgiAIQiK0w2JgOL0rQBAEQRCGgJEOC0EQBEEQxod2WIwMbbEQBEEQBADyw0IQBEEQhMEZYToJ1tqgW/myBZYNGzZgzpw5SE1NBcdx+PLLL71es27dOowaNQqhoaHIzs7G0qVLfc6TIAiCIAj/wphNt7JlCywNDQ3Izc3Fyy+/LCl9UVERZs+ejenTp6OgoAALFy7E3XffjVWrVinOkyAIgiAI/8N0PJiR7WRk1qxZmDVrluT0r732GrKysrBkyRIAQE5ODjZt2oR//vOfyM/PV5SnPyEVFoIgCIJoh+k3K2ouKm3ZsgUzZsxw+Sw/Px9btmzxKd+WlhbU1ta6/BAEQRAEoR06yivaCyxlZWVISkpy+SwpKQm1tbVoampSnO/ixYsRGxvr+ElPT/e1qgRBEARBiMC68g6LVixatAg1NTWOn9LSUr2rRBAEQRBdGsYFkA6LXJKTk1FeXu7yWXl5OWJiYhAeHq4439DQUISGhvpaPa9wpMRCEARBEAC6uB+WvLw8rFmzxuWz1atXIy8vT+uiCYIgCIJQEaajKYrsHZb6+nqcOHHC8X9RUREKCgqQkJCAjIwMLFq0CGfOnMF///tfAMD8+fPx73//G48//jh++ctf4scff8Qnn3yCFStWSM5TX2iLhSAIgiCAABNYdu7cienTpzv+f+SRRwAAt99+O5YuXYpz586hpKTE8X1WVhZWrFiBhx9+GC+88ALS0tLw5ptvOkyapeRJEARBEIT+6HkkJFtgmTZtGphI9CM+AWPatGnYs2eP4jz1hPZXCIIgCMJOSJBZt7ID1kqIIAiCIAj/EhcRolvZJLAQBEEQBGF4SGAhCIIgCMLwkMDiDVJiIQiCIAjdIYGFIAiCIAjDQwILQRAEQRCGhwQWL9CJEEEQBEHoDwksBEEQBEEYHhJYCIIgCIIwPCSwEARBEARheEhg8QJHSiwEQRAEoTsksBAEQRAEYXhIYPEKbbEQBEEQhN6QwEIQBEEQhOEhgcULtL9CEARBEPpDAgtBEARBEIaHBBaCMBBpcRF6V4EgCMKQkMDihXJzst5VILoRZEZPEATBDwks3qAZhCAIgiB0hwQWgjAoZSwBZSxB72oQBEEYAhJYCMKAFNiy8Y11gt7VIIguxXkWq3cVCB8ggYUgDETHAeQ62wjUgxRwCUJNGliY3lUgfIAEFi+QBgvhV6jDEQRB8EICC0EQBEEQhocEFi/QgpcgCIIg9IcEFoIgCKJb0IpgvatA+AAJLN6gLRbCj3DU4QhCMzbYhutdBcIHSGAhCIIgugV1ZHkX0JDA4gVa7xIEQRCE/pDAQhAGgiJBEARB8EMCizf8OIFYmNl/hREEQRBEAEECi4EoZCl6V4EgCIIgDAkJLF6hPXqCILong5Ki9a4CQTgggcULJK4Q/oT6G2EkhqRSsEDCOJDAEsCEmOnxEQRByOGILUPvKhAKoRnPC8yPZdHqmiArIcJQdMH+WMHi9K4CoRASWAKY9HhygkQQhHaEBUu3XLzAYtDKyPU9oR0ksHjByAuMHlEheleB6OJss+XoXQVCR8y05UcYCBJYDAQn8wDKn8dVhL8w1gRxxJaudxUIgiAAkMDile62wChn8XpXgTAQzGACFEEQ3RcSWAgXaHoiCIIgjAgJLF4x8BSuwZkQHTPpi9F6G+2wEHwct6V5fEZ9hdAaElgMhFwdFgD4xjpBg5oQuqFwzO+bGKVuPQgCEOyPp1iyf+tBECCBxStG1mGh3RCigyGpMZrkS30s8BneO07vKhCEKpDA4oXSoCy9q+BXDCyfESIkRoXqXQXCoAxIUn/3LZAFWTq6ClxIYPFCSUhffGKZ5peyjPAaBfJA1BVQ2gdiw8lhF0EQXRsSWLzBcTiLRL1r4Tdo9aEegWgifuu4Pm6fUH8g5CC+5HnNMgeFtlQ/1cWVWUNTdCnXF1oYOQd1hgQWL3DdbMAmgUU9dtkGyL5Gb52pntF0tBQIXGTRupavdJxoRiiaoM8k3K9npC7l+sIZ1n0Wy1IggSXAcR44vrBOUSE/5USFBGFYbwpH7wuDkrVRnlUKCbD+5aAtEydsvb2ma0OQH2ojzBnWQ1I6NXcZx2YmqJZX4GCsQ/orhuhrHUYCixf8u+KV65rfNf1p1lPNynQZGliY3lWQTL+eZJ7cndlkG4oWqKuPxPkwiAldWQtp/fQj62WKy3YnLMjcpcVnKYKq3ui9oCKBxUDI9sPCRP9VhE8raoOOJkr82+hBfISyrfLctDh1K+JEYLQcIQZj/E9xp22govzmTcj0oTa+4a0/vm2Z5dPEHx2q784VIQ4JLF6Y0Ffa1qcYh20ZKtSEH6Nt2QuMjYSGTBuo3c6aTcEQYQRFwUoWp3cVNEWN16zQpkwJVW89KyHqWDhqEQkLzIrzuGNiYLmxuGF0OtLjI/Suht8ggcUL90zpi8U/G+ZTHieYNIlfyThgKIHFoMKK0jZKigmMoyQtFcMbwd8Gc4YLW3oYYUdL7BjwulGebuWNgtS+aqC33nDcPE48wrhYG5tNgdWyvePCDd2f1YYEFi+EBJlw8zjtdkickT3Qa/BuGUoA0pmp/XsixEyvSDXz1FcQ07XRqg+V2Hqpkk9oED3Trom9310yQNmOY/9e+uqP8b03SdxFHWpiXOjN9RP1LBwA0Mr4FerumpSlSIdFrbXs+MwE9I4L9y0Tg8o6Slf8wWYO907tq3JtRNB/Y4IXbwJIE3M1hd5iG6xJPY4x6StJsabsCseWDMAl/aVNzL4o3cphs22IX8rRiowE45k9R3LNmpfxP2ue5mWoBQksfuIz61Ssto7BHpbN+31EaJCuFiJRYcHgADCmvkVBIBNk6nxF2pg8hbxA363abJU2Ab1pvRJ1rPMcvQ4+Cr4qIKflgwN0F62HwcIxFLJUTXt8WLB/nlN0aPfyGn1SosqCEQjMNzUAqUY0DrJML5OY/KWfc35ieUtR/GWKauB6vRxWWcf6UJr/qYT/fcxorQ+yQiDadxsLwnaWIykPK8xoluAMrHes/oIMH+nxxqvX1P49vVqNubs10Js5uam4Y6K7p2R1GJgUjUEp4ia13hYI3c0JaFeEBBaDwEHZ5CR1FS+kPOlOtRf/CqLOm2RW/6xE51Na4bx7YlRMGk5KFSJOvVo1cEzm651otWPFd0SUp4J1oBhmjkOQgIInB4aclBhM7KdOHYTMmpXg7dhYK0/Js4amwGxU86QAZptN2qLEKBh/xO5iyDly2WvrJ56Xr5VxoihtLg6HDMcBW2CZ9flCIIx/JthkX9PsZlZ8UqfYLXris3Ck8eZFfEQIfjXV8/12Fsq8mav6Y8eArwShUvV+ncQe2Yj0OH9VQzF67JdtCTC9I9kCy4YNGzBnzhykpqaC4zh8+eWXXq9Zt24dRo0ahdDQUGRnZ2Pp0qUeaV5++WVkZmYiLCwM48ePx/bt2+VWLeBxf+GPs968FhoOZCjdeludNkT0xsHQXFmrWA/hRu8RS2WMoJypxg7L/2zCSnVq3aKUfqN39zjPDBQ2ghMWmDvaMizYjCtVCNgnpHRbhs7d0siQIPSK9o8Zvy/HnDkinlbFFnhKnTJ2VdyftaHeDRFkCywNDQ3Izc3Fyy+/LCl9UVERZs+ejenTp6OgoAALFy7E3XffjVWrVjnSfPzxx3jkkUfw1FNPYffu3cjNzUV+fj4qKirkVs/wlCNO8DvGOlfTaXHhuGNipvYVckLOjsMeW3+PwFxyJyQDyAOaUqnCIKBOkDt/rMSN/zRbEYRJ/YwfTM65LdVQCOY7ElpvzRV1CnjQlulzuWrh7FrgspxevD6AGlkodrP+4hnpIDH74hbhLcuVKtbEFfemWG6drFlZaiK7NWfNmoU///nPuPbaayWlf+2115CVlYUlS5YgJycHCxYswPXXX49//vOfjjTPP/887rnnHtx5550YPHgwXnvtNURERODtt9+WWz3Dc4oJB49yHlg4jsPgFH0jsorBN0EZf8rqZPpAfp8eHebnvvCBZQY+slyKash7fnzt94NtFE7Z9A04phcbrMPdBDbfZpzb87I8dLAszIw9EZN8yreDH6yjJKcV0l/pQOu51X1HjPmhTKGyvXFZTpLj7yCTideasowlQOwO1Lq3ywYleU+kEnXwnwfbBgNY9klBcx2WLVu2YMaMGS6f5efnY8uWLQCA1tZW7Nq1yyWNyWTCjBkzHGn4aGlpQW1trctPYCCkaOcqsHT8WcjEt4RdX37h11KKMGGEIxAt4GsVoQnjA5FgbUdt4h40HYTFoBwiyskyaEQYfrBJnwjVIEOBq28pk5Dc7lWHCHxmneo1Hd8uBF99osI8FYlfts5FSainq4Eu+ir4THbPKMFhRqrZsdzduGCz3oeJnYQHK3f7T/iO5gJLWVkZkpJcpdKkpCTU1taiqakJ58+fh9Vq5U1TVlYmmO/ixYsRGxvr+ElPlziZaIycVZY7+4KHO/3HwJi4Myb7qkifoZWB499l4anO+5bLPT7zpwdZvhYSOte3iFjHnGY98a5lpmhZceHB+Om36kWo1RKhnhMT7h8/FCEqeZz92UhPPxJS3wsWoHYHevj4mT0sBbnpcYId59GZyoIp+korC8Imm/TwKf4aMTN72B3R7bINkJQ+0P02+YPAfFsBLFq0CDU1NY6f0tJSvasEAChnClfWHHCGS3b9AOITqJ7IEZTOu/kvCQ0y446JmbhKJB6Nvymw9cOX1klo89LeFyGs9Jc/JBk3jkn3TRjrPxOvWeYoujQtTr2dEamDZ8cR2j1TOj0CRwistN1zjFHJQZev8V/Umia65ITjdEtZiZEwccJvfi+B2Ful7SEVijQ62nzVejWqRN7LDrR6OkJ6RqntJuBVquihEYAfBJbk5GSUl5e7fFZeXo6YmBiEh4cjMTERZrOZN01ysnAHDw0NRUxMjMtPoGO1uQ4F/ja7tZcnLIhkJESIKgG6m1n2TeS3cMruGYWIkCD89drOVdHAJG1f6stzPM+enc1/i1kyTsk6fgPiw10tD3KSYxAR4qOAmTYat04epOjSq4YL179QwLRZrR26HlGdbfHsdbmSrpFackZ8BBIjXf17iFrPgV94YHJeKB3PRwNa7OFptm9sE7DaOhorbePak8i8Qy+PQq1dMkmO+HiqHtDPy4nPrFMle7fWC80Flry8PKxZs8bls9WrVyMvz25qGRISgtGjR7uksdlsWLNmjSNNoCPF0oMDB5vLIMkcY+Zm6xAU2zon3CYWiiJbMoqjRqhbUS/MHJyMEelxXjyWdt7D1bkCkyTPG56scWTkIameFjs+DzSCDil8y/n3s5U5cxITJr8WMW1WA0svu/B5lvVAb7XD3fM0ZxMUOCjj+PUP1BZNxExv5RP42jQtCMFBloWWdm/IxrcoU7d+FgSG3stp1kuyd2u9kC2w1NfXo6CgAAUFBQDsZssFBQUoKSkBYD+qmTdvniP9/PnzUVhYiMcffxxHjhzBK6+8gk8++QQPP/ywI80jjzyCN954A++++y4OHz6M++67Dw0NDbjzzjt9vD19ed9yOZZbJ0vargSAp+a4S7f2F2c7y8Fy2xTHpzZw+Mo2GZU9x0uui1rb1SFmE24YI11fSGhlD8BvW0hCzq+MOmz6GqxOWK1bOyxJI7DMMh1fWKcIpnFv75RY70KqFscs7vVQzxMsh9EZ8Rie5ps5u1b98gITGYeM+jKohY7bII0ShWvnvv6TdagqZbcKxT/jaY/fzlK2s+tPZAssO3fuxMiRIzFy5EgAdmFj5MiRePLJJwEA586dcwgvAJCVlYUVK1Zg9erVyM3NxZIlS/Dmm28iPz/fkeamm27CP/7xDzz55JMYMWIECgoKsHLlSg9FXKPjHhzvPGJRLGDGnMKzSzHMZaDz/oYFmUxYft9EWXUUQ864Xcajq8M3z0p9WY2I/8dw/hIlT9pOybZKjJis2jjOcShDD1k6V1MHSIw2zFPLYiZ9bDjDEnmtjYQmhcO2DNSHyHeLX87iMYYndEWQicO8CdJj7Eh9JnKeXSWLw4ciFnCENPjaXMo48YFlBiysc6flNBPv+zuYOsLDUSZ9cSllAaE3sg/cp02bJroi4fNiO23aNOzZs0c03wULFmDBggVyq2M41FsRen8NGBgS/R2xddw9QO0ZHFlVisFcMU+dXDHC9i9vDTgtF13q5vyHqwajbOUKyekZAJuCqNt8ej5iDE2NxZYzrR6fSy05xGzCLydl4dOdp9G3ZyT2nq6WXPZpJ6eFJt4dqc7PvrZORAtC0BplBho6nVHuZfyeUVfZxmJIjxRst5kxznREcp3OIxa2XoOBUwUun4/P6oGESPXfUzlv1kUWBatKRxP6v9HGQkp/r0QcvreNwZXmbZrV47gtDf1Np10+M2oYBaUErJWQUTmPGJxlPXDC5iVkt5PQN3OwMRyDSTqJiEwEUnLB1+Ulrwx5EgoNguc0CpDIAUhrNzs0OjeOlhb+XZpHHlecz9f59HzE6HDCdpPEI0K+OsWEBeOuyVkYPkxYUbezv7j2kg5Py1JP0EwZE3jr4dn3OLQGRWGzTf62PItJk5TOvQ4d+kdaWRr5kquaAfI2PTFdtbzUxFmJW0wgUyKsqfVEc9PiRL/fKuE5TR/YCxHBZsyQuTgxCiSwqA6HT6zT8Y0XJUfnjt+zfZfE2RyWz0dFXbsJacd2uOEcvfEKImKvK/93zkq9HV5eW5lyE1i+UnpGh+KqYSkYn9XDawTaCVl2oUlyc/PMoDFhPtRf5ognJ/kpGUcr7sSGB2PRrBz87frh3hN7wRLpqevEebHbkOJUzpns5DgAnc9RrG9Kshjhg5PopBH8R12OOimc5YQs86TVyBMOnGeAPNEbFL/7NF8UsiOkL14mZwuHYOB77kut+TwptUNOENwOwmQ6rVtq8byn3LQ43DO1r4tVXyBBAotEPrNeovjaD+/2VI6NCvU8jXPukHy+PD62Tsc66wiss41wyojfxbyR4T0H5oI6XdA7JdjBBmKVdSz+a/V0PucLPSJDERFiRl7fHuibyL/T0nH0OaFvD5+Cp2X1iMSdkzIVX69EMuU43xynSS2Rz2OwcFA/YWyhwpZ0QkO7c90HJkWD4zgMdewS6SPNq70/InQXcnZi1HLQ5296RYeB4zj0ju9YUEh/pmP6JOD+aZ0ejL1HtpYmaSp5vtID1KpbtlBoEKVRvsWtQ/2DMb2SGZDTrCdszAQTZ/Oe2A3njvjuL8eh5tuVmD6wF85UN6GpzYr4SIHVt1sPrkcECli269chkXjbMgutXh6lGlvN7jl4/u9bGY5gbMz1s8NMusKiEkakxyP4BAdY7P+fsPVGtumMSxpfg9D51jbaTL6qHD9w7e3iY1atPYdit60/SlkvzDX/JPv6K4YmY6bNLizVNLWh8IJvoQIU715K3A4TFsLc/3Dl5rEZ+GhHCf+XAvSKDsPMIdFYsd+5fHsBrSwIIZxFrEjduHlsOqyMIcik7N3zpzdtwj/QE/UzlwzoiatzUxEZGoS7J/fFA9OyeV9IOYNHLSLRbABrHOlzlrSUe2ye0VcvHdQLaSJHOKEKVpNmE4c7JmZ5SSXniSibvZVMGM4Rs/2uSBcaBQy5VpWsGEzYYMtFkYjzPiEFbsbsAqHZxMHEcbhuVBqsEoa2DoFNzXbjwDmOeOVd51onIWKdwiYI+SjmOz6dy+MTaXxWAt6wXiW9kk5lCH/lm9jT8c63sSBwHKdYWFFCW5A0nbYPLTKsrQyq3err4lIvSGCRgdoWL2YT57Fyd7ab98Udh1SzVllI2FWVl5/4BXytHRsWjOtHCyt58luM+Eh4PFq4UNRAqX6Aj4h0O13DwuctAGLEvQM7I/ZkxI4++B+p+HPez7wJoK5ll9h6eXymlGCzCQ9M8wyoqAgFFSlj8ZLSzR6e4ghFYTK5TmF6Wfettw3HB5YZ2KRA4dlXTvaeI0lPpgLC7evu2gKss6cmxXQKshtsw2FjJhyzSVPSloIUIT3Q6fp3GGBcdDp39GXI6DBrvXNiFnrIMKl0HrSWWbTR6PcqU4h8789hNK5Db2XcvVgedm3nkVU7/lqjCE0eb1hmu/o98VOFkqLb/TUIPEixRfYq61iBa8SerPwb85g4+Mpsz5cxYA9z3c1TulHQ8awkHSEKKqlL1T/i+Uxmvf99y0hEhwZjjoy4XuJFKH9D7W7hOVQiThNrKY4DRvcRFjZaQhKAoT/zqQypx4yViMNL1muwReHCcnxWD9zgtnCr1mtB5UdIYJGB0pcoI0G6ZvwP1tGOv5vCpZmzihHrQ+TdcsRj3ATplhgcfN0RZm7/aTwDi0hOvePC7aHk4zIAk0meDwu3fLXY9FlhnYAGCB+NabVC5gD8fKyyyOjbwibiokAMIL31J9y9wPJZCW2z5bgcwfmEkLDnkU4kC1kFuuZciTgAwFXDU3HX5CwkxYT59AzW+BClHgAO2/rIcguf3VP+5MyFx+Oz+XmYP63T/045i8fn7d6ZBaznfUNEl5fB5PYMpT/R7F5RPNaNvg00HMfhHzeIxAEzwCkSCSx+ID0hAu/fNR4rHuLZvo9sHwCj7J4PKxGHf1muw3eJdwImL5OkROnAl342rLdvbsal43ovQhF4/fHOcGCdVkEjbhGtjxT8ZX6u7rk0f15mk0lx6ABORAQVs8JSUtp90/p6TeP8WGoRiQ8sl+FtyyzB9FtsQ1DLOvUc3INfAr4Lpx4tpHLfec9yOb6xTsBp1lPVaOn7mff2FuKALQvrbCITJQ8zhyTL91818jZwnOtb8pH1MpT6YNrvFZfnx+e7qjOBTUZPt4SrJDi7cf3oziOqif1cy0j14v7BH5DAoiJiY8vk/on8jrmG3whkTACG3ej0ofoWPf5A6mDN8fzlzi/G81sG+X0l3n5TSpR53YlSGsmZR+KRMrj50yGhr8JSQmQI3rmD/7hISdZtZvmDayXiUQu7QHLLuAyv6eeOTMXglBhc7TLxS7cSYnHey1CNiB6YOTgJFxCLEywN2//vMiREyjPV10rw/sE22hEYUSohZhP695K5yxJqTy/UV1n7t6rCOefI56LQuXzxsv0Ues2B+xptfJZn2Al/QwKLngSFAGGxQL/pQJj8CK9aTt75Q5Lx1QOTXUapxlH3ernKlzfK9dr4iBDMyJHmY2aoTA+t3jjK0u06COHiyotWTuj14W+Ha0f1RlaPSNw8VvpElZse5/J/gS0bZ1iiqDVNB4NT1IkaLHtiEMDbgDx9kOvzHpVh12UYkRaHXjGhsnqXu75RKk+cFIcOC8/1fXpE4tAz+bwxvzqICw/BzMHJiHeZ+KXVUvjddb1etXe8zyT8+dpORdZgXusbibozXpKlqx2t2wc6/F316SG1Tr62uPAhD5/A4bzDotV43i8xClcNS8Vdk6QrovPhT4stwTroXYFAwptegOzpOixOaVU0Jyc5BkiLQ12l04de6st3/2q/hHxlxPigp8PHMZaG3LlXAD3EdyhquFgAzQDgEtjMnY6BqkdkKOaOENFLEmyszi/W24YLOntzlOeUPiU2HLgAjMtKACvhHA7lLMyMH60jAdgtq2YOFt4WjwhRJwaN3F2Yv1w7DAuDU5G87wh6xoTipdPerxHihZtHOv6WGp05IiRIbcM317Qy83ZG9ntlDgYHbz6k7DU6z3xYADCGn43sjXM1zfhkV6nibOwhORpE00hp6zsmZqLVYkOE0+6mYi/GTnxvHYOZ5p0A3C0T3fXwnBE/EvIm0Cv3DWTXeZGLHGMNf6G/yNQdGXUbkNhftg+LSLeJQyzwoZQoyR3n8WIWFVpZBMjN64bRaUiKDkNauwJzh+vt7J5RGOm2C/G1dSLO+hCD6A9XDUFcciYQLD16qcsZvNp7t0z6oObODaPTsPfJmR7efF+2znWYZ94wOg2DktXZjQEAWxS/oMfAXIX+UPFB1MxxSI6xP4OwIDNS4zqfhzrHE97b8mCo72EHlJWsDAbflNULbP3wtdW3CPAcxyEsWHhqkVK7SsQBo+YBIb7t1gSZTC7CSnsF+RMze8AE964VbDZhQK9oTB/YuQN4iGU6/u7XMxLJMWFg5jDPkCxMfGSTI7B0UGDjD9qpFreMy8DlOUnITDTOTlkHtMMiAwZOdJdF8hgamwYMu15W2YefuQImEzDw9ysdn93Mc87+tXUiwtGKOhELkg6+sE5GnukQdtgG4TcS6qBkHha9xJsfFqcG/fsNucDazvsd0ycBY/rwn6kWslQUWlOxMOiz9jp4fzJK780vOjURPVDDItEs8ZzfuZ+aOA6xEcEeE7y3XRohJLWTiJt9F0beBmx91UuBzvWUaFkDz8HfYYoNyFIabuIieL1uiJnHSoUlDQOwRt5FEqru3N+P2tKB/vawFt53FhjW2UZ6SeNHYnvb+1Jro2ZFDOsdi/1nakTTcBxw5bAUIHkY1jdmAruLXb43mTj8fGwGlkXcgrLle9wuFi9fjjVfR7dtQYimivy9osPQK1r6Ys2f0A6LDPzpTIkBGJjcOfCHh5gRGtS5w5KeEM4bI6SQpeKgk/QPQPClqUY0vrONx3nEtifzcd3n0+V8B7wCGcZ4WjdMzk5EREgQpvTv6fGd8MrFSR1O00crrWEineJLDUyyP/u5uamAyYSl1nx8ZL1Ucl5qUhIuL1qv1BUlwuOA0XcAE+YLXxAUCvQeBaSOQBMnfRB17jov/HwkMpx0GKQeCYkxJduzn7VnLj2TpKFYZx1h/1uJcRBPV0iLd12ofGcbD6SN8bzUh26k5asiVxHYV/73oJPlprdGybkKbeECz739er6xRixXOe4S2qydLV/d1CrpmgYYU/BQCgksBiY9IQJfPjAJGx6b7vjshZ+PQGpsGF65ZbTIlcrgW4GJDU4l7eaAjcx+/CRZh4X3DWYuTvNEMXsOamP6JOCeKVmIU1mfxRsdiq0uA5XHwCc+xF83Mg2ZPSKRP6TzKOXT+/Lw4d3jcfvEzPYcTJBugcJf3hFm36FyPy6rTZ/Ol9xBSZg8gQVw9djsjMeAHpPiVbkZA/KBga7mxnKOPa4Y4nlEVeNkniwmwLiXUsHiRMuSIghUsyjsDh0LcFynV1qnKvgiko7MiMeNY9IxLy8TseHBGJspfSfI3Ut0WJD0yXTqAPeJXPgu1BJ4lC6wBK8T6AfeSvHleVUiFvtsffGTdajjvZWSn/s9fGOdwJtup20gzob05XWI5261qIdlqVxIYFGRvH7K9Sbc6bBqGJEe57I6nDuiNzYvugzD0tS1jHFfmQHwOvrWIQL/sVyFt632yUSqrxKhAcM9nIBgbqHRQPIw+8pbQr7a7YwxRIfZBaRilgTE9wF6DZJ0ZYf+UY/IEKQnROCaEb1dnPzFhAVjYnaio02d3XorqynDj7aRWGkdh6+sk1y+a+w5Akgf65ZeTADzznvWmbyfn0MCzrIeiMuSf/TgXItzEDex9PbMN9uGyC4fAPayfmhgIqtWCW211HoFToYM9PjcWYhSOnmYOQ4T+vZAQkQIbs/LxCe/yvN+UTvOAktWz0j8bFRv75sOyTG4ZkRvvPYLd8dx0oVAqd/5lrgTb0dj4cHugpryqdz5yhbwLaY4/GgbhR2sc9wQsu4TrHd0Ek6wTv8pPx+bgVlD7VaEbQjC7qgpQE/P/uZOh16gkSGBRUWSokMxpb9vD33pnWNx/eg0PHiZZ+A/pdh1LYRfuj9cNVhxZ21EmMM9fFRokEzRwLVObW4qVY1mkR2XnKvsK++I9okr0bf2ch6YpQ5PHIC9KTdgmWU66hFhdzLnpkj9Pyv/hDHrmtswNjMB14yU5s140xOXOv7uFa1MeGlDEI6wDH6fFz7KdO4TWx08FfbsmjUmfGKdjjvuekhBIZ1/KtXBkUub2yRjgwl7bK5xgpybzpdj1aXWfN48lWLiOEF9HW8nV4uuyBHWY3C69vLBScjsEemp2OoHlLa01SR+7HTlsBSHsrcv5QAdStB2znLJ2Gfr67DO42NsZoKHeX9nPaTVJDkmzHGkLJVDz+R3muf3vxwwBwOZk8Qv0gESWFQku1c07rvErsF9xZBkPHhpNj6+l3+rTohpA3vhHzfkOvwHKEXqrsKI9DjcNTnLMbCJXefLi+t9e9kt95BInAv3virAmLvsOhA9vAeby+whHI3VYuocoKYO8BTehHxLNAXHowzCO2snWW/wtVyPmAhM6peI6FBpR1jOsWm8rXrrEO5XfSupqGFOKpCx50ciRfWMDpX8fp0JysARW0anrok3ZLwk7k5Q5Qhh7guQHpGhwno1jiLEKzehr70fO4deMLd3tqWWfLD4rPayO2uu9jGCP3ptTVQ/HLZlCIYTSIgMwc8FfCWJvXve3svfXzUYP9pGYfRE4WjPk/olyvd3ooIDQheBM20MMOU39l1sg0FWQipi4oCJ2YnY/YfLER8RrNiFuV7wDWjWOLvLbTE/I+rgNlT1nQZWKeHFNQfZdSDaZygpFiMuDJ4LNF1EQ3ESgIsA7IKnO7+/ajBsjOHGsen49u3VSORqUGTORB8jPeLE/ii21WCdLReDTW6WDD72xZzkGBwuq8W4TP94uwyVoT/Bh9gzDzKZsOzeCej/Yon3fEwmrLSN86kuYjR5cT/g3p+F7uqqOxch/vCHXvISFwcyEiKw96mZiAkLAo7Y2yYyNAh3TspESJAJIXFlQG2xaB5SqBaIJ+U3OBNW8TxTBgBehAUxQVjou45ndsXQFBQ8eTliwoLxzk+npNSUl4ssGh3+nwAAWZcA+F4wvaJdP44DwuOxzDIdTQjFnUErvV/jB0hg0QB/a7rv+L8ZOFvdhLkv/+T4TKpSorcVjSVxEJZbJ6OSxeFOSRkKKK5pPbFHJADjf4VzZ1uAbbtdyxa7y6R2vZnik6LZJ0SG4F8/t2/l3mm9BMlcFcLMfcEfQEBbPAagUbcBVYVAn0nYEhWPi7XNWDhjAICjjiS/ntEfy3Yod+R1+eAkjMmMl9S3nZVYo0ODUdfShrS4CJRK6JO/mJAB7ASmyjlalWFg1oGkaMoKkNvNaxCFH6yjYAoS3v3jL8fNQVmk+O6Kx/UCFeULlvrUnHZ9n5NlfBXhRcyZ4y7WH3k46K2KXtFkSAmLA5KHAmUHtMgdcREhgkreUnZFf7IOxRGWDuB454dm7QwNxHaP9YCOhGRgNWhz9YwO9XDhruRIgHcFxnEoZsloRJhPO0Zmvmu95Nevp7xBHBEJYEHae2dsQQiKWTLAab3rJJHYNCBrKmAyY+vvLsPhZ67AWDc/ISmx4Xj/rvEel47MiMPwtDggSVwJ1cRx6BEZKnu1lpUYiTsnZuHaUdJ0df40dyjuntyXP+6WEHqffikonwOHIBOHURlxaO01HNYEH3WwnP/xFjRVKT3tiqHWkE6lUKH+EGQyORQ/3bEgSJk3XfdQGEJdMUpZMEMOsI9JOXNcP/fa5YUTqC1U2ZVzOb/HFXIw6EqdCrZjzBnYoMiJpmkkxLyYan1H8y/ph95x4bgqt9N3itQyb53QB7++rD8+nS/d0kEWPr71PulkMKYofpQUwkPM4A205nS7j1w+AGt+cwmW3z/JbokUkwLk3a9JfWLDg2HmpIk6HMf5rL/lC9MH9sQHd3sKdlKRI9BxHIfP75uIlb+eKjsauPsOqsvTThtrjwKfNVVWnu4leBCTAoz/FS4MuV1SDv17RWHuCOkRofl2d1zImQOERDomTQ4cv15a2lhF9+5yx30vwXkWi8M2V/0Q/iFDIB6QyDG1Nwa1++AqDBvqJaUwHe74rxnJ/wwUjV6R0uK7aQUJLD6ywjoBVtbejP6MviqDlLgwMCZgLeD0N+9gK9E/xE4bv4Ls2MwE/PTbS1207qWO6cFmEx6+fADGytCbcN5tze5pf2FTDBAWnZfx84HJC3Up+qHL+qNfTzddgjCBVa+E5yXlkWpnXO6Wc/+Z3ncYnbzxZiR0KlS/c+c4THKymHO+ryeusO8wzL9EPdfoHMfB5Cas+KwwHRwOjLtHGyuPiATAJCJYxHbupJk4Di/8XLr5+g+PXCKeIDoZmPggkNIZBuMavthcJrPv995nIt63Xi5giiwdu7N/+bx1x1jcMTETv72BX/CSkufXCybhmwcnu/h38hmhMcJPkA6LjxxnaSi3xmGIqRgYdJXe1dGNDt8Umu7O95kInN0NZE72nhbtJpflkeibmgigTfXq+OQZmOPsA6tJI2HKR2+ucq929roczOOB2T+1aCdtNHBkD/93w28EGquAuAx8vSAG5bUtOHNRmuv3+6b1wy3jMxBbsRMoPMxbT74e0RQi3XmbHDrKqmMRAiWrkbswDgeEzhZ6Q64FNv9bUYk9oyVE5DakIUO7haV71STuKvLROy4cT189xCddmoiQIAztrY6A8bZlFhaOne5zbCdfoR0WFahFFLbYhuj+MLUgzCngIl8ogA6kuL+X9x0PfS8BJi20u3QXytEpy9AgM4b2jlUt2jAfHeaPVw4TXsXUBqlrWeP3MVuC3BAdFow/Xj0ET88ZjJgwbZQA5Qz/gv2xRz+Hk7zhaXG4fHCSLLHI27GF4LPpOUBGKU6IWaW0/37PermyvBUW3CELf22dCAyY6arzERotySdSh+O+vW6B/PRWR+LD+ZHKevcEDRA4bFl0KdY/Ns3l+NNb1mq7BZBzK7WIBKLkKXZrAe2wyKAKMUhGleP/kenx4E7ZfXQ8edVg4QsDmJiwYCy5IRcmk2usGyGG9Y7F0fI6pMZK2zk4ZUtGpqkMF2Iktp+XEWNkehyGp8WiT49IAPuk5Qnl69Pk2DAc/fMVCBGxOtkYfSV+gR9dP9Q2eJFPjMqIw09nzsu+riOMQHdDkcWRikJnK4J10a5rRijQ23uIkJ7Roaisa0F6gn1MiA4NQmFLKl6zzJEc0FNNhARf4VdS/dZNkTg+Eq6QwCKDFdYJmGg6iJx2Hxej+8Sj6Fezda6Vd3gtdGRw3eg0r2k6zt3T4iNw1+QsRIp4vnTUhuOwwjYBvVklYhMmADjmUz0BIMhswlcPTLJbNK315jtAnYGIz2dISmwYztXYfSXYVLImmpObiv/tPYv7pvXDk1/5bhYqREKkm6WVAXfh0+LDcfpik97VAGDfXZqcnYjEQUPBcVXeL1DIiNn3AfUC/jb8uO02IDkK0WFB6BklzSJv2b0T8Pr6k7h/mv3oKD0hAofO1doFHh3QyoEhn8DjzQmcrECcLgqHBnwp/QAdCcmgDhFYZeuMuRIoXabX1DtlBUFTSsc7FB0aLNlRWRuCcIqlgJnUk509za+910XJECZ2i+udAlaq1U/+ddMI/PDIJbhtgvbeX34lpFgaFGqPlj38Rs3rIIZzqAJfUWOza0yfBPxC8LnI7wHuE1kjC8W08eoHPBUkLE7wq9AgM3b9/nKs9qYk206/nlF47vpcZCbaLXr8treokdWbHCZ6iS8XpNQfkIF3aLWEBJZuABefiUfzpQXl869Ld/6BXHVBUMK2tdo46/vwtmiovFgfgD24ZHavKIn+cHx7ji5WXc5ZRfQARt9u1wXxM4GyQOBHvPaPzpQQhsKfZEywu2gfcTPv1yFBJmFTbBEdM7+ilkWLl47Xag4TbCdvx+hv3T5Gaa18JhBFHhJYfMDID9zfsWRaEST96MnfM09QmH2iNQJxGXZrJwmxj3wrx9ddGOOJB/dOtYeJGJEWJ/NK5e+CejvvrnVwz3bqgJ7Y+HjnrpyUHUpngcHkfPSgxurbHGwPghefKf/azClA6kjBSTzQ8PYkjsZMBuIzeftKekIEBiVH48Yx/MfqY5xcNngbs91jT3VHSIfFByw9lYWoNzI2BTLsM3OH4P3N4Zg4pBVAi/QLhSLJyq6BNIJEnHNp+f675J04wGGloik9su3HNpEqhIxXYCYRHxEMtCrwVuyM2VUhM69fIkZe0g+hqplNe+f2vExsLazCpGztBd70hAjcPTkLg6oKERZc3/6p8NsQFmTCmD4JuD+9n3ena+JZqUtQKDDwCj8VZmzMHIf/3DYaSOircs7dU2IhgcUHLD0D3zKoZ5TrpFCBOBTaUuwrJInMy8vEvLxMAJcCpzbZt2IPfyOYvlNL358vHcPUAT1xoaEVGUMnAjjroydQg8NxuhzbdLDuselo/v4nJDkfLUml36VA3TkgwbP+3qN+86G8n80aloK1j05DWrx/rDp+f9Vg4OBRoOII7/fux4GTsxMxefog2bsqPvkQ8hGxkn93ZQ4e/XQv7pyUKZ5J8jCgbL/XkBJykKUAqwcGr54/IIFFAe9aZiKBq8PNcZl6V0URhbYUzLtyKnYfS8CfrnF3/czha9skvKh0hdTh1E1EYPE77dvlMWHBuD0vE5g2D2ip89k1fkqsgsk4EHEeKCUO6rHhwYhVIqwAQIY01/iDkqMRUROEHu5WTSqTlSiySxSZCDRIMQHXQkBwylPm2ZVWljK+cv3oNEwdkOjdAmnAFfbApbEZAFb5pW6AgKAn0PSJ0dr1SzV6k5Q8RmbEYU9JtQqlqQPpsCjgImJwkvUOLEVtp8BhP9hGY8zkK/DfX47T3h+AmHKpwCCr2tCeNcXuKjx5uGe5bsKKHOdyH949HjMHJ2Hxz4Z7T6wR90zJAgA8lm8wZU0/8u1DU3DXlCzZcXhUJVwD67t4+7MF16nVoModBsgpQq9oCYFWzUH2Yxaz9mtur83GMw/kD04WF3QDhESJpuv+gnZYuigeL5mTPkAj/LAzMOwG4PwxIH2c9mUJkTlZshv/G8akY+XBMlwywLs3x4nZiZiYLV03RAuXCb+7Mge/mNDHJQ6OqkQ4eedV7OpTW0wmrrM+HGff/QmRP0nose4QbcaUXLuieEwK8NXf/FYnf6Fle49xi1KOsBiguRYI8sFBnZcu3+FVuSMGVViQGTkp8ndvZSndqoCU/IzzttshgcUHDDR2G4/EbPuPKMZpwLBgMz64e4ImeXvdiTMHAVYLEBrlJWEnHMe1e/NVmVHz7PGa+k4DsEH9/LUibSwQ0xuI5bPGMN5WKG+U4Q44Dugl7oaAgTPS66OYa0f2xvI9Z3DpIIEowJy8Q4BeMW47AsN/DpzaCPSRHwzxsfyB2LF6D2bkJImm65gH0uIjsPmJ6UjYrTz+j2S66eRDAksXxUNal6Cv4a93wNnTLQFg5DygeBOQJc0Rl6bE9naJuAtAskdTXZEwyetFaLDnpLtoVo7vGcuVw4wnt+Gv1w5D/pAkTO4vsLM5cDaw72Pl0ZcjewBDrnH5KFeiWfwD07PRmjwGIWUCgTR56BUd5tCZ6woYbYgmgaW70CMbP1mHogJxeteEl9S4MPzm8gHAOg5TJRzLBBJeX/roJGDodX6pixxe+8VofL33DBZcmg1s8T2/xNQs4MxF3zNSGa2sQ6YP7IXiC40YleF6TDG6TzxiI3wLECl+fOD9foxiJRQeYsYVQ1OEE0f1BCYukJz33VO8mw8P7R2Lj+6ZgN5x3vX3xGKE+RujKkr7ExJYfCCwlG457GBetpn9dT8Oq2YOS+8ci72lNcgfkowrhnKwcdmS3frLIqAeljG4YmgyrhgqHIVaMv0uBRL740FzDMyRJ3DlMJEJSi6mIMBm8eLnwo+Tc1DnJJibFmdfzYdqpGdksNWv3kwb2NNDOBQij8dlfkCNEL6OZ6FRWG/yrl+op2DLBwkshK5MG9gL0wZ2nl9rIqwYgYS+QFUh0EuFo4BAIzgMiEhAFIDHr1D52CbvAaDposcxlqYDrVgfTRwApAy3x1sKjgRKtgADrwQK1znVzXeYj7l0xdW6JOd5BkaJNZJiBs/F8XXH4M3R5y8m9MHKg2UYn5Ugms5fkMDSRfG3a37CC8NvBGxWv5hhdl14hvSQCPuPG5pOyCkjgLN7gMT+QFO163cmEzDIKYJ7zwHa1UMIIUupLroW8Cve2lCmkrBS1Ojdl+Uk4cNtJaJOESf3T8RPv70USRr6lJEDjZ6EA78r3fLRcyBQXWL/3UXg0G5+S8KKTqgsvASHAePn25/p/s/UzVsMt2MAj/do5K2ApUW9oH8aoZUoaYhTX3MQMHCWfXFy/Hv7Z5ECFlCS8vPBHNsLv5+dg6GpsZiRI14/Kbo+/oJGUMI/ZIzHGVaF3pwXr6BDrrWPPF1I074rbr93e+RK971HAfgfzjAVYjsJEZch/j11Q/+QOsL+O2mwXYCU4a7AA6cgqdFh6h55RYQE4ZbxXvqMweg6s4KfcPb8FxVG8p5k+l2KT63TwBiHhEiRVQPHdSlhhSAAAPGZeMtyJT6zKotfxYG5HDe0Mt/GHqNYCamJ4eSx4HAgPM63PEwmzB07ANMG9EJqXDcJBSICzbgyCQ8x4fP7JsJqY4gK7VrNp/WW6vL7J6J5424MTFISwC5wMZqmfeBiuClJFnWQby3k8k6aTLAOvBI/rtmIXlw1Ar09AhFtg4nwP8+snlFADHCupkmlcgKXrjXj+onR7u6fCUmMzIgHcvoANWd0KJ0G9+6Eq5DYdQRGljQM+9hZzOB26V2VLoeUBRtfEvVGFoF+2l4xGsHoSEg2hlDsEuBXl9h9UcSEBSmyEvKL0q2ftOiJrkjXETyk0hZi91BdxFT0XUMYks22IXYLr6wpvN877+gbeBrSFJo9uhCP5w/C1wsm4c/XDtO8rI/umYDsXlH4+F6Z8XcGXGFXQus/U5uKERqjQGgQi9jtF7wElfPz6C9nYVDS5zqstY7AWtsIVetAiuDGow4RwMQHBQO2xviqdDvml75dbwDoSKgLYTZxGJ4Wh9MXtT/rzOvXAz88oiD2TWQikLfAeEEqNKQb3aorw28E6iuA+Cy/F23kCVmOgGQNjsRe5i2IaGCRHBuGQ+dq9a6GB71F/JF0wPcqc2q+4FLzUtK9o8WDOAYCtMPSjZiU7emOWhe62Qxu5GNE+ci4mR79gD553e55q4lWCtsu+Y681R6zZ+QvNCnLnb9eOwyXDuqF//7Su2t4OSiNCfXeXePwWP5AzBwc+BN6V4d2WLoofMNcWlwEgAuC18zLy8TmkxeMI9gQRBdEjvzmvlPUIWio6sk6LgMYe7d6+XkhOTYMb98x1m/leWNK/56YIhQtWoTMHpE4daEBV+X6X7/I19AMgQoJLF0QpSv6K4YmY92j0yRtjRLS6VobDF3qZoguhL83MufmpqLFakNYog+O4QDcOCYNn+w8jV9N9R5puoPK1MuQ07xGUN+lq0ICC+FCZqJAHJJAp2udyxBeMKLvm6tzU/H13rO4f5rvOin2FTb1aX/jrK/CcRzCgnz3KfXXa4fh1vF9MLS39JAKreE9gVEPdbXVkFdIYOmiUPBDgpCGvxR0X/j5CPzhqsHoKSOQnJic3b2mqq5LkNmE3PQ4+Rd2M2EFIKVborsgFMHWD3TDcYXggeM4WcKKaF4KhCyzyWl3gEZ+RQSbeF5mHV7w7rocpR0WonuQMwc4+h2QIdNvDEF0EXpEheL2vD7gOM53nx7dlPF9e2BydiKye0UB2Kd3dbodJLB0QYzsg0I3IhLs5ptEt6CrvAOTsu3Rnfv0kB+HiI8/zh2qSj7dFbOJw/t3j7f/s/ZrP5Xq2ZeVmnAHOoo2Bl9++WVkZmYiLCwM48ePx/bt2wXTtrW14ZlnnkG/fv0QFhaG3NxcrFy50iVNXV0dFi5ciD59+iA8PBwTJ07Ejh07lFRNM+aOSAUAPDA9MJw4kQ4LQUjDyGN/QmQI9j890+GkkY4XRTDwcyTUQbbA8vHHH+ORRx7BU089hd27dyM3Nxf5+fmoqKjgTf/73/8er7/+Ol566SUcOnQI8+fPx7XXXos9e/Y40tx9991YvXo13nvvPezfvx8zZ87EjBkzcOaMHkHy+Hn+xhFY9+g03DwuQ++qKKarrDoJwhtGtBJSSnRYMILNrkN1d/XD4XeS23ekosT8tPj/WSTFhPm9TCMgW2B5/vnncc899+DOO+/E4MGD8dprryEiIgJvv/02b/r33nsPv/vd73DllVeib9++uO+++3DllVdiyZIlAICmpiZ8/vnneO655zB16lRkZ2fj6aefRnZ2Nl599VXf7k5FzCau65r8EkQXg3FO5qZdUMOUAyMzIX8Qkwrk3Q+MvlO/OkR2Cktv3T4GT80ZrMyqqAsgS4eltbUVu3btwqJFixyfmUwmzJgxA1u2bOG9pqWlBWFhrtJgeHg4Nm3aBACwWCywWq2iaQj50FhGqEpMKlB7FkjJ1bsmkrCYw7HDNhA2mIAgccucfj19c/xFGAPNdpDDpPtH0YScOUDRRqD3KFwmEA9ocEoMDp2rRWy4RGXqoMB0DipLYDl//jysViuSklwbLSkpCUeOHOG9Jj8/H88//zymTp2Kfv36Yc2aNfjiiy9gtVoBANHR0cjLy8Of/vQn5OTkICkpCR999BG2bNmC7GxhfZGWlha0tLQ4/q+tNV4wLb1gDGiA5yDdlbbJAwmjtHtOSozyi0fcAjScB6KT1auQXMzyLFt+skmLWn5ZTi88M3cIhqTqPDERBB+h0cCgK0WTvHXHGCz96RR+hjTxvHKuAlrqvBxxGRfN90pfeOEF9O/fH4MGDUJISAgWLFiAO++8EyZTZ9HvvfceGGPo3bs3QkND8eKLL+Lmm292SePO4sWLERsb6/hJT0/X+lYCilLWC9tsOcCQa/SuCmEQEiJDsHXRZdj39Ez5F5uDgZgUfbU+4zKAlOFAv0tVzZbjOMzLy8ToPvGq5kt0EwygCZ0SG45FV+Z432FJHgb0meifSmmALIElMTERZrMZ5eXlLp+Xl5cjOZl/5dWzZ098+eWXaGhoQHFxMY4cOYKoqCj07dsZN6Ffv35Yv3496uvrUVpaiu3bt6Otrc0ljTuLFi1CTU2N46e0tFTOrXQDOGyxDQF65Tg+IaVbIjk2LHB9cHAcMGg2kDHea1I+/15diTbySEF0Q2QJLCEhIRg9ejTWrFnj+Mxms2HNmjXIy8sTvTYsLAy9e/eGxWLB559/jrlz53qkiYyMREpKCi5evIhVq1bxpukgNDQUMTExLj+EnUHJ0XpXgSB05ebxGcjsEYF7pmTpXRVN2GrLgTUqFRiQr3dVCMJvyBbTH3nkEdx+++0YM2YMxo0bh3/9619oaGjAnXfatajnzZuH3r17Y/HixQCAbdu24cyZMxgxYgTOnDmDp59+GjabDY8//rgjz1WrVoExhoEDB+LEiRN47LHHMGjQIEeehDz6J0Xjw3vGd1vTN4KICQvG2kenuQSr60o0IxQNQ25FD5UcynUFjOxPx2+ERACtjXrXQjNkCyw33XQTKisr8eSTT6KsrAwjRozAypUrHYq4JSUlLronzc3N+P3vf4/CwkJERUXhyiuvxHvvvYe4uDhHmpqaGixatAinT59GQkICrrvuOvzlL39BcHCAbl0bgIn9EvWuAkHoSlcVVghCmK7d5xUdhC5YsAALFizg/W7dunUu/19yySU4dOiQaH433ngjbrzxRiVVIWRgFGsVgiB8h+QxorvR9TwqEYKQ0q1O0MRCaAAdgbiiX3vQC+4vSGAhCIIgCMLwkMBCEAQRgNCRENHdIIGFIDTi0kG9AAB3TMzUtyIEQWgHSY5+g7wPEYRGvDlvDKoaW5EYJR7LhiCkQnorRHeGdli6EXdPsXsOnjsiVeeadA9MJo6EFYLwE2RUAGDwXHt08gEKwm8EALTD0o0YkBSNQ8/kIzzYrHdVCIIgCLWJ7wNMfQwQicMXyJDA0s2ICKFHThAE0WXposIKQEdCBEEQRBeA9Hu6PiSwEARBKCWYYvkQZCXkL+h8gCAIQil9pwGt9UDycL8UR4qlRHeGdlgIgiCUEhIBDL8R6DXI70WT+w87v76sPyJDzHj8Cv8/A8K/0A4LQRAEEbA8fPkAPHRZf5hNJMF1dWiHhSAIIkBwnpTDyD2BA12FFdrq8hu0w0IQBBEghAaZ8ddrh6HVYiWnhES3gwQWgiCIAOKW8Rl6V4EgdIGOhAiCIAiCMDwksBAEQRCEYkiHxV+QwEIQBEEQhOEhgYUgCIIgCMNDAgtBEARBKCUkUu8adBvISoggCIIg5DLiFsDSDITH6V2TbgMJLARBEAQhl/g+eteg20FHQgRBEARBGB4SWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvCQwEIQBEEQhOEhgYUgCIIgCMNDAgtBEARBEIaHBBaCIAiCIAwPCSwEQRAEQRgeElgIgiAIgjA8JLAQBEEQBGF4SGAhCIIgCMLwkMBCEARBEITh6TLRmhljAIDa2lqda0IQBEEQhFQ65u2OeVyILiOw1NXVAQDS09N1rglBEARBEHKpq6tDbGys4Pcc8ybSBAg2mw1nz55FdHQ0OI5TLd/a2lqkp6ejtLQUMTExquVLuELt7D+orf0DtbN/oHb2D1q2M2MMdXV1SE1NhckkrKnSZXZYTCYT0tLSNMs/JiaGXgY/QO3sP6it/QO1s3+gdvYPWrWz2M5KB6R0SxAEQRCE4SGBhSAIgiAIw0MCixdCQ0Px1FNPITQ0VO+qdGmonf0HtbV/oHb2D9TO/sEI7dxllG4JgiAIgui60A4LQRAEQRCGhwQWgiAIgiAMDwksBEEQBEEYHhJYCIIgCIIwPCSweOHll19GZmYmwsLCMH78eGzfvl3vKhmWDRs2YM6cOUhNTQXHcfjyyy9dvmeM4cknn0RKSgrCw8MxY8YMHD9+3CVNVVUVbr31VsTExCAuLg533XUX6uvrXdLs27cPU6ZMQVhYGNLT0/Hcc89pfWuGYvHixRg7diyio6PRq1cvXHPNNTh69KhLmubmZjzwwAPo0aMHoqKicN1116G8vNwlTUlJCWbPno2IiAj06tULjz32GCwWi0uadevWYdSoUQgNDUV2djaWLl2q9e0ZhldffRXDhw93OMrKy8vDd9995/ie2lgbnn32WXAch4ULFzo+o7ZWh6effhocx7n8DBo0yPG94duZEYIsW7aMhYSEsLfffpsdPHiQ3XPPPSwuLo6Vl5frXTVD8u2337L/+7//Y1988QUDwJYvX+7y/bPPPstiY2PZl19+yfbu3cuuvvpqlpWVxZqamhxprrjiCpabm8u2bt3KNm7cyLKzs9nNN9/s+L6mpoYlJSWxW2+9lR04cIB99NFHLDw8nL3++uv+uk3dyc/PZ++88w47cOAAKygoYFdeeSXLyMhg9fX1jjTz589n6enpbM2aNWznzp1swoQJbOLEiY7vLRYLGzp0KJsxYwbbs2cP+/bbb1liYiJbtGiRI01hYSGLiIhgjzzyCDt06BB76aWXmNlsZitXrvTr/erF119/zVasWMGOHTvGjh49yn73u9+x4OBgduDAAcYYtbEWbN++nWVmZrLhw4ezX//6147Pqa3V4amnnmJDhgxh586dc/xUVlY6vjd6O5PAIsK4cePYAw884PjfarWy1NRUtnjxYh1rFRi4Cyw2m40lJyezv//9747PqqurWWhoKPvoo48YY4wdOnSIAWA7duxwpPnuu+8Yx3HszJkzjDHGXnnlFRYfH89aWlocaZ544gk2cOBAje/IuFRUVDAAbP369Ywxe7sGBwezTz/91JHm8OHDDADbsmULY8wuXJpMJlZWVuZI8+qrr7KYmBhH2z7++ONsyJAhLmXddNNNLD8/X+tbMizx8fHszTffpDbWgLq6Ota/f3+2evVqdskllzgEFmpr9XjqqadYbm4u73eB0M50JCRAa2srdu3ahRkzZjg+M5lMmDFjBrZs2aJjzQKToqIilJWVubRnbGwsxo8f72jPLVu2IC4uDmPGjHGkmTFjBkwmE7Zt2+ZIM3XqVISEhDjS5Ofn4+jRo7h48aKf7sZY1NTUAAASEhIAALt27UJbW5tLWw8aNAgZGRkubT1s2DAkJSU50uTn56O2thYHDx50pHHOoyNNd+z/VqsVy5YtQ0NDA/Ly8qiNNeCBBx7A7NmzPdqD2lpdjh8/jtTUVPTt2xe33norSkpKAARGO5PAIsD58+dhtVpdHgwAJCUloaysTKdaBS4dbSbWnmVlZejVq5fL90FBQUhISHBJw5eHcxndCZvNhoULF2LSpEkYOnQoAHs7hISEIC4uziWte1t7a0ehNLW1tWhqatLidgzH/v37ERUVhdDQUMyfPx/Lly/H4MGDqY1VZtmyZdi9ezcWL17s8R21tXqMHz8eS5cuxcqVK/Hqq6+iqKgIU6ZMQV1dXUC0c5eJ1kwQ3ZEHHngABw4cwKZNm/SuSpdk4MCBKCgoQE1NDT777DPcfvvtWL9+vd7V6lKUlpbi17/+NVavXo2wsDC9q9OlmTVrluPv4cOHY/z48ejTpw8++eQThIeH61gzadAOiwCJiYkwm80eGtLl5eVITk7WqVaBS0ebibVncnIyKioqXL63WCyoqqpyScOXh3MZ3YUFCxbgm2++wdq1a5GWlub4PDk5Ga2traiurnZJ797W3tpRKE1MTExADG5qEBISguzsbIwePRqLFy9Gbm4uXnjhBWpjFdm1axcqKiowatQoBAUFISgoCOvXr8eLL76IoKAgJCUlUVtrRFxcHAYMGIATJ04ERJ8mgUWAkJAQjB49GmvWrHF8ZrPZsGbNGuTl5elYs8AkKysLycnJLu1ZW1uLbdu2OdozLy8P1dXV2LVrlyPNjz/+CJvNhvHjxzvSbNiwAW1tbY40q1evxsCBAxEfH++nu9EXxhgWLFiA5cuX48cff0RWVpbL96NHj0ZwcLBLWx89ehQlJSUubb1//34XAXH16tWIiYnB4MGDHWmc8+hI0537v81mQ0tLC7Wxilx22WXYv38/CgoKHD9jxozBrbfe6vib2lob6uvrcfLkSaSkpARGn/ZZbbcLs2zZMhYaGsqWLl3KDh06xO69914WFxfnoiFNdFJXV8f27NnD9uzZwwCw559/nu3Zs4cVFxczxuxmzXFxceyrr75i+/btY3PnzuU1ax45ciTbtm0b27RpE+vfv7+LWXN1dTVLSkpit912Gztw4ABbtmwZi4iI6FZmzffddx+LjY1l69atczFPbGxsdKSZP38+y8jIYD/++CPbuXMny8vLY3l5eY7vO8wTZ86cyQoKCtjKlStZz549ec0TH3vsMXb48GH28ssvdysz0N/+9rds/fr1rKioiO3bt4/99re/ZRzHse+//54xRm2sJc5WQoxRW6vFb37zG7Zu3TpWVFTEfvrpJzZjxgyWmJjIKioqGGPGb2cSWLzw0ksvsYyMDBYSEsLGjRvHtm7dqneVDMvatWsZAI+f22+/nTFmN23+wx/+wJKSklhoaCi77LLL2NGjR13yuHDhArv55ptZVFQUi4mJYXfeeSerq6tzSbN37142efJkFhoaynr37s2effZZf92iIeBrYwDsnXfecaRpampi999/P4uPj2cRERHs2muvZefOnXPJ59SpU2zWrFksPDycJSYmst/85jesra3NJc3atWvZiBEjWEhICOvbt69LGV2dX/7yl6xPnz4sJCSE9ezZk1122WUOYYUxamMtcRdYqK3V4aabbmIpKSksJCSE9e7dm910003sxIkTju+N3s4cY4z5vk9DEARBEAShHaTDQhAEQRCE4SGBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDA8JLARBEARBGB4SWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvCQwEIQBEEQhOEhgYUgCIIgCMNDAgtBEARBEIaHBBaCIAiCIAzP/wOHD3t2IE+4cAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "\n", - "plt.plot(range(5000), pct.history[\"PermShk\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"PermShk\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.052290Z", - "iopub.status.busy": "2024-07-11T15:30:48.052045Z", - "iopub.status.idle": "2024-07-11T15:30:48.275479Z", - "shell.execute_reply": "2024-07-11T15:30:48.274901Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSPUlEQVR4nO2dd3wUZf7HP7Ob3itpBJKQ0CF0BERB0QiIvR42bAeKitydJ3e2098d6p2eHrZTT/HUO/RUsCAgIl2kBEILPYFQUoCQ3nef3x+bbLbM7MzszOzMJt/36xVIdp+ZeeaZZ57n+3yfb+EYYwwEQRAEQRAGxqR3BQiCIAiCIMQggYUgCIIgCMNDAgtBEARBEIaHBBaCIAiCIAwPCSwEQRAEQRgeElgIgiAIgjA8JLAQBEEQBGF4SGAhCIIgCMLwBOhdAbWwWq04c+YMIiMjwXGc3tUhCIIgCEICjDHU1tYiNTUVJpOwHqXLCCxnzpxBenq63tUgCIIgCMILTp48iZ49ewp+32UElsjISAC2G46KitK5NgRBEARBSKGmpgbp6en2eVyILiOwdGwDRUVFkcBCEARBEH6GmDkHGd0SBEEQBGF4SGAhCIIgCMLwkMBCEARBEITh6TI2LFKwWCxobW3VuxoEALPZjICAAHJBJwiCICTRbQSWuro6nDp1CowxvatCtBMWFoaUlBQEBQXpXRWCIAjC4HQLgcViseDUqVMICwtDYmIirep1hjGGlpYWnD17FsXFxcjJyfEYLIggCIIguoXA0traCsYYEhMTERoaqnd1CAChoaEIDAzEiRMn0NLSgpCQEL2rRBAEQRiYbrWsJc2KsSCtCkEQBCEVmjEIgiAIgjA8JLAQBEEQBGF4SGDpgjz33HMYNmyYrGMmTZqEefPm6V4PgiAIguCjWxjddjd++9vf4pFHHpF1zFdffYXAwECNakQQBEEQyiCBpQvBGIPFYkFERAQiIiJkHRsXF6dRrQiim1B/Djh/DEgbCZhpaCUItemWW0KMMTS0tOnyIzdwXXNzMx599FH06NEDISEhuPjii7F9+3YAwLp168BxHFasWIGRI0ciODgYmzZtctuKaWtrw6OPPoqYmBjEx8fj97//Pe6++25cd9119jKuW0IZGRn4y1/+gnvvvReRkZHo1asX3n33Xae6/f73v0ffvn0RFhaGrKwsPP300xRJmOi+bHsPOPYTULJF75oQRJekWy4DGlstGPjMKl2uXfh8HsKCpDf7E088gS+//BIfffQRevfujZdffhl5eXk4evSovcyTTz6Jv/3tb8jKykJsbCzWrVvndI6XXnoJn376KT788EMMGDAAr7/+OpYtW4bJkyd7vPYrr7yCF154AX/4wx+w+JP/Ys6cObj00kvRr18/AEBkZCQWL16M1NRU7N27Fw888AAiIyPxxBNPSG8Qguhq1JbqXQOC6JJ0Sw2Lv1BfX4+3334bf/3rXzF16lQMHDgQ7733HkJDQ/Gvf/3LXu7555/HFVdcgT59+vBu7SxatAgLFizA9ddfj/79++ONN95ATEyM6PWnTZuGhx56CKnpGbj5vrmIiYvH2rVr7d8/9dRTGD9+PDIyMjBjxgz89re/xeeff67KvRMEQRCEI91SwxIaaEbh83m6XVsqx44dQ2trKyZMmGD/LDAwEGPGjMGBAwcwevRoAMCoUaMEz1FdXY3y8nKMGTPG/pnZbMbIkSNhtVo9Xn/o0KEAgDYrA8dxSEjsgYqKCvv3n332Gf7xj3/g2LFjqKurQ1tbG6KioiTfH0EQBEFIpVsKLBzHydqWMTrh4eGanNfVa4jjOLuQs2XLFsycORN/+tOfkJeXh+joaCxZsgSvvPKKJnUhCIIguje0JWRg+vTpg6CgIGzevNn+WWtrK7Zv346BAwdKOkd0dDSSkpLshrqALRnkzp07FdXt559/Ru/evfHHP/4Ro0aNQk5ODk6cOKHonARBEAQhRNdRM3RBwsPDMWfOHPzud79DXFwcevXqhZdffhkNDQ247777sHv3bknneeSRR7Bw4UJkZ2ejf//+WLRoES5cuKAot1JOTg5KSkqwZMkSjB49GsuXL8fSpUu9Ph9BEARBeIIEFoPz4osvwmq14s4770RtbS1GjRqFVatWITY2VvI5fv/736OsrAx33XUXzGYzHnzwQeTl5cFslm5P48o111yDxx9/HHPnzkVzczOmT5+Op59+Gs8995zX5yQIgiAIITgmNzCIQampqUF0dDSqq6vdDD+bmppQXFyMzMxMhISE6FRD42C1WjFgwADccssteOGFF0TL1zS24vj5egDA0J4xqtWDngvRpVi70PZ/fB9g6C361oUg/AhP87cjpGHpBpw4cQI//PADLr30UjQ3N+ONN95AcXExfvWrX+ldNYIgCIKQhGyj2w0bNmDGjBlITU0Fx3FYtmyZ6DHr1q3DiBEjEBwcjOzsbCxevFiw7IsvvgiO41RPxNedMZlMWLx4MUaPHo0JEyZg7969+PHHHzFgwAC9q0YQBEEQkpCtYamvr0dubi7uvfde3HDDDaLli4uLMX36dMyePRuffvop1qxZg/vvvx8pKSnIy3OOhbJ9+3b885//tMf/INQhPT3dydOIIAiCIPwN2QLL1KlTMXXqVMnl33nnHWRmZtrjcwwYMACbNm3C3//+dyeBpa6uDjNnzsR7772H//u//5NbLYIgCOlcOA40VgGpw3SuCEEQUtE8DsuWLVswZcoUp8/y8vKwZYtzgrCHH34Y06dPdysrRHNzM2pqapx+CIIgJFHwX+DQCqCG8v4QhL+gucBSVlaGpKQkp8+SkpJQU1ODxsZGAMCSJUuwc+dOLFy4UPJ5Fy5ciOjoaPtPenq6qvUmCKIb0EwLHTdO/AyU7tG7FrrDGMPZ2ma9q0E4oHuk25MnT+Kxxx7Dp59+Ksu1dcGCBaiurrb/nDx5UsNaEgRBdAPqzgJF64GDy/Wuie48981+jP7zj/i64LTeVSHa0dytOTk5GeXl5U6flZeXIyoqCqGhocjPz0dFRQVGjBhh/95isWDDhg1444030NzczBvgLDg4GMHBwVpXnyAIovvQ1qh3DQzDR1tsqUZeXHEQ1w5L07k2BOADDcu4ceOwZs0ap89Wr16NcePGAQAuv/xy7N27FwUFBfafUaNGYebMmSgoKFAUjdXfYYzhwQcfRFxcHDiOQ0FBgd5VIgiCIAhdkK1hqaurw9GjR+1/FxcXo6CgwJ7rZsGCBTh9+jT+/e9/AwBmz56NN954A0888QTuvfde/PTTT/j888+xfLlN5RgZGYnBgwc7XSM8PBzx8fFun3c3Vq5cicWLF2PdunXIyspCQkKC3lUiCILo0jDGnPKsdY1Y8F0D2RqWHTt2YPjw4Rg+fDgAYP78+Rg+fDieeeYZAEBpaSlKSkrs5TMzM7F8+XKsXr0aubm5eOWVV/D++++7xWAh3Dl27BhSUlIwfvx4JCcnIyDAWb5saWnRqWaEJjAG1JwBrBbtrtFcR54xBCHA31Ydwti/rEFFbZP6J68sBn5eBJw7Kl6W4EW2wDJp0iQwxtx+OqLXdmgEXI/ZtWsXmpubcezYMdxzzz0er7Fu3Tq89tprcqvWpbjnnnvwyCOPoKSkBBzHISMjA5MmTcLcuXMxb948JCQk2IW+V199FUOGDEF4eDjS09Px0EMPoa6uzn6uxYsXIyYmBt999x369euHsLAw3HTTTWhoaMBHH32EjIwMxMbG4tFHH4XF0jlZNjc347e//S3698nA2L5pmDljitOzPXHiBGbMmIHY2FiEh4dj0KBB+P77733WRl2O4xuB/I+Ag99pd42fFwH5i4HaMu2uQTixZFsJ1h6q0LsahATeWHsUFbXNeGvtMfVPvnuJbcGw93/qn7ub0D1zCTEGWFr1ubY5EHBQNwrx+uuvo0+fPnj33Xexfft2mM1m3Hzzzfjoo48wZ84cp8i1JpMJ//jHP5CZmYmioiI89NBDeOKJJ/DWW2/ZyzQ0NOAf//gHlixZgtraWtxwww24/vrrERMTg++//x5FRUW48cYbMWHCBNx6660AgLlz56KwsBAf/PsTWEJi8NPK73DVVVdh7969yMnJwcMPP4yWlhZs2LAB4eHhKCwsREREhPpt1l0o+cX2f3khMPBaba9VVQJEJmt7DQKHy2vx5Fd7AQDHX5yuc20Iwr/pngKLpRXY+Io+1574GyAgSLRYdHQ0IiMjYTabkZzcObHk5OTg5ZdfdirrmHcpIyMD//d//4fZs2c7CSytra14++230adPHwDATTfdhI8//hjl5eWIiIjAwIEDMXnyZKxduxa33norSkpK8OGHH6KkpAQRsYk4fr4ed89+BLt/WY8PP/wQf/nLX1BSUoIbb7wRQ4YMAQBkZWUpaRmCEKS5zYIAkwlmk7iwbyTKazTYWuhmtLRZ8Zv/7caEPvG4bUwvvatD6Ej3FFj8mJEjR7p99uOPP2LhwoU4ePAgampq0NbWhqamJjQ0NCAsLAwAEBYWZhdWAFvwvoyMDCeNSFJSEioqbKrrvXv3wmKxoG/fvgAAa7vhWWtLM+Lj4wEAjz76KObMmYMffvgBU6ZMwY033kh5oIyE1QJUnQCiegoLya1NwNmDQGI/IDDUt/WTSENLG4Y9vxpZCeFYOe8SvatDeMuR1UBtKTBsJmCS7v351c5T+Hb3GXy7+wwJLN2c7imwmANtmg69rq2A8PBwp7+PHz+Oq6++GnPmzMGf//xnxMXFYdOmTbjvvvvQ0tJiF1gCA52vy3Ec72dWqxWAzRvMbDYjPz8fDa1WnL5gi8/QPyXKLuTcf//9yMvLw/Lly/HDDz9g4cKFeOWVV/DII4/Iu6nWZkBG0EBCIsUbbNtMsb2BYb/iL3PgG+D8MaCiULiMzuwqqUJLmxUHy2r1rgqhhFM7bP9XFgMJ2ZIPq27UafueMBzdU2DhOEnbMv5Afn4+rFYrXnnlFZhMNhvqzz//XPF5hw8fDovFgoqKCuSOugjm8/UAgOyeMU7l0tPTMXv2bMyePRsLFizAe++9J09gaWsGdi4G+l0GJA9RXG8AgNUK7Po3EBYPDJgh+3BXt0a/pbTA9v+FE8Jlzh8TL0MQasKsetdAFI+vf1tLl5k//A3dQ/MTysjOzkZraysWLVqEoqIifPzxx3jnnXcUn7dv376YOXMm7rrrLnyzbClOlZzA3l35WLhwIZZ/swxobcS8efOwatUqFBcXY+fOnVi7di0GDBgg70Jt7Xv8h1YorrOd6pM2192yfbIP/XjLcYz5yxocLqfVvGFprtPW9bs7Q0FHPHNym83+sXy/vOOaKGeVGpDA4ufk5ubi1VdfxUsvvYTBgwfj008/lZVE0hMffvgh7rrrLvxxwe9x7aTRePz+O7B9+3b0SowCGqtgaWvDww8/jAEDBuCqq65C3759nQx9VUfyYOr9oPv01/txtrYZC77aiz8u3YsrXl2PplaaHA1D/Tmba/b2f6lzPpqgDY/eT4g51uBoe9T2A9/KO0npbvUqJEJ9cxtW7C1FQ0ubz67pK7rnlpCfMG/ePCcPINf4Nh08/vjjePzxx50+u/POO+2/33PPPW6xb5577jk899xzTp91xNLpIDAwEH/605/wmyefwvH2LaGhPWPsgccWvf53wPyG5PtRxImfgdM7gRF3AiHRml/Oyhg+3WoLgLh8TyluHNlT82vyUn8eaKoC4vuIFu2qOGnnzx60/d9wXo+qdH26wlZoN2f+5wVYtb8c04em4M1fjRA/wI8gDYu3WFptaj6r8fdjuwRF64HmWpshqSjqDrq6rvC2vQvs+dwWAZfwH6wWYM/niKrI17sm8iCNkyYcKqvFjwfKfaKtXbXflmx4+Z6uF9GaBBZvqT8HtNQDzbQ36VMkDajOZRhjOF3VCObPg3FduXiZDurP89vv1DlEW/XntvAhXveZ8n3A+WOIKdukboX8gDaLVWRi7n5979lv92PfmWqsP3xW76rYyT9RibO1zXpXQxYksCjFSi53Rued9UWY8OJP+NsPh/Suim/Y9q5tj73VIWhZbbl6dh/dhD8s3Ysr/77Bu1WxXpG0DcCUV9dj6HM/oLGFbL9cqTKIi/aWY+dx49tbMPrPP+pdFVmQwEJ0QZy3hF5aabN7eFOL/CD+QlWJ89/+ZKugU1X/s7UERyrqsGo/5V2Sw/HzDWixWFFYKqR99qO+J0JTqwXHz9Xb/z5SXouTlQ061kgam452anpW7vOfrSMSWAj/QsZEe7a2GYVnvNuyM96OicqDvPFuUBjHqnqqd0MlcPgHoKla3cvzXbJkK1BxUNXrEP7HVa9twKS/rUP+iQuorG/BFX/fgIkvr9W7WrKY/clO/i/OFHTGaTII3Upg8XY/uiMjNdEJA3DifANKznu/mtCyTdusVny67QSm/WOjZtfQg7WHKvDh5mK9q2FMdn0CnM7XPhtuTSlw7Cdg/1IPhbj2f7uONkE+Qu931xlLj7ePf8v3lKqvWaksAioOqHtOqdRV2GJj7VEehFRNuoVbs9lsy1vR0tKC0FB5+VKsjOFQWS3MJg59kyJVqxNjDK0WhqAA/5QZ26wM9S1taANDL4R5dY6GhgbAakGgtVl10bm5TZn3llF3TGZ9uB0AMLRnNEb2jtO5NgajpV01X6exYWOr8VX+XQk91oqaCZpybmb3Z7b/I1OA0BhNqiNIszEDZ3YLgSUgIABhYWE4e/YsAgMD7SHspdDUakFLs814sanJIfdOS7vxlIkBZvkZWU9faEBdcxvSYkIREaIsv5DWtDS3grW1AACampqAlla0WhmsbRwYzLbPZMAYQ0NDAyoqKhDTdBJmWABIT4bmC87XtehdBY+UVfuXdb8iDCo8SoF1IW1Cd8VrR7GaJoQEmhEdqnB8b22QJLA0tVqwrbhS0in9VfPXLQQWjuOQkpKC4uJinDghL2dKq8WKihrb5BDU6KCd6dgn58xAsMw9c8ZQVX0BFmZCYUUoEiOD5R3vY5paLTjXPoEHNYYCTdWwWBkqmgNhgcm5XWQQExOD5DJjbm+U+IHhHEEQxsBVML1Q34Kxf7FFxT3+4nSf1OGpZfvwRf4pn1xLL7qFwAIAQUFByMnJQUuLvJVz0dk6PPe1Lcvomt9M6vxi6z9t/4fFA/1vkleZymJ89M0XAIDdKbfg1Vv7yzvex2w5dg7PrbXF9Vjzm0nA1n/ifH0LntyVgQuIdG4XiQQGBtq26rqC3aLVCtSWApHJgMlYmqJOaKXvM7qYvVtlfQu+zD+Fa4enokckZVUXwvGpHyjzfXyuri6sAN1IYAEAk8mEkBB5L5wpsAWna23xBJyOtXaswCMAmedEAIfGuioAQGUzZNdJTbYfr0RNYysuH5AkWMZqCnRuA2sDAtuaUF7bgrOwIDg4uGtkN/aWYz8Bp7YDqcOAflMlH1ZZ34ILDS3okxih7Pot9UBQuLJzdGO+LjiN01WNeGhStt5VMSSP/ncXNh09h2UFp7H80Yl6V8eQ+OsWi7/hnxafPqSrd8Sb39mC+z7agdNVjbKOc2wXdRaUftzOp2yGsDhTIOuwES+sxuWvrMeJ8/XihYUo3gBs/octz5JS2oxpt6P1O/jYkgK8vPIQMp5cjvN16toGdYXxY9PRcwCA/TJDBPizoqm5TSTonT/fnB9DAgsBAKiokW84rC7ddwDYVVIlXshFg2XfMz++2fb/kR+UV2TjK8DhVcrPoyna9pPX1xxRfhK9tY2VxcCuT21xaQiv6Eh8KhU342pVu6mK/Ykxw3oASYEEFhlQLBZ+qFVUwlP/8lXfU0NTozK+9LRRLTmdyBxzpqoRL688iNJqeZpNSexeYots7DFOjPaoJbeRp5WKFK0Ffn4DSXWFetfEK0hgIQB4IXQ4DEYkyCmEMeDAdwDrOpm/z9U146lle7HvtLpRZ7VGale2MIa65jbhkxSts/0q8GbN+nA73lp3DPd8sN2LWkqkRcFWowrQsGBASrYCADKrf9G5It5BAosf8t6GItz49s/CA6aaWK3g/DDBoz9ZDgQ1nwXK9nou5LJc1dQ2wsovOBWeqUFVgzQ7lwVf7cUnv5Tg6kXKsxUb0Q7kix0n8f6mIuSfuOD+ZWWRqD3QofJap/81p/68bbtPNG2BD6SMLijJMAbM/6xA72p0eUhgkYEW71mwVb7tyJ+/P4D8Exfw0c/H1a+QK9vfQ0bh2whCu9DC0wi+HX6kTV5q1knr6dLEfCB4uuGhhUoL3D7aVXIB0/6x0R5bQoxDZfrvk1fWt6DVoo3WqrTd5ut/O05qcn7V2fmRbbtv35d618TvkDKWrC4sR9E5LzValcXAwe+9M3q3WoG27hNEkgQWEVTZh60pBY5vAizuE9OMuv8BJd6p55Tst3+/t1Rals52w71kztmAjwPA2qdy3y6YHC7GmK1+rhXQ2+jR36kscvto/WFbuHulKQ+04mBZDcodDMdPnK/HiBdWY9Jf14kcKd553bqTP/avjkmttlzfenRRxLTdjHnoM7uXAKW7gRNeaCN3fQxsfBVo8n3cFz0ggcUX5C8Gijd2ur+6ckw4u+fOojIUnKxStTo1Ta146NOdwlk6dUHiJFC2zyYAAsDB5bYAfqfzncuoLEEZUYHt7pUgt5Z+OOkKYLEyXPXaRvx3ewma2t1Rv99bBgA4XdWIA6XKBnO3pnX4QKzZpWxnlVXL17IWnKzCk1/uUeaGbbXajHMt/rflazTEZFiOs3UUj93FmyzjNWds/587LP9YP4QEFl9SXyGreF3pIWz4YAH+9vY7vKptb+flhmZ1PCE4dLyEPp7S8xfb/u+w+zjetTIya4L7rKtLNbxBbDJoc7C5aWxx79s+2TpVwL2L5RveXvfmZizZfhJ/XLrPQymBZ3xml21FfvIXm/uz1tmtuwGuXVTx29UF7XzUoFtFulWKal3IKs1mofXQagDAKNMhtFqsCDQbU75k9eeB0h1A73FAaKy3Z1GvQpwRzTQ1Ru42xbG1tlQC/obGA7mks6u8JVSoQAN07Gyd/IMOrQQCQwFze1K+C/Lyq0lFtSfFGPpwp1HOvB1btMfkoU98uNmY+dL8ERJYfEnHYHt4pdeH+hQBbxHAecw27/4UsDQBNaeBMQ/4oGJwdtn0c3dgpoZ45U0H2SN9Ze1vIqBj/+y+i1UPz6y1sVNgMThxdUcww7yl3Q7kZr2rw4snGfZP3xbiImOuNYUxqJ2WvzWjYZEVi8Rhz/hUVSPO1/PvQ4t1GW/7lOTjKvZ7/LpjouVa2/Mq1Z8TPeWO45W44a3N2HtKYXwOEct4v5qj/Kqy0ghjDfB0Y9UNrfjTt/v9Lk6LXPQNetY1OlZ0oy2pX4cdyNai895pljTFBxN8cx1QJeCVJlMq5/xUiieBRQZCQsmF+hZkLvgeGU8u9+q8H/8ioJIVkSw073Ot0qJwyqnHTe9swc6SKtz+nn8GLtIPCQMiY0DBf7WvihglW3Fr69cYZxKOpvmn7/bjw83Hcd2idZqHkFe6WDToYlMcHSelQVwxYkpWe9TSesOxs3W49d1fcPkr61U9r1LE+ohHLyGp/LwI2PWJZlt4ThhUoCGBRQQp3eyjLcftv6saf8KHncbX/dPdDVDdWUHNs+kyXx37SbyMq5t8UxVw4bgWtZFHe93Hmg4IFjlYantPbjf/ZPP0UjAIi/VdLfu2mAZF16201kZg/zKnjypqm7BkewlOXWjgP0YlrjDnI+z8ftW9Vw4bIL4PH6o/ZU+dtkq5wML8VAongUVlVMtFYlS8Gf3LC4Etb3a6I6uO716+2qZWFKmtjuarfslWcXfTk1ud/zbQqkhqTeK5doPTcs/bj3pioGZ1Q3TeqXAWGr/aeRplNU34Yucp7SrlSBufy7aBG5SHyvoWVNR6dj2X6tbsFXoIFwYVaEhgkYHPXzOHTsN3bTX3xz32T7EVrNjJC7+2uVHu/0pmrYzH+Bd/wmWvrMf+MyraXgg14Ia/eT6ukScsvBdUN7bi64LTmq+6HVFzPOQ7V8dHF5kKMerCct6gjXwYWTjhQ259O+LUdAtqyxQFygtCK3K4UzBZWzHmz2s8LkZdNWn+1o/8BRJYRJAysErvnBr34rYWr98U/sOEb96r+cbqabCUWW8fjggWh2vVNtkmvnWHzvrs+lrz/b5SFJ+vV3XVzdc/rFaGW/+5Bb/5fDfPASr3tXYuMhUipqUcKPcUr8R7fjxQgTaNwv93DfjeU++fqOS3vq0F2PEhsOMDkXFHmKtM2zHd/AuuNO0AAJyt5TP0t9XIoAoJQcjollCF5XtK8XXBaUllnaT6pmpg4yu2MM9q44uX0WoBjvzogwtJwfYyR6EOcajBE1/scQr77p8ID1AdQpjWV9tzuhpbiyvx5c5TCgZ4Lwdapo1mobK+BR9uPq7JuT0RjTqEQb0+eepCA5buOoU2iy8mMu+vIdWrbNXu4/huzxm0WKyS4165kmWyRZHNMQkI8kXrMNv8LeJRrf0Qyecd1Cxja5oxWwLMDjy8gGdrm3HygjSHC19DAosIUgRRx2evRNJuarXg4f/sxGNLClDdKDNcdocNgASjS+lVlDawSHbpbqlHH86DMCaUusCHJOICHjAvxyDuOO4NWIm7An5AMFrwzeo1NhWzN5TvBw6tEExu5g+LHTVWkBarH9yoJJwbY+V+L/uFt7TUY1bASjwY8J1qK/tLXl6Lxz/bjS93SVss6cVb645JKvfb/+3G0bN12F6sngea23t6YgtCuBZcZt4FzjWbustzUewltOsT98+cInyLvFtHfgC2vSvpUqP//CNmvr9VND+SHpDAIgPFE4vICVosnkOMu51OV+M1717AGeYtKtdDDHltdJV5O8K5Jlxh3mH/rB93Ev0r19hUzB1nbX+Wu0ouYGvxeadtIydKdwOF3wBnCoCSLVi8uRgvrTwo+y5ckdMX65vb8OHmYlQ28AtMWqwO/UxD7hHDqfsbzvN+fKC0BkcrvPOi6ZAldx73YoK3WoD9S23ZoA1Go4+cINwFFIUnbJagSbLIyO7sxbM5pyRPlUZQpFsR1LVhEWbF3lKM6C0celpWYDoRTHXlSMQFnIV6oa6bWi04X9+CVMacVxvNPnBDVDG9uolHwInj3EOndzyO69/6GfMCziM4wIRh6Z3teb6uGREhAQg+5BDVuLkGf/p2Hxg4p/1wSROigllzxb5SfHc+HPWBJZg7Odurc6jT/TydxOX+Gipt2sKUXPGzOpxWqWyh7yKAn1MXGnDv4u24d0ImbhvTi7dMbVMrpr5uW3EXXck8hor3hFd3X74PqDho+0kb0XkuoU5zpgDoMcCbKxmWU2puodSdBba/L+uQNpXj3RgV0rAYhPmf/ozffbFH+wtZWhG659+YGbAGAXBU+XkwjpPgJfTJLyfwv/yT9iy5dg5+r6CyxoADRNvgfH3naudMVSNG/t+PmPTXdc6FLK140Lwc15s24Yt8NQxcXSolMEmV1diEozarFRbGhLVBKiJ2BdH4JFv/CRxe5bJNyIATCjR0jAm6igeiDYEwngocAJ7/thCHy+vw5Fd7BctUOvS/L3eewslK33l8eVww8PW1C8eBFh/WzwBIdWu2WhmOH9wpOzzGyn0+3pbUCRJYZMDANPMI6MVVYMPhTs8TzdTQDoOLdwN0+4vHOX9U12I7l9t+fr0e3jT66vDXtz/H0uom5wd54ThCuWb0Njm7WnojP/D2Dwkn+tfGYvxrYxGs/mA4AwDVnYJdBMRXsR13Fd7Ckxl9579truIOk2VpdRNMsOLhgGV4OGAZOJ68VGJNpby3MZvB+cltvN/K3dY4XdWIL3d5JxBzKmqYXO06nLBKt9FTI0isrxHS1JV5Mt5nDK+tPoD3l67AOxuOIf+E9O25PUpTnfBgxGYngUWUzsf29a4zyHlqhZs0q5Vw4XjawO3/1DiEuYebMGLPlYjcAZhfz8T8ug0caWhtQ0OrRfYKTm4fl5MHa8W+Uuw+VeX1OfnqNuD0V4hCvfOHNTavD1TaDDcrG1pw1wfbEIpOIT6mtcK23+9DgS4R1TZN0tE1PrsmAFtsJBdGNGzy4kT8T0atbWwlMdf04pH/7hL8zpPx+fb13yGBswkfG4+K52bzCWIBLH0ICSwyeOLLPWAMmP1JvtPnaryXYhl7uaYqm4pcM2Qmz9KoFh2ID3bS6nufeQUmmXgGD8Z4HxzfffEJPTKsMXyHgFQhGoVT4WX3n77gFqNCTm86VF6L19ccEfzecaX+1a5TOFjmPtHyEct12E/x16bkfL3bZ2OqVtjeszIfbM+2Y6StqBCrMd1Z1eC5b/ZjxqJNaPZB8LyqBudJ3tFLSNBOiuOQzetFqfNqac/n+l7fARJYVMbz3rz3kg0DlMeSqCqx/Xiq4vHNwN4vJCUtYy7/A+q8Wg/8ewdufPtnWFVwg43gGjHMxOMKuedz2xaBVGnTpZjrYb4eUlyvb7Ey3PruL1hd6H1kT28oOrQHq9+ej3v/Is1lUggxgb2DksoGVd2IBTVwMlzYDedFpADljpCdZ2hu8zSGtDfaqR227TAebY/aLP75OPaervb5O+IRSUHtXJ5Ka6NN2+7Q1pp2waoSLc8uCxJYVOZsXRO2FvG7HaqN06QlNvFa2oBdn9rC5PPS3uWLNwDnjtjV5rLr5NVRzqwuLMfOkiocFnDRPFFZj5n/2ioQeVICVgtQWWTbInAJb69G/ZVOYFUNLbKt/k+cr0dj2RHsL1V/L9sT1Ts+AwBcbhZ3m5QqG24tOo+fDpY7rYRjUItRpkOC542DbcLzpulFtZuimXi9uKjKGKEOrny754z4Vt+R1bbtsC1vdm7ZuaC255a38YA08SA77aCtZ9bO3Foej9lpM0pvUTmnmQMG7E4ASGBRBccB7d7FO3Dru79g4xGVjU2V9iDRaI+uS/ZWwa86uMh0AGnwvVHt0l2nceBMDb7e7W2QK3nTGifhEKHHY2VAZX2zx8HO0WvnZGUDFm85jiXbeSJbnj2MmeYfEQ93oYQBuMwsvG+u1JhSriDgVr6tBRFlvyChve6u35vRKaDd+u4v2HO6GluOdQr+9wSsQi6fpqwd9+84ZHLStCRqGpp6g1Ttkj/yGV8/FqJMm/QJrjy2pADHzzlvB36z+wye+0a7BJyCXkKOdok80WzbrFb8cdk+/m3Quk5NkSZaPgN2SxJYVIBvdbNJocEUB3HXT6dOqoNeOsd0CjcHrEdDS6cw5MtaNLV657FV3WQTxg6W1eDpZXvQ4lF13T6heTmn/XSwAv/+5QS2eYi4+eflB+xBAwtLbQMTb9CmfV8ikavCNPNW9+880CrDs62Yx64DkH/7buWPb0RU6S+4I2A1b/nBpmK3z6raoz1727WHmY56/L4rRN4d1ibs6iyFhpY2dRN5uiHcxv/echzHJGU+d+4AQWjFzeZ1dq8qq5XhcHmtLCPfx5Y4C/eP/ncXFv98XKQWGo9uPIvK3Ser8MP+cv5tUIf7Fbr1oxXy2sWRpbtO46eDPN52OkICix8jqx82uk+Ynl8/6SffeMQg1uwAvsw/hWe/2S8Ya+T7vaUY9vwP2Hz0HFbuL8N3e0qxZLv8PVpXjYlQWxacrAIAbBHZJiw+xy8o8BEM6Vb7u05eEC/kUPnd7fXlIwp1MMFLt35XmxAPUoiSHDnCvdb9ehuPnsPFpn12rwyx8p1feQ7D7koSxL37vI2bMqRNmVbif/mnsPqAhjYdAg/kQFkNnvl6P77dw78N5Ilc7hjSuHN2r6rnvyvElX/fgL/9wL9lyIdj3CSpaLIlJBKttkFhpN4pr27Af7a5j29StYp7Tlcpur7akMAigteKC77+4EHCEFMLK3pVqkqA/I8kFbVYmXsOCZ6qOX7kMU6EjAZsaGnDHe/L0x648pv/7cbqwnLsP82/F/xsu9p3e3uMAw7OQbek4klYzD/BLyS08qzoOVjRm5O/inELBS5Qbv1hdbbsohtP4t6AlbjRvEHShb3PbcjwYMB3rh95RFoX4z9JFFeP683OrryVDS144btCydcX4/aAnwDY3q2/rTrEu1385a5TgqkTPGOrnLfj1AWvrumCw8WlttVZWWHfnU8ayDmPTx2akTfXum8ZGjmT9qkLDdi0eb0qOXs8Pf/3NhQJfpfJldq3af0BEliUUlcBs1WFl94LjlTU4ULHZOtppKg4IPmcn249gfc3FaFISFXbfh2nq6m08Nh45JzirbQOmgRcFz0106kLHla5MiaEz3d0Bu1yFEQLeLQXQ7kijDNL2TvnHH5jtvvwoaVlUq1tAk/jpD0ff95sWbG3FMfOqW/Q+NXOU3hj7VHc+S/+AHEXJAjOuw8cAs67T8x8XWHJ9hIn24fSauO4LPtq6/hgeS3v1p+vjZT5kh/e+a9t2HGiEl8XeLDF06CeJZUN2HLsPBJRhWvNmwW3aY0ICSySYYhBLfh6UN9zAg+8qVqSe7C3rC4sx/AX1O1sHas811Wg1++NjJFBbjAzT3jabxb65q+r+FXKcm1YolCPXO4ofmVe47Qa5LOVyTHJNxzmU+cqmQAUTR48Bze0tKGmyXXbSr5CvaPreFo9rj98Fn9Z3imQdxT1VuPA4G4b5XSu5jqgvND5e55GYIzhm91nnKJXn3TJNzOIK8Yd5tWI5Brs1xZj7acvovLgBvGCsEVVdbR9WOqjTMxer9glPLR4VCMODt6DPMKbK1f+fQN+4dmSbWyx4No3NuFVGVtJqlFzxr4N3Klt8l46iWk7h/5c59aPCVZEg1/o/mrXKTBw0jySDAYlP5TIxaZ9GGU6hK3WAdhiHYQ2qxUBJpu8F910GkHIRAsC7eXjGk8AW5YBCTmSzs/bVR3eX28MpxhjaLFYEeyhTF/uJJK5SoBd5PR5sKUeOPqjvXK+NumNRzWCz+0Hki5S2aDY1fak828hI0xZV685g3sDVvB+tenIOQQLnKyyrhltieFyruSEkdxaNx91nxzKa5qcMpCr9UTv/sCmrZjsq6VX/mJJCT3LappQJKKlucJsc2mdaGoPUifxGZ5zcueX3pItPtoecVyxy7J5EuzEnfd4p6s24OQ2AFEeT3vyQgNue/cXt8+/2HkKu09VY7cGYe1F2fclgCzxchxwsUncsDq15TiuMtehti0Up5GIG80bkMadw9eWCWDoo7y+BoE0LBLpiAEx1mRbze0/4yydTjc5vxBpde2d7JxwBE+PqDCiP7akAP2eWukxXsk081aMMB1BcLXzPmfP6nyBI9xxXDu7yRZeCht3BqxGZPEqIP9DYMeHvGXUdozyZGHE+0n9OQSjQ43fXpnj0kObdx4LbD1eKXkFzHfb3+2Vb7zYeSJ1G7LF4qwpKz5Xj7/9cMipjnoHW/NamyckrLgk85PjgBSIjrrwHMSTWFDLPFBqnzq3eQdwcLmic2h1u60i3oGuvL/R2ZPN0TtSDDe35uY6pHMuxs4C9+mae8wTHdGdO7Zuh3Du3neAB6PbC8eRCAmG+jpBAosXBKMFzS4DnpxO5avEc9/sPoNEVGHp8m+dPuebK1obnVeDnJd1VPPWGlosQG05b9RRtxfuVD6amuTv0Xs7b4Y1nwW2vYcHzB2DcXt9JKioAWAodwxzAr5BT65zy+B0lXY2Brz3KfCsztc144SLe7NgHAkJz1vICJkX0XhByjl+rgHvbPAuMKIg+fxCtRRMQo14Zhew8VX0aXa2QTtcrl3AMKXw3kmpe5oDjuOZevSWYkX4+JcT9t+PVNTi3Y3CxqxSuNG8UbyQx/dL2mArVMrsqv1qqgYK/ouZAc45rbYWn7fZV7U2es7M7QNIYBGB7xWaE/CNonNKdWF1NNjcWlzpVWTXW8zr3FYCfB346a9d3SOdO7NSOaS5zSLJiuFq0xaM5g4CAFYXygjBfuQHPPHiqwBs7SY09LkKVLmmowhsa38eMm4ypslmWBvAebdS9xTkrYOTAkbAWgY6szKGP31biEv/6txv5AmiLm6/jLkZ6/I+n9YmWzZlj2fzDK9znstZvt9XKuOMElEUWp7HkB0ADq0EAAxt2u70MV9cHV13BGV0jrKaJqwuLHcyMBaL6qx3YD9HDpXX4pNfTmD5XmV9yFcG0MFcC/pa3OMRmTkrrjDvcP6wqXNrLMIhtMCWovN48n/5wKbXgI2v6rr/TAKLLzl3BLC0SQpYteO486p096kq/P3Hw5IuU1bdZLc8d3UBFMKjWzXnPmk43oFj/+VTtZ+pasTb64/hR9ccHpXuK5Rs02lMMNuEp1qZ7n49WuUbFQ4xFWNgxXd4/ttCwUFIr3XflztPCX4nd8iQOug79s2tHoLdycFkklhbL9NBAEAIZHjqeRpwGXN3GRepfkfws1aL1SeJ9RxtgaSweHOx5C0wJxd/qRNTh62bBJZsL8H+0mr8ycFtXCxGkUc4DgFogzcimzcKnRX7SnGu3nnhKPRuOW75OnoJnaxsxGc7JEYAVjj4pHHnMMGyXbygC3lm52MKi4yRT4gEFl9zfIPAKtC5Zz706U64voRSI5Ze+ff1eGxJgXf1U8gPPInFfim2DUj7S11Wobs/80WVnOBr+9DWanywmX+v1xNVTjEs1BFrpAy7jnlftSCMs62uZn3oeaA7fq4ePx4QjyEjJ0KoN8G5gtCKfqaT7dfiu77tzB30qlczBDyzxzJ5c91RvL3+mKzIwoD8nuM6YYrx3LeFWLFPmraytll6UEIlOApdpy4o0DY0XsDcgGWYZrLFb2pqbgFa6p16kVCgRS0VBf25EswJ+AZjOPeQEscFokl78z7Xt7ShXoYtjb9DAosayOn5lcVeh0qWSk2T5w4se2oVqa7cuxnBSdMUycVppeNRYSSvxkLlHVejVsZwrs5zziC14LzIPhPG8UxyAidJ5niiIvOUdd9G5EfOSvbb3Z1aLk9tecAhvkgsPHvtuJ4lvE2e5kjuSrymqRX1MrSDUvpjODxP6mJVPFEpPZKyIwf378QNpg2IQOf2JGNM1v0pxWNvb6wCAPQ12bSRKxf/H7D5H4jhOu18bjKv17J6vPW7wmTbbhkvKcaSMA3NwpqxNivDexuL8N7GIs3nFM4g9kUksHgJA7D/TDX+l38SjQ5xG8ywwOhhszoi03ocKAW/YiLfi3OJ2d0IT23Kqr0P7y4Fq0sgqH1nqvHJ1hPYVVKlyfVaFOa9Ecur04Gr4e++09VYsq0Ey/e4r9CbBbwspAxtQgOgmCtwB6v2l4nmgPIGb1qZ717kbKd1vIeMAbhwwvbjwgMByxEkIyWDWgTt/xK9TBW4zNRpc/WHpXsx6NlV2FnibkwtOHEWezAwbT/k52PncO0bmxTZdxw/adO0ZXOdHmnRnE1YG8UdxBCucxtayznYzKnTNw/wJT1sx1FL5cllXcrQYdsyNIZQ4gkSWBSw+kA5Tlc12vMtBKMFc83LcLN5PdYfrhA0JuN7pyeY3FerruWkRhkVY9ku28scIxBYiA8VjNV9yhmBQU/rlcj24+rYfThSUduEGYs2OYTZV34Pdc1tsLaPZJ4G7qsXbcKTXylLsKfV6kyqt92RCm29aixWhoraTgGZMfe65XJH0atKQtqJgv/YftqzpVsYQ0l7nqFoeKcl8ZbtxyvtbeeoofvvNptQsGiNjJANEtz9391QhN2nqvH8t4WiZeUShXpcbN6Hy807VT+3FAS97BQh7Zw1Ta04KpJk8sUVB9WokOaQwOIlfENwBlcGjuv0iBBKJMfXzeI48WBUAIAaZdbpTa0W+z51pkm6F46nKUfunrpatFqsWL63FIWlNThT1aiZN4H8DRh1+fmYzQZIUiJDifxnWwm+yBc26nWns21rmlrxh6V7hTNQcx7/BCDT1VkhNpsSac/QU6kL9S1Yc7CcVwPgmGDuXF2z23kmmwuQVrMbiaiSdk1LC1otVnwkmkHYhhY9/+Z/bvG4wnek6GwdNh09Jyv+jB2XBnDNreNlgAWnv4Kg3RaWauOOhoup70SSTK4Q8Zyrb27Dv7cc1z0ZIkW6FUHO6tB1YmviUVnXt1hQ06hAtVvvbOSYjPOSXCoZGFrarJLjT9Q2teJsbTMSI4PlBfFQmZqmVkSFBAp+f6SiFkcqOoQ9TzF9bYjVWm/hRCpqtP7pSu80D39bdQj/2crvNdDYYsHh8k7hO8+0DQHWvl5dp4OAJn7BSIvxnbn85TgZPf9dIXqfrsbe086RUV1DoK/cX4a4sCDe8/Nt69i3hJwubcWGI2d5Uhzw0NaMoLN7bfGhwH9dLTh+vgFNx7cjBMA37RPiHU+twDy5s4rLc3R9rkZya/YWvlxCmlxHw/GrsqEFPx2swFDNriCObA3Lhg0bMGPGDKSmpoLjOCxbtkz0mHXr1mHEiBEIDg5GdnY2Fi9e7PT9woULMXr0aERGRqJHjx647rrrcOiQDvkdfMBfvj9g95rxllA0IQr1SMQF3BawFtjypugxpy80osJjHBfnjn6wvBafbjshbcAUQchLZMn2EpTXeLY1WbKN3/3P29eyqsHz/UgfHOUPosGcBNdbH8Y48FZNXV5RhrvNq5zsATp4aaWzanmAqQQ9yn/26jodmNtU2NI5Ij/n1gzTFjxoXg6TxfbcjvGo1RNRhRukBADzAO9zOLkVha5edTwwADj4HcKKVuEas7J29kQyV4mRnPOYXHyuHv/99D1Vzt+x6AhHI8CUu4Z7CsMAMM23hgltkC2w1NfXIzc3F2++KT5JAkBxcTGmT5+OyZMno6CgAPPmzcP999+PVatW2cusX78eDz/8MH755ResXr0ara2tuPLKK1Ff79s9WzlIcU3WhKZq/DrgO9wbsAL9TNJV+vUSYjfwhZo+V9sMx9x/N7/zM2qaWlHryROpphTY9xXQYFsZ83l7TDbtQllNE/673bN/f0OrfFVuP5O6MQP4hBhfDnfe9qpD5RK3GWUytHEHYrlaXG7e6RbnZzNPtu3ANm3qwaf8rG1uw/4z1djgkryzsUW64N1x2j6mMwjlmhFRJ+zyPjNgjd2oUyl1TW32d6Xk4E5J8ZoAAGdtXndp3DmnyMliCGZkF2Ci2d2WqbqxVTTwGx+uY+XyvaXoxZXjgYDlGNuw3mNZKeSaVI5kLJFknMdwzst0LH6j39UP2VtCU6dOxdSpUyWXf+edd5CZmYlXXnkFADBgwABs2rQJf//735GXlwcAWLlypdMxixcvRo8ePZCfn49LLrlEbhVVRVEHUjir8S4CTnXGxkjhbJqaxlYL9p+4gBGMwaTAwPFP3xQixeWzE5UNOFJRB649gdauk1VY1VjmOYx8/mLb/w3CmiQtBpSOOx8mcm5PWhSlQ0ajihmnlSK2L+0tZlhk+at43aIdj0lgNcz3sVCwvcPltcjtGSPj4u611moyYYwDxzFsPHoW9c1tuKRvInZ4aeMjx4V37SHpwo2dY2sRgmY0OWy/vrVOnXe5w44vpVWObZU7vkry2EHHmGHXeHuJlfkiKIJ/o7nR7ZYtWzBlyhSnz/Ly8rBlyxbBY6qrbXvEcXFxgmWam5tRU1Pj9KM3njpbi8UKi5UhkatSeBH3q3y+4yReXnkQO05c8OgSKDbgrj7gHvRt96kqB82L7dqd6dBFaLzQfl3PV/ZVbiUhXBNZumK8dY94KDZHrxW1CbUKaBSa6xDG+L5T8HytbYg/ttT74+VeTucZY2e7YXWASbmRsLdYGRM0yN6+4Xtcacp3Ky+IDu0pltRwRLsGRK2261gAuebgkcsyiclP7de1qrc4krU73JVD85eVlSEpKcnps6SkJNTU1KCx0X1ytVqtmDdvHiZMmIDBgwcLnnfhwoWIjo62/6Snp6ted0Dh+9b+RjS3WfDWuqP4l0g01WScRyo6VepSJ52OSJs/HzsnPeQz5Lk1B6MV95lX4BKTjBgqEl8ovngOvsSb6J5WJj91gBJ4hSYPA4ej14oaOGqlIq3V/IX2fYm8Fulh2iVRIz/dghJKVUpAqdSTO8Csn5B8pqoRp6r481htPnbOrtlVwjXmn51C1zvDgLULgQptXG19EQfKG06c529zX3CX9SvgpLDb/TSzBJd8H2A4t+aHH34Y+/btw5IlSzyWW7BgAaqrq+0/J09Kn6jVgG84cZtU2sf48hqbRkIsHfltAWtxS8A6+4v88S98kw7/JMVXH8folHxkm6RPBrmmY4jkGjDUVORRihOLyMnHoTKbKliOcHiL2V316ktvgmW7TmPtIfGw9HI5KGB3ouW9qTY11pxBBI+GRcnkXVhai6VCK08ZKz2pRdXaTOC73hkZwpCcdAZq02ppj8+jQp87KxDyIJmrxEUmW9h616vY/94vV7Om3VavL9AmVos0glirLdedAPGc/jsYgA/cmpOTk1Fe7rzVUF5ejqioKISGhjp9PnfuXHz33XfYsGEDevbs6fG8wcHBCA4Wd2NVyqYjXuzzKiQYraq4J94f8L2s8pX1LYI9QurgdaN5A+BmCeMZb17TIIlJHdVk/xkBzYIOqDW0na1rRrUKnmCekDxVFLpnQf9u9xkECUUNrfKssXRGRoupMLfxCWknLzTYPpdQFV8I30KCpJgXYwAsiEYdqhEheg1P0YhD0CHMiNyrxKaYY/5WWkHCjfpWC74uOI2hEuy8mI7in+YalnHjxmHNGue9vdWrV2PcuHH2vxljmDt3LpYuXYqffvoJmZmZWldLMhuP8EeXlTOcqPpwmeOv8s7sKaaMrOHRw2XdAuBJiBHTcXGjroH6m0pgsTKsPlCOEdxh3GtegUjON+nhO3B81kFcK55auhf7zlRj+/FKbFMQXffDX9Tdcqls4FPzOz/ZKe02ECYRfYZYn/y/L4Tt4OSeS35BMZT1Zj3fBbFQA4FcG2YFrEQSlEV1tge987LNKxta8EV+p2ZdUtiAjmvyfBaKJlxm2olE6LtFrZQ+nPx3mjGG4vP1+Hq3b7dg5SJbYKmrq0NBQQEKCgoA2NyWCwoKUFJi275YsGAB7rrrLnv52bNno6ioCE888QQOHjyIt956C59//jkef/xxe5mHH34Yn3zyCf7zn/8gMjISZWVlKCsr47Vx8TVB1kZkcZ6jBAqh9RpJzipMzbgDmnlLqHAOTjWlvjMdhoWXmPcgiquXnJtHK2qa2vDm2mPYfOwcfj6mJGWDlKep7Mm4ysmDTcUYzBUhUmTL0mL1vJbbc8qm8ZL0HqigYBFLKioFvteQdytAYrDGc/XNogKGVsjZUvZExxaUHYnP6vs9pTilwOYooK0BE0x7EdVuy3eFaSeGmooUG8/qzTCO32tLb+cGNZAtsOzYsQPDhw/H8OHDAQDz58/H8OHD8cwzzwAASktL7cILAGRmZmL58uVYvXo1cnNz8corr+D999+3uzQDwNtvv43q6mpMmjQJKSkp9p/PPvtM6f0pZuz5ZbwBmaR4E+w44d0KxKPmxNo5aJodJucgzneJ0YSS3vFR39KGc1K9ihTCAbhFgltnjI9zsiihM3+QPkShHvebv5eVxsEVPoFiinknbjGvc/rMtZ9Ui0SE1mT4FXj1/rfjJIrPKe83Uu15+N6xQabjvGXFYhn5kmtM7mOlkO1eR7+oanTWjEh9rmI2gWL0rvgRo02HcFu7PVw817nlq0eiSa3516Zir2LmGAnZNiyTJk3yuFp3jWLbccyuXbsEjzFy1MHzF/iFjtMX3CV7X+/sBcDC+7uReG+jezRUrQjmWpACz/vvUajDHQHyo57q1UN3nbyAzPhw3Yzexpv2I0Li9pfkQGfthHPOmoFPtrpnKfakPenJncM+liXpvVOyJRR/Ph+PrTgLSLDZUIsmnoCJfTll8Ul8QZbJXRv9r83FeGRyjtvn/Uz8jhJnqhvxRf4pTB2SjHAP1xJ8pjzdgc/LJaLJFqfIMbFjBw8FfO3hysrQa7qrb2nzHD/LDzCcl5C/wBfiR3DglCnHaGVw56kaal/z52PnsHK/96tyIeoVuhKnqeCSqQdj2z0qpFCm0hZBH+40+suIGizkUq+Vx0tH3dTtuwyub0pQc6V9FS4Vo9pjOeKrOsoVZAHgVFUDNgnYD3YgJ0hjgoP2RAh/8CSSgtbeRnrqF0hg8RK/lFQ9vI+jTIdVvdS245U4KDHTq5z+v3yvNtFbjYxct+AlKm0RzDBLN2oFhOMGKY1J4nvceyTfKlxLTMxdde93zagQOVvPauCrsAhavA+ST2nczQxJULZmFVGrL3gj6SvdEop19e4xKGc8RPLtbpj8ZvTxrp62lbnnd2EwV4Rck/i2Y4VOhqneEsSke7zohT8LUEzFkMahggHwbAzljmGceX/ntXku3dQmf/ze6uB+7jmxrcp05Ui3hPdIUWN2IGSQpxYhIi+lMsRfAKVZNhKgLIaK0cys+nElyJGR/FJNSirlReT0dmJrarOIGpNPMe+UlO5CKCAfP/w1nmByT/6nBS0WK4rOuUeh9mVgRCmMMh0SL6QCct99sdD8AFBW24S1B50N2j0tFD15ioot9i4zC9tvdlBRI1/g2Hu6c0zzdf4kvSCBxc+Q6pqmdiwBLY0+xW7Jwhg+/aUE3+3xzr0cAO4IWI14EaElCvWGiejoSGOr+2A01bxNh5p4h/9tCfEz2kcT9OpC95xeABAiI86II4Ku/k7PxVjCkA3v6rRXQoBHucIfn6eomnxj8PgnjujZU2hLSEWuM2/m/VzueH2VeRtOsUTe78qqpam2+WIJ+Ou8UVrViHP1zTgnEOZbKncGrMYRq3AE5StckroZBU8JLf2B5Zt36l0FADYbm81Hz4uuRvV+T45UqLs9K8XV/1rTZnxtvVjV6+qFFM9dvZ+xK20+yrrZqnd2T4WQwKIx3mxlpHHnkMbxW8jXexl7YM+pakzMSfDqWLmoEa/CETVfMU/bKGGcf9k5EPL4X/4ptHYT1bkjQskKHSftTFMZeliNGeFVKy8zx3ElDP717td56S3581ElQSb1hwQWrVFZoHX0kpGj1jxT3SgaiGskp47K2+jhnYnuiRRhpaHVIikopCg+XsKv3Kc8hMCvXLSyRtFCKLVf44NzsVh5MOA71a+hJR0JY+XCnzrDfyAbFo3RUgEndx/2B4G98Q4mmn1jVEgQRqapzYJgP4t0Wi7gUu4Z34kkSoQOuek2pNyV2gbM4037VD2fErQ2ztYz0CsJLN0Io+aS0C2RpAMXmQoNaXCrNb5M6eBPDDC5R91Vg2BNve2My/sbi73LebR2IRLq+XPjKIEDYBLKAu4FY0wHJZdt9sKFmbBBAosP8JQlWdF5NTmr77kgpqZ0lGg0asuLTIWanNdfucK0Q+8qdEmmmIxhgOxr6lvaDBX0carJPVS/GBNNe1S59iFZLvaEIySwaIweW0KDuGINr+p7nOQVneqwT4KrZFdC67g+XR2hfhrq44i5nvD1uyRXwdtRXvYYKuHGskzyhaeRKkcDl8uxs52xebpKqAC5kMCiEUJePmpiFXgzrzAb0z1XDYy6rUUQhLoUn6/HTwcr9K6GYdhzqnstmvgggUVrNJxf4/wknD5B+DOFpd3Ptsko7DldpXcVCBe08NqSCgksGqPnwyUIQjlyUxF0FW43/6R3FQB0HVs9QjkUh0Vj8k9cUCeuQzdm8zH/DnZEEIZERBKQkqPJF9DwKQcOUVA3cKeRIIFFY7YU8UeZJKTjlTskQehIdzWKNALdu+kZIjn/TuXhCdoSIgwD2dMSXQXxvtz9OjsJcco4UVkvGq3cF+g5TpPAQhAEoTJn6zy7L48zQNwfkh/8j/9sK9G7CrpCAgthCJpaLThR2XX3XgnCkbGmA3pXgfBDxKLkah2WX29IYCEMwQoVkrcRhD8QAO8y7RKEGFPMXTuSMgkshCEg7QrRXZhh2qJ3FQjCLyGBhSAIwof0NnnOmk4Qnmhqs+CkjrGB9IwtRm7NBEEQhOaQka86vLNe/ezVstDRTYg0LARBEN0QcjMm/A0SWAiCIAjtIQGJUAgJLARBEIRxoYiShoICxxEEQRA+xrcqD19dLb/kgo+uRPgaElgIgiAIgjA8JLAQBEF0Q87Xe04fQBBGgwQWgiAIwgeQ1S2hDBJYCIIgCMOy9Xil3lUgDAIJLARBEITmVDW26F0Fws8hgYUgCIIgCMNDAgtBEARBEBKh0PyG5ag1Te8qEARBEIQhoMBxBEEQBEEQHiCBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgJMHI6JYgCIIgCEIYElgIgiAIgjA8JLCIwCj/BUEQBEHoDgksBEEQBEEYHhJYCIIgCIKQBLOS0S1BEARBEIQgJLAQBEEQBGF4SGAhCIIgCMLwkMBCEARBEIQkdMx9SAKLGHo+HIIgCIIgbJDAQhAEQRCE4SGBhSAIgiAIw0MCC0EQBEEQkmCM4rAQBEEQBEEIQgILQRAEQRCGhwQWgiAIgiAkQltChoWyNRMEQRCE/pDAQhAEQRCEJChwHEEQBEEQhAdIYCEIgiAIwvCQwEIQBEEQhOEhgYUgCIIgCEnoGDeOBBaCIAiCIIyPbIFlw4YNmDFjBlJTU8FxHJYtWyZ6zLp16zBixAgEBwcjOzsbixcvdivz5ptvIiMjAyEhIRg7diy2bdsmt2qaQG7NBEEQBKE/sgWW+vp65Obm4s0335RUvri4GNOnT8fkyZNRUFCAefPm4f7778eqVavsZT777DPMnz8fzz77LHbu3Inc3Fzk5eWhoqJCbvUIgiAIguiCBMg9YOrUqZg6dark8u+88w4yMzPxyiuvAAAGDBiATZs24e9//zvy8vIAAK+++ioeeOABzJo1y37M8uXL8cEHH+DJJ5+UW0WCIAiCILSgKyc/3LJlC6ZMmeL0WV5eHrZs2QIAaGlpQX5+vlMZk8mEKVOm2Mvw0dzcjJqaGqcfgiAIgiA0pCsb3ZaVlSEpKcnps6SkJNTU1KCxsRHnzp2DxWLhLVNWViZ43oULFyI6Otr+k56erkn9CYIgCILQH7/1ElqwYAGqq6vtPydPntTkOmZYNTkvQRAEQRDSkW3DIpfk5GSUl5c7fVZeXo6oqCiEhobCbDbDbDbzlklOThY8b3BwMIKDgzWpsyM5plOaX4MgCIIgCM9ormEZN24c1qxZ4/TZ6tWrMW7cOABAUFAQRo4c6VTGarVizZo19jIEQRAEQegP09GIRbbAUldXh4KCAhQUFACwuS0XFBSgpKQEgG2r5q677rKXnz17NoqKivDEE0/g4MGDeOutt/D555/j8ccft5eZP38+3nvvPXz00Uc4cOAA5syZg/r6ervXEEEQBEEQ3RvZW0I7duzA5MmT7X/Pnz8fAHD33Xdj8eLFKC0ttQsvAJCZmYnly5fj8ccfx+uvv46ePXvi/ffft7s0A8Ctt96Ks2fP4plnnkFZWRmGDRuGlStXuhniEgRBEATRPeEY0zMzgHrU1NQgOjoa1dXViIqKUu28rz1FWh6CIAiCAIB7fvcaYqKjVT2n1Pnbb72ECIIgCILwLZT8kCAIgiAIwgMksBAEQRAEIRE/8hIiCIIgCILwNSSwEARBEARheEhgIQiCIAhCEnq6FZPAQhAEQRCE4SGBRQQroyYiCIIgCL2h2ZggCIIgCMNDAgtBEARBEJLQMzg+CSwidIm8BQRBEATh55DAIgIDp3cVCIIgCKLbQwILQRAEQRDSoC0h40IaFoIgCILQHxJYCIIgCIKQBAWOMzBkdEsQBEEQ+kMCC0EQBEEQhocEFlHIhoUgCIIg9IYEFoIgCIIgJEE2LAaGvIQIgiAIQn9IYBGBjG4JgiAIQn9IYCEIgiAIwvCQwEIQBEEQhCT0FBpIYBGBbFgIgiAIwkZ8eJBu1yaBRQSyYSEIgiAI/SGBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDA8JLARBEARBSCMgWLdLk8AiAnkJEQRBEEQ75kDdLk0CC0EQBEEQhocEFoIgCIIgDA8JLARBEARBGB4SWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvCQwCLCNcPS9K4CQRAEQXR7SGARgaKwEFpyzJqq+TUKrNmaX0MNylic3lUgDM51tIDs1pDAIkJOUqTeVSC6ML4ITNgM/QI9yYGCNBJixIYF6V0FQkdIYBEhOMCEXnFheleD6KJwYHpXwTBQSxAE4QkSWCTA0cqPIDSHNCwEQXiCBBaC0BGapDuhtiAIwhMksBCEjtCWUCeMkcBCEIQwJLCIQoMoQfgCEt0IgvAECSyE7rSyAL2rQBgA2hIixGAk1nZrSGAhJLPfmqHJeY8y7WOREMaHBBZltDD/cF8nCG8hgYUgCENAa2fvKbT2xk6Wo3c1NOWqQcl6V4HQGRJYCMkcYL31rgLRhWFeDEc9Y0I1qAlhRPonRyE00Kx3NQgdIYFFArRvauMUS9TozLQVQHhHKgks3YrgADPGZlAKB70YnxWv6/VJYBGDo8kUAKpZuIZnJ4GwO6CFcfWYTP0mr7WWYbpduzuTEBmsdxW6LREh+tpJkcAiBjPeZJoSFeLza5JBJKEU8TdJ/rsWYNJvCNvNPCeVJIGGINSFBBY/5JbR6XpXQWW6tzAUFtQ93Lq721OuhG8Tp8oNQljNwvHvtis1qo1nJvRJwK8v6aPLtX1NbCglbFQLEljEMNiWUHpsWJfMbbTVOkDX6+u5UicIpfibBtRs4hAcQO8cIQ/qMX7APmum3lXQHCvrxl1Rp13H1OhQROm8J02oQ3dK8aDHLn0LC8ABK3lJ6k03niX8hxMsSbTMORZt/z0jXksD2a6KPgO+f62LleGphXdZ5cUQafGD6Mhqaz32WLNUPR8hnbct1+Cswxgri+70kmsMCSxdhHXWXPvv1+b6X+RYjlMuMCy3XCSr/N3jMhRfszsSYFJ/BF7v0H+7Cr7UengjHPnbNpJeFFlTvIoRxEdEsPEFbSNDAktXpJuOQ8dYKvZYsyRn/Y0NczSG06fR/FGRf8uormb07f94Kxz5w1bSZstgvasAAKiHcu/MKQPEteWEMCSwEF0GBuAn6wi8ZblW76pIxiYm6TdpSLEHOMPUCRbVBGnxM0wch5AAsYim3U8q764ake2sv95VAAAcZj0ll11tGcX7OW3XK4MEFgOi1M1VCy8ifxosWyHdQK7A6v+uledZFOqY/IivUsWk0yxB9rn5+NYyzuP3clf7ZoN58Lniy3eGgUOxVbtcOzTRyksdsZ9l4LW2mzSsTfeEBBYpaLQANgvYAtwwPE2bCypA7mRy5UB/SVSm/6Qn1rJXDEiCycPkfI5F433LNHUrpQFn4aXRIiGJMsRji2WQ3tUgCM0ggUUHhqbFoE9iBG4b1Yv3+4SITtX5XokuzVrtRQ9Ni/HquKzEcL/I+eHNKnjq4BR16yDh0YWJJn2Tfx9KRLUD1t6oZ+pGXD7JegAArBJskOQ8t3IW63WdjISUN/y8j4PVeYsBA4h3S/zNVZsEFlHUX4HHhQdhxtBUJIrkxFjUdj3WWEeqfn05hATauog/bQnJwXXc/LxtEj4Sif7ZL0ndScGT9gSw1VGL8Z05/Ou5nHv9TrFE0S0euexi2VhlGY1/s6ucPv/KMtH+e06PCADyosi2oVPYcza0JgCgR6TvU30oweiyzirLaKe/L2pPGDggOUqT6/WMCUXfHt6NSc3wL68lElhEkfZ6mDgOYzxoFMQmJT4s0D+V+vBeClanBrcx4OMMEnAB2gwsQpg44OaR6bhhOL9Rn9BqtCPomz7CpDfThphgZsIB1hu1CHc6e4lTHCLbOaRqHl1Jj/XP7M7rNMpLxAGYkZuCOB0EOaONDoNSlG9ZrraMxAHmrLXolxSJ+y7OxJWDtPEQumlkOi7tl6jJuY2GVwLLm2++iYyMDISEhGDs2LHYtm2bYNnW1lY8//zz6NOnD0JCQpCbm4uVK1c6lbFYLHj66aeRmZmJ0NBQ9OnTBy+88AKYQfSGUmrx4CVZGJQq3OE9CTNGJTU6FKGBZkzzdgtExvNTe0tL6jaAETRHDEBaTCh6xYXxft+h5TIajm2npuZCitF4IeuNKkSodk2js4fJDxq3uC3P4/c1zNbfwgIDMLK35/dF/7ekk5RorTRCyscgoUVmZHCgQVOqGLFOwsgeCT/77DPMnz8fzz77LHbu3Inc3Fzk5eWhoqKCt/xTTz2Ff/7zn1i0aBEKCwsxe/ZsXH/99di1a5e9zEsvvYS3334bb7zxBg4cOICXXnoJL7/8MhYtWuT9nfkYscduUjnY1h1je0vykqhk3m9fdJw+u4d/TAyOE+huiQN8xzFGVgb1SdSo/WUIlH0dtsFs2kIOFYixf9Y/2de2Exy+YpOA1GGyj+suVCHSo+Beh1DUQpnG6YhVuquvWkSFBOKecRm4cYTvr93d0VuJIFtgefXVV/HAAw9g1qxZGDhwIN555x2EhYXhgw8+4C3/8ccf4w9/+AOmTZuGrKwszJkzB9OmTcMrr7xiL/Pzzz/j2muvxfTp05GRkYGbbroJV155pUfNjb8xIEXegP5B21T776WsUzszKsM2ACVEBGNijrC76ZC0aPRJiMBKyxiZNe3Em20sb2lk7vY8KVHer6SkuiDyvX6TfKReHZ4eK3q9wanRgs9B7bFDyDV68T2jMW1wCu4el4FZ4zPtwp1jG2cl+Eqo7bzpeoQCqcPtf3ekp5iYrY4bdleHgUMzgmAddS9azfzavc6y8j53RW3D55iwIISIGqLLhUOpSjGHfE13EcNlCSwtLS3Iz8/HlClTOk9gMmHKlCnYsmUL7zHNzc0ICXGeeEJDQ7Fp0yb73+PHj8eaNWtw+PBhAMDu3buxadMmTJ06FUI0NzejpqbG6ceoTBucgshgeUnmatAZ96AOYfjZMggPTsxC7zhp8RAu75+EGTwh+gemSLfPcJwotZar9zJ9Ezw6Tv65PWNkHy/kou6JCdnxePHGIciRYDA3tKc2LsFSnmtQe1bd2LAgRIfy92MxA/IaJjeOh/wet8U6EAAwsrf226+HrNKi/XYIpeqgUfj9iB5oCdLW5bzNAPZ44jBYu83Ub+OUzBhLnM6qaFkCy7lz52CxWJCU5Gw8lJSUhLKyMt5j8vLy8Oqrr+LIkSOwWq1YvXo1vvrqK5SWltrLPPnkk7jtttvQv39/BAYGYvjw4Zg3bx5mzpwpWJeFCxciOjra/pOebtxw4QFm5Q+5FmGSAspli2wfxAhMOHw4zsFy70Bued69Xw1ejn+2Xe30N9+A7kulp9QggVkKtoWU2AdlxodD6tP0JLR9aPFsT+GEl49dyn2q0aWKrKlYYR0rqWxPlYx8GYCSdrdvbfDcMJpMU0pP6qMXtQVdL6N5HQvFt5ZxOMrkxfzyuy0hubz++uvIyclB//79ERQUhLlz52LWrFkwmTov/fnnn+PTTz/Ff/7zH+zcuRMfffQR/va3v+Gjjz4SPO+CBQtQXV1t/zl58qTWt6IZakUSBSTkquA4VDFpk5/6Klf9aXTJB2KFCc0syNA2LMIoHzwct3L4zna5jNwnNwzvKahJlJs87rL+Qtf1/KD6KnA5//Ul0qIe6zVkF7EUfG+RJihJwVlY9/VdGcOhQgobrUMkl/WXu6pBGI6xNPjbZpKsUSQhIQFmsxnl5eVOn5eXlyM5mT+yaWJiIpYtW4b6+nqcOHECBw8eREREBLKyOo0if/e739m1LEOGDMGdd96Jxx9/HAsXLhSsS3BwMKKiopx+/JV1llzsdgkRv+j24RggY/tGrW53wmqbKJIiQ+w2Mhw6X0Q+WxN/Zpc1G0XMue/ePU7dYErHNQqZrnRwZIBHOyhAnkYiLSYU912sztZev6RI2fFu5k7OxtTB3rd1qEYCutztYGE4HGfe359QGgr/mrLUZ2TvWASZTRiTyW+/Ui/DMLm7t6XWyBJYgoKCMHLkSKxZs8b+mdVqxZo1azBunOcgUiEhIUhLS0NbWxu+/PJLXHttZ4K6hoYGJ40LAJjNZlitVjnV8znBASYMSolGdN+LESyarE2YZgRhrXU49liz7OeZkZuKFY91BszylfttIeuNQmtv3DyqJ+92xReWS1S/5jmmk7AZGIpmuLvjxkfIF8o8PZ3l1otQ60WuHyf4pBOJEounvhNoNqbLNACBd0r4pmPDgrx2HR2XpZ2x5ZhMY4Q0cDWqNqI24J5xGT6/5sTsRMy+tI+TfVZqdKimfUItktsdE/S2LfEVsker+fPn47333sNHH32EAwcOYM6cOaivr8esWbMAAHfddRcWLFhgL79161Z89dVXKCoqwsaNG3HVVVfBarXiiSeesJeZMWMG/vznP2P58uU4fvw4li5dildffRXXX3+9CreoHQzAFdf8CrPuuk+8oADbrf2cDGy1izHAT4G1D9qY88Rg8dAtzmuQD6aAZUsuO8oHBpXe8ku70acrrQhAMROIZWOQWEMecRkMta6y1KFXjSF6Udv12GQZjLECq2tvKbT2RkcN1YhooEWbKNHWaEV4sD6RVzscDK4ckASzicP0ISle9XMtXw0rcx+X1XLtluOMoSeyBZZbb70Vf/vb3/DMM89g2LBhKCgowMqVK+2GuCUlJU4GtU1NTXjqqacwcOBAXH/99UhLS8OmTZsQExNjL7No0SLcdNNNeOihhzBgwAD89re/xa9//Wu88MILyu9QBXpEKdsGaQ2OEfxus8T9Ua1ehHXW4XjTcq3TZ7XMs4ujtwi5NsqJ6KuWESMARRaY1wx19sBiEBZY1CA82HsNnuKgfD4WqqQ+FtdaMSlGt3DO1WWBWRPt5U5rX5w2uIvsMebuRagVGyxDfXYtJVwxsAcemZyjm+DkiWXWCW6fqaUhTVIQQsKXePVU5s6di7lz5/J+t27dOqe/L730UhQWFno8X2RkJF577TW89tpr3lRHcy7KjEeQ2YT8ExfQYuncpuoVq3Bij3IeMMpZHIBy/rJe4jqE8w3NrgaRO1kOrEkmILk/sPcL1eqy2jIKdwSsllzel+n85M7JUrx2woIC0NDSZju/wkmRb3vOJ2KEHyiA5HL7mF74ZMsJXGhs8ep4sWc5OiMOnxyVb2hcwWLRg7vgVZ3kYmEmqKGjktqvyxGHchaLpPb7Y5AW0VgOJ6xJ6G1Sb/z01PU3WIbiEvMe0XPEhqoTAbqCxbqkqHBGTkumRYfiTJXiKumCcTewDUSg2YSxmfFutg2S1WhCS0aXz/ez3tgVNh4Y86Bb0fNM2zgJjrQhANZ+04CEHPtnRghhrxRPmiOlW8B8h88an+HxGL6AcJf17yHqmt5BR3wUtRBsAgWNM8KLXFSeJzKO5zd5mDkOYUHyNFbVMuLIjO9jbM0K4Hvj0MjgAFglTDdK3sM6hVF75VAPaRqJG0eqs2UjN16KR/x4KCeBRQGSXy7Jy3cOJUHZQLj7gHcO0UDurVJOoT6c+rl+9OAby3gNz+7c8LPGZyLQbLILJfusGU7f3zG2d6fAMupe++dD02JwtcN2U5CAyndIWrTkRH5CwmY95x8pF5zRpx8ulhFHRoucMcz+v/O5tcoArDoGmSSXWSagmUnUevCM299ZLsJOaw4OM2dBJCPeJtC6bntH+GprSYMFlxEhgcVgeLT2jhPPjxMiwVvJk7ZEy45rXKFH+K69deN2jQh7FrHC30e6q3qnDEhCWkyooIfJ5f2TIPVp6dnuvhwI1TC1kRpJWg6tFmkV81RKqB3jwr3bcmAuv2e3R1tWW2vHe0El9BwNjHvI68OPsxTJVeErd5T1xAZrrtt23/g+8RjWMwZV8HVOLRtK3rOzLEatamgOCSwy6OWnqenVgE/IOWjthVtGyYsw/INlFHZY+6FCQW4RJcc6I/6aFwl592jM4NRo3DwyXSR4H3P4Vz5GFR/15OqhtufdwtRbGSsxmPYVceFBuP/iLDxwsfys0FoyNC3G+YPAUCBEw+1xg3vttarYLzsosHr20ryWJ8WLXpDAIkrnpDY6Mw6X9VcjPLbwS+GLFalaIcwvBCUjNVq6EMfAoZBlYJN1iN9OlsIqeP3uaIt1kGbnZiYzfK0w9taOYWCqhO0RkXN3eF2cRQx2WnM8F/ZAR2/gYEuXMTYzHtcP8xwGXQ+1/HXDUu33HBEcoFlcHknPhgdPnl+ahB4JjQHG/rr92vJIjdFvQatlHJZkGWO81pDAIkpntw0wmdwlfqeSeqrepV1bzX7960u8X41JrcYKyxjsd7H/0Iurh6TaBFaHDMGdKGzYkfcAGRfLPuxrywSnOD5q0zD0TrfPjCJsdvTl2Zf2wazxmUiKVNc1s1iFOCUMtslkXFY8esdr95ykEhfWuYWU0yMCr93W0Ze1FZf+cftwjMtSN4ZSfHgQesWGob9MOx7BO00aBGRPAYJt55OrbMlJisAL12q3ePCErKfHeMrznOBMu1u+kexbSGBRilcqRA82JD7oHWp5/KQpdesW4aKseBxivRA3dCqKtQhvL6GxHduqT49w7SLDRqUAmRPFy7kgpfdVO+SOmj6kc4srSSTD8mFrT7CwRNl1Uorc3hkSYG63CTKKKOUdSmrf3J6gz9PCxfW992Vw1KSoEFwnomHiw214dag0x3G4YURPXDVIpbFh4DVAULjXDcPF9HIymNcabZ0IgBMuY+5qy0hUDhUJkqoxJLCoiBbeAVoS5uPkhnKNP3vFhaHgmSvw4q2j8bVVvvZBbfzt+XZQyHrZf8/pEYlfjemFEemxmDLQ2djXuEbRNmK8jGnhaI/S8Qyl3KmQYC9H4JdSUspELlbfrdYBAscJ1+DJqf1FrwvwR1jlO//gVH7bkiapXjkGQ47G/GzuQ0DurzSsjTsVDsaycmUs1zsLMHkWBa4ekorLJ1+BiwdLj0quBSSwKCWqc8XqzZbQt3Mvxk0q+erL5YFLsnC5BJscORO12hEtY8KCdM2TwftEOR+9NoOuB9LHKDrFcWuym0dDj8gQXNI3UVGyP8k9nROeTOVwcXaC1++JY/yP7B6+deWW0k588Xgc+coy0WMQuvMsijcnlhCX5CRiZO9YDxmx3ZHyCu6Ju4L3841W78cEXW1gZVybBYQAJpNfZn2/KCsOWYmetyuze0Rg/pX9dM9ZRAKLKMIPqCZ+GBDTS/B7KQzpGY2/3Zyr6Bxy2J1+l/13tTUGx6ypOI/2/V9Vz2wwAkOAtBFOH3W8x/nWvs6fi57MQ0v16A9kX+7xaLWeIGMcVlpH83zu3fkqWCz2WjNRFDNOgVFw58VH9Y5TFNPi+mFpuPOi3khrN4z0p3nFU4RTQP4W74hesZjUT57zgJR+IFSLGBmu165jkp52gUanwSF4nbdj+YrHJuLpqweKCs1GgQQWUYRfmIZIicKKrHdOu45Tx0LRFiDN7kSb4Fd6vxT8iQq8GhL75qGSucdc2GgditfabgRyrvD+3DrwD8v1OOkyMdpzzbgOZhJuigFYYx2JiyZeJbsuWqziAgNMiA/vtNnx1XNR+06U1FtL42xAeMy48XLvM7y7awF9N4bo+e5OHSweTsEKE3Dx40BwhOxm6SiemaC/IbgcSGBRi8R+hpyd6h3CVds8Frw7j2xhg6ctjGojof4QKOeMegtxNly3HAqsfXCIpSNMJIaIWLySfsmR2PHUFC9r5d42mQkKt3TGP6Lo+kLMcEuGKc/O5RofxLo4wuQbvbriyZ7FMSt177hwlLJ4vNV2LdoCpS2SZo3PdPtsdGYcJvVLlGRYe0bN8PWAvC2h9rJqLfTCht+Ef7VNEy8YGAIEhAhedXwfCW0ioj4zqZFuXCVIYFGA1eTgZdH/aliDBdzr3J63j2IL5N7mpDbk2wdXU4TQX4MiEwkBqPjvSc379P4JeDpyTIYyF9L7rrsK79wxElEhgR7L/csyDZ+0XWFb6SXwxy1JiBD2RuKLa+OpdQckRzqU8+I5BEsTeE7LmPwCzSZEhfK3k9QsuFlKBTFJeN9vO8alUsThhNVZEzcwJQo9IkMwvHdnQMfrh6fBCg4tCORPuMrTeaNDA92qGBJgxuJZY0Rdl68Zmor9rDdWWUZjcZv0NAqe0NV8JiAUtZDohck6R6nP2ybZI9cmRAQrHgcA4fQgemCcmvgRW60DsN3aDy1hDmq7gCC0xEuzuvcJAcFAnG3F0hFevoSpEfROGA7MsFoUG7bX+n9tl+KYNRUYMAOA+MD0dts1+Gfb1R7LBIpY2fuS4AAzxvWJR0pUCHpEyUstsMYyAgXWPpg4eiSuElBLR4d1Ts7NCMKNlwy3rfQG3yi7rlcOSsLcydI9D3xl9OfJUFhKD1//xCRsWXAZwqXY3XAd59VR4M/hN5iVwpUDk/GrMb1g1nElbsuezuEA6y0aHl/qGNUvORJfWC5Fdo8ILH/0YjdN4Q3DO43A1e+WwnXkbef2j84gAZ9abPX0WR4jH2KcUdaP2G/NwGbrEOm9lAFIH40LdpsH3+by+a/lMmywDMUGBdb6fPiZPgUdg8BpJOJb63hbVEvRIzg0IwiNItlZEyKN5brJgcMto9Px5FXyhOi9LAvrrMM99u0gswn/eWCs48Xa/5ffIzhwoi6VemCB81aYozAxolcsBqd5XvFHBgcixUARQjsQfEQR2i5mJNfDx6R5iE6bHBWCzx+ejOWPXoxBqdFumkLexYCE+8qTGTfmigGdGq1e8fz19deQC3Ix3kjhR8iyYM+ego8sV9qPFGJslnep6T2tGmoQjp2sL1rgrrZ27ebyNCSuFv2cU64LxbqWMQ8qPYNklLzuZhMne8BQshottPb2+L1dfgCnmfW/Y0wUvnt3/SQk0LdDTYZDVFkOUFW/f//ETDebiu4xXbjj2Kxy2kALd+W8QdLdtDsQsx1KjQlFsJSEsjLuZ8DwiXj0shw8PElYs+ioSeyfEoU3bh+OZ2cMxDUqBaarZ84LMH/pvySwqAgz8e9jtwV2DJ7C3WLjE5Px15uG4u5xnicjX+HtPHcaCU4TainrFMAaeWJFXJzNbyvwWttNQLh3wps3BCgQILw50htBop6F4O22a/CDdZQXV1SC8uHslwXO7tnjs+Jx22gBLztvL+cwazhG9NWCOy7q7OM5PSJEklR6xl8mCzGawpUb9Yri4b15546Rdo2J1OSVUoQRVRlxJxCTDhPHiUTNdr7PqOQ+mDUhE6Eh3mWP72Cp5WKcCeiJtdZhnR/2UB4nyVeQwKIA15Vlc/IInGYJ+NnSGXeikkXibJrr/rD7S5ceF4abR6UjwEAGTmLwLyo4/NAez4NrL/O1ZQJWWsagjseIbGTvWGx8YrKGtZTGwNRopMWE4omr+jl9Li0iqu+wBQjzPMX52opIiuwVExaEASmd2yhjMuORLGCQKnUC93TdQLMJ0e0Gw2Lt4ShUSyUmLAj5T03BFQOSMLlfD0QEB+DKgck+Dc3Oh6uG1Jd9gZmDnFJo7LHaco35yu6I47j2FA22bXA9EL9VaW2RGh2M/smRyE+5HaYhN3YatA+5BTUsHN9axrkdMzQtGlcM9KxlOsGSsTl0spP3KAKC0dbHexsmX+I/s6NeREkfgJg5GP+zTMIu1uktscwyAW1BrvvdxjVMrROx1fCGYpaCg4x/Nc2BQ3qctjmJxNhqHQBzQABuvvYGPORBTUvww+sFIlDuJ8twGWf2/J4wBsAkvpIWmyLOIAHIvc3tXGJq/viIYAxKjbavlAemRCE7scPbx3d6k5hQlYwrh96i6PCEiGB8bZ2Ad9pmAGMewCGWDgDoGet7W54L8GRjpNL4q+EwbjZx+P7Rifj3Q1eAS+zXKQlFp+EjNg3HnFzUbRW5rH8S3rvLS+2rUYyKRCCBRYxe3iWYukxmJEm9+dYyDlssg3BShieRpy5uXJHMnWpEYHv6vUCOt/FCnMntye8uLVVN7Q0v3jBEs3OLGSfLGev2sD7K6uJKeIIt6jBfpmuHeonWMS4TCJGa9ddYg/vcy3Kw/FHb/bfB8xZHM9e+pRDFs30T30fWAs2VoT1jsGDqALw6cxwQnoD/3H8R/nTNIFzkpV2eMdDvWZtMnCbaKUfbS6HThwaaMW1oCn41Rlkkd7UhgUUMDys4T0a3jupvd3zxEght2PBf+xhLw1Y2AHLqxiS8TMYa2j0gkB8oIjgAqx+/RNa21Zdz+IXcj+1G1x64aE77hd2zJHsyiL5NaGCJlOeRMH1oCpY9PMH5wx4DPR4j1eBY7bHXfr6+ee2ZroXbR2j7yQjImZT4XJ9DAkwY1J54sIiloMiagi0W/nQIKwKvBHqNBQZey3+BQHFtiKd++OtL+2Bau/3Q+OwE3D0+Q/R8jvjCM7qMyYlN4mHpJexd7N35NOJXl4/BZJEFtGsXDAkw4+5xvdEj0ljvDQksXsHf6Vi7Dlm8S+qnf6DcHPx4GmhykiJlbVvZ7JDcz1iLMGy39nM/wJHQGODiecDIeyVfj5fR9wNZk4DeNuGpyCrNCPXNX43AsPQY5w9dR7OgcFtkZ4GvleL1qlJgD4fJPOeIXrYAaNeP0CcpqRIYTPjGOqF98eFOrSkS6HOZcAC9nCtxhsXjO8tFiAoJxMTsBNwyynftwIFDmsbu4CutY7DX6h5V17EWktB0KFXvpeoRGYzcnjEOZ+48t67JJb2ABBYFeFpZ+smWoGwm5sgLf63m+7DBMhTMFIgfLSPEC8vEtZ4deWdG9lYeKdKRzdYhWNR2vedCgaGA0tgkEYlA73GAORC948PwrXUcylms+HFi9M0Dxs21BSZsR7uuruzMnMv/Urk4OwHfPXIxHp/iHLnX0hGWPs7TZNdOgO/j8ixUY1swNAafWybjKOsJjrP1/56xnoR1DZ6+xmNnA0KwyaruFmpMmEBE6DEPtGv/2gnwrLE4YO1tMwKPTpd+cZlSR6/4MOT2jMb4PvEIDjB5cwrd6Hqh8FRH+pPUO/W2HS+jjjoidCezJmRgT7G0c6j9DuxkfVEyaBQqtu1Q+czu3DgiDcfPN6DPcJ6tFp7n3MpJn6Bcg5IpwVE9f8DaCwNMJW5lHrwkC39cug//tVyGhckMKNun7KLtwlREcADqmtswqb+7ulnJm+D9a6ROjzNxHAanRQNV1U6ff2CZimSuEvOSRQIw9r0SCPYcbdWRjttVGuk2RiA9gDoI1c3nPmk+vp5nrh6SgsZWq10D6zYHhCcA4Rfb+kNLve3v2lLB861q97B8ydOCxbXJgyOAxguS68wB9m1fwTnLWM1shwQWjdHluU+YJzjqcwqD5ztqldpCEwHp74k6CNiaqE1YUAAGpkQBQdLiHhwM8TKKsIKljeuh4tl4OxzN1WHzk5fhTFWjiL2Ww9W1fhlUXyY6V7geoTbvDLEbSRup5DLy8VCfFuaen0cpfpczTEOye0gUTFNytatE/+nA4VVA+hjJh7gKKqLvZvblIgV8A20JeQX/02Ue9tC1xqlGIr1P6XDzYdtV+MJyCdrC9PGE8nbi83SY23fZU2wGq70uknRu5iNBykhEhwYKCis+7/O8V7WVOOWayLCXLa2Ap3xBstFhC8iOB0HtJ+swnGUxWGmxTWZyIjILlXRe8nj3MiruH/2n27YlU9RNN+KXhMba3PLjbHFvZk3IAACME/DOkjR+MsDp2coQhrSENCxeIf1185OtQelwNjfgauY5uyxjfr4OSx9t+5FAsNnk/YNWoHbgOKDFj15hWekLTAEQjcMi8VQFLBvomwbEZtg+yJqM78NasOV8m/T6CDHsV0DZXiA6DTi00qtTyOkBnvSjfN/UIMKeDM9WxruOqkpqBbM0oW58nwT8L/+kk6GoGylDgeQhQNkeoHSPsnoNudmDO7e899MIY96zMwahLSxbMEeXv9ir8NH9loWGQrx7z7+ir6pXzEgQ2zbgx0jih1FeuDsv6o2E8GBcO0xBSHJvb6bPZTgT2henmLv7s+vUZZT2EsRFO+W9CQv/jVphssVqCWs3oOY41JmilFypk9jewICrgQDjJTpUE6EUGrLom2f/1VPLp8WE4qFJ2fyuuI4Cvlp7jBE9gCAhw2Kjvzz8yE0oao10Edg4wIj3TgKLighF93R/rTrN7MTomyTdeI+PeS6eDlMG9MDUwSm4eaQMK3QBOsaLie2DmZhQkxgZjLdnjsCVIuGjtWR0hgqeMu3k9IjEHRf1RlJUiO+XVr3GojBqImRfWKn0EuH9s1Pd/dntEybyvf8RHRKIuHBnzcS0wS4u6jIa1tusvmFBAciM926x03mSTo87sV4YpHGKkr5JkcjycvHm7/B1l4CoFHzWNhk7xMIu6AwJLBogro2QPmlM6peIrIRwXDvMcwTKkyzRloGzQ+3dzmOX5+DH+ZfY/+Y4DhdlxXtMq95RTiod+Y84MEQEByAiOEAwGdzUISkY30dZ5EujOGMZF5kGdVIY86BNdR6tQYI7l+RrHMcZQ9rwYQ4cIXrHhyP/KecIzI6LmLAgHyfv6yJ8M3cCZohkavYGX3SZaCEXagUEBZjwf3fnoY4ZW1PoPxvg3ZSQQDPW/OZSUQGiDQF43zINf8y92ulzjuOQ3SMSu56+AsFq7EM7wLdYz3/aNriaNu50+86TWnlMZhxwUrWqCeLtCtOfUWVLKDxe/ezZA68FmAVI6Adgtf3j28ekAyiQfz6j731d8lsUrX4WWaZOt1axCYLj+AWaaYNTcPJCg5PRsx63b/AWF4QT0H0rxRfP4MN7RuPJr/bg91f1V/W8lw9IwkKnXHLGGytJYPEBSvuwFG3Hx/eNQUZ8uKCIHxuuzIuhlrXHGfBQhoETTNf+x2kDcNsY4W2of909Cme/+Q4nLzRi10lf+0rLXBmFuU/cxnq1/WQaCQyxezZ0MH1oCuZN6Qts9uaELvet6kNR4WTmzpVxz5hQnKpqFH1SrhOgPRtBUqRX28WDUqXmS3K8mpISzuT0iMSxs3Uy62FMzL7II8DD4LRofPfIRPGCXnCUpWG7tR8CAnribk2uoAwSWDRC2kpevQ4/MYfP+FJCDcSqMOx24PROrLFaBY8VysbqONY+cEkWb5kOIkMCEZkYgdPVjSIV0lE4GHEnUFMKJKq7svEePxFMZHBxdoI9+7HQk/7BIpCR1kvDV8EopRrSLzkKp6psfV2t/tw73nP6iOweEXj2Gv4cQ3KJDQvChYYW2cdNG5IMqxUwx6Ta3iU+giOAlGHA8U3KKqkhCRHBDv20E0NuV8sKucBhs3UIsszGtO8hGxbCM7EZwOAbUA/bZOCm7ek9DvHhwbjrot54+SYNMwY7wGcwfMDKn/wv1SUviaJcStE9ba7OPKPS5QNsxqhGXDkaRaxRRYTPvhyFLMNW1vU5JPa3BejqP130Oo5tsvKxSwTLqc0F2LQiqTHeJZWzemihwWnReP22YYLfP3lVf0SrFA13eK8YAPL7FjfhMZjHzQaGzQSG3Y5frDyJNcc/4maL53AGmVfUhsn9vFsg6kK/aUBQONa0pzRJkZyrySgjRyekYVGCMd4dRSjec82aBJzYgrjwYCDIN93p15dm4ZsC2+8VLBZfWiaiGfwD8fg+8YiPCMY/NxwD4K756pcUiUPltfYMs94yvk88VjzWF5kaeh50ge4mCvPwlygmE9B/mu33g8slH5YcrUZGWml1fe33c9FwaC3i6jrTI8hZlVtgtrkHWy3A0R/dvr92WBoeW1LAe6zc1b+n4mZvVQlB4bYfAIjN6MzPRGhHRA9g/CP4TcJZrNpfhtmX9hE9xKhjDfUWJbiMUUKTv1EfvieMXGfXGAPNCIJrjR+e3AfZiRFIiwlFSIBwN//u0YuR/9QUZCV6DoQnBgcOA1KiBL2jAJtw1K3xsb788vYcR7/Lc3fVlFYT9esbHx2J9DHXyDiCZ1BJGyE5qKFqmGyLkRKruiEJlCUK8Qxjzs8vK0HiO27IfR2FcBwm9euBhTcMRahkzzLjtQNpWLTC4VkbT7HmG7Tq7o7bOm0CMvfv8voDQalO5fkGx0CzCfER0vIFyYLn5vv0CMeh8lr1r0Xw0jM2DI9MzoF5cra0A4KjgIZKbSvlAa3HCekTFQ9jH8TOg8uxnUUijTurXqXkEihdG/ahJQ+ZXBliuToMMx31ua2SWOgII2PUOYs0LGJ4sWdipKiwaiP5zrIuhZUzY51lmIa1Ac6xaE3P7080M4EB2ejuvg6o/eaYzfyTNG+L9J8GJOTYwu1rjeQbVd4iT07tjxtGpAnmlpFESDRKgrJtUYP1oP80IHkw0EO60XANIrCbZaNNxezoYji+av+6R8A4nPAaElgI5XRkp824uPOz3uOxtecsVIA/suxZBYKGolgq/ihLhtrasIh5trPZw7JwzJqKdZA3UEaF2AQdn68IeQQp1UUrOer9kGhgyE22cPuGwUOLJLcbuWc4u7juevoKp79nX9oHr94yTFYwSD46jtflFUrJBQbMsNkpeYvanasjA3MPfq/BiGD/3cAw6jDpvy3qKzy95AJfcV1Yx8LbHH2vBPpcBphdupMHd7oN1qFoRDAwapak6waYOLRZGYakRaOuqTNpnf+3tIRRdPgdwLnDWLfKc2S9NgTgW+t4RLm+1kJ9ODgSaKrGDSPScKy5Fx4UcT1Xii5Pyg+0S14L4P2n24zeg51tM5TGXCIkknOlTViJ7vRa7IrmL0aCBBYlGH8sFEW+54DAAa7CCjw3TzOCsMk6BIiUZsS357kr0dBiQVx4kJPAIgXNotsmZAMl57U5tyPBEUDaCLRCIG6FGE6TtsPvA2YAh1chJn0M/hyXqaiKjkSHBqK8QbXTCdJl5gaeG2lhgQjiWkWO49yEFVVxqRdr70f+OuypWW8G2MY8l8CHasjHJPQIQ1tCYvD0QOH+1PFC+3+PE3ppHA1efRnmPiwoAAlaGMcqIUNe/I4wXrdv79tQaHCUPGaGxgC5twIqCiue6NIDsYKZqjU6EwgKRwnrFN7/Z7kEZ1g88uPFY8roAbP/b/yH6q8CFuEOCSyE1ygKwtYV4NEqeeKJvH4YkhaNhTc4BtjzcRuafB/V1Xv4J8Mp7UH67pmQIeEUSuydfDMZ1+ZcD4ybi1bWaRx6FrH43DIZVYHJPqmD4QiN0bsGXtGlhXIDQFtCXmCfYrph5zRi8sDEyGCcrW2WVlhHGatHVAi+faTdMHmt/OMn5iRg45FzolE2PT6hzEuA2jNAynD5FZCI0PXl9xz+h/XGr4Zj7+lqjOjFb9Dtb3AmTtSYdGxmHLYWVyrOdK4GPhkBgiNtqTDMyrWqp1giRuOQCpUi9IY0LBqjZWAkAnh6+gBcIydNvPHkLcm88asRePnGoXj9dnnChlMPDI4ARt8P9Bypat18SUigGaMz4qQln/MLo1sP37V/+c4dI/HCtYPw1swRPqkTf106a+qT1yi6JxAhLwT+C9fZ3J5/c0Vf+2cnWDK+skzE1qTbVKtaiMqZ7wlpUKt7gf1llRjp1sjIrbMclac3g1q4zPD+PWPDZF3Hj+UVRIcG4pbR6XY35K6Ntk9qxlCbi3iWhqkUpCLlnYoND8Kd4zIQE6afBxBzGCyMOtSN7B2HI3+eikcuz3H6vIQlocms3ED5hWsHYUhatC2juJGJac+tFi8eht+fIIFFIzrGIH8wSpMD5/S7+vc2tGc0BqZEyVpJXjc8TXJZzQZa16aItw2Ylcz3yRCNOpmogkqrgjvHZeDj+8Zg6UMTPJTiEBxgsyvRIq1CQngwokIC0TteWGjyx0WQ3nRkUf7+0YmIDFHX6uHOcRn49pGLVXMASI5yj9yryqg6+Aag31XAADlpIBzqYFBjHBJYlCDxmbIuNOpofScBJhOuHJgsKxnh4LRo/PzkZVj+6MXihX1FSBRw8Tz8xzpF75ro4F2lxmCnbU8zmzhMzElEtEi49rvG9caMoam4bYx7hnAlcOAwc2wvzL0s2z7B+gutfmL6ODA1CmMzO21+fLGNE+TwLGMlaMNuGNFTm4oEhgKpw2WlMnDEqHOWf/Q8P8boNixCgrSWEvbEvrZ96VAPiQLlkhoTitSYUDx6eQ56RApP0MEeEiGqTmBoeyhzffvAVYOSce+ETAzvFeOjK/Lfr1ufCne3TxDtdT5e+YUHBaBPYgROiSbHlP+MOY7zPuuxRPhW8EpZZ83FXcEl+MGSjlTOB3GIVOLXl/TBxiPncO0wGTZvMgkwm7D2t5PQZrEiXEKk2yA/E1b1hgQWrXAYh7Sa/KW8EHoiNIT3SYzAht9NRlyE+vvx86/wvLf8wMQsnK1txjUaDlq+QuoiyGTi8MyMgdpWRgbvtl2NeWMm2bRQLjhG+VFEj/5AxUEgfYyy87RzSU4CnpsxEANSfL/FpwQloQdcn8CQnjFYe+gsahCOY71vQeGOvX4lsESHBXZ66bU2aXadTC/tovolRQKngRdvHKpyjeRj1C0hY894BkVpMi21BI3sxAiM6h2H5GiZqygFnVGtbtwrPkylM8kjKjQQK+fJC/imBIO+97rQ0RQNCAHCvXTPlSql9Z8BpI0CoqTbN3mC4zjcM0GLAHv89zMwJQqFpTW4YYQ69VeDhyb1QUigCZf174GCkiq9q6MdWr+0Ln3y5pHpqGtuQ7+kSOy+/0pEh3YHo3rvIIFFDtlTAGsb6sGfgl5sKH3njpEI/3kNskXVy9LgOA4XZyeoci7pF/Xt5Xir4GUd9NieM+hWsMao00kUNZ05AIhR1+7Elyx7eAIqapvQM1YfwZ6PkEAzHpqUDQCqCSxuPSVQ3QScA1Mi8eOBclXPqZiwOGD0fcD2fwFwTjpKwopnSGCRQ89R7bPlco/FGDo9aBzTsV81OBk467Bvb1apc0YbZxVmdAwgb3VbSNsknaAAkyrCihEDPQqSfTmQoK678EOTs2Eycbi8v7ScZT4jTP8AgP4ICSwawGACeo3FHmsbahAubHGdc6WyC+XeBlSdANJ8FwTMrwbALo6/pUboIdMAVPee5hMJS/e7FERKYL7t1n4Ad9zmkaIUleyNHAkJNBs/ZgohGRJYtKLPZfjJ2ij8feowm2pQCSHRtvTyPsQIk2SX2mbpUjfjmWdnDERzqxUzL+rl/UlITSMLb97XV27OxWtrDiNvgHgeo2pEAJf8FjB5Z9cXYKbnSUiHfKpEcX/hO9xxc3vGOH3eK86mwg2klxCAAdaOXSzKoyuC2i6dZSCh594jMgTv3z0Kk/v18P7kRhXwvK6X8e7nxpE9sfGJy6TH7/FSWAGAZ2YMRHx4MG4crlE8EqJLQRoWObSv7nY9cwUaWiyIC3d2yw0JNGPfn/IQ4KJKNaqLmDcYbkvIU9sOmAGU7QWOrvFdfeTShfpGlyNY/ei2ntAiKrbh3lcX+iVFot9FvfWuBuEnkMAiivsLHxJoRohA0LMIg8dGUYqc+dUna0dPK9vAUNu+uIPAYrj1rAKNgaC639hzlP8QFA6MuAsw65e/hyCITrr27KoKhpviuj2klDA2gb6MJqw1PvTAG5wWBZQBA5KNH5yORkVCD7rQyGJcNMvL4GOVNeD/i3df1z9vsM1w0d8ipCrhqkHJSI4KkZXAkgB+f1V/TB2cgsv6K7DxIYguDGlY/JXUYerFcfESQ2g6DFEJYV68YQjG94lH3iAXj4ukgUB5IdDrIvUvqvPyNy48CI9d3guQkcDSDc7oWbgUEpcFVBY5hSQIDwrQJCs0QcjFqKMqCSz+SoD6Sc26A2qnm7cTyB/kKzIkEDPH8hgVDrgGyL4CCPI+OJhRHWYICQy+EagrAyL9P6cVQfgKEljECI21/c+pvHsWEqPu+XTAnybMKwYkIT4hG1kqpUWwM/AaoPo0kNhf3nEcp0hY6fL4U+cCIFutZQ4Aov3XlZeyDBN64FWve/PNN5GRkYGQkBCMHTsW27ZtEyzb2tqK559/Hn369EFISAhyc3OxcuVKt3KnT5/GHXfcgfj4eISGhmLIkCHYsWOHN9VTF3MgMHG+7UcNht0OpI8Geo5W53zdkKiQzq0wEydtohiUGo07lQQsEyJpEND3SsNvTfkjvC0a7uPcWQQvV+emYGxmHB69PEffividYGtsEiJsHnGT+iWKlNQH2RqWzz77DPPnz8c777yDsWPH4rXXXkNeXh4OHTqEHj3cjcWeeuopfPLJJ3jvvffQv39/rFq1Ctdffz1+/vlnDB9uC+d84cIFTJgwAZMnT8aKFSuQmJiII0eOIDY2VvkdqkGAxABKUojNsP10AfSao6PDAnHdsDSYTRwCTLTSc6MryE6unWvULKCuwmb7YUQEtgS7KsEBZnz263F6V0M74rKA1nogrHsJyN89MhHrDlXguuFpwOlf9K6OG7IFlldffRUPPPAAZs2aBQB45513sHz5cnzwwQd48skn3cp//PHH+OMf/4hp06YBAObMmYMff/wRr7zyCj755BMAwEsvvYT09HR8+OGH9uMyM7VI5U64I292kxMET8t5MyM+3AdX8VO64qIzMtn2Y1TismwxfyIMlmSP8I6ht9j+12pVpraJgUokR4fgtjEaaKJVQlartbS0ID8/H1OmTOk8gcmEKVOmYMuWLbzHNDc3IyTE2UA0NDQUmzZtsv/9zTffYNSoUbj55pvRo0cPDB8+HO+9957HujQ3N6OmpsbphzAWxps3SbghNILjbNmGkwfrXRMnaKfSSzhO28bjOGDEnTYTAZNBTUl1CJshhiyB5dy5c7BYLEhKcl5FJCUloaysjPeYvLw8vPrqqzhy5AisVitWr16Nr776CqWlpfYyRUVFePvtt5GTk4NVq1Zhzpw5ePTRR/HRRx8J1mXhwoWIjo62/6Snp8u5FcKO8cQK1UkaaAsAFqnAzZbQlEn9EhEUYMLUwQbWoniDmtvJXRGlNij+LJFF9zS2eUDSYJu95ZCb9K6JHc1Fu9dffx0PPPAA+vfvD47j0KdPH8yaNQsffPCBvYzVasWoUaPwl7/8BQAwfPhw7Nu3D++88w7uvvtu3vMuWLAA8+d3GsLW1NSQ0KIhOT0iUFLZgCFp0XpXRT4Dr9W7BoQIH94zGq0WhiCHKLldQpTOvQ04uBzoc5kulyebVMJrTCYge4p4OR8iS2BJSEiA2WxGeXm50+fl5eVITuZfGSUmJmLZsmVoamrC+fPnkZqaiieffBJZWZ3GcykpKRg4cKDTcQMGDMCXX34pWJfg4GAEB9PqxVesnHcJ2qxWBAd4n5mVUJeuNBdxHIegAD9eLQsRlQqMeUDvWhgXf9aQED5H1pZQUFAQRo4ciTVrOpPJWa1WrFmzBuPGebYYDwkJQVpaGtra2vDll1/i2ms7V70TJkzAoUOHnMofPnwYvXt3jSyeXSEsu9nEaS+sJLULrQk6u0r6KY9clg0A+NO1g3SuCWEUSB4guhKyt4Tmz5+Pu+++G6NGjcKYMWPw2muvob6+3u41dNdddyEtLQ0LFy4EAGzduhWnT5/GsGHDcPr0aTz33HOwWq144okn7Od8/PHHMX78ePzlL3/BLbfcgm3btuHdd9/Fu+++q9Jt6sOWBZfhQn0r0uP8w+VxXFY8thSd168C/aYBiQOMva9rYH5zZT/cd3EmYsIouzDhJyjds/L2eEcvHaMavRJuyH5St956K86ePYtnnnkGZWVlGDZsGFauXGk3xC0pKYHJITZGU1MTnnrqKRQVFSEiIgLTpk3Dxx9/jJiYGHuZ0aNHY+nSpViwYAGef/55ZGZm4rXXXsPMmTOV36GOpESHIiU6VO9qSObj+8bg6kWb0CNKp7D/5kAgsa8+1+4ikLDix2igDsnuoXJk565CQBDQZzLArBRx2o/wSrScO3cu5s6dy/vdunXrnP6+9NJLUVhYKHrOq6++GldffbU31SFUIsBswvePTiQ1MqEcFeJMUDf0nu8euRgfbzmB31ypYAHQfxpw8Htb3qOuiBaJRwlNMWb0GsKHOE8LJhMnKzgcoR8PXmIzXL9hRJrONXGg31VASBTQf7reNfE/VHTpGZwWjZduGqpMW5qSC1z6eyAhW7V6EYQSaPOOIPyUvkmROPjCVQgOMNC6I3W47YfoGmid+iKKslUT0iGBhSD8mJDArutm3pXctiXRHTWbcVm2LSdKaklIwEBLM4KQQWI/2/9pI/WtB0EQ3sNxNkP7sDi9a0L4AaRh6fb46Tp20PWApdVm7U8QRPekO2qlujGkYSH8E44jYYUgCKIbQQILQRAGhFbOhAQoWVK3ggQWwmuCjOSdQhAE4Y8E6hSo0w8hG5Zuj/yV7NzJ2ThX14wciqJJEAShjCE3A4e+B7Im6V0Tw0MCCyGb3+b1k1Rucv8eWPTTUYQFdV3XW4IgCEVEJgOj7tW7Fn4BCSz+ih8kCBzRKxYrHpuIVD/Kp0QYB7JiIQjCERJY/I3xjwCNlUBML71rIokBKVF6V4HwU7qdOWViP+DoGiAqRe+aEIQhIYHF3wiOsP0QBNG1CIkGLn4cMJO7PkHwQQILQRCEUSCPEYIQhPxSuyMBwXrXgCAIQjmhMXrXgPAhpGHpjvSbDhQuBXqNB0oa9K4NQRCEd8T0BnKuAMLi9a4J4QNIw9IdCY8HRt8PJA3Eg5dkAQCuGpSsc6UIgiBkwnFAz1FAXKbeNSF8AGlYujljMuOw6+krEBMWqHdVCKKTITehtfBNrLKM1rsmBEEYBNKwEIgNDwJHWU8JIxHTCxsTZ+IA6613TQiCMAgksBAEYUhye8XqXQWCIAwEbQkRBGFIbhrRE1Yrw8jeJLgQBEECC0EQBsVk4nDbGP+I6EwQhPbQlhBBEARBEIaHBBaCIAiCIAwPCSwEQRAEQRgeElgIgiAIgjA8JLAQBEEQBGF4SGAhCIIgCMLwkMBCEARBEIThIYGFIAiCIAjDQwILQRAEQRCGhwQWgiAIgiAMDwksBEEQBEEYHhJYCIIgCIIwPCSwEARBEARheLpMtmbGGACgpqZG55oQBEEQBCGVjnm7Yx4XossILLW1tQCA9PR0nWtCEARBEIRcamtrER0dLfg9x8REGj/BarXizJkziIyMBMdxqp23pqYG6enpOHnyJKKiolQ7L+EMtbPvoLb2DdTOvoHa2Tdo2c6MMdTW1iI1NRUmk7ClSpfRsJhMJvTs2VOz80dFRdHL4AOonX0HtbVvoHb2DdTOvkGrdvakWemAjG4JgiAIgjA8JLAQBEEQBGF4SGARITg4GM8++yyCg4P1rkqXhtrZd1Bb+wZqZ99A7ewbjNDOXcboliAIgiCIrgtpWAiCIAiCMDwksBAEQRAEYXhIYCEIgiAIwvCQwEIQBEEQhOEhgUWEN998ExkZGQgJCcHYsWOxbds2vatkWDZs2IAZM2YgNTUVHMdh2bJlTt8zxvDMM88gJSUFoaGhmDJlCo4cOeJUprKyEjNnzkRUVBRiYmJw3333oa6uzqnMnj17MHHiRISEhCA9PR0vv/yy1rdmKBYuXIjRo0cjMjISPXr0wHXXXYdDhw45lWlqasLDDz+M+Ph4RERE4MYbb0R5eblTmZKSEkyfPh1hYWHo0aMHfve736Gtrc2pzLp16zBixAgEBwcjOzsbixcv1vr2DMPbb7+NoUOH2gNljRs3DitWrLB/T22sDS+++CI4jsO8efPsn1Fbq8Nzzz0HjuOcfvr372//3vDtzAhBlixZwoKCgtgHH3zA9u/fzx544AEWExPDysvL9a6aIfn+++/ZH//4R/bVV18xAGzp0qVO37/44ossOjqaLVu2jO3evZtdc801LDMzkzU2NtrLXHXVVSw3N5f98ssvbOPGjSw7O5vdfvvt9u+rq6tZUlISmzlzJtu3bx/773//y0JDQ9k///lPX92m7uTl5bEPP/yQ7du3jxUUFLBp06axXr16sbq6OnuZ2bNns/T0dLZmzRq2Y8cOdtFFF7Hx48fbv29ra2ODBw9mU6ZMYbt27WLff/89S0hIYAsWLLCXKSoqYmFhYWz+/PmssLCQLVq0iJnNZrZy5Uqf3q9efPPNN2z58uXs8OHD7NChQ+wPf/gDCwwMZPv27WOMURtrwbZt21hGRgYbOnQoe+yxx+yfU1urw7PPPssGDRrESktL7T9nz561f2/0diaBxQNjxoxhDz/8sP1vi8XCUlNT2cKFC3WslX/gKrBYrVaWnJzM/vrXv9o/q6qqYsHBwey///0vY4yxwsJCBoBt377dXmbFihWM4zh2+vRpxhhjb731FouNjWXNzc32Mr///e9Zv379NL4j41JRUcEAsPXr1zPGbO0aGBjI/ve//9nLHDhwgAFgW7ZsYYzZhEuTycTKysrsZd5++20WFRVlb9snnniCDRo0yOlat956K8vLy9P6lgxLbGwse//996mNNaC2tpbl5OSw1atXs0svvdQusFBbq8ezzz7LcnNzeb/zh3amLSEBWlpakJ+fjylTptg/M5lMmDJlCrZs2aJjzfyT4uJilJWVObVndHQ0xo4da2/PLVu2ICYmBqNGjbKXmTJlCkwmE7Zu3Wovc8kllyAoKMheJi8vD4cOHcKFCxd8dDfGorq6GgAQFxcHAMjPz0dra6tTW/fv3x+9evVyaushQ4YgKSnJXiYvLw81NTXYv3+/vYzjOTrKdMf+b7FYsGTJEtTX12PcuHHUxhrw8MMPY/r06W7tQW2tLkeOHEFqaiqysrIwc+ZMlJSUAPCPdiaBRYBz587BYrE4PRgASEpKQllZmU618l862sxTe5aVlaFHjx5O3wcEBCAuLs6pDN85HK/RnbBarZg3bx4mTJiAwYMHA7C1Q1BQEGJiYpzKura1WDsKlampqUFjY6MWt2M49u7di4iICAQHB2P27NlYunQpBg4cSG2sMkuWLMHOnTuxcOFCt++ordVj7NixWLx4MVauXIm3334bxcXFmDhxImpra/2inbtMtmaC6I48/PDD2LdvHzZt2qR3Vbok/fr1Q0FBAaqrq/HFF1/g7rvvxvr16/WuVpfi5MmTeOyxx7B69WqEhIToXZ0uzdSpU+2/Dx06FGPHjkXv3r3x+eefIzQ0VMeaSYM0LAIkJCTAbDa7WUiXl5cjOTlZp1r5Lx1t5qk9k5OTUVFR4fR9W1sbKisrncrwncPxGt2FuXPn4rvvvsPatWvRs2dP++fJycloaWlBVVWVU3nXthZrR6EyUVFRfjG4qUFQUBCys7MxcuRILFy4ELm5uXj99depjVUkPz8fFRUVGDFiBAICAhAQEID169fjH//4BwICApCUlERtrRExMTHo27cvjh496hd9mgQWAYKCgjBy5EisWbPG/pnVasWaNWswbtw4HWvmn2RmZiI5OdmpPWtqarB161Z7e44bNw5VVVXIz8+3l/npp59gtVoxduxYe5kNGzagtbXVXmb16tXo168fYmNjfXQ3+sIYw9y5c7F06VL89NNPyMzMdPp+5MiRCAwMdGrrQ4cOoaSkxKmt9+7d6yQgrl69GlFRURg4cKC9jOM5Osp05/5vtVrR3NxMbawil19+Ofbu3YuCggL7z6hRozBz5kz779TW2lBXV4djx44hJSXFP/q0YrPdLsySJUtYcHAwW7x4MSssLGQPPvggi4mJcbKQJjqpra1lu3btYrt27WIA2Kuvvsp27drFTpw4wRizuTXHxMSwr7/+mu3Zs4dde+21vG7Nw4cPZ1u3bmWbNm1iOTk5Tm7NVVVVLCkpid15551s3759bMmSJSwsLKxbuTXPmTOHRUdHs3Xr1jm5JzY0NNjLzJ49m/Xq1Yv99NNPbMeOHWzcuHFs3Lhx9u873BOvvPJKVlBQwFauXMkSExN53RN/97vfsQMHDrA333yzW7mBPvnkk2z9+vWsuLiY7dmzhz355JOM4zj2ww8/MMaojbXE0UuIMWprtfjNb37D1q1bx4qLi9nmzZvZlClTWEJCAquoqGCMGb+dSWARYdGiRaxXr14sKCiIjRkzhv3yyy96V8mwrF27lgFw+7n77rsZYzbX5qeffpolJSWx4OBgdvnll7NDhw45neP8+fPs9ttvZxERESwqKorNmjWL1dbWOpXZvXs3u/jii1lwcDBLS0tjL774oq9u0RDwtTEA9uGHH9rLNDY2soceeojFxsaysLAwdv3117PS0lKn8xw/fpxNnTqVhYaGsoSEBPab3/yGtba2OpVZu3YtGzZsGAsKCmJZWVlO1+jq3Hvvvax3794sKCiIJSYmsssvv9wurDBGbawlrgILtbU63HrrrSwlJYUFBQWxtLQ0duutt7KjR4/avzd6O3OMMaZcT0MQBEEQBKEdZMNCEARBEIThIYGFIAiCIAjDQwILQRAEQRCGhwQWgiAIgiAMDwksBEEQBEEYHhJYCIIgCIIwPCSwEARBEARheEhgIQiCIAjC8JDAQhAEQRCE4SGBhSAIgiAIw0MCC0EQBEEQhocEFoIgCIIgDM//Az3sAtU5OfedAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"TranShk\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"TranShk\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.277153Z", - "iopub.status.busy": "2024-07-11T15:30:48.276899Z", - "iopub.status.idle": "2024-07-11T15:30:48.381616Z", - "shell.execute_reply": "2024-07-11T15:30:48.381104Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcA0lEQVR4nO3deVyUdeIH8M/MwHAPp1wKiieSZ6g4aWVp4pHbYbsdblrrr1ZDy+xQ2w6rLczuzGPbWq1Wo0ttvW8xFS8URVFSREFhQEUYzjmf3x+PDDOIMAMzzKCf9+s1L5jneXjm+zzM8Znv9UgEQRBARERE5EKkzi4AERERUX0MKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HDdnF6A5jEYjCgoK4OfnB4lE4uziEBERkRUEQUB5eTkiIyMhlTZeR9ImA0pBQQGioqKcXQwiIiJqhvz8fHTo0KHRbVoUUObNm4c5c+bghRdewGeffQYAqKmpwUsvvYSUlBRoNBokJiZi0aJFCAsLM/1dXl4epk6dih07dsDX1xeTJk1CcnIy3NysK46fnx8A8QAVCkVLDoGIiIhaiVqtRlRUlOlzvDHNDigHDx7Ev/71L/Tp08di+Ysvvoh169bh559/hr+/P6ZNm4aHH34Ye/bsAQAYDAaMHTsW4eHh2Lt3LwoLCzFx4kS4u7vj/ffft+qxa5t1FAoFAwoREVEbY033jGZ1kq2oqMCECRPw73//G4GBgablZWVl+Oabb/DJJ5/g3nvvRXx8PJYuXYq9e/di3759AIDNmzcjKysL//3vf9GvXz+MHj0a7777LhYuXAitVtuc4hAREdFNplkBJSkpCWPHjsWIESMslqenp0On01ksj42NRXR0NNLS0gAAaWlp6N27t0WTT2JiItRqNU6cONHg42k0GqjVaosbERER3bxsbuJJSUnB4cOHcfDgwevWqVQqyOVyBAQEWCwPCwuDSqUybWMeTmrX165rSHJyMt5++21bi0pERERtlE0BJT8/Hy+88AK2bNkCT09PR5XpOnPmzMHMmTNN92s72RAREQmCAL1eD4PB4Oyi3PJkMhnc3NzsMgWITQElPT0dxcXFuP32203LDAYDdu3ahS+//BKbNm2CVqtFaWmpRS1KUVERwsPDAQDh4eE4cOCAxX6LiopM6xri4eEBDw8PW4pKRES3AK1Wi8LCQlRVVTm7KHSNt7c3IiIiIJfLW7QfmwLK8OHDkZmZabHs6aefRmxsLGbNmoWoqCi4u7tj27ZtGD9+PAAgOzsbeXl5UCqVAAClUon33nsPxcXFCA0NBQBs2bIFCoUCcXFxLToYIiK6dRiNRuTm5kImkyEyMhJyuZyTdzqRIAjQarW4dOkScnNz0a1btyYnY2uMTQHFz88PvXr1sljm4+OD4OBg0/LJkydj5syZCAoKgkKhwPTp06FUKjF48GAAwMiRIxEXF4cnn3wS8+fPh0qlwuuvv46kpCTWkhARkdW0Wi2MRiOioqLg7e3t7OIQAC8vL7i7u+P8+fPQarUt6g5i95lkP/30U0ilUowfP95iorZaMpkMa9euxdSpU6FUKuHj44NJkybhnXfesXdRiIjoFtCSb+lkf/b6f0gEQRDssqdWpFar4e/vj7KyMk7URkR0i6qpqUFubi5iYmJadeAGNa6x/4stn9+MnURERORyGFCIiIjagLlz56Jfv342/c2wYcMwY8YMp5ejOdrk1YyJiIhuNS+//DKmT59u09+sXLkS7u7uDiqRY7EGhYgcLuVAHvadveLsYhC1SbUT0fn6+iI4ONimvw0KCrLqysGuiAGFiBwq/fxVzF6Zice+2ufsotAtQBAEVGn1rX6zdbyJRqPB888/j9DQUHh6emLo0KGmS8js3LkTEokEGzZsQHx8PDw8PLB79+7rmlb0ej2ef/55BAQEIDg4GLNmzcKkSZPw4IMPmrap38TTqVMnvP/++/jb3/4GPz8/REdH46uvvrIo26xZs9C9e3d4e3ujc+fOeOONN6DT6Wz+X7QUm3iIyKHySiqdXQS6hVTrDIh7c1OrP27WO4nwllv/kfrqq6/i119/xbfffouOHTti/vz5SExMxJkzZ0zbzJ49Gx999BE6d+6MwMBA7Ny502IfH3zwAZYvX46lS5eiZ8+e+Pzzz7F69Wrcc889jT72xx9/jHfffRevvfYafvnlF0ydOhV33303evToAUCc82zZsmWIjIxEZmYmnnnmGfj5+eHVV1+1/oTYAWtQiMih2t5EBkSOVVlZicWLF+PDDz/E6NGjERcXh3//+9/w8vLCN998Y9runXfewX333YcuXbogKCjouv0sWLAAc+bMwUMPPYTY2Fh8+eWX112styFjxozBc889h65du2LWrFkICQnBjh07TOtff/113HHHHejUqRPGjRuHl19+GT/99JNdjt0WrEEhIqKbhpe7DFnvJDrlca2Vk5MDnU6HIUOGmJa5u7tj0KBBOHnyJAYOHAgAGDBgwA33UVZWhqKiIgwaNMi0TCaTIT4+HkajsdHH79Onj+l3iUSC8PBwFBcXm5b9+OOP+OKLL5CTk4OKigro9XqnzDnGgEJERDcNiURiU1OLK/Px8XHIfuuP6pFIJKZQk5aWhgkTJuDtt99GYmIi/P39kZKSgo8//tghZWkMm3iIyKHYxENkqUuXLpDL5dizZ49pmU6nw8GDB62+aK6/vz/CwsJMHWsBwGAw4PDhwy0q2969e9GxY0f84x//wIABA9CtWzecP3++RftsrpsjZhKRy2I+IbLk4+ODqVOn4pVXXkFQUBCio6Mxf/58VFVVYfLkyTh69KhV+5k+fTqSk5PRtWtXxMbGYsGCBbh69WqLrujcrVs35OXlISUlBQMHDsS6deuwatWqZu+vJRhQiIiIWtm8efNgNBrx5JNPory8HAMGDMCmTZsQGBho9T5mzZoFlUqFiRMnQiaT4dlnn0ViYiJkMuv7w9T3pz/9CS+++CKmTZsGjUaDsWPH4o033sDcuXObvc/m4sUCicihfj6Uj1d+OQYAODdvrJNLQzcTXizQktFoRM+ePfGXv/wF7777rtPKYa+LBbIGhYiIqA06f/48Nm/ejLvvvhsajQZffvklcnNz8cQTTzi7aHbBTrJERERtkFQqxbJlyzBw4EAMGTIEmZmZ2Lp1K3r27OnsotkFa1CIyKHaXBsyURsRFRVlMRLoZsMaFCJyLCYUImoGBhQiciiBCYWImoEBhYiIiFwOAwoRERG5HAYUInKotjfTEhG5AgYUIiIicjkMKETkUKxAIbqeIAh49tlnERQUBIlEgoyMDGcXyeVwHhQicpj9Z69gzspMZxeDyOVs3LgRy5Ytw86dO9G5c2eEhIQ4u0guhwGFiBzm0a/2ObsIRC4pJycHERERuOOOOxpcr9VqIZfLW7lUroVNPEREdPMQBECvbf2bDb3Bn3rqKUyfPh15eXmQSCTo1KkThg0bhmnTpmHGjBkICQlBYmIiAOCTTz5B79694ePjg6ioKDz33HOoqKgw7WvZsmUICAjA2rVr0aNHD3h7e+ORRx5BVVUVvv32W3Tq1AmBgYF4/vnnYTAYTH+n0Wjw8ssvo3379vDx8UFCQgJ27txpWn/+/HmMGzcOgYGB8PHxwW233Yb169e3/P9jA9agEBHRzcOgA37/uPUf986XADfrajw+//xzdOnSBV999RUOHjwImUyGP//5z/j2228xdepUi+nrpVIpvvjiC8TExODs2bN47rnn8Oqrr2LRokWmbaqqqvDFF18gJSUF5eXlePjhh/HQQw8hICAA69evx9mzZzF+/HgMGTIEjz76KABg2rRpyMrKQkpKCiIjI7Fq1SqMGjUKmZmZ6NatG5KSkqDVarFr1y74+PggKysLvr6+9j1nTWBAISIiakX+/v7w8/ODTCZDeHi4aXm3bt0wf/58i21nzJhh+r1Tp0745z//iSlTplgEFJ1Oh8WLF6NLly4AgEceeQTff/89ioqK4Ovri7i4ONxzzz3YsWMHHn30UeTl5WHp0qXIy8tDZGQkAODll1/Gxo0bsXTpUrz//vvIy8vD+PHj0bt3bwBA586dHXU6bogBhYiIbh4yd7E2wxmP20Lx8fHXLdu6dSuSk5Nx6tQpqNVq6PV61NTUoKqqCt7e3gAAb29vUzgBgLCwMHTq1MmixiMsLAzFxcUAgMzMTBgMBnTv3t3isTQaDYKDgwEAzz//PKZOnYrNmzdjxIgRGD9+PPr06dPiY7QFAwoREd08JBKrm1pcjY+Pj8X9c+fO4f7778fUqVPx3nvvISgoCLt378bkyZOh1WpNAcXd3TIcSSSSBpcZjUYAQEVFBWQyGdLT0yGTySy2qw01//d//4fExESsW7cOmzdvRnJyMj7++GNMnz7drsfcGAYUIiIiF5Seng6j0YiPP/4YUqk4puWnn35q8X779+8Pg8GA4uJi3HnnnTfcLioqClOmTMGUKVMwZ84c/Pvf/2ZAISIiutV17doVOp0OCxYswLhx47Bnzx4sWbKkxfvt3r07JkyYgIkTJ+Ljjz9G//79cenSJWzbtg19+vTB2LFjMWPGDIwePRrdu3fH1atXsWPHDvTs2dMOR2U9m4YZL168GH369IFCoYBCoYBSqcSGDRtM64cNGwaJRGJxmzJlisU+8vLyMHbsWHh7eyM0NBSvvPIK9Hq9fY6GiIjoJtG3b1988skn+OCDD9CrVy8sX74cycnJdtn30qVLMXHiRLz00kvo0aMHHnzwQRw8eBDR0dEAAIPBgKSkJPTs2ROjRo1C9+7dLTrmtgaJIFg/eHvNmjWQyWTo1q0bBEHAt99+iw8//BBHjhzBbbfdhmHDhqF79+545513TH/j7e0NhUIBQDzgfv36ITw8HB9++CEKCwsxceJEPPPMM3j//fetLrRarYa/vz/KyspM+yYi19Np9jqL++fmjXVSSehmVFNTg9zcXMTExMDT09PZxaFrGvu/2PL5bVMTz7hx4yzuv/fee1i8eDH27duH2267DYAYSMyHTZnbvHkzsrKysHXrVoSFhaFfv3549913MWvWLMydO/eWnzWPiIiIRM2eSdZgMCAlJQWVlZVQKpWm5cuXL0dISAh69eqFOXPmoKqqyrQuLS0NvXv3RlhYmGlZYmIi1Go1Tpw4ccPH0mg0UKvVFjciIiK6edncSTYzMxNKpRI1NTXw9fXFqlWrEBcXBwB44okn0LFjR0RGRuLYsWOYNWsWsrOzsXLlSgCASqWyCCcATPdVKtUNHzM5ORlvv/22rUUlIiKiNsrmgNKjRw9kZGSgrKwMv/zyCyZNmoTU1FTExcXh2WefNW3Xu3dvREREYPjw4cjJybGYRMZWc+bMwcyZM0331Wo1oqKimr0/IiIicm02N/HI5XJ07doV8fHxSE5ORt++ffH55583uG1CQgIA4MyZMwCA8PBwFBUVWWxTe/9G/VYAwMPDwzRyqPZGREQEADaM9aBWYK//R4uvZmw0GqHRaBpcl5GRAQCIiIgAACiVSmRmZpqm2wWALVu2QKFQmJqJiIiIrFE7W6p5X0dyvtr/R/3ZbG1lUxPPnDlzMHr0aERHR6O8vBwrVqzAzp07sWnTJuTk5GDFihUYM2YMgoODcezYMbz44ou46667TPP3jxw5EnFxcXjyyScxf/58qFQqvP7660hKSoKHh0eLDoSIiG4tMpkMAQEBpi+93t7ekEgkTi7VrUsQBFRVVaG4uBgBAQHXTaNvK5sCSnFxMSZOnIjCwkL4+/ujT58+2LRpE+677z7k5+dj69at+Oyzz1BZWYmoqCiMHz8er7/+uunvZTIZ1q5di6lTp0KpVMLHxweTJk2ymDeFiIjIWrXdA8xr5sm5AgICGu22YS2bJmpzFZyojahtqD9R26HXRyDEl7WlZH8GgwE6nc7Zxbjlubu7N1pz4rCJ2oiIWuJyhYYBhRxCJpO1uEmBXEuLO8kSERER2RsDChEREbkcBhQiIiJyOQwoRERE5HIYUIiIiMjlMKAQUauRgJNoEZF1GFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUImo1Eo4yJiIrMaAQERGRy2FAISIiIpfDgEJEREQuhwGFiIiIXA4DChEREbkcBhQiIiJyOQwoRNRqOMqYiKzFgEJEREQuhwGFiIiIXA4DChEREbkcBhQiIiJyOQwoRERE5HIYUIio1RzJK3V2EYiojWBAIaJW8+qvx5xdBCJqIxhQiIiIyOUwoBAREZHLYUAhIiIil8OAQkRERC6HAYWIiIhcjk0BZfHixejTpw8UCgUUCgWUSiU2bNhgWl9TU4OkpCQEBwfD19cX48ePR1FRkcU+8vLyMHbsWHh7eyM0NBSvvPIK9Hq9fY6GiIiIbgo2BZQOHTpg3rx5SE9Px6FDh3DvvffigQcewIkTJwAAL774ItasWYOff/4ZqampKCgowMMPP2z6e4PBgLFjx0Kr1WLv3r349ttvsWzZMrz55pv2PSoiIiJq0ySCIAgt2UFQUBA+/PBDPPLII2jXrh1WrFiBRx55BABw6tQp9OzZE2lpaRg8eDA2bNiA+++/HwUFBQgLCwMALFmyBLNmzcKlS5cgl8uteky1Wg1/f3+UlZVBoVC0pPhE5ECdZq+7btm5eWOdUBIicgW2fH43uw+KwWBASkoKKisroVQqkZ6eDp1OhxEjRpi2iY2NRXR0NNLS0gAAaWlp6N27tymcAEBiYiLUarWpFqYhGo0GarXa4kZEREQ3L5sDSmZmJnx9feHh4YEpU6Zg1apViIuLg0qlglwuR0BAgMX2YWFhUKlUAACVSmURTmrX1667keTkZPj7+5tuUVFRthabiIiI2hCbA0qPHj2QkZGB/fv3Y+rUqZg0aRKysrIcUTaTOXPmoKyszHTLz8936OMRERGRc7nZ+gdyuRxdu3YFAMTHx+PgwYP4/PPP8eijj0Kr1aK0tNSiFqWoqAjh4eEAgPDwcBw4cMBif7WjfGq3aYiHhwc8PDxsLSoRERG1US2eB8VoNEKj0SA+Ph7u7u7Ytm2baV12djby8vKgVCoBAEqlEpmZmSguLjZts2XLFigUCsTFxbW0KERERHSTsKkGZc6cORg9ejSio6NRXl6OFStWYOfOndi0aRP8/f0xefJkzJw5E0FBQVAoFJg+fTqUSiUGDx4MABg5ciTi4uLw5JNPYv78+VCpVHj99deRlJTEGhIiIiIysSmgFBcXY+LEiSgsLIS/vz/69OmDTZs24b777gMAfPrpp5BKpRg/fjw0Gg0SExOxaNEi09/LZDKsXbsWU6dOhVKphI+PDyZNmoR33nnHvkdFREREbVqL50FxBs6DQtQ2cB4UIjLXKvOgEBERETkKAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELsemgJKcnIyBAwfCz88PoaGhePDBB5GdnW2xzbBhwyCRSCxuU6ZMsdgmLy8PY8eOhbe3N0JDQ/HKK69Ar9e3/GiIiIjopuBmy8apqalISkrCwIEDodfr8dprr2HkyJHIysqCj4+PabtnnnkG77zzjum+t7e36XeDwYCxY8ciPDwce/fuRWFhISZOnAh3d3e8//77djgkIiIiautsCigbN260uL9s2TKEhoYiPT0dd911l2m5t7c3wsPDG9zH5s2bkZWVha1btyIsLAz9+vXDu+++i1mzZmHu3LmQy+XNOAwiIiK6mbSoD0pZWRkAICgoyGL58uXLERISgl69emHOnDmoqqoyrUtLS0Pv3r0RFhZmWpaYmAi1Wo0TJ040+DgajQZqtdriRkRERDcvm2pQzBmNRsyYMQNDhgxBr169TMufeOIJdOzYEZGRkTh27BhmzZqF7OxsrFy5EgCgUqkswgkA032VStXgYyUnJ+Ptt99ublGJiIiojWl2QElKSsLx48exe/dui+XPPvus6ffevXsjIiICw4cPR05ODrp06dKsx5ozZw5mzpxpuq9WqxEVFdW8ghMREZHLa1YTz7Rp07B27Vrs2LEDHTp0aHTbhIQEAMCZM2cAAOHh4SgqKrLYpvb+jfqteHh4QKFQWNyIiIjo5mVTQBEEAdOmTcOqVauwfft2xMTENPk3GRkZAICIiAgAgFKpRGZmJoqLi03bbNmyBQqFAnFxcbYUh4iIiG5SNjXxJCUlYcWKFfjtt9/g5+dn6jPi7+8PLy8v5OTkYMWKFRgzZgyCg4Nx7NgxvPjii7jrrrvQp08fAMDIkSMRFxeHJ598EvPnz4dKpcLrr7+OpKQkeHh42P8IiYiIqM2xqQZl8eLFKCsrw7BhwxAREWG6/fjjjwAAuVyOrVu3YuTIkYiNjcVLL72E8ePHY82aNaZ9yGQyrF27FjKZDEqlEn/9618xceJEi3lTiIiI6NZmUw2KIAiNro+KikJqamqT++nYsSPWr19vy0MTERHRLYTX4iEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjkMKERERORyGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYgcQhAEZxeBiNowBhQicgjmEyJqCQYUIrIrVVkNa0+IqMUYUIjIbpbtycXg5G34YGM2GFGIqCUYUIjIbuauyQIALEnNYS0KEbUIAwoRERG5HAYUInKIhupP7uwW0urlIKK2iQGFiFqNTCpxdhGIqI1gQCEih2ioCwq7pRCRtRhQiMghBLNGnicSop1YEiJqixhQiMhuJDdowekW6gug4X4pREQNYUAhIocwb86RXksuHHpMRNZiQCEih7tRzQoR0Y0woBCRwzGfEJGtGFCIyCEsWnNYhUJENrIpoCQnJ2PgwIHw8/NDaGgoHnzwQWRnZ1tsU1NTg6SkJAQHB8PX1xfjx49HUVGRxTZ5eXkYO3YsvL29ERoaildeeQV6vb7lR0NELqk2nrALChFZy6aAkpqaiqSkJOzbtw9btmyBTqfDyJEjUVlZadrmxRdfxJo1a/Dzzz8jNTUVBQUFePjhh03rDQYDxo4dC61Wi7179+Lbb7/FsmXL8Oabb9rvqIjIKczrScyHGbMChYhs5WbLxhs3brS4v2zZMoSGhiI9PR133XUXysrK8M0332DFihW49957AQBLly5Fz549sW/fPgwePBibN29GVlYWtm7dirCwMPTr1w/vvvsuZs2ahblz50Iul9vv6IioVd2ogsQ0iocDjYnISi3qg1JWVgYACAoKAgCkp6dDp9NhxIgRpm1iY2MRHR2NtLQ0AEBaWhp69+6NsLAw0zaJiYlQq9U4ceJEg4+j0WigVqstbkTk2sybc9jEQ0S2anZAMRqNmDFjBoYMGYJevXoBAFQqFeRyOQICAiy2DQsLg0qlMm1jHk5q19eua0hycjL8/f1Nt6ioqOYWm4gcyLKJx2w5m3iIyEbNDihJSUk4fvw4UlJS7FmeBs2ZMwdlZWWmW35+vsMfk4jsR4LaidqcXBAiajNs6oNSa9q0aVi7di127dqFDh06mJaHh4dDq9WitLTUohalqKgI4eHhpm0OHDhgsb/aUT6129Tn4eEBDw+P5hSViJxEaKiNh4jISjbVoAiCgGnTpmHVqlXYvn07YmJiLNbHx8fD3d0d27ZtMy3Lzs5GXl4elEolAECpVCIzMxPFxcWmbbZs2QKFQoG4uLiWHAsRuSh2kiUiW9lUg5KUlIQVK1bgt99+g5+fn6nPiL+/P7y8vODv74/Jkydj5syZCAoKgkKhwPTp06FUKjF48GAAwMiRIxEXF4cnn3wS8+fPh0qlwuuvv46kpCTWkhC1cUaz/GHRB6XVS0JEbZ1NAWXx4sUAgGHDhlksX7p0KZ566ikAwKeffgqpVIrx48dDo9EgMTERixYtMm0rk8mwdu1aTJ06FUqlEj4+Ppg0aRLeeeedlh0JEbkUixYeyfXLiIgaY1NAseZKpJ6enli4cCEWLlx4w206duyI9evX2/LQRNSGmQKKc4tBRG0Ir8VDRI5h0UeWjTxEZBsGFCJyONM8KKxCISIrMaAQkUNYXouHNShEZBsGFCJyiAanumcVChFZiQGFiByOFShEZCsGFCJyCMt5UDjVPRHZhgGFiByONShEZCsGFCJyCPN5kziIh4hsxYBCRA5h0cRTey0etvEQkZUYUIjI4djEQ0S2YkAhIodoqLKE9SdEZC0GFCJyCIuJ2pxYDiJqmxhQiMihzJt32AWFiKzFgEJEjmE+kyw7oRCRjRhQiMihzKMJK1CIyFoMKETkEJYzydYuZEQhIuswoBCRQ9RmEYlEwmHGRGQzBhQicig28RBRczCgEJFDWAwzZg0KEdmIAYWIHIrDjImoORhQiMghzMOIhFO1EZGNGFCIyCFq84l5OBHYC4WIrMSAQkSOJQHnuicimzGgEJFD7D1z+bpl7INCRNZiQCEih3jll2MALCtQGFCIyFoMKETkcLwWDxHZigGFiBzKYpix84pBRG0MAwoROZSEg4yJqBkYUIio1QjshEJEVmJAISKHkkg41T0R2Y4BhYiIiFwOAwoROZQ4zFisQmELDxFZy+aAsmvXLowbNw6RkZGQSCRYvXq1xfqnnnoKEonE4jZq1CiLbUpKSjBhwgQoFAoEBARg8uTJqKioaNGBEJFrEt8HnF0KImprbA4olZWV6Nu3LxYuXHjDbUaNGoXCwkLT7YcffrBYP2HCBJw4cQJbtmzB2rVrsWvXLjz77LO2l56I2hRei4eIrOVm6x+MHj0ao0ePbnQbDw8PhIeHN7ju5MmT2LhxIw4ePIgBAwYAABYsWIAxY8bgo48+QmRkpK1FIiIXxkvxEFFzOKQPys6dOxEaGooePXpg6tSpuHLlimldWloaAgICTOEEAEaMGAGpVIr9+/c3uD+NRgO1Wm1xI6K2h31QiMhadg8oo0aNwnfffYdt27bhgw8+QGpqKkaPHg2DwQAAUKlUCA0NtfgbNzc3BAUFQaVSNbjP5ORk+Pv7m25RUVH2LjYROQqrUIioGWxu4mnKY489Zvq9d+/e6NOnD7p06YKdO3di+PDhzdrnnDlzMHPmTNN9tVrNkELURphnE1agEJG1HD7MuHPnzggJCcGZM2cAAOHh4SguLrbYRq/Xo6Sk5Ib9Vjw8PKBQKCxuRNQ2qGv0nOyeiGzm8IBy4cIFXLlyBREREQAApVKJ0tJSpKenm7bZvn07jEYjEhISHF0cInIiTnVPRNayuYmnoqLCVBsCALm5ucjIyEBQUBCCgoLw9ttvY/z48QgPD0dOTg5effVVdO3aFYmJiQCAnj17YtSoUXjmmWewZMkS6HQ6TJs2DY899hhH8BDdpGrnQWE8ISJr2VyDcujQIfTv3x/9+/cHAMycORP9+/fHm2++CZlMhmPHjuFPf/oTunfvjsmTJyM+Ph6///47PDw8TPtYvnw5YmNjMXz4cIwZMwZDhw7FV199Zb+jIiKXUtvAc+FqtVPLQURth801KMOGDWu0mnbTpk1N7iMoKAgrVqyw9aGJqI0qq9YBALR6o5NLQkRtBa/FQ0QOFRvuh4ulrDkhItswoBCRQ0l4IR4iagYGFCJyqPrztHEkDxFZgwGFiBxKIrGsRWE+ISJrMKAQkUNJJRKYt/IwnxCRNRhQiMihJBI28RCR7RhQiMih6neRZTwhImswoBCRY4mdUEx3WYFCRNZgQCEihzqaX+rsIhBRG8SAQkQOZ9EHhY08RGQFBhQialVs4iEiazCgEJHDcTJZIrIVAwoRtSrWoBCRNRhQiMjhJGa9UNgHhYiswYBCRA5nMZMs8wkRWYEBhYhaFfMJEVmDAYWIHI5T3RORrRhQiMjheLFAIrIVAwoROZxFJ1kmFCKyAgMKEbUuBhQisgIDChE5nkUTDxMKETWNAYWIWhWbeIjIGgwoRNSqmE+IyBoMKETkcBxmTES2YkAhIofrFOJj+p3xhIiswYBCRA43sFOQ6XdWoBCRNRhQiKhVcRQPEVmDAYWIWoVpNlnmEyKyAgMKEbUK5hMisgUDChG1Csm1KhT2QSEiazCgEJFdNDV8uK4GhQmFiJrGgEJEdtFUzUhtHxTWoBCRNRhQiMgumsodtVc0Zj4hImvYHFB27dqFcePGITIyEhKJBKtXr7ZYLwgC3nzzTURERMDLywsjRozA6dOnLbYpKSnBhAkToFAoEBAQgMmTJ6OioqJFB0JEztXkDLESK7cjIkIzAkplZSX69u2LhQsXNrh+/vz5+OKLL7BkyRLs378fPj4+SExMRE1NjWmbCRMm4MSJE9iyZQvWrl2LXbt24dlnn23+URCR0zVdg3JtO+YTIrKCm61/MHr0aIwePbrBdYIg4LPPPsPrr7+OBx54AADw3XffISwsDKtXr8Zjjz2GkydPYuPGjTh48CAGDBgAAFiwYAHGjBmDjz76CJGRkS04HCJyFmv7oBARWcOufVByc3OhUqkwYsQI0zJ/f38kJCQgLS0NAJCWloaAgABTOAGAESNGQCqVYv/+/Q3uV6PRQK1WW9yIyLU0NTrH1AeFNShEZAW7BhSVSgUACAsLs1geFhZmWqdSqRAaGmqx3s3NDUFBQaZt6ktOToa/v7/pFhUVZc9iE5EdsAaFiOypTYzimTNnDsrKyky3/Px8ZxeJiKzUI8wPAOdBISLb2DWghIeHAwCKiooslhcVFZnWhYeHo7i42GK9Xq9HSUmJaZv6PDw8oFAoLG5E5FqMN6hCcZOJ0YQzyRKRLewaUGJiYhAeHo5t27aZlqnVauzfvx9KpRIAoFQqUVpaivT0dNM227dvh9FoREJCgj2LQ0StyHiD4OEmvRZQrt1nPiEia9g8iqeiogJnzpwx3c/NzUVGRgaCgoIQHR2NGTNm4J///Ce6deuGmJgYvPHGG4iMjMSDDz4IAOjZsydGjRqFZ555BkuWLIFOp8O0adPw2GOPcQQPURt2MLekweUe7jKL+zeqaSEiMmdzDcqhQ4fQv39/9O/fHwAwc+ZM9O/fH2+++SYA4NVXX8X06dPx7LPPYuDAgaioqMDGjRvh6elp2sfy5csRGxuL4cOHY8yYMRg6dCi++uorOx0SETnD08sONrhcLhPfZso1egDAp1v+aLUyEVHbJRHa4LSOarUa/v7+KCsrY38UIhfRafa6BpcP6RqM5f832GL9uXljW6tYRORCbPn8bhOjeIio7Wp7X4GIyBUwoBCRQzGgEFFzMKAQkUNx3hMiag4GFCJyKNagEFFzMKAQkUMxnxBRczCgEJFjMaEQUTMwoBCR3e2edY/pd/ZBIaLmYEAhIrvrEOgNZedgAMBfB3e0WHd393bOKBIRtTE2T3VPRGSNb/82COevVKJrqC8A4LlhXbBoZw46t/NxcsmIqC1gQCEih5C7SdEtzM90/9rFjDmqh4iswiYeImoVEtP1jImImsaAQkStoq4GhVUoRNQ0BhQiahW19SeMJ0RkDQYUImod16pQWIFCRNZgQCGiVlFXg8KEQkRNY0AholYhYR9ZIrIBAwoRtSo28RCRNRhQiMguerVXAAB6mM19Yq5aZwAAHC9Qt1qZiKjtYkAhIrvoHCLOGPvowKgG1/8r9SwA4Gh+aWsViYjaMAYUIrIL47W2Gyn7mhCRHTCgEJFd1PYtkTKhEJEdMKAQkV0YjGJCkdg4XEcQBFRp9Y4oEhG1YQwoRGQXG0+oAABymW0B5cUfMxD35ib8UVTuiGIRURvFgEJELZZfUmX63V1m29vK6owCAMDXv5+1a5mIqG1jQCGiFtPoDabfa3TGZu3D0Lw/I6KbFAMKEbWYeb8TvbHhpBEb3vD8KLV4lWMiMseAQkQtZjTWhQu9oeGg8eJ93QEAXUN9G94HAwoRmWFAIaIWM5iFixvVoMjdxLcbT/eG33ZukGuI6BbFgEJELWZea3JHl5AGt5Feawa6UV8Tzp5CROYYUIioxcybZ3q1929wG9m1gHKjvianiyvsXzAiarMYUIioxfTX+qB0CPS64Ta1E8zW6AzYcaoYFRrLydkKSqsdVj4iansYUIioxWo7ycoamea+dgr8c1eq8PSyg5j633SL9bVXQyYiAhwQUObOnQuJRGJxi42NNa2vqalBUlISgoOD4evri/Hjx6OoqMjexSCiVmSwJqDUmwL/99OXLZp7+nQIcEjZiKhtckgNym233YbCwkLTbffu3aZ1L774ItasWYOff/4ZqampKCgowMMPP+yIYhBRKzEFlEauw9PQBLN7c66YfmcnWSIy5+aQnbq5ITw8/LrlZWVl+Oabb7BixQrce++9AIClS5eiZ8+e2LdvHwYPHuyI4hCRg9UOM26sBqWhiwhO+Hq/2Xr7l4uI2i6H1KCcPn0akZGR6Ny5MyZMmIC8vDwAQHp6OnQ6HUaMGGHaNjY2FtHR0UhLS7vh/jQaDdRqtcWNiFyHNU08jdWuAICEdShEZMbuASUhIQHLli3Dxo0bsXjxYuTm5uLOO+9EeXk5VCoV5HI5AgICLP4mLCwMKpXqhvtMTk6Gv7+/6RYVFWXvYhNRCzSnD0p9rEEhInN2b+IZPXq06fc+ffogISEBHTt2xE8//QQvrxsPQWzMnDlzMHPmTNN9tVrNkELkQqwKKE18HWI+ISJzDh9mHBAQgO7du+PMmTMIDw+HVqtFaWmpxTZFRUUN9lmp5eHhAYVCYXEjItdRO1FbY804TdWgsAqFiMw5PKBUVFQgJycHERERiI+Ph7u7O7Zt22Zan52djby8PCiVSkcXhYgcpHaiNmljfVAaWQcA4MUCiciM3Zt4Xn75ZYwbNw4dO3ZEQUEB3nrrLchkMjz++OPw9/fH5MmTMXPmTAQFBUGhUGD69OlQKpUcwUPUhtU28bg12gel8X0YmU+IyIzdA8qFCxfw+OOP48qVK2jXrh2GDh2Kffv2oV27dgCATz/9FFKpFOPHj4dGo0FiYiIWLVpk72IQUSsyWjHMuKkmHgNrUIjIjN0DSkpKSqPrPT09sXDhQixcuNDeD01ETlJ7NeOWBBQjAwoRmeG1eIioxazpJNtUHxTmEyIyx4BCRC1mTSfZpgbpbDx+47mQiOjWw4BCRC1mtKKTbFM1KHklVXYtExG1bQwoRNRiBitqUNyamqmNiJwq/XwJktefRLXW4OyiAHDQxQKJ6Nait6IGxd/L3bp9GYxwa+jSx0TkUOMXi9fEc5dJ8XJiDyeXhjUoRGQH1nSSlbtJG50LpXd7f4z4JBVd/7EBe89ctncRichKRy+UOrsIABhQiMgODEbxZ2NNPAAarRmRSiU4U1wBAHji6/12KxsR2eb3067xBYEBhYhazGAUE0pjTTwAIG8koBg5lSwRmWFAoVvCKZUaH2/ORpVW7+yi3JSsrUFxl914febFMnsWiYjaOHaSpVvCw4v2okprwOUKDZIf7uPs4tx0DFb0QQHEzndERNbguwXdEqquDZtLy7ni5JLcnGqbeJqa64QBhcj1dQ31dXYRADCg0C3mSoUWmRfYlGBvv2UUAADOXq5sdDu5G99yiFyd4CLXneC7Bd1SyjV6jPtyN/bmuEYv9ZvFhavVAIBdf1xqdLumOtHWUnYObnGZiKh5ci5VIv38VWcXgwGFbk2bTxQ5uwi3JGubeDR615jJkuhWNX7xXmcXgQGFiFqPu5VNPFUuMtU2ETkPAwoRtZi3XAYAmDUqttHtjuaXWrU/A+dEIbrlMaDQTe+PovLrlrlKJ7CbRed2PgCA2Ag/u+zPyP8PkXUMOqAkFzDefLWODCh00ytWa5xdhJueVi8OM/Zooo/JXd3bWbU/VqAQWUEQgF0fAUdTgNzUFu2qRud6AYcBhW5KW7OKMP2HI1DX6ODnef18hPz8sy9NbUBxb/wtJSrQy6r9sQaFyAqZv9T9ntey61dV1+v3Feht3dXHHYkzydJN6f++OwQAiAzwxJAuIdetd5nPP6MRKD0PKNoDbnJnl6bZNLprAcVN1uh21s6Dwj4oRE3Q1QBXzthtd1X1alDu6Hr9+2ZrYw3KzUxbCRQeE9sob1GX1Br8cCDvuuUXrlY5oTQNyNsrVs+eWOnskrRI7bBgjyYCiPk8KKuThiBM4YGZ93XHj88Ohp9H3fcllwmQRK7KaN/rilXXu07ZumOFUNc497ODAeVmdvQH4NS6FrdNtmUyqQQDOgVdt3xHduMTirWai+niz5Jc55ajhUxNPE3UoBwzm8U30t8T++YMx/PDuyGhczAy307EmmlDAYg1KHlXqqCvvQqhq2GCImf7Y6Ndd1etvf619uOBfLs+hq0YUG5mFdc+hC+fdm45Wtlxs6viuskkphE78R0DLbYTBAGpf1zCzJ8ynP5Noa2rDShNNeFcqdSafg/0kUNS7+KC0mt/rlLX4K4Pd+CFHzPsWk67uHoe2PsFUHzK2SWhW5VBb/f39coGrvT+xTbnfnYwoNysdNWmX0t07ihS1zixMK3r4LkS0+9uUikqNOILr0e4HxJvCzOt+9/RAkz6zwGsPHwRn2910gtR6yJNTS2gNxhNfUaaauJ56b7uAIAJCdENziorrRdY1h0rtFMp7ejYj+L/7cQqZ5eEblVHV1y/zPv6mmJb1O8kC4iXBnEmBpSbjSCIb5y7PwMg9g14dUMBEt7f5txytaLaIa+AWINSee1F5ieX4LFYN9SO4Vm295xpu/ySth8UWoWuBqi2vEZHiVmtSFOjeEb3jsC+OcPxzwd7Nbi+qashO4y20vp5JOw934QgAHoOhScblF28fpnQsuZQV5y9mQHFmYqygB3JQFVJ09taS1thUfVcVl3XdKFzVHu+QS929Dy3xzH7t1GlWer3cJPh6LV+D70q0hBz/hfES/4AABzJKzVt5xI9CtpCv4a9XwD7lphCirpGh0Fm4VduxbV2wv09r2vaqeWUfFJTBuz5Ajj0n7plRiNQXnRdGHOIzF+A3z+x7bGu5MBQdLJtPGecSVcDnFwDaCqs214QgJwdwLndji1XS3k3cDHNFgaU99efvG7Z1xMHtGifLcWA4kxZv4k/9//Ljju1fIc/U1wBN4jJ2GET8RRniZ08c3c5Zv82ig72Mf1+/kolDuSKAVBadAxVWgMGS69/IbrE+7z5aCuXKFA9FcV1tQfF4jn8966zFpu4WXkxwBup38TTKq7kiD8rza5wfeGAGFj2LQGqSx38+NeGihYea3h9VYlleNGUQ31gOb5a/DGW/vyrY8vWFEEQ+0LUlDW9rTPs/hRQHQf2LgAuHAI0188qbUFdAOTtA3J/BwqOtE4ZbWU0NhxmW/iecbFU7Bbg4SZFQkwQ/hzfASPiwpr4K8diQHGWohOW94/+aJ8Xeb03+JOFalNAOaVq4sXZXGb9XVyBeRDbcFxl+v1qpQ6CIECK679puMTU97przUyVl4Gd88TatfoEQayxasSmEypM+Hqf/fsdmb9hXz0HwLJ5xx4aDCi6mobffAVBfKNu6f9OZjb/TEWx+DNnR92y0uuHqVuUoSXMm3aunVMLB78Wv8DsWyJ+MAFAjRqHzl2FRm9A2bF1LXt8W9Woxf9HrSs5Yg1Q2qLm77Nek5nRUXPgnN4C7P2y8RFzerNjy7bvKJmWMBgFpJ8vEd/bLh6yrC3pOkL82YIaFPP3PwHAj39X4sM/9232/uyFAcVZsv5neb/kLHDsp5bv1+yJVqM3oFyjhxziN/Pv0s43+qc6g9H2N4fqq0DOdpuL6Ug3qimSu0kRpvCETHL9C1nuJgWyN4ihIGd769Rg1H+M2jfHA/+uW1b/m9LxX4H9ixv9Jvj379Ox58wVTP1vup0KCvFDxDygKNoDsGy3DvXzaPHD+OZuwAy3X9BFIraxD5NmQLPzo4Y7pJ7fK35wFx5t2YOafyg19K1Z0sjb5OU/WvbYJ9fU/a4usFwnCEDFJVyp1EBvNAL6ajHQHP4OzmiUNGoqkfbft7Hm67kw1DYXl7VwGOrprWItx7Vm7uLyGgx6fxveXZvVwtI2Ii/txuua07/IoAcOfy8eS62r5wC1/Tp4f7v3HMYvTsOclZmW5Q/tCQTFiL+3IKBUm71nmvfhczYGFGe40YefeRXzDdToDKa0azAKSM0uQmmV+bfYun0vSRWrrqOl4rfCNUfrvQGaWXusAN3+sQF//aZuuuR312bhyW/2Nx5azF+UVlDX6HClwo4dAouyrvuGW6lp+E1G2TkYIb7ih6g/LNukA9z1QEGGeCdvP1Au1rz8kn4BnWavw94zTf9vbFZ/Ar3a+14BdcvMh7IWZYnV6ZoK4HzDb7LmtSaH80ot5xHRVACX/hD7CukbrvkoqdRi2Z5cXK1fM3J6s+XzVjBCZzBi1ZG6znrfTR7U4D4t1KiB/IM3nDxQfln8YBonS4MMBvSTnsHi1Bz8tGHr9c/D2ibFPzY1/biNOb3F7I7k+ten0MiH1tXGQ3+TzIeKmv/fAcCgxbkrlfh+33l8ueMMZi5Pg+6S2Bykqf8hYjTaL1TXlAEZK8TnyjWlVVoMn/sD9p8rQc7FIhzf9LW4Qtr4vDdNunDtubD/X8DRFOz77d+4XFGDb3bnQm8wYuZPGeg0ex2mrThs+76NdefolEoNVe1r4wb/s9VHLmLniWb8P0tygLIL4rEA4peHjB+A9GUWZWguvcGId64FtlVHLgLBXVGjM6CgrBqCTA5Ts/6NAkq950VFAyNzKmrqlkUFWXc5itbAgOIMzZzZdegH2xH7xkb0nrsZMOjxzntv4Mj3szH53S9RcK39sPbJKNT7huWBRqrii09hxzaxOnNvzhXU6Aw4e6kC3+zOxe+nL2PMF7/f+DisnGr5coUG/9mdiz5zNyP+n1st5ipplCCI30Z0NcDlM8C+xeKHtrpA/NaV9RtwZLlY86HKBABcrbr+WGUwICrIGwAwY3h3zPTfafkw9WskrjW3vPyz+O38ia/343QDV0Vukd8/trxvuFbu0J51yzx8637PN7vWxsWGa0c+22r5jX7p72b39y4Qa2BydzU4eZ8gCBj7bgoWrtmDGfXnHymod19bgR2nik13/b3cERuuqFuvKW/4AzNtIXBmq3iBs1oGnfj/LTlraqEUBImp5g8ACsqqceXiH8COZPy2cjk6zV6H1D+uzfMjs+MVOySSeoEFlm/89de5WdYa6QxGnL9SiX1nrzTdbFg/JNbv66LXINVsQsGy03txftdyAEC22XPxnd+OYsWXr0N79OfGH89aZ1PFD/Hjdf1bBr23zaJpVHb1rFjbYN4sZWtAqldbcTnvFM6eOowwXIUb9Oj6jw1YeVgMwGuPFSLnUgV+y7iIqgbm62iQXnxP3HRChY0nVEg5mNfgQIFsVTnmrMzEjB8zsGzzAdM22pCeuCN5G/627GCDEwYKgoADuSWorK42X2h5ToqOW1fWRsxemWlx3+DdDkt25eCnQ/n4Xdujrlm/oYBScQlI/UCsHQbwXdo59J67CRuPW9bumIeWH54Z3OIy2wsDSlMEATXHVuPsmg+hv9BEii/NFz8oa29/bAaMBvx4MA/fp52r2+7ioRvvI/9gg4trdAZcuCq+ECo0elw+uh6BGvHFe6csEx9vrv0gEnD2UgW+r9ecM9Xtf+goUaE4J8P0AlLX6PDPNSdQvO8HRF35HUOk4guh+MwRzPv0I8jM+64YdOI3VfP226orjZ8PAOUlKvz4yQxMf/9z07cAAJj16zE8+c1+bDtZdMO/NRoFXDi5H0LGCnEq+HO7xDfxE6uA9G+B/f9CabW27k3n5FpAV9PgNPZPxHla3J80OBqTh8aY7mefPI6cSxVYeeQCTqnUYr+aI8sxw+0XuEGPO6TH8cPaTWINwLW+Qr9lXMTTSw/UjZSqvAKoC7A1qwjf7K47TxuP5qHb7N/wnflzoCG1NWjmAda8+ayRb6u1H4bmcxnESvJQufUDsZNgfapjgKYcRr0O6zMLUVhWjU2Hz+DPslQ8JtuBvX+Ib2BrMi5i2sfLUFIv9OUe348Xvt8DKYxQSk/g3WFm4eT8XrGt35qREEaDGFZ2fwoc/RGSa98GCxAMOSw/iCQZP4iPfXgrAAFH8q/iwLkSQHrji5qdUqmRc6kCOZduMIrDoAckUrEJBRA7Ul5Mh85gNIX8VYcvYPyiPVBfLhDXm/OsO269wYhu/9iAuz/cice+2ocF2xsO78v3n8cDC/egPLuBGZ61leIcKxkrkLV3La5W15333tJcaA0CisvrasnUgg+u7v8BxcWF2LJrd8tqUQz6a32cxMc8eqEUXy/6ADU6A7QGIwLMah3zS6qA1PkWw11Pn0jH+pXfQX9mh8VuS6u0GPvF7+g0ex0W78ypW1Gvz91/94vvWY+7bcdo6YHrijf841S8kJKB2+euh1B5Gd/szsWAf25F9rW+dRUaveU1nK7VPp5UqaEVxOfIwp1ncKVSg5jZa9Bp9lr8um4t5q1MQ9rB/Zjh9gv6Sc/gYmk1ci5VYNXxEhSU1WD7qWJM+Nrsy0FNGQRNBe75aCf+8q80LPtmQd06o0F8H6qlrRRn825GR+tdf1zC51tP45f0C5bLs8X3zJPGaPw34yqyVLX/l3r/e6NR7MMkCKYvGG/+dgKCAEz572GLAH25Qvyftw/wQodAb5vL6ii8WGBjjAYgdT62Zxbij+JyDL1SjAH3AWh/u2mTYxdKEe7viVA/T+DIfwGIHxbpeVfRrXofJDn78E5qHCrhhc7tfDEkpEr8hlIrLE6suq91ZivQrodYUxA1COhyDwAgr948HV//ug6eZv0Jfz18Ab8evgAFKvE3N7EpZ6vhdsRJz2NqP0/8dvQiHpLtxoqluzH17i4Q7p6F7/aew3d7TsPXTWwiGSjNxkBpNlYuB+KkQJz0PDYYBiFbiMblk7sQcukwcPEwcM8c8UHNak+0BrHK38doBAoOA/5ROK72xM+L3kegpBwJ0jJ0kFxCe4n4IbyucDB+Fzrg99OXcW7eWMvznrcfKDmLHine+ItsJ+7vLEPnEA1C/TygMRhRWqVDuMITJVVafJ92DqEKTzw+MFr820PfYOvJTqZduUGPp2Sb8DdFCADLqst/DO+AwKpcfHRYwN2yo1hzbRBFXkkVYrsdxGerxSaEv8hSESq5CuSeAtKuVcnf9TJeSMkAAIx4+0csHlCEAGMJIhSeSE4NQ47QHofOlWDRI91w6ue3kOQGfPRbDaKDvPHU0oP4KLEdHoHY5u7v5S5OEX+t1kbQVeP8lUpkXixDeY0Ojw7SosYoxYbt++HjIcN9cWEQBMBdEPCXf+0TP6QBbH7xLpwx+yAeJRPf5C/s/RFPnLmEz8KuwigICFN44tzlSyg9/BoMvhGYcbovukkuYKxsn2mYrwKVqDp/GDm/LEBXAN+lAQ/0jURMiC/0RiN+O3oRf5apESQRPxzG6HUArn3zqn1+n9sNxNxZd8LrByWDHsjdabGo9stge8llfNP3FHab9SWv/QADAM9rNYI5lyrQv4cbaiNKlVaPzAtlGNApCJfKNRj1WV3t35CuwVj813jM/e0E7o8sx73+hcCVHKzLLMTp4utrx4bHhiEuUoF1e4/gTmkuNi3zwp/joyw3kopvoQt3nMH6TDHUDZNmwAM6fLrFiJALW/FEdwEYOFnsjJt/AItWncRFtMMLyw/jm/tkplAGQPzycPEwzp3NxuaM6+e62JylsrivkFRCIakEAJwuLsfqb/6JB56aBYmbHDmXKhDp7wUvuUysrdHXiIEqZztwIR24YxrgLr4m9medRdqKd5HQvQOUd9yNkkoNdmQXAyjGO6sycLf0KPpL65qjsovKUVGjx4CYIORfqcLAmCCsS1kIAPC7Eog78/cBQ19EDdzR7526WqcPNp5CTIg3ymv0yD7yO17pZECl1nBdeO8iLYDkWmh0hwFa1IXQ/5P8D//5ZC0OVYfjsjEBY7/4HftfG474f4rB9dwbg4HKS4D6oumq2IsMD8ADWkx1+x++33cet0vEYJmflom+APqaZf/V1877UaMXgDC0w1Xk5V7B7F99MO9P3YC0RVhztADuJb0gRaRlrYxR/HKRf+1LUtTZneLyyktA/FMwGgVkXihFj3A/eMrdxOCSsx3odh/g4QdA/Pw4pSrHxP/UD2kCJBDw3Y6j6CsFAAk2ZxVhb1Yu1g+sQnSI+PdQF4q1X6Gxln9ekIEZbuLVjxfpH8D0H47gyyfEz7LT5/PRDlfRN0wBVyIRnDh8YeHChfjwww+hUqnQt29fLFiwAIMGNd2OrVar4e/vj7KyMigU9j2hc1Yeww8H8tGrvQL/G3Ackuqr+Hx73QvzrwkdMfncvSgpOAMBEqgFHzwp2wJ3ifhtTyaVQNk5GLsb6LOwyjAUPySch7tMCjepBH6ebsjvPQ3t89dArhY7m51SqVFeo8eAToGAAPyovxNdFQY8troMRkjRV5KDu2XXdwr8Xn8frsAfClTgb24boRXcsMjwIF71WInnhnXFZ9ssq/4LhGD8ZBgGpTQLCQ0MuzX3mf4RTJatx2vD26NGa0BqeRjm5XbDw+rvAAASSd108gVCMF4c6I1D567i46K+eFB247lRVhuGwBfVmNpLwAd/hOPtJ4ZhoF8JfLJXolprwHOpUnSX5MNb0nSflaRhXeEuk+JEQRmeP94Z42Rp+HN8FMIVnqjRGeDj0XAWL6nS4q09WnSR3rh/TkNqbv87lhy4gh6SPIyWXf9t77wxDB2llrVDF4UQnDZ2wDGhM553q7s44DljODpJVciU98OAu+5HyZaP4COxHIGz0TDIFDhq/WYYgnLBG50lBbhDJn6SL9A/BANkiJYU4WHZDZrm6vlM/4jpjaspvjGDUJFrWY77eobhtkh/4O5ZYsLYOa9uZVgc0PNPYq1Q/SatwVPETq5mtAYjFu0Ug+/fhsTgP3saHnHxnX4kJrptBiCe19C7JuOxgdG4c7747V0CIx6R7YIEAtYalIiWFCNUchWBve5D5fEN6CXNxXPDuqJSo8e3jdRsDekSgj05da/l3u39MbBTEBSe1z4wY8ei76JzqNIJ0MHN9PoDgFPGaMRK6/pHRQd54/boQKzOuIjF+j+hv/QMBkuzUC14QA4dYoI98XD/Djh2oRTbs4vRXE/fEQOVEIAlewqw0TgQf3dbi78MiMLFq9VoFxSI1OPnER3sjTvjoiFVPocvt2bBuOcL09+XCr4IkNQF3U2GgUiUNVyzeyPx0YG4UqlFSfwLeGd9Xe1ub0kursIXJYICz7qtbXQf9W00DEIFvPCIrO4L3mf6R0y/x0gKMUp6ELEh7si9UokCIRiRkivINYbjN6N4jSdrn+cAkGmMwTbj7ZjhJjZ1fasfiRWPhKHz1b1YnJpz3fZ/GRCFyKETsX3V1zh2XnztT1J2MjWbt0t8Ca8tT8XD0t343dgbR4RumOH2C565szN85G44pVLjy6LeuCjviCN5V9FVchEKVOGcEA4d3DDZbb3F46mEIKQY7oU3apDksR7PDesKyd2zsPfXz+BWUYiBHQNN8w0ZBQHHL5aZnlcXhRD8YeyAU0I0jJDi/2Tr4SHRIqFTEJRdQoCQbkDvR+AItnx+Oy2g/Pjjj5g4cSKWLFmChIQEfPbZZ/j555+RnZ2N0NDQRv/WUQFl6Z5cvLfmGG6XnIZcoscAabbd9t0QjSDHYsOfAACJfrnoWW37qIuoQG9TWgfEKt/ab1Sf6R/Br3/yRLzmALKLyrHheOO9ymUSCQxOHG57zNgZfaRnm96wnvofBLVeGN7N8tspAET2u64/xS/p+bhwrQ9PrjEcMVLLb6mOZn7cRkEKaQOjjGxRIXjh3hgvU82KPX2pfxB/lqUiTCKOLhrYKQhDutjxsuwefsgrLIJUAnQI9Mb/jl7E2cuVVv3pJSEA7SSlzX5oreAG+bUvGoeN3dBdcgG+koaH0F8SAjAkzIA/Gqh5sdUuQx/0k+aYXrf1xQx+ADl/HIe0pO5D8V/6+/Hf2H343RGdtxvx14SOeHpvMIbLbOu0WiPI4Slp3pD026MDcTiv4UnsTho7orskv8GRebUuCO3wi+FuAEBfyRncI8uw6nFrBDmkECCXuMZ1umLDFWLz8zW7DH1wWOgOL9Tg7zaGvRu5v3ckuoaa9XtL+HuLp9Cvz5bPb6c18XzyySd45pln8PTTTwMAlixZgnXr1uE///kPZs+ebbGtRqOBRlP3LVqtVsMRuiAf09xWN7jurDESna34lq0V3LHI8ACkMOJOaaZFtai5DGNXHDF2Nd3fVB4DlcTQ5IvnmTs7Y/fpyzipUuOR2zugfYAX1mUWmqr2a9/kBEGC+/tEoP/g/kBFT/RI/xaFpdXIuFB6w30n3dMV208V4+LVajw6KAoeblIUlNbg5/TGhxJ+ox9zXbqv1SnYB/f1DEN2UTk0OgP6dwzEd3vPoaqBocDNCSdGQYpNxgHYZByAF8xqJRJigq8PJ95B4pwB9QLKI/FROFFQBo3eiDzZ/cCpr03r4jsGIiEmGIt3nrF6YGeQtxye7jIUlNV9uD19RwyW7r2+NuCAMRZBqPuQMw8n6wyDMVa2z2J78w/RG7m7kyfu6BKCQB85Np24PmydNUags7ThsNo/KhBDugbjyx11zXcp+ntQDm/UQA4DZEg19MVf3HYiPjoQd3RpYEbLlrjtQUQbfzbNtTGmdwRSpPfjvU1n8JBsD0IlV+HhJsUzd3a2KCOARsOJBI0PzF2qHwUt3PB3t7Xo3d4fC873QqnEF/fKGp6sSwrjDcPJxMGdcLyg7IYfqgDQK9IfxwvEPhiX4H/DcDL93m6Q3fMADGMeQJfX1qGLpAAXhHZ4ZWxfxEeF4bb2O+Ehk2JNwOP4/OctGCdrZAhtCz1/bzdI+z2GX0ZFY+Un01FUXnPdNkVCIIqFAPSWWj7Xh3byRaC3Ow7nXbW4YKS52lrQhsSG+0GlrkGXdr749+917xM9pU2PurkkBGD26Fi4y6T451oj7kGG6Xn+ze5cVOsM8HKXITZcgUE9O6FI4471uw8BBi3+flcXeLnLsHRPLsoauKBo/S+I9uYjd0OlVo+n7uiEAC85ZBIJThSWoVuoL9x7DMfhHfkw2tiVdHBMMK5Uahts1uzczsdywcn/AfFPteAIWsYpNSharRbe3t745Zdf8OCDD5qWT5o0CaWlpfjtt98stp87dy7efvvt6/Zj7xoUoSADx7b9IDa9lFTjSP5VnDG2x1qjEu8+cBvKN70Lrd6Iu7q1Q4ivB7y8vFF8tQyx4QoUBfaDl5cXhn13GWWCN/42JAZPD+mEDiiCpKYUQvYGrM9U4XKFBgcqQrHO2FBPaQGjpAcxPOgS8sv0KDT6o73kMjoG+aBLqA96RfqLE1n5tgNix4nt3wf/bdExTnetL4h3u47A7RPrdl1VApzfg5m7DBDO78M/7/aBt1xs/9YGd4fbbQ9BKpWIY+wlUiCir+l6PlqDEeszC3H0MqCBXOyPAeCOLiH4vd0TiO8Shu7ZS1BapUNZlRaf5ERiiOw4Hh0QhQh/L6DnOHEIpW8YIBOrxnWnNkJ68TAW7BADXJ/2AdAZjDhp9g0h0FuOP8d3QIrubgzrGQ7J4W+hbdcb6rIShN4+DhHhEXB3k+G9dSfx9e5cdJfkY4xsPx7q3x4dozrWdTrtcq94PO7XOsqe3iJ2duyeCAR0BA58JS6PTgC63AtVQR6O/PoR7ureDj5dlEBpPiq7PYAXVp/F211OoSzvhKkvwNS7u8AjPBaZgffB19MNkRUn4JG7DVerdfh2by7OR47Fp889AqgyUZGxGt/vO49ekQrc2a0d9B2HojR0EA7uWo/YqnScu1yJoxdK4efhjjFT3kdEuxDojq9G8enDCPXzgLtMCs3QV/BH6g+QFWfBw02KvTmXMapXBLxvGw39qU3w9zLrMKqIxHsX+qL0wHK0l1xGiI8HikLvwLf5YXhxaAju8s6D4vJRhPjKUVKlRZC3HJI7ksQRQlUlePePDliZeQV7XkuEl7sMm7OKsO1kEQZ3DsbIuDD4Fu4TO8R2Gnr9LMJ9/nLjeX08fC2nHu8xGvAKBCAAgZ2uXZumxtQ/AhD7lni5yyA5tc40WkuAgJOF5ThRUGaaBfP26EDc1a2d2StKgAQSCBCw7WQxjheUQQIg2M8T68pi0NVHg22Gfvjkr3fA012G3u39IZOKTZbzNpyC1975iA3zg7JrOyw3jkSns8uRqdLghNARt1/78tE+wAsP9GtvOc1/aE+g+CQOnS+Bj4cbijqPxw9b9sGr6iLeHuoFfy93aA1GlFZpIbtnNrzObsL3q9eiWmdAO18PdOw5AD3u+gvaBfiZOuboDUbojQI83a91mBAEsaO6VxAglUIQBCxa8St0J+smb5t+bzfsy7mCTN87sOHYBdwjy0CJWyj69RuAvEN1Xyru6BKCuNF/R3XhKWzcuAbKzsHoev9Myzl5ug4X+8UBQNkFCIe/Q5UgR/XAJKT8/COC/H3w+MOP4PXVx5F6IN3UFNO1nS/u7xNp+n/kl1QjxFcOd3c37FWMgU/xEfSU5cNH7gb0ehjwDgHO/W6arRiSekO/vQKAuAfEjvIA/rg2oqlDoBdO60OxI20fSgVfPBLng3JZIOIfegFyD0/oDEbM23AK/m56TI/OhaQkF8YoJcqOb0SAlzskQ2cAcm9xyPDh7y2esnqjERevVmNVxkVsNdyO4I63Ifn+Log4vRwanRHpeVctLlI6ZPTjUPv1wNqUxegoLYLcTQqt3oi4CAXiIhRwl0lxtUqLgtIaLM7rAC+JBrdLT+O2CAUKymowPDYUbjIpwiI6QGI+/URk/7q5eobNBiQSZBeWYds3r0NbU/eaqg1Ol4QAuEOPAEkFPN1kCB/3Gh6Q7Yfk6jloDUZUavSQScXrlXkMfBJB7buJE+/VDn8f+H/i540duXwTT0FBAdq3b4+9e/dCqVSalr/66qtITU3F/v37LbZvqAYlKirK/n1QBEFMjD7txCeCm6flzKzVV8WOf1GDm/dPqyoRO0Iq2l8342ujZSo5C3goAJ+Q6/9OUw64e4sjPHTVgMyj7pr1jakoFt/YBIPYea+p8giCuI2uWjwPeg0QEF03skSvEbepDQHlReIwP/+opudKMOjE49BVAT6hgJu88e2tVXlZPDbPBp4jBn3d8NTKK4C2XPxwrGU0ih+S8no92o1GcZSD+TmzZXp2gw6AROxMV/sBbNCLE17J3MX/X/3nVu1L1PxxjMbr/896rdn/U2pduQx64MC/gOCuQLeRth1LfVfPAXJf8XlaW25BEMupqwEgmB2zDigvFD+M6p/jptQeu15bN4maYBTnw/EKBIx6wDfU8lgMOlM4tknFJXH0WI+xdc/t2uOqvioOM5a5ix3qjTrA3afueaWrEZdd6/xoIgjiPDsGTd1zThDEMrrJxddSveHLzWI0iAHSvz0Q1PnG29W+tm1Voxafa7XnpT6DDlBfFN9njHpA7mN5XObPYaMBgOTG712aCssh97X7T18GxNwNtOtue/lr6TXi88j8+aHXiuHPNwzQlImfBfU/D2xhNIjvg+bHrK0SXw/1n6e1o/jMXxe1/yOjQRz9VL/ZRa8Rn//6GiC8tzhdv7YS6CwOsoD6ovi5Y35+K4rF98iAKHH/5u+Teq343JXXq1Gxg5suoNTnyE6yRERE5Bi2fH47ZR6UkJAQyGQyFBVZjnIoKipCeHi4M4pERERELsQpAUUulyM+Ph7bttVdpt1oNGLbtm0WNSpERER0a3LaKJ6ZM2di0qRJGDBgAAYNGoTPPvsMlZWVplE9REREdOtyWkB59NFHcenSJbz55ptQqVTo168fNm7ciLCwMGcViYiIiFyEU2eSbS52kiUiImp7XL6TLBEREVFjGFCIiIjI5TCgEBERkcthQCEiIiKXw4BCRERELocBhYiIiFwOAwoRERG5HAYUIiIicjlOm0m2JWrnllOr1U4uCREREVmr9nPbmjli22RAKS8vBwBERUU5uSRERERkq/Lycvj7+ze6TZuc6t5oNKKgoAB+fn6QSCR23bdarUZUVBTy8/M5jb4D8Ty3Dp7n1sHz3Dp4nluPo861IAgoLy9HZGQkpNLGe5m0yRoUqVSKDh06OPQxFAoFXwCtgOe5dfA8tw6e59bB89x6HHGum6o5qcVOskRERORyGFCIiIjI5TCg1OPh4YG33noLHh4ezi7KTY3nuXXwPLcOnufWwfPcelzhXLfJTrJERER0c2MNChEREbkcBhQiIiJyOQwoRERE5HIYUIiIiMjlMKAQERGRy2FAMbNw4UJ06tQJnp6eSEhIwIEDB5xdJJe2a9cujBs3DpGRkZBIJFi9erXFekEQ8OabbyIiIgJeXl4YMWIETp8+bbFNSUkJJkyYAIVCgYCAAEyePBkVFRUW2xw7dgx33nknPD09ERUVhfnz5zv60FxKcnIyBg4cCD8/P4SGhuLBBx9Edna2xTY1NTVISkpCcHAwfH19MX78eBQVFVlsk5eXh7Fjx8Lb2xuhoaF45ZVXoNfrLbbZuXMnbr/9dnh4eKBr165YtmyZow/PZSxevBh9+vQxzZypVCqxYcMG03qeY8eYN28eJBIJZsyYYVrGc91yc+fOhUQisbjFxsaa1reJcyyQIAiCkJKSIsjlcuE///mPcOLECeGZZ54RAgIChKKiImcXzWWtX79e+Mc//iGsXLlSACCsWrXKYv28efMEf39/YfXq1cLRo0eFP/3pT0JMTIxQXV1t2mbUqFFC3759hX379gm///670LVrV+Hxxx83rS8rKxPCwsKECRMmCMePHxd++OEHwcvLS/jXv/7VWofpdImJicLSpUuF48ePCxkZGcKYMWOE6OhooaKiwrTNlClThKioKGHbtm3CoUOHhMGDBwt33HGHab1erxd69eoljBgxQjhy5Iiwfv16ISQkRJgzZ45pm7Nnzwre3t7CzJkzhaysLGHBggWCTCYTNm7c2KrH6yz/+9//hHXr1gl//PGHkJ2dLbz22muCu7u7cPz4cUEQeI4d4cCBA0KnTp2EPn36CC+88IJpOc91y7311lvCbbfdJhQWFppuly5dMq1vC+eYAeWaQYMGCUlJSab7BoNBiIyMFJKTk51YqrajfkAxGo1CeHi48OGHH5qWlZaWCh4eHsIPP/wgCIIgZGVlCQCEgwcPmrbZsGGDIJFIhIsXLwqCIAiLFi0SAgMDBY1GY9pm1qxZQo8ePRx8RK6ruLhYACCkpqYKgiCeV3d3d+Hnn382bXPy5EkBgJCWliYIghgmpVKpoFKpTNssXrxYUCgUpnP76quvCrfddpvFYz366KNCYmKiow/JZQUGBgpff/01z7EDlJeXC926dRO2bNki3H333aaAwnNtH2+99ZbQt2/fBte1lXPMJh4AWq0W6enpGDFihGmZVCrFiBEjkJaW5sSStV25ublQqVQW59Tf3x8JCQmmc5qWloaAgAAMGDDAtM2IESMglUqxf/9+0zZ33XUX5HK5aZvExERkZ2fj6tWrrXQ0rqWsrAwAEBQUBABIT0+HTqezONexsbGIjo62ONe9e/dGWFiYaZvExESo1WqcOHHCtI35Pmq3uRVfAwaDASkpKaisrIRSqeQ5doCkpCSMHTv2uvPBc20/p0+fRmRkJDp37owJEyYgLy8PQNs5xwwoAC5fvgyDwWDxjwCAsLAwqFQqJ5Wqbas9b42dU5VKhdDQUIv1bm5uCAoKstimoX2YP8atxGg0YsaMGRgyZAh69eoFQDwPcrkcAQEBFtvWP9dNnccbbaNWq1FdXe2Iw3E5mZmZ8PX1hYeHB6ZMmYJVq1YhLi6O59jOUlJScPjwYSQnJ1+3jufaPhISErBs2TJs3LgRixcvRm5uLu68806Ul5e3mXPs1uI9EFGrSUpKwvHjx7F7925nF+Wm1KNHD2RkZKCsrAy//PILJk2ahNTUVGcX66aSn5+PF154AVu2bIGnp6ezi3PTGj16tOn3Pn36ICEhAR07dsRPP/0ELy8vJ5bMeqxBARASEgKZTHZdD+aioiKEh4c7qVRtW+15a+ychoeHo7i42GK9Xq9HSUmJxTYN7cP8MW4V06ZNw9q1a7Fjxw506NDBtDw8PBxarRalpaUW29c/102dxxtto1Ao2swbWkvJ5XJ07doV8fHxSE5ORt++ffH555/zHNtReno6iouLcfvtt8PNzQ1ubm5ITU3FF198ATc3N4SFhfFcO0BAQAC6d++OM2fOtJnnMwMKxDel+Ph4bNu2zbTMaDRi27ZtUCqVTixZ2xUTE4Pw8HCLc6pWq7F//37TOVUqlSgtLUV6erppm+3bt8NoNCIhIcG0za5du6DT6UzbbNmyBT169EBgYGArHY1zCYKAadOmYdWqVdi+fTtiYmIs1sfHx8Pd3d3iXGdnZyMvL8/iXGdmZloEwi1btkChUCAuLs60jfk+are5lV8DRqMRGo2G59iOhg8fjszMTGRkZJhuAwYMwIQJE0y/81zbX0VFBXJychAREdF2ns926Wp7E0hJSRE8PDyEZcuWCVlZWcKzzz4rBAQEWPRgJkvl5eXCkSNHhCNHjggAhE8++UQ4cuSIcP78eUEQxGHGAQEBwm+//SYcO3ZMeOCBBxocZty/f39h//79wu7du4Vu3bpZDDMuLS0VwsLChCeffFI4fvy4kJKSInh7e99Sw4ynTp0q+Pv7Czt37rQYMlhVVWXaZsqUKUJ0dLSwfft24dChQ4JSqRSUSqVpfe2QwZEjRwoZGRnCxo0bhXbt2jU4ZPCVV14RTp48KSxcuPCWGpY5e/ZsITU1VcjNzRWOHTsmzJ49W5BIJMLmzZsFQeA5diTzUTyCwHNtDy+99JKwc+dOITc3V9izZ48wYsQIISQkRCguLhYEoW2cYwYUMwsWLBCio6MFuVwuDBo0SNi3b5+zi+TSduzYIQC47jZp0iRBEMShxm+88YYQFhYmeHh4CMOHDxeys7Mt9nHlyhXh8ccfF3x9fQWFQiE8/fTTQnl5ucU2R48eFYYOHSp4eHgI7du3F+bNm9dah+gSGjrHAISlS5eatqmurhaee+45ITAwUPD29hYeeughobCw0GI/586dE0aPHi14eXkJISEhwksvvSTodDqLbXbs2CH069dPkMvlQufOnS0e42b3t7/9TejYsaMgl8uFdu3aCcOHDzeFE0HgOXak+gGF57rlHn30USEiIkKQy+VC+/bthUcffVQ4c+aMaX1bOMcSQRAE+9TFEBEREdkH+6AQERGRy2FAISIiIpfDgEJEREQuhwGFiIiIXA4DChEREbkcBhQiIiJyOQwoRERE5HIYUIiIiMjlMKAQERGRy2FAISIiIpfDgEJEREQu5/8BQ4YmWZnsDaIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"bNrm\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"bNrm\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.383282Z", - "iopub.status.busy": "2024-07-11T15:30:48.383019Z", - "iopub.status.idle": "2024-07-11T15:30:48.385452Z", - "shell.execute_reply": "2024-07-11T15:30:48.384977Z" - } - }, - "outputs": [], - "source": [ - "# plt.plot(range(5000), pct.history['Risky'].mean(axis=1), label = 'original')\n", - "# plt.plot(range(5000), pcft.history['Risky'].mean(axis=1), label = 'frames', alpha = 0.5)\n", - "# plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.386918Z", - "iopub.status.busy": "2024-07-11T15:30:48.386680Z", - "iopub.status.idle": "2024-07-11T15:30:48.550993Z", - "shell.execute_reply": "2024-07-11T15:30:48.550489Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYz0lEQVR4nO3deVxU5eI/8M/MwAzrgKhsyuKCCypqLkilWZK4ZFl2r5Wldb311dAyK5duq/fe8NqemVa3q977y0wrrcx9AVNxQ1EURcUFFQYQhGGRgZk5vz8OHGYQcAZmmEE/79drXjDnPHPmmTPbZ57zPM+RCYIggIiIiMiJyB1dASIiIqK6GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoujq5AUxiNRmRnZ8Pb2xsymczR1SEiIiILCIKAkpISBAcHQy5vvI2kVQaU7OxshISEOLoaRERE1ASXL19Gx44dGy3TKgOKt7c3APEBqtVqB9eGiIiILKHVahESEiJ9jzemVQaUmsM6arWaAYWIiKiVsaR7BjvJEhERkdNhQCEiIiKnw4BCRERETqdV9kEhIiKqIQgC9Ho9DAaDo6tyx1MoFHBxcbHJFCAMKERE1GpVVlYiJycH5eXljq4KVfPw8EBQUBCUSmWztsOAQkRErZLRaMSFCxegUCgQHBwMpVLJyTsdSBAEVFZWIj8/HxcuXEBERMQtJ2NrDAMKERG1SpWVlTAajQgJCYGHh4ejq0MA3N3d4erqikuXLqGyshJubm5N3hY7yRIRUavWnF/pZHu2ej74rBIREZHTYUAhIiJqBd59913069fPqtsMHz4cs2bNcng9moJ9UIiIiFqB1157DTNnzrTqNj///DNcXV3tVCP7YkAhIiJyYoIgwGAwwMvLC15eXlbd1s/Pz061sj8e4iEiu1t9MAv7zxc4uhpETkOn0+Gll16Cv78/3NzccO+99+LQoUMAgMTERMhkMmzatAkDBgyASqXCnj17bjq0otfr8dJLL8HX1xdt27bF3LlzMWXKFIwfP14qU/cQT3h4ON5//3385S9/gbe3N0JDQ/H111+b1W3u3Lno1q0bPDw80LlzZ7z11luoqqqy5+6oFwMKEdlVyqXrmPdzGp74er+jq0J3AEEQUF6pb/GLIAhW1XPOnDn46aefsHLlShw5cgRdu3ZFXFwcCgsLpTLz5s3DwoULcerUKURFRd20jX/961/47rvvsHz5cuzduxdarRbr16+/5X1/9NFHGDhwII4ePYoXX3wR06dPR0ZGhrTe29sbK1asQHp6Oj777DN88803+OSTT6x6fLbAQzxEZFdZhWWOrgLdQW5UGRD59pYWv9/0BXHwUFr2lVpWVoalS5dixYoVGD16NADgm2++wbZt2/Dtt99i0KBBAIAFCxbgwQcfbHA7ixcvxvz58/Hoo48CAL744gts3Ljxlvc/ZswYvPjiiwDE1pJPPvkEu3btQvfu3QEAb775plQ2PDwcr732GlavXo05c+ZY9PhshQGFiOzKyh+WRLe9zMxMVFVV4Z577pGWubq6YvDgwTh16pQUUAYOHNjgNoqLi5Gbm4vBgwdLyxQKBQYMGACj0djo/Zu2xshkMgQGBiIvL09a9sMPP+Dzzz9HZmYmSktLodfroVarrX6czcWAQkREtw13VwXSF8Q55H5tzdPT0+bbBHDTqB6ZTCaFmuTkZEyaNAnvvfce4uLi4OPjg9WrV+Ojjz6yS10aw4BCRES3DZlMZvGhFkfp0qULlEol9u7di7CwMABAVVUVDh06ZPGcJT4+PggICMChQ4cwbNgwAIDBYMCRI0eaNUfJvn37EBYWhr/97W/SskuXLjV5e83h3M8iEbV6PMRDZM7T0xPTp0/H66+/Dj8/P4SGhmLRokUoLy/H1KlTcezYMYu2M3PmTCQkJKBr167o0aMHFi9ejOvXrzfrhIkRERHIysrC6tWrMWjQIPz+++9Yt25dk7fXHAwoRGRXzCdEN1u4cCGMRiOeeeYZlJSUYODAgdiyZQvatGlj8Tbmzp0LjUaDyZMnQ6FQ4IUXXkBcXBwUiqYfbnr44YfxyiuvYMaMGdDpdBg7dizeeustvPvuu03eZlPJBGvHRjkBrVYLHx8fFBcXO6TjDhFZ7seUK3htrfiL8OLCsQ6uDd1OKioqcOHCBXTq1KlZZ829XRiNRvTs2RN//vOf8fe//91h9WjsebHm+5stKERERK3QpUuXsHXrVtx3333Q6XT44osvcOHCBTz11FOOrppNcKI2IrKrVthIS9QqyOVyrFixAoMGDcI999yDtLQ0bN++HT179nR01WzCqoCydOlSREVFQa1WQ61WIyYmBps2bZLWDx8+HDKZzOwybdo0s21kZWVh7Nix8PDwgL+/P15//XXo9XrbPBoiIqI7REhICPbu3Yvi4mJotVrs27dPGtFzO7DqEE/Hjh2xcOFCREREQBAErFy5Eo888giOHj2KXr16AQCef/55LFiwQLqNh4eH9L/BYMDYsWMRGBiIffv2IScnB5MnT4arqyvef/99Gz0kInImbD8hoqawKqCMGzfO7Po///lPLF26FPv375cCioeHBwIDA+u9/datW5Geno7t27cjICAA/fr1w9///nfMnTsX7777LpRKZRMfBhE5LSYUImqCJvdBMRgMWL16NcrKyhATEyMt/+6779CuXTv07t0b8+fPR3l5ubQuOTkZffr0QUBAgLQsLi4OWq0WJ0+ebPC+dDodtFqt2YWIWgeBCYWImsDqUTxpaWmIiYlBRUUFvLy8sG7dOkRGRgIAnnrqKYSFhSE4OBjHjx/H3LlzkZGRgZ9//hkAoNFozMIJAOm6RqNp8D4TEhLw3nvvWVtVIiIiaqWsDijdu3dHamoqiouL8eOPP2LKlClISkpCZGQkXnjhBalcnz59EBQUhBEjRiAzMxNdunRpciXnz5+P2bNnS9e1Wi1CQkKavD0iIiJyblYf4lEqlejatSsGDBiAhIQE9O3bF5999lm9ZaOjowEA586dAwAEBgYiNzfXrEzN9Yb6rQCASqWSRg7VXIiodeAoYyJqimbPg2I0GqHT6epdl5qaCgAICgoCAMTExCAtLc3stM7btm2DWq2WDhMRERHd7gRBwAsvvAA/Pz/IZDLp+5JqWXWIZ/78+Rg9ejRCQ0NRUlKCVatWITExEVu2bEFmZiZWrVqFMWPGoG3btjh+/DheeeUVDBs2DFFRUQCAkSNHIjIyEs888wwWLVoEjUaDN998E/Hx8VCpVHZ5gETkWGxAIbrZ5s2bsWLFCiQmJqJz585o166do6vkdKwKKHl5eZg8eTJycnLg4+ODqKgobNmyBQ8++CAuX76M7du349NPP0VZWRlCQkIwYcIEvPnmm9LtFQoFNmzYgOnTpyMmJgaenp6YMmWK2bwpRHT7OHG1GP/afNrR1SByOpmZmQgKCsLdd99d7/rKyso7fuoNqw7xfPvtt7h48SJ0Oh3y8vKwfft2PPjggwDEGe2SkpJQUFCAiooKnD17FosWLbqpv0hYWBg2btyI8vJy5Ofn48MPP4SLC08JRHQ7emjxHhSVVzm6GkRO5dlnn8XMmTORlZUFmUyG8PBwDB8+HDNmzMCsWbPQrl07xMXFAQA+/vhj9OnTB56enggJCcGLL76I0tJSaVsrVqyAr68vNmzYgO7du8PDwwOPP/44ysvLsXLlSoSHh6NNmzZ46aWXYDAYpNvpdDq89tpr6NChAzw9PREdHY3ExERp/aVLlzBu3Di0adMGnp6e6NWrFzZu3Nhi+wjgyQKJiOh2IgiAwQGhWOEKyGQWFf3ss8/QpUsXfP311zh06BAUCgX+9Kc/YeXKlZg+fTr27t0rlZXL5fj888/RqVMnnD9/Hi+++CLmzJmDL7/8UipTXl6Ozz//HKtXr0ZJSQkee+wxPProo/D19cXGjRtx/vx5TJgwAffccw8mTpwIAJgxYwbS09OxevVqBAcHY926dRg1ahTS0tIQERGB+Ph4VFZWYvfu3fD09ER6ejq8vLxsu89ugQGFiIhuH4Yq4I+PWv5+h74KuFh2SMbHxwfe3t5QKBRmI1gjIiKwaNEis7KzZs2S/g8PD8c//vEPTJs2zSygVFVVYenSpdJ0Ho8//jj+97//ITc3F15eXoiMjMT999+PXbt2YeLEicjKysLy5cuRlZWF4OBgAMBrr72GzZs3Y/ny5Xj//feRlZWFCRMmoE+fPgCAzp07N2m3NAcDChERkRMYMGDATcu2b9+OhIQEnD59GlqtFnq9HhUVFSgvL5fOdefh4WE211hAQADCw8PNWjwCAgKkEbRpaWkwGAzo1q2b2X3pdDq0bdsWAPDSSy9h+vTp2Lp1K2JjYzFhwgRpwEtLYUAhIqLbh8JVbM1wxP02k6enp9n1ixcv4qGHHsL06dPxz3/+E35+ftizZw+mTp2KyspKKaC4uprft0wmq3eZ0WgEAJSWlkKhUCAlJQUKhcKsXE2o+etf/4q4uDj8/vvv2Lp1KxISEvDRRx9h5syZzX6clmJAISKi24dMZvGhFmeXkpICo9GIjz76CHK5OKZlzZo1zd5u//79YTAYkJeXh6FDhzZYLiQkBNOmTcO0adMwf/58fPPNNwwoREREd7quXbuiqqoKixcvxrhx47B3714sW7as2dvt1q0bJk2ahMmTJ+Ojjz5C//79kZ+fjx07diAqKgpjx47FrFmzMHr0aHTr1g3Xr1/Hrl270LNnTxs8Kss1eyZZIiIisr2+ffvi448/xr/+9S/07t0b3333HRISEmyy7eXLl2Py5Ml49dVX0b17d4wfPx6HDh1CaGgoAMBgMCA+Ph49e/bEqFGj0K1bN7OOuS1BJgit70wZWq0WPj4+KC4u5nl5iJxY+Lzfza5fXDjWQTWh21FFRQUuXLiATp06wc3NzdHVoWqNPS/WfH+zBYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBARUavWCgej3tZs9XwwoBARUatUM517eXm5g2tCpmqej7rT7VuLM8kSEVGrpFAo4OvrK50Ez8PDAzKZzMG1unMJgoDy8nLk5eXB19f3pvP8WIsBhYiIWq3AwEAAkEIKOZ6vr6/0vDQHAwoRtZiCUh3aeqkcXQ26jchkMgQFBcHf3x9VVVWOrs4dz9XVtdktJzUYUIioxeQzoJCdKBQKm30xknNgJ1kiIiJyOgwoRERE5HQYUIiIiMjpMKAQERGR02FAISIiIqfDgEJELUYGTqJFRJZhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIqMXIOMqYiCzEgEJEREROhwGFiIiInA4DChERETkdqwLK0qVLERUVBbVaDbVajZiYGGzatElaX1FRgfj4eLRt2xZeXl6YMGECcnNzzbaRlZWFsWPHwsPDA/7+/nj99deh1+tt82iIiIjotmBVQOnYsSMWLlyIlJQUHD58GA888AAeeeQRnDx5EgDwyiuv4LfffsPatWuRlJSE7OxsPPbYY9LtDQYDxo4di8rKSuzbtw8rV67EihUr8Pbbb9v2UREREVGrJhMEQWjOBvz8/PDBBx/g8ccfR/v27bFq1So8/vjjAIDTp0+jZ8+eSE5OxpAhQ7Bp0yY89NBDyM7ORkBAAABg2bJlmDt3LvLz86FUKi26T61WCx8fHxQXF0OtVjen+kRkR+Hzfje7vvWVYegW4O2g2hCRo1nz/d3kPigGgwGrV69GWVkZYmJikJKSgqqqKsTGxkplevTogdDQUCQnJwMAkpOT0adPHymcAEBcXBy0Wq3UClMfnU4HrVZrdiGi1oejjInIUlYHlLS0NHh5eUGlUmHatGlYt24dIiMjodFooFQq4evra1Y+ICAAGo0GAKDRaMzCSc36mnUNSUhIgI+Pj3QJCQmxttpERETUilgdULp3747U1FQcOHAA06dPx5QpU5Cenm6Puknmz5+P4uJi6XL58mW73h8RERE5lou1N1AqlejatSsAYMCAATh06BA+++wzTJw4EZWVlSgqKjJrRcnNzUVgYCAAIDAwEAcPHjTbXs0on5oy9VGpVFCpVNZWlYiIiFqpZs+DYjQaodPpMGDAALi6umLHjh3SuoyMDGRlZSEmJgYAEBMTg7S0NOTl5Ulltm3bBrVajcjIyOZWhYiIiG4TVrWgzJ8/H6NHj0ZoaChKSkqwatUqJCYmYsuWLfDx8cHUqVMxe/Zs+Pn5Qa1WY+bMmYiJicGQIUMAACNHjkRkZCSeeeYZLFq0CBqNBm+++Sbi4+PZQkJEREQSqwJKXl4eJk+ejJycHPj4+CAqKgpbtmzBgw8+CAD45JNPIJfLMWHCBOh0OsTFxeHLL7+Ubq9QKLBhwwZMnz4dMTEx8PT0xJQpU7BgwQLbPioickrHrxQjgsOMicgCzZ4HxRE4DwpR61B3HhQAuLhwrANqQkTOoEXmQSEiIiKyFwYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0rAooCQkJGDRoELy9veHv74/x48cjIyPDrMzw4cMhk8nMLtOmTTMrk5WVhbFjx8LDwwP+/v54/fXXodfrm/9oiIiI6LbgYk3hpKQkxMfHY9CgQdDr9XjjjTcwcuRIpKenw9PTUyr3/PPPY8GCBdJ1Dw8P6X+DwYCxY8ciMDAQ+/btQ05ODiZPngxXV1e8//77NnhIRERE1NpZFVA2b95sdn3FihXw9/dHSkoKhg0bJi338PBAYGBgvdvYunUr0tPTsX37dgQEBKBfv374+9//jrlz5+Ldd9+FUqlswsMgIiKi20mz+qAUFxcDAPz8/MyWf/fdd2jXrh169+6N+fPno7y8XFqXnJyMPn36ICAgQFoWFxcHrVaLkydP1ns/Op0OWq3W7EJERES3L6taUEwZjUbMmjUL99xzD3r37i0tf+qppxAWFobg4GAcP34cc+fORUZGBn7++WcAgEajMQsnAKTrGo2m3vtKSEjAe++919SqEhERUSvT5IASHx+PEydOYM+ePWbLX3jhBen/Pn36ICgoCCNGjEBmZia6dOnSpPuaP38+Zs+eLV3XarUICQlpWsWJiIjI6TXpEM+MGTOwYcMG7Nq1Cx07dmy0bHR0NADg3LlzAIDAwEDk5uaalam53lC/FZVKBbVabXYhIiKi25dVAUUQBMyYMQPr1q3Dzp070alTp1veJjU1FQAQFBQEAIiJiUFaWhry8vKkMtu2bYNarUZkZKQ11SEiIqLblFWHeOLj47Fq1Sr88ssv8Pb2lvqM+Pj4wN3dHZmZmVi1ahXGjBmDtm3b4vjx43jllVcwbNgwREVFAQBGjhyJyMhIPPPMM1i0aBE0Gg3efPNNxMfHQ6VS2f4REhERUatjVQvK0qVLUVxcjOHDhyMoKEi6/PDDDwAApVKJ7du3Y+TIkejRowdeffVVTJgwAb/99pu0DYVCgQ0bNkChUCAmJgZPP/00Jk+ebDZvChEREd3ZrGpBEQSh0fUhISFISkq65XbCwsKwceNGa+6aiIiI7iA8Fw8RERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYjsQhAER1eBiFoxBhQisgvmEyJqDgYUIiIicjoMKERkMymXCnHfB7uw83Qu2IBCRM1hVUBJSEjAoEGD4O3tDX9/f4wfPx4ZGRlmZSoqKhAfH4+2bdvCy8sLEyZMQG5urlmZrKwsjB07Fh4eHvD398frr78OvV7f/EdDRA71zLcHcamgHH9ZcdjRVSGiVs6qgJKUlIT4+Hjs378f27ZtQ1VVFUaOHImysjKpzCuvvILffvsNa9euRVJSErKzs/HYY49J6w0GA8aOHYvKykrs27cPK1euxIoVK/D222/b7lERkUOUVxqk/9lJloiaQyY041MkPz8f/v7+SEpKwrBhw1BcXIz27dtj1apVePzxxwEAp0+fRs+ePZGcnIwhQ4Zg06ZNeOihh5CdnY2AgAAAwLJlyzB37lzk5+dDqVTe8n61Wi18fHxQXFwMtVrd1OoTkY2Fz/td+v/sP0cj4m+bzNbf3aUtVj0/pKWrRUROwprv72b1QSkuLgYA+Pn5AQBSUlJQVVWF2NhYqUyPHj0QGhqK5ORkAEBycjL69OkjhRMAiIuLg1arxcmTJ+u9H51OB61Wa3YhIucjkzW+XunCbm9EZJkmf1oYjUbMmjUL99xzD3r37g0A0Gg0UCqV8PX1NSsbEBAAjUYjlTENJzXra9bVJyEhAT4+PtIlJCSkqdUmIjsybY+tr22WR32IyFJNDijx8fE4ceIEVq9ebcv61Gv+/PkoLi6WLpcvX7b7fRKR7QyNaOfoKhBRK9OkgDJjxgxs2LABu3btQseOHaXlgYGBqKysRFFRkVn53NxcBAYGSmXqjuqpuV5Tpi6VSgW1Wm12ISLnY3qIRzAZaPxAD//qZURElrEqoAiCgBkzZmDdunXYuXMnOnXqZLZ+wIABcHV1xY4dO6RlGRkZyMrKQkxMDAAgJiYGaWlpyMvLk8ps27YNarUakZGRzXksRORETA/nyKuTC0f2EJGlXKwpHB8fj1WrVuGXX36Bt7e31GfEx8cH7u7u8PHxwdSpUzF79mz4+flBrVZj5syZiImJwZAhYs/9kSNHIjIyEs888wwWLVoEjUaDN998E/Hx8VCpVLZ/hETkcLfqPEtEVJdVAWXp0qUAgOHDh5stX758OZ599lkAwCeffAK5XI4JEyZAp9MhLi4OX375pVRWoVBgw4YNmD59OmJiYuDp6YkpU6ZgwYIFzXskROS0mE+IyFpWBRRLmmfd3NywZMkSLFmypMEyYWFh2LhxozV3TUStGZtQiMhKnJSAiOzC9PeMrJ5lRESNYUAhIrswHcXDBhQishYDChHZnTSKhwONichCDChEZDOmDSU8xENEzcGAQkR2YZpFeIiHiKzFgEJEdidDzURtDq4IEbUaDChEZBdCfcd4iIgsxIBCRHbHTrJEZC0GFCKyGaNJ/jDrg9LiNSGi1o4BhYjswuwIj+zmZUREjWFAISK74ygeIrIWAwoR2YdZH1lZ3UVERI1iQCEiu5NaUJhQiMhCDChEZBfm5+LhMR4isg4DChHZRb1T3bMJhYgsxIBCRHbHBhQishYDChHZhfk8KJzqnoisw4BCRHbHFhQishYDChHZhem5eDiIh4isxYBCRHZhdoin5lw8PMZDRBZiQCEiu+MhHiKyFgMKEdlFfY0lbD8hIksxoBCR3bEBhYisxYBCRHZRMymb6eEddkEhIksxoBCRfZjOJMtOKERkJQYUIrIr02jCBhQishQDChHZhflMskRE1mFAISK7krETChE1AQMKEdlFTRaRobajLOMJEVmKAYWI7EIwiSPsI0tE1mJAISK74hEeImoKBhQisgvTMCJjN1kishIDChHZlWk4EdgLhYgsxIBCRHYhRREZOM6YiKzGgEJEdnGlsPymZeyDQkSWsjqg7N69G+PGjUNwcDBkMhnWr19vtv7ZZ5+FTCYzu4waNcqsTGFhISZNmgS1Wg1fX19MnToVpaWlzXogRORcJn69H4B5AwoDChFZyuqAUlZWhr59+2LJkiUNlhk1ahRycnKky/fff2+2ftKkSTh58iS2bduGDRs2YPfu3XjhhResrz0RtQo8Fw8RWcvF2huMHj0ao0ePbrSMSqVCYGBgvetOnTqFzZs349ChQxg4cCAAYPHixRgzZgw+/PBDBAcHW1slInJiZsOMHVcNImpl7NIHJTExEf7+/ujevTumT5+OgoICaV1ycjJ8fX2lcAIAsbGxkMvlOHDgQL3b0+l00Gq1Zhciah1kHGRMRE1g84AyatQo/Pe//8WOHTvwr3/9C0lJSRg9ejQMBgMAQKPRwN/f3+w2Li4u8PPzg0ajqXebCQkJ8PHxkS4hISG2rjYRtQCBnVCIyEJWH+K5lSeeeEL6v0+fPoiKikKXLl2QmJiIESNGNGmb8+fPx+zZs6XrWq2WIYWolZDJONU9EVnP7sOMO3fujHbt2uHcuXMAgMDAQOTl5ZmV0ev1KCwsbLDfikqlglqtNrsQERHR7cvuAeXKlSsoKChAUFAQACAmJgZFRUVISUmRyuzcuRNGoxHR0dH2rg4RtTBxmDGbUIjIOlYf4iktLZVaQwDgwoULSE1NhZ+fH/z8/PDee+9hwoQJCAwMRGZmJubMmYOuXbsiLi4OANCzZ0+MGjUKzz//PJYtW4aqqirMmDEDTzzxBEfwEN2GTIcYswsKEVnK6haUw4cPo3///ujfvz8AYPbs2ejfvz/efvttKBQKHD9+HA8//DC6deuGqVOnYsCAAfjjjz+gUqmkbXz33Xfo0aMHRowYgTFjxuDee+/F119/bbtHRUROpSaj8Fw8RGQpq1tQhg8f3mhP/C1bttxyG35+fli1apW1d01ErRBPxUNETcFz8RBRi+EhHiKyFAMKEdkXm1CIqAkYUIjIrkyzCRtQiMhSDChEZFfaCj2HGROR1RhQiKjFcKp7IrIUAwoR2V3tMGMiIsswoBCR3dUc4CnXGRxaDyJqPRhQiMjuyquqz2aurXBwTYiotWBAISK76hHojYvXyhxdDSJqZRhQiMiuTM/FQ0RkKQYUIrKruvO0cSQPEVmCAYWI7Eom4xmNich6DChEZFdiQHF0LYiotWFAISK7ktdJJ2xAISJLMKAQkV2xDwoRNQUDChHZV51jPIwnRGQJBhQisqtjl4vMrrMBhYgswYBCRHZndoiHbShEZAEGFCJqUWxBISJLMKAQkd1xmDERWYsBhYhaFFtQiMgSDChE1KLYB4WILMGAQkR2JwOnuici6zCgEFGLYj4hIkswoBCR3Zl2kuVMskRkCQYUIrI783lQiIhujQGFiOzOvAXFcfUgotaDAYWIWhYDChFZgAGFiOzObBQPEwoRWYABhYhaFA/xEJElGFCIyP5M+6A4rhZE1IowoBCR3ZmN4mETChFZgAGFiOwuQO0m/c94QkSWYEAhIrsbGtFO+p8NKERkCQYUIrI7mYyjeIjIOlYHlN27d2PcuHEIDg6GTCbD+vXrzdYLgoC3334bQUFBcHd3R2xsLM6ePWtWprCwEJMmTYJarYavry+mTp2K0tLSZj0QInJuUkZhPiEiC1gdUMrKytC3b18sWbKk3vWLFi3C559/jmXLluHAgQPw9PREXFwcKioqpDKTJk3CyZMnsW3bNmzYsAG7d+/GCy+80PRHQUROj/mEiKzhYu0NRo8ejdGjR9e7ThAEfPrpp3jzzTfxyCOPAAD++9//IiAgAOvXr8cTTzyBU6dOYfPmzTh06BAGDhwIAFi8eDHGjBmDDz/8EMHBwc14OETkrGQyGSAI7INCRBaxaR+UCxcuQKPRIDY2Vlrm4+OD6OhoJCcnAwCSk5Ph6+srhRMAiI2NhVwux4EDB2xZHSJyIrUtKEwoRHRrVregNEaj0QAAAgICzJYHBARI6zQaDfz9/c0r4eICPz8/qUxdOp0OOp1Ouq7Vam1ZbSKygVvNb1LTB4UtKERkiVYxiichIQE+Pj7SJSQkxNFVIqI6jLcIHjXn42E+ISJL2DSgBAYGAgByc3PNlufm5krrAgMDkZeXZ7Zer9ejsLBQKlPX/PnzUVxcLF0uX75sy2oTkQ3ccoZYWeOriYhM2TSgdOrUCYGBgdixY4e0TKvV4sCBA4iJiQEAxMTEoKioCCkpKVKZnTt3wmg0Ijo6ut7tqlQqqNVqswsROZdbtYxIfVB4jIeILGB1H5TS0lKcO3dOun7hwgWkpqbCz88PoaGhmDVrFv7xj38gIiICnTp1wltvvYXg4GCMHz8eANCzZ0+MGjUKzz//PJYtW4aqqirMmDEDTzzxBEfwELVit2xAYR8UIrKC1QHl8OHDuP/++6Xrs2fPBgBMmTIFK1aswJw5c1BWVoYXXngBRUVFuPfee7F582a4udWei+O7777DjBkzMGLECMjlckyYMAGff/65DR4OETnKrUbnyHiMh4isYHVAGT58eKNNtDKZDAsWLMCCBQsaLOPn54dVq1ZZe9dE5MTYgkJEttQqRvEQUevVwdcdAOdBISLrMKAQkU001DKidncFUHvCQLagEJElGFCIyCaMDSQPV4UYTHguHiKyBgMKEdlETnFFvctVLtUfM1IfFEYUIro1BhQisomJXyXXu1zlogAAlFToAQA/HbnSYnUiotaLAYWIbKKgrLLe5XU7xS7ZldkS1SGiVo4BhYjsikd0iKgpGFCIiIjI6TCgEJFdsQWFiJqCAYWI7IoTsxFRUzCgEJFdsQWFiJqCAYWI7Ir5hIiaggGFiGxu4WN9pP85MRsRNQUDChHZ3BODQ+GpFCdoGxrR3mxdnw4+jqgSEbUyDChEZBfbZt+HRY9HYdp9XQAA04eLfweGt3FktYiolXBxdAWI6PYU7OuOPw8Mka7LpXPxOKhCRNSqsAWFiFqETDqfMRHRrTGgEFGLkPFsxkRkBQYUImoRNe0njCdEZAkGFCJqGdVNKGxAISJLMKAQUYtgDxQisgYDChG1KJ6bh4gswYBCRC1CxmHGRGQFBhQiahEGo5hMrhbdcHBNiKg1YEAhIpt4uG8wAOD1uO71rv/mj/MAgMSM/BarExG1XgwoRGQTNUduPKrPwVNXRZWx5SpDRK0eAwoR2YSxunOJXMbxOkTUfAwoRGQTNTPEMp8QkS0woBCRTeRpdQAAV4V1Hyv/Tb6Ih7/Yg8KySntUi4haKQYUImq2Up0ehy9dBwAorQwob/9yEsevFOPzHWftUTUiaqUYUIio2S4VlEn/1wwntlapTm+r6hDRbYABhYiazd21duSOzlD/aB21m0uj2zA2MdgQ0e2JAYWIms1oMj2svoGA8vfxvQEAAWrVLbdBRMSAQkTNZppJ9Ib6g4ba3RUA0N67/oDSwM2I6A7FgEJEzaY31iYU/wZaSGrmRzE2MF8bRycTkSmbB5R3330XMpnM7NKjRw9pfUVFBeLj49G2bVt4eXlhwoQJyM3NtXU1iKgFmYaOh6KC6y2jqAkoDRzKySnmOXqIqJZdWlB69eqFnJwc6bJnzx5p3SuvvILffvsNa9euRVJSErKzs/HYY4/ZoxpE1EIM1aGjg687FPL620JqFhsFAWX1jNg5l1dqt/oRUevTeLf6pm7UxQWBgYE3LS8uLsa3336LVatW4YEHHgAALF++HD179sT+/fsxZMgQe1SHiOzMUN2E0lA4AQB59bozuaXo9c4WzBnVHS8O7yqtD/Rxt28liahVsUsLytmzZxEcHIzOnTtj0qRJyMrKAgCkpKSgqqoKsbGxUtkePXogNDQUycnJ9qgKEbWAmk6yLo0FlDpz4C/anCFNjw8A93Vrb5e6EVHrZPMWlOjoaKxYsQLdu3dHTk4O3nvvPQwdOhQnTpyARqOBUqmEr6+v2W0CAgKg0Wga3KZOp4NOp5Oua7VaW1ebiJqhZnI2eSMBpb4JZrOLK6T/G7kpEd2BbB5QRo8eLf0fFRWF6OhohIWFYc2aNXB3b1oTbkJCAt577z1bVZGIbKwmoCgaOVOgrJ519yzcabLe9vUiotbL7sOMfX190a1bN5w7dw6BgYGorKxEUVGRWZnc3Nx6+6zUmD9/PoqLi6XL5cuX7VxrIrJGTSfZxvqgNBZeAEDGgcZEZMLuAaW0tBSZmZkICgrCgAED4Orqih07dkjrMzIykJWVhZiYmAa3oVKpoFarzS5E5DxqpqlvtJPsrQIK8wkRmbD5IZ7XXnsN48aNQ1hYGLKzs/HOO+9AoVDgySefhI+PD6ZOnYrZs2fDz88ParUaM2fORExMDEfwELViegv6oMhv8XOI+YSITNk8oFy5cgVPPvkkCgoK0L59e9x7773Yv38/2rcXe+h/8sknkMvlmDBhAnQ6HeLi4vDll1/auhpE1IJq+qBYM4qHiKgxNg8oq1evbnS9m5sblixZgiVLltj6ronIQWpmh22sn0ljh3+IiOriuXiIqNn0FvVBaXwbRp4skIhMMKAQUbPZopNsQ+foIaI7EwMKETWbRZ1kbxFQDAwoRGSCAYWIms1oQSfZW/VBYT4hIlMMKETUbDWtH421ktxqEM/xK0U2rBERtXYMKETUbHobtKDsP19o0zoRUevGgEJEzWZJJ1kOMyZybpV6I7IKyh1dDQkDChE1myVnM1a7ubZUdYioCZ7+9wEM+2AXks7kO7oqABhQiMgGLJlJVuUib7QfSoifO77YeRbh837HaY3W1lUkols4eFE8zLrqwCUH10TEgEJEzWZZJ1kZXBUNf+T4earw4dYzAIBRn/5h2woSkcUSM9iCQkS3CYPUB6Xxcq6NtLAYOZUskVPQ6Y2OrgIABhS6Q+j0BpzK0ULgZBt2URtQGv9IcXVpeD0P6xCRKQYUuiO8uuYYRn/2B9YdveroqtyWLG5BaaRAlYHhkYhqMaDQHWHD8RwAwOKd5xxck9tTbSfZxj9SlLdKMETkcP7eKkdXAQADCt1hjILAwzx2cP5aKQDgRqWh0XKuCs6FQuTsvN1cHF0FAAwodIe5VFCOuxfuRF5JhaOrclvZmKYBAPxw+HKj5Ro7xGMqupNfs+tERE2TmV+G/BKdo6vBgEJ3npziCnyddN7R1bgjuVgYUAwc0UPkUI98scfRVWBAoTuTnl+ADqG08BBP+S0OFRGRfWUXO76VmQGFiGxmTJ/ARtcfu1Js0Xb0RueYh4GIHIcBhW57ReWVjq7Cba9vRx8AwIS7OtpkezzEQ0QMKHTbq+9XO0fy2FbNzJMqF0Wj5Xp3UFu0PT49RBY6nwgkLQK0Oc3ajN7gfK2WDCh0Wyoo1WHvuWsQBAFeqpuHzPH7z7akgOLa+EdKVEdfi7ZnYEIhurXiK8ClZMBoANLWNGtT5VXO1+/LOQY7E9nYqM/+QH6JDl881R8dfN1vWs/vP9vSVX+43WoiNksnajPyCSJqnNEAHPlf7fXK8mZtru4cRiMjA5q1PVtgC8rt7g79oK8Zw789PVeaRdaU03TCLMkFDn4D5Gc4uibNUmmwrAVFaXIunm+nDAQAPBgZgEUToszKOcvTQ+S09LYdZVN35NzW9FyHH/ZhQLmd5RwD9nwCFDU+edbtTCGXm30p1vj+oJPsk/RfgLJrwImfHV2TZtFVWdYH5WxuifR/VEdfpL79IL56egD+PCgE5/45Gv+eLIYWtqAQ3cL1SzbdXHml/qZl9f24a0kMKLez0xsBvQ7I2OjomrSoMl3tG81VIUNA9Xkl2tdzfolLBWVYc+iy434p6G845n5trLaTbOMfKZev1z5eL5ULfD2UkMvFuVFcFHIE+rgBECfTC5/3O/6XfNE+FW6OynLgwh/AjSJH14TuZOm/2HRz9Z2m4qcjV2x6H9ZiQLldmbSRC3JXB1ak5f1scsZihVyG0urA8kB3f7NyZ3JLcN8HiZjz03H8b79tf41YzOh8HdOsZTQKtYd4bhFQpsSEAQC6tPeEu/Lm1haF3Hwit7d+OWmjWtrQqd+Ai3uAY987uiZ0p8o5fvMylXezNlnf5Ih/nL3WrG02FwPK7aggEzi3HYDYVP7hbg3+uvKQgyvVcnQmvdFdFXKU6sTrnioXLHnqLmndW+tPSP8nZxa0XAVN6R1/vovmqjRpfVK5Nn6I56noMPw4LQa/vzS03vVyWSs4mWBh9WkS2IJCjnL695uXyZs35sUZZ29mQHGkqhs2P46Iqgrg+BrgagoAoKC0EqcKDNh+Ks++k1/lnwFK8+y3fStoK8wP8ZRUVAEAOhqvoOul1WiP6wDM35Ds8WChi3uBY6ullh+DUUCPtzZLq2/VgqKQyzAw3A9uDQQZCwf52JZBD6T9CFx2UIjPTRdbZQw39wFokNFwx3aAt5q1rZSleUCF1j51sSeheYepk87c/Pn93D3hzdpmczGgONKeT4HUVUCqDZuKjVVmVwvLK+EK8Q1aYa9x7sVXgBM/AYe+tc/2reRfp6/JdweyAABdNZshK8vHQ4r9AIC0q7UTuDnFxG3WfEE5QlUFcGE3UHgByDsFAPgxxbyzsYu8eS0gMke0oOSfBq6dlVodAQDXLwK7EoC9n9v/eUn/BdCcEDu1W8KgR9XOhdiyZBZ2Ha6nqb+lOfOQq8yd4iRmqd8DupJbl6/Qip9jyUuAMge1qlrCv8fNy5oZUGoGDvi4i10C2ni44p1xvZq1zeZiQHGUCpPZTa9fFFtSbPFGl5k/pfsyr8GlOqBcK7XT4YRmzmBoa6Zfkt/8cUH6/2JBGaoMRnji5uF5zpBPYKh+fgx68cvxxE9N2szlwnKsOpCFKlt3/K1ulQMgfqnDPOQBzQ8YCkcEFNMPdn31aRFqRlVVlgEFZ1umHqW5Ny/LOy2+FtJ+rH2Rlhfg2JUinNJocXjd4papW0MqioF9n5mHO2eSdUD8e/0isO8LYP+yxoNKWX7t/018/9mL9COqJFd8XdRoF1FdwDbvd4NRwJG3HsTeeQ/YZHvNwYDiKMlfml9PXQVc/MOmd2EUBBTfqIILxF+Ay5LO23T7AABDFXAhyfbbbYYbDbQUKV3kULu7QoGb38hyuQy4dk5s5tdm27uKorqpqLJM/JuyXPybf6b2C7NGdipwZmujzdZDF+3CG+vS8MXOc7arK2D+BVrdIa9meLGtuGovY6piI7whTjrVHtdhSF4KaNJuLlx4QZyoqjT/5nXWUChr/79yUPxr2jeosQ/+G9ebd9/ZR2v/r9uCIgjAyXXi/9fOAoZKcdnh/6Csul+Vq6wFW92MBlxN/A8Obf+xdtnVI2LLWlMPj107J/anqH6d6/QGzP3xODafsNOPnhvXgcxdDa83fa7LrWhBuXxI7PtXw8aH4FIuFWLAP7Zj7eHLta8JAPDrBHQaJv7fjICi09d+npTq9PDzVMJD6fh5XBlQnMmlfVbfxPSFBcDsRfpjijhErJNcAwD4JfUqGnKpoAzh837HR1trJwzbclKD347d4ss6a78YUhylsuymL/GGOnt1C/BGxzbukMkEKGBepq0KQNpa8ZdgykrpGHTalWIkbDxlNnTZZuqGDEP14ygz6Tmfl177v64EyNgktmTknkB9TIdLf7ajnl/+RoPYdN3Ah6fRKOBcXgmMdfsrFWSaTybnIh5GW5tSOwzx04n96t2mGUFo9Besd8YaeMvKMdVlI2QwYpLLDny1+TB2/7r85sJpa8XDiyebOYeMacCurzWwsT4Mlw82774zNje8zmiAtqIKK/ZdwIbj2fhp/xnx8QKwazuTQS++xkzCl8Eo4M3/bsba7X9gb+LvyDiyW1whb7xT9C2lrRVHpJz6Fbh6BJu2b8cPhy9j2v87AgA4eKEQf1uX1rRRdiav8SqDsXZyxmtn6i1+4VoZrl4rsv5+iq+InxvHq6eaN+jF+af++ND6bTVg9ppjKCyrxOs/HgdcxaH4RkEAXNwAWc1z0PRAVFrhnIeXGVAcoYlDS79KykT4vN/x7q/i0MvVG7dj7ttvYsSbK2r7l5i8KbOLa+ecUMDQcC9tXQkWrUsGACzeeQ5VBiNKKqrwf/9Lwczvj+LjbfW/oSEI4nBLC6Vcuo7web8jfN7vyNNaMQtizf4qLwTObheblQVBnI9i7+fAHx9V/5IWO3kV36g/MPUP8YUMMsx8IAJj5AfMH0pVqXnh6qbecV/swVe7z6PXO1tsf1bkul+sNUGv46DaZaaH7I6bnGvjdP1z23y127yVbF+mSdg5vVE8Hn/w6wZnrp32v4N48ONEfJlYp/XleJ3zfOgrkXLJvPVgfP8O9W7TzJktYlN7faMQKsvMvniV1S1/lQYjjmRdx7Xr14Gs/TidfhxPfr0f10urX9+W9C1oTHlh7f+ebc2bzwHzX6bX6oQ+09YXExZ1SK8bEj38zK/rK5B0Jh9FN6pwLr8UX/6ejIsHfwUAHLlcu+//OJOHretXQmhuWKpx5aDYSnfo39KiV9ekYl9G7Y+VqvTq15/pjxNrWwxMy187i4r0jbie8pP04yF83u/481fJ+O5AFt5afwJVBiMKrDlMXd0KlplfiiWJ5/DFrnPiYZI6P6i0FVXYdToP93+YiJkr99SeB8o3FP9Nvog1hxqe1LFSb7x5NJf2qngfBr1NJsn83/5LuFRgMo19+x5Yn3oVn+88iyy3bkDNYdH6WlCMRvE9pxF/0CRnFuDxpfuQnm3eCbimRQ4AVj0f3ew62woDiiU0adCd33vrnt26UrFF4ex28bjx9YsAgAxNCU5mmxyrryyt//ZAg03GBqOAhE3iB+eKfRdReSUVmn3fIVyuwShhL75MrGleFFBUXolzeeb3MUJ+BHIYUVaqld64BqOAnadzodv9GfpcWQ3/6tEt1/OvImH5j6hJ5J/vOCt+mORnmPedsaQJVK9DTvIPGD7/35iwtLaF6L3f0rE0MRMXr5U1fvsSDfDHx2IQurQPuHJIPDyWuBC4tBdCza+G4itSJ93CspuDxLN9PaX+EQqZDIuGuyOsrYe0/prmKnR6A05mFyOvpEJ8vLknESMXw2CILBdfbar+Aqj+AMvQlGDlvovmX0YGPS4XluNoVu3zeLXoBmavScW5vDpfpKZNwkDtIR7Tb2nT/g8W9M8wnanVH9fx07cf1LYKmB5COJ8o/ZtXUgGDUcCZ7AJ0PPM/PKfYgo+3iq+19GwtFv2agoo6LXUl5/fjz0vFQ5IdZXmY+0DH2pXFV8TgWPfxAbWHNEzncdjzqRha9n4uPUcawQ8qmH+RyPd+BmTuwuZVnyD5fAFWJl/ElevlgKLheX6MRsG60WtZB8yb0AEcu1yID7dkQK83iH1BTCm9zK4O/Md2hM/7HV3e2IjdZ+o/9JRyqRBf7DwLQ3adQzrlheKXmtEAXEpGWe45ZObXvo/HKZJRfu0KtBW1++Wa4IN/Lv8J6YcTcWzXT7Y5rFD9paq5XooN27dDEASsT80267ulNwpi649JKCosKkLqmYv1BsbNJzR4Y12aeWCu8zn41e7zKL5RhXjFL+gvu7n1b/gHiRjwj+1SK29O8Q0s2XUO1+t5vwMQgwKA347XBqvPdp5FRZUB8346jjfXp+GcpggJG0/hlRU7ESc/iGGK49KPvYPXXPH2Lycx56fj+GLnzfVZvvcCur25Cat+NfmxYDSIrZw1SvPEwNuEVma9wYgblQaz6RAA4HRuKS4WlCFf8MXSYwYIDQUUQQCS/iUehjv1GwDgyW/24/Cl6xjzuXl3gqIb4j5s763C3V3aWV1Xe3HoQaYlS5bggw8+gEajQd++fbF48WIMHjzYkVW6WdYBHN31E3afu4ZH+gYjPPYFwDdUWn2j0gCVi1zsw5D+C1Akjhi5UWWA6ugqGCDH2K09oYcL0t4dCW9ZhXn/E5nM/ENl/zJg6KvA6Q1A+x5AQCQAiB/EJj5Y+hU8q1+XrjI9Pt1xFp/vOItBAXLcU3ARAHDW2BFtZCUYHa4ALl1CpPwSvkjYgNcfHgj54L/il9SrmLMmBTNcxC+Sp1x2IMvoj1Vf/Ah/ADMVcqwxDEcu/FBxNQ1uZ38HXJRi/YCGA0ppPqDyhk7miplvJyBSfgnjFcBvhhjcLT+JtjIt/pM2Gr+neeJfm0/j4sKxdW6fBxRfwV+36eF3dg2m93NDJ2PtG8ogCFDIZCg/vx/fH7yM8HYeGNGj+sRW5xPxY4pp6BEQiEIM8zIPfu6uCvz6Ygxe/l8yEi+Wo9f1nViaVPsGnxWWgt37DyBafh0yCBgsP42AzEPAsSvih03/pxH3qdjM/fHWU9j/1w4wnPgFHkoFHt8aglz44d1xkXj27nCs/fBFhAIYdWQ8kv82Cl/sPIsn+rVFTwACBMhqEkmpBkBvQF+J8ko98kt1KLx8AP17PQbIZLiQcw2oKEOndp5SPVfuu4h3fj2JCXd1xPuP9TYbYv2Uyw4AQMm+b/BeySN4WVEOhVyGNh5KXLt+Fdrv5kFo3wMP7WyPIBRgqOI4gmXivlOjDIbyImz98hUoASwDMDkmHH4eYovBDwcvY4hciUFy8ctisiwHQF/xjmtOYHZ8DXD//NqdXvdkZkaj2NxeVdvSV/NZGygrxJxod1wz6ZebkVuKq9fFVjJldXhJzMjH00FBZpst0+nhqXJBqU6PkR8nIbtY/GJd8EgvTIoOww+HLiO6oxu6uJcCZ7fjZHYxtp3KRd+OvtDeqMKFAnEf/GlACDr4uuPv649isHw1Dl1RI6ZzW/PH4CqeiHJf5jXszyzAtVIdusquQAk9Jv8HWDbSDaMivIGQ6s+1gkz8ZelhFMMLadsP4asH68xurL0ClGigTd+G/+y9gLrO5JbgVE7tD6V2smKMUoghIfFMHq4m7cXY4ffedDszBZli8A+NAeTib9ScwmKs/e8XeHjE/QhXiaFr9aEsAN9hR2AkOslyMEJxRNpE4pk8+LjvQYBahcvXbyDC3wtJy9/CpcIyuPYMQK+Y0UDn+2A0Cuj8Ru0X+KoDWdg37wHkl+hw5fwpjIGAKoNg1mInlxlxn+IYjuq7wjStXy0SXydnElfh0NVy/ONMRxwTuiIpIx8r/zIYYz//A90CvLHsqb7iDM0mgfwz/WN4QH4UfeQXsGx3JvYYjiBElocNh08hAMCzJt+E3/whtkKmGg0A+sMFeny2NR1tvVR4cmAH4ODXOHTqPP6RMRSAAnlZp4CIbuKNDVXAjeuoNBghA+B6fpe4rMMAoNtIAGJorpk9GUaD+KOvTutZSUUV+ry7td6n752fUxGjAPIFH2w9mIXNKRnYcXcl/LyqD/XodcC5HUCbMPMb3ijCk4odyBN8scN4Fw6cL0B09ev5dLYWchjRpb0nnIlMcND4yh9++AGTJ0/GsmXLEB0djU8//RRr165FRkYG/P39G72tVquFj48PiouLoVarbVqv7em5+Ot/D2PRhCj8ue154NI+fLqj9hDHtPu6Ii1iOp5eloRKuEAOAcPkxzGorQ6V16+gX0dfhLb1wK91+m6cNwZjm/EuHB6dDTeD+AtDIZMBd88E9tX2xC+pqEKJwgfBruKH+amuf4VadgP3fHEcgAy+KEE/+Tn0k5v/Ov1M/xgEyKFGKf7ishlVgguWGB7BLJef8PKICLP+CG08lPilpAeOCN3QXZaF0YqGm4b1ggJfGB7FC8qteOP+QFQZjDjhGY0Tsgjot/8TeqOACH8vFJZVQqOtgCK4L54OL8bJAuDZ45F4wWVDg9v+TP8YvFCB5c9EYfulSswY0RNexlJg/1IYBQHjtvlggDwDfjJxf7X3UiG/uok3wNsNuSW1v+hefiACMpkMxTeqcP/uCEx22YqRQ+6Ci9IdhZdPI7qzX20QMJFXUoHnkv3xoOKw2XJ/bxXyShpuTu7z+N8wdXUG/KDFZJebP0jWG+5BiCwfA+S1r500YyccNUagEGpMUWxBm+rHVSK4o41CB4+eIxDefwTO7/wvSrNr+550DwnEWxf64GmXbdKyNh5KfKx9AGVwQxuU4i75WVTCBbuM/QDI4IEKad+rXOT4XdcPsSZfMKY+1T+OWS4/1ruurj8PCMGaOkOLB4S1wdCu7YHh88SEsSuhdmXPh4DAPmIYSfqX+cbuniG2nJio0BuwLEl8bU+KDsN3B+rve7BcPwrPuYj9N3KEtnhw0usY3NkPUdKHuvi+BIDdxih4ogJtZKV4Ju5ebNnyGx7xOo0pd4dDgFB/X51qD/UJwoa02n4pj/TtgI5t3OFaM2FLj7FYeNQVy6oPrblAjxku6wEAOwx3mX2p39/dH53aeeI/ey/gU/3jGCQ7jSfancfl6h8fo3oFokegGleLbmBtStMPDTw/tDMKwkZj6soUnBU64LUOJ/GXbpWoqDJA1TkGBaf2wN1VgfbdhwDdR+HQ+Tzs/c9c6fYXld0QXln7uv1OH4tJLo2P0lG5KMz6w/1pQAguF5ajaugcPPOf2g60YTINSgQPFMIbs1x+ggwN95w4a+yIANl1qGVlOGPsiCPGCJTCHX91qQ08n+ofBwB0bu+Ja/m5eFB+BJN7AocvXsclZRf4lZxGqeCOfxvGAhAwy8XykTnHjZ2x09hfus2X+kdwev5gCIdXYPGum18z04Z1gduwmTi3cyU27BNbCqff1wVXi25ApzfCK+4tLFi7F75ZW3HI2B0XhSC8od6C5wYHwFUhxzV5W+zQR6FMFYAFG9KhRinK4QY9XCCDES+7mB8SzjL642fjMHjiBt4PSMQj/TsCw+dBs38NjDknEFznLO43qgz4arf43jpijECGMQR58IUAGZ5S7IS/7DoGhLbB0Ij2QI8xQFBfi/eVNaz5/nZYQImOjsagQYPwxRfiB5TRaERISAhmzpyJefPmNXpbewWUX49l4/XvDyBafgrZQltpvgx7qnmDfdz5CLKyavsPBKjdkFunn4YgyCCTmT9dbi4Kqfk91dgVFVBiiDxd2vb/G3QR9/ppkXQmH0cv13/4qClKBXd4yWx7Hpk/DH0wVFHPaI0meumBiJtnJvVsZ94JFTALoNlCWwTLbn3o6pixC/xQghB58yenSzN2Qh+5+Gv5ojEQ4dWdmpvqgLEnHvO7KP3ivJXzxiB0lls2auIr/UP4vzqhU9rPbmqbTHCVnHkNekHA0K7t8b/9F1FQTxO+QZBDITNv0j5u7IxOshwYIYeP7BaHDm/hvDEIobI8uMjq77el9lYjKkCJXWeLmj2SJtnQC13k2fCX1f/+1LYfCHW+eYDeYBiCGf5puFjQvMdprdgeAfgk3UN6vVrqlDEMPeVNm5RSIZPV9gupY4NhCMJluejdSH2uCu2w1jAcAHCf/Bj6yy0bNl4gqHFVaIcouR1GPzZCK3jiqtDupv3lVd0qWOOUMQxbjIPgjgrpPXld8JZ++DTFyMhARAZVf6cG9xdHCCk9Gr+Rlaz5/nZIH5TKykqkpKQgNja2tiJyOWJjY5GcnOyIKgEADFoNprv8irvkZ5sVTj7VP47/p3+w0TIlggfW6IdL12ef74/TxtpDR3XDCQDIZAIm3FV7rL93sA/+OrSTdL2f/JwUTgCgZ5Aagx+eBngHYFhEOwT7mCfquqbeU7utiQNDMP2+LhgXFVxvWdNwslw/qtHtPhwVjPZeKngpXfDU4NAGyzU1nHyhH4//6EebLesd7FP/tOn9n7lp0csPRGBgmB/C23pil6HfTeufjg67aVlfeWaj4UTtZt4vYnTvoHrLnTaGmrXrmIaTU8aG91Vj/tT2Ev40IMTiY8mm4aSdpwrP3d3JbH2ioR92Gfphtf5+3IAbNhvEwxVeShfzEGiL2Td7P4aYLu3EFhkAE+7qCE3XidhkMD/0O21Y+E03jZKfh7fsRpPCyT5DL3yvr533YbtxAFKEbg2Wz9ZWYc+5a/WGkxE9AhB0i/eah8lMutegbjCcPDMkDG/HP4/n3vgay/TjUCq440fDMKiCIvHI6DGYODAEM+7vivAxr6BI8Kp3G7Yy/b4u6D30EXz8tzlW37an/BK6tm+8fk9Hh2HG/V0x4/6umH5fF8y4vyteHhGBmQ9EYGRkIEL9PDBxYIjZbR5S7G80nABimH20fwfE398F+409AQADw/zwuMlnKQCE+XniwZ4BGBAuvm/ayrRIiNbj5QcibjpHlD2pZWU3hZPH+nfE1Hs61bbcAagKE4cXG02+xi0JJ+29VA2eUiLC3+Q5yj4KpH5nTdVtziEtKNnZ2ejQoQP27duHmJgYafmcOXOQlJSEAwfMR1jodDrodLXN7VqtFiEhITZvQdGf2Y6Du8UOTqc1JdBWVEEreOI7wwgM7xWCnhlLpLK9gtQI8fPApYJyRHX0weXrNxAc3gOPbnFDPnzRuZ0nno4OxRMdciHTnIDrjTz8Z+9FlFfqUSR4YYWhvi91Ac8qtsBXVgoPpQtyda7wlt2Ah9IFEf5eGBTuBy9V9cHSHmMB70CpY6gAARDEmWOrDAIC/HxguHsWXGpe0MVXYUz/Bc/8VoKBsgyM6xuEDr7uULrIcb2sEl4j58PNRSHOwVFVDnS6T+rsVVCmq3eYn9rNFdvcxyAiPBR/vrEGpTo9Llwrw0mtCu1kxXioTxC6+nsDwf0AuSvQ4S7Aww+6Sh0KU9bDu/gM/r1H/HXi7qqod/6Sx/p3xPupKjwa0xOqrD1wUSpRUaFDutcQ3NWvH6Iju+K+D8R+Bv1k5zBckYrewT54oId/7ZuwXQQQfi/g6S8ec09dJU6Mp/QEuo4A0sWREWgTBvR7Cmlpqdjxw2diH4TgDkB5IXLDHsJD36Zjac805BZqcba6w+tzd3eC2t0FG9V/htFoxMAb+xBkyIFGW4HVh7Jw0hiOpX9/Cy5pPyD74imsOXwZbdyVeDI6FAUenXFCfR8O79mMGKThwrUyFFd3gOw3dhqGx0Qj+7d/IPViHjq180SPQG+kdnoex9f+Ez4uengoFUjP0WJM7yAoPdUw3ChBgNpNeo0IEPDG2e4IyKpt8chRdMQPumiMD6vCk4FX0EaXg87tPXEurxSd23tBGfN/wLntEArP4+VkDyRpg7DjzfFwVcjx/MrDOHixEP83rDOe6+uJwKtbxNao9t1vHhXUNdbyybv8ewBtwsU+KmF3i8flc08A7boBru4QAKTnaNGtvTsU6eshLxSbqSv0BuzPLMDJHK00KV2Qjzv+PKAjtBV6uCsVqNIb4alygUEQsOpAFgrKaj9HSgV3uMCAHwzD8cojMSgur8LTd7VDG28PVMlcMXX5Adx18Wv4e7vhgR7+mHW6J4aUbAEgtqD1NTnM+uSgUHipXOCmVEiTzZVX6rEi+SJC2njA0HEI/kg5jhB5Hh7t1wFhbT1xoaAMR7Ouo/Ke19A5fwf27d8rba+tpxL3jpyATn2Hi/2+II42yS/RoUvNF71BL464CeoLKD2Rp63AnI+Xop++tgPypOgwJGbk4WhlR5SWlkphtMSrM7xLa1sGOrfzRN/YJ+GSfRhrd6fi3q7t0GPkVLid+gkKuUw8PBoaDXSpDnFZ+1GRsR3n88tQcferWPNNAioVXpg9aw6e+Ho//IuPY5iith4vj4iADDIYjAJ2n81HGw8lurT3xAdZXdGh8hLGhdwQf0AF9we8/MXO8Kajq+rI6xALv8tbIQhiy3d5pR4PRgYiPbsYx6snDwzwdoO7UoH7n10AnzZ+KNXp8dqaY2jvegML/HdDJpOhzLsTMk4eQVRHH7gMnip+phZk3jRqraxSjx2ncnH+WhlKBHfsVt6HL8cFoEvRPpzM1uLY5SJcM3ltdes1CPuNPeF36r831X14t/ZwVchxsaAMlwrKcbyqIyJkV8xaBCOD1GjnpULfjr7m4cg7EEZtjvjZVn1I9ZejWTj/47s3ta4DgFGQQ26y3ZK+f8V8v0S4yOUoLKvE5evlcHdVwCgI8OwzFiE9BoujImuEDgG63N/g89AUTn+Ix9qA8u677+K99967aTs274MiCOKXl5ta7NTk6g64t6ldX5oHZGwUP3x9OtbextLZL8uuicNX23WXOqfVWwdDlfShBKMR0BwDPNuLF7mr+W1L8wE3H3EkQ3kBoK8Qv4hrbt/QfRSeFx9DZRng5ttwfWrqUFEEuLeBUFkKWdk1wKgXOwtXz4eB8kKxc5Y6CIIgQFaSI3Z+bBN+67kSqm6InYsNVeLEQ8pmdNQyfT60OeIwUM86HRuNRnEEgVv1a+faWXHkQXD/2tsaqsQyps9/zfKqcvHL1MtfrLvS07LXgCCIt5UpAMEAuHqItzMaxMdfUQQovYG2Xcy3V3VDHG7sYtKhUlcq3h5C7f7VV4rPv2AUR5coLOgDbzQAKSvE10KXEZbdpj6GKnFkjjoYUAfVbttQVVs/o158TwmC+JhqXoPuvpbfj9EodoBUKMXnTCYT96dRL76/FC7i/bYJrx3dIwjiOo+24n6XyS2fv0ObI87VEf1/4v6vqhBvazRAX5wNucoLcgji+81oEF8L1R1nUVE9Ys6rvfk2K8ur5++pAHxDah9XZYn4vFWWiu/p5jIaxS96j7ZAu671l6mqEPedqpHWDYNenOW47vuyNF/cJ24NfAZXVQA5qUDbroBOK9aj5nHVvAaUHuJ+01eIz2l9I7IEQexI6uYjlq15jeorgcPfiqE2MEos19jnWENuXBc/V033QWm+ODFh2y7ie03pAbi4V7/e6n+vG4xC/S0tNZ83Km/xb83Ir+sXxcdk2kHWdJSk6WtArxP3j1Ev1kvdwbweN4qA/NMwQAFFyEBxbp/KcqBbHIwGA/QFmVD6dzN/3Wuzxde3d6D4mjWrRwOvXRtw+oBSWVkJDw8P/Pjjjxg/fry0fMqUKSgqKsIvv/xiVr6lWlCIiIjIfpy+D4pSqcSAAQOwY8cOaZnRaMSOHTvMWlRqqFQqqNVqswsRERHdvhw2D8rs2bMxZcoUDBw4EIMHD8ann36KsrIyPPfcc46qEhERETkJhwWUiRMnIj8/H2+//TY0Gg369euHzZs3IyAgwFFVIiIiIifhsHlQmsOeE7URERGRfTh9HxQiIiKixjCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6ThsqvvmqJn8VqvVOrgmREREZKma721LJrFvlQGlpKQEABASEuLgmhAREZG1SkpK4OPj02iZVnkuHqPRiOzsbHh7e0Mmk9l021qtFiEhIbh8+TLP82NH3M8tg/u5ZXA/twzu55Zjr30tCAJKSkoQHBwMubzxXiatsgVFLpejY8eOdr0PtVrNN0AL4H5uGdzPLYP7uWVwP7cce+zrW7Wc1GAnWSIiInI6DChERETkdBhQ6lCpVHjnnXegUqkcXZXbGvdzy+B+bhnczy2D+7nlOMO+bpWdZImIiOj2xhYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQDGxZMkShIeHw83NDdHR0Th48KCjq+TUdu/ejXHjxiE4OBgymQzr1683Wy8IAt5++20EBQXB3d0dsbGxOHv2rFmZwsJCTJo0CWq1Gr6+vpg6dSpKS0vNyhw/fhxDhw6Fm5sbQkJCsGjRIns/NKeSkJCAQYMGwdvbG/7+/hg/fjwyMjLMylRUVCA+Ph5t27aFl5cXJkyYgNzcXLMyWVlZGDt2LDw8PODv74/XX38der3erExiYiLuuusuqFQqdO3aFStWrLD3w3MaS5cuRVRUlDQxVUxMDDZt2iSt5z62j4ULF0Imk2HWrFnSMu7r5nv33Xchk8nMLj169JDWt4p9LJAgCIKwevVqQalUCv/5z3+EkydPCs8//7zg6+sr5ObmOrpqTmvjxo3C3/72N+Hnn38WAAjr1q0zW79w4ULBx8dHWL9+vXDs2DHh4YcfFjp16iTcuHFDKjNq1Cihb9++wv79+4U//vhD6Nq1q/Dkk09K64uLi4WAgABh0qRJwokTJ4Tvv/9ecHd3F7766quWepgOFxcXJyxfvlw4ceKEkJqaKowZM0YIDQ0VSktLpTLTpk0TQkJChB07dgiHDx8WhgwZItx9993Ser1eL/Tu3VuIjY0Vjh49KmzcuFFo166dMH/+fKnM+fPnBQ8PD2H27NlCenq6sHjxYkGhUAibN29u0cfrKL/++qvw+++/C2fOnBEyMjKEN954Q3B1dRVOnDghCAL3sT0cPHhQCA8PF6KiooSXX35ZWs593XzvvPOO0KtXLyEnJ0e65OfnS+tbwz5mQKk2ePBgIT4+XrpuMBiE4OBgISEhwYG1aj3qBhSj0SgEBgYKH3zwgbSsqKhIUKlUwvfffy8IgiCkp6cLAIRDhw5JZTZt2iTIZDLh6tWrgiAIwpdffim0adNG0Ol0Upm5c+cK3bt3t/Mjcl55eXkCACEpKUkQBHG/urq6CmvXrpXKnDp1SgAgJCcnC4Ighkm5XC5oNBqpzNKlSwW1Wi3t2zlz5gi9evUyu6+JEycKcXFx9n5ITqtNmzbCv//9b+5jOygpKREiIiKEbdu2Cffdd58UULivbeOdd94R+vbtW++61rKPeYgHQGVlJVJSUhAbGystk8vliI2NRXJysgNr1npduHABGo3GbJ/6+PggOjpa2qfJycnw9fXFwIEDpTKxsbGQy+U4cOCAVGbYsGFQKpVSmbi4OGRkZOD69est9GicS3FxMQDAz88PAJCSkoKqqiqzfd2jRw+Ehoaa7es+ffogICBAKhMXFwetVouTJ09KZUy3UVPmTnwPGAwGrF69GmVlZYiJieE+toP4+HiMHTv2pv3BfW07Z8+eRXBwMDp37oxJkyYhKysLQOvZxwwoAK5duwaDwWD2RABAQEAANBqNg2rVutXst8b2qUajgb+/v9l6FxcX+Pn5mZWpbxum93EnMRqNmDVrFu655x707t0bgLgflEolfH19zcrW3de32o8NldFqtbhx44Y9Ho7TSUtLg5eXF1QqFaZNm4Z169YhMjKS+9jGVq9ejSNHjiAhIeGmddzXthEdHY0VK1Zg8+bNWLp0KS5cuIChQ4eipKSk1ezjVnk2Y6I7VXx8PE6cOIE9e/Y4uiq3pe7duyM1NRXFxcX48ccfMWXKFCQlJTm6WreVy5cv4+WXX8a2bdvg5ubm6OrctkaPHi39HxUVhejoaISFhWHNmjVwd3d3YM0sxxYUAO3atYNCobipB3Nubi4CAwMdVKvWrWa/NbZPAwMDkZeXZ7Zer9ejsLDQrEx92zC9jzvFjBkzsGHDBuzatQsdO3aUlgcGBqKyshJFRUVm5evu61vtx4bKqNXqVvOB1lxKpRJdu3bFgAEDkJCQgL59++Kzzz7jPrahlJQU5OXl4a677oKLiwtcXFyQlJSEzz//HC4uLggICOC+tgNfX19069YN586dazWvZwYUiB9KAwYMwI4dO6RlRqMRO3bsQExMjANr1np16tQJgYGBZvtUq9XiwIED0j6NiYlBUVERUlJSpDI7d+6E0WhEdHS0VGb37t2oqqqSymzbtg3du3dHmzZtWujROJYgCJgxYwbWrVuHnTt3olOnTmbrBwwYAFdXV7N9nZGRgaysLLN9nZaWZhYIt23bBrVajcjISKmM6TZqytzJ7wGj0QidTsd9bEMjRoxAWloaUlNTpcvAgQMxadIk6X/ua9srLS1FZmYmgoKCWs/r2SZdbW8Dq1evFlQqlbBixQohPT1deOGFFwRfX1+zHsxkrqSkRDh69Khw9OhRAYDw8ccfC0ePHhUuXbokCII4zNjX11f45ZdfhOPHjwuPPPJIvcOM+/fvLxw4cEDYs2ePEBERYTbMuKioSAgICBCeeeYZ4cSJE8Lq1asFDw+PO2qY8fTp0wUfHx8hMTHRbMhgeXm5VGbatGlCaGiosHPnTuHw4cNCTEyMEBMTI62vGTI4cuRIITU1Vdi8ebPQvn37eocMvv7668KpU6eEJUuW3FHDMufNmyckJSUJFy5cEI4fPy7MmzdPkMlkwtatWwVB4D62J9NRPILAfW0Lr776qpCYmChcuHBB2Lt3rxAbGyu0a9dOyMvLEwShdexjBhQTixcvFkJDQwWlUikMHjxY2L9/v6Or5NR27dolALjpMmXKFEEQxKHGb731lhAQECCoVCphxIgRQkZGhtk2CgoKhCeffFLw8vIS1Gq18NxzzwklJSVmZY4dOybce++9gkqlEjp06CAsXLiwpR6iU6hvHwMQli9fLpW5ceOG8OKLLwpt2rQRPDw8hEcffVTIyckx287FixeF0aNHC+7u7kK7du2EV199VaiqqjIrs2vXLqFfv36CUqkUOnfubHYft7u//OUvQlhYmKBUKoX27dsLI0aMkMKJIHAf21PdgMJ93XwTJ04UgoKCBKVSKXTo0EGYOHGicO7cOWl9a9jHMkEQBNu0xRARERHZBvugEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJzO/wfNKS93+0LdZgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"aNrm\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"aNrm\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.552623Z", - "iopub.status.busy": "2024-07-11T15:30:48.552357Z", - "iopub.status.idle": "2024-07-11T15:30:48.653579Z", - "shell.execute_reply": "2024-07-11T15:30:48.653074Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABbtElEQVR4nO3deVgTd+I/8HcSSDgDInIpeKEi9b4w9aitVKquvexuD7e6Xb/tT4u21h7WXdvadltce9laj7bbqu1q6bFq632LF14oiqKoiILlUhHCISHH/P4YCAlnAgkJ+n49Tx7NzGTyyZBk3vlcIxEEQQARERGRE5E6ugBERERENTGgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0XBxdgKYwGAzIzs6Gt7c3JBKJo4tDREREFhAEAcXFxQgJCYFU2nAdSasMKNnZ2QgNDXV0MYiIiKgJsrKy0KFDhwa3aZUBxdvbG4D4ApVKpYNLQ0RERJZQq9UIDQ01nscb0qyAsmDBAsydOxcvv/wyFi1aBAAoLy/Hq6++ivj4eGg0GsTExGDp0qUIDAw0Pi4zMxPTp0/Hnj174OXlhSlTpiAuLg4uLpYVp6pZR6lUMqAQERG1MpZ0z2hyJ9ljx47hq6++Qp8+fcyWv/LKK9iwYQN++eUXJCQkIDs7G48//rhxvV6vx/jx41FRUYFDhw5h1apVWLlyJd5+++2mFoWIiIjuME0KKCUlJZg0aRK++eYbtGnTxri8qKgI3377LT799FM88MADGDhwIFasWIFDhw7h8OHDAIDt27cjNTUV//3vf9GvXz+MHTsW77//PpYsWYKKigrbvCoiIiJq1ZoUUGJjYzF+/HhER0ebLU9KSoJWqzVbHhERgbCwMCQmJgIAEhMT0bt3b7Mmn5iYGKjVapw9e7bO59NoNFCr1WY3IiIiunNZ3QclPj4eJ06cwLFjx2qty83NhVwuh6+vr9nywMBA5ObmGrcxDSdV66vW1SUuLg7vvvuutUUlIqK7gCAI0Ol00Ov1ji7KXU8mk8HFxcUmU4BYFVCysrLw8ssvY8eOHXBzc2v2k1tq7ty5mD17tvF+VS9gIiK6u1VUVCAnJwdlZWWOLgpV8vDwQHBwMORyebP2Y1VASUpKQn5+PgYMGGBcptfrsW/fPnz55ZfYtm0bKioqUFhYaFaLkpeXh6CgIABAUFAQjh49arbfvLw847q6KBQKKBQKa4pKRER3OIPBgIyMDMhkMoSEhEAul3PyTgcSBAEVFRW4fv06MjIy0K1bt0YnY2uIVQFl9OjRSElJMVv23HPPISIiAnPmzEFoaChcXV2xa9cuTJw4EQCQlpaGzMxMqFQqAIBKpcIHH3yA/Px8BAQEAAB27NgBpVKJyMjIJr8QIiK6u1RUVMBgMCA0NBQeHh6OLg4BcHd3h6urK65evYqKiopmtbZYFVC8vb3Rq1cvs2Wenp5o27atcfnUqVMxe/Zs+Pn5QalUYubMmVCpVBg6dCgAYMyYMYiMjMSzzz6LhQsXIjc3F/PmzUNsbCxrSYiIyGrN+ZVOtmerv4fNZ5L97LPPIJVKMXHiRLOJ2qrIZDJs3LgR06dPh0qlgqenJ6ZMmYL33nvP1kUhIiKiVkoiCILg6EJYS61Ww8fHB0VFRZxJlojoLlVeXo6MjAx07ty5RQduOMr8+fOxfv16JCcnW/yYUaNGoV+/fsbZ3luiHA39Xaw5f7fKa/EQERHdbV577TXMnDnTqsesXbsWrq6udiqRfTGgEBEROTFBEKDX6+Hl5QUvLy+rHuvn52enUtkfexYRkd3FH83E4cs3HV0MIqeh0Wjw0ksvISAgAG5ubhg+fLhxAtS9e/dCIpFgy5YtGDhwIBQKBQ4cOID58+ejX79+xn3odDq89NJL8PX1Rdu2bTFnzhxMmTIFjz76qHGbUaNGYdasWcb7nTp1wocffoi///3v8Pb2RlhYGL7++muzss2ZMwfdu3eHh4cHunTpgrfeegtardaeh6NODChEZFdJV2/hzbUpeOrrw44uCt0FBEFAWYWuxW/Wdud844038L///Q+rVq3CiRMnEB4ejpiYGBQUFBi3efPNN7FgwQKcO3eu1oV5AeDf//43Vq9ejRUrVuDgwYNQq9VYv359o8/9ySefYNCgQTh58iRefPFFTJ8+HWlpacb13t7eWLlyJVJTU/H555/jm2++wWeffWbV67MFNvEQkV1lFpQ6ugh0F7mt1SPy7W0t/ryp78XAQ27ZKbW0tBTLli3DypUrMXbsWADAN998gx07duDbb7/F4MGDAQDvvfceHnzwwXr3s3jxYsydOxePPfYYAODLL7/E5s2bG33+cePG4cUXXwQg1pZ89tln2LNnD3r06AEAmDdvnnHbTp064bXXXkN8fDzeeOMNi16frTCgEJFdtb5xgkT2lZ6eDq1Wi2HDhhmXubq6YsiQITh37pwxoAwaNKjefRQVFSEvLw9DhgwxLpPJZBg4cCAMBkODz29aGyORSBAUFIT8/Hzjsp9++glffPEF0tPTUVJSAp1O55ARswwoRER0x3B3lSH1vRiHPK+teXp62nyfAGqN6pFIJMZQk5iYiEmTJuHdd99FTEwMfHx8EB8fj08++cQuZWkIAwoREd0xJBKJxU0tjtK1a1fI5XIcPHgQHTt2BABotVocO3bMrENrQ3x8fBAYGIhjx45h5MiRAMRr4504ccKsI621Dh06hI4dO+Kf//yncdnVq1ebvL/mcO6/IhG1emziITLn6emJ6dOn4/XXX4efnx/CwsKwcOFClJWVYerUqTh16pRF+5k5cybi4uIQHh6OiIgILF68GLdu3WrWBRO7deuGzMxMxMfHY/Dgwdi0aRPWrVvX5P01BwMKEdkV8wlRbQsWLIDBYMCzzz6L4uJiDBo0CNu2bUObNm0s3secOXOQm5uLyZMnQyaT4YUXXkBMTAxksqY3Nz388MN45ZVXMGPGDGg0GowfPx5vvfUW5s+f3+R9NhWnuiciu/o16Rpe+0X8RXhlwXgHl4buJHfbVPeNMRgM6NmzJ/7yl7/g/fffd1g5ONU9EbUKrfA3EFGrcPXqVWzfvh333XcfNBoNvvzyS2RkZOCZZ55xdNFsghO1ERERtUJSqRQrV67E4MGDMWzYMKSkpGDnzp3o2bOno4tmE6xBISIiaoVCQ0Nx8OBBRxfDbliDQkR2xQYeImoKBhQisi8mFCJqAgYUIrIrgQmFiJqAAYWIiIicDgMKEREROR0GFCKyK06DQkRNwYBCRETUwgRBwAsvvAA/Pz9IJBIkJyc7ukhOh/OgEJFdsQKFqLatW7di5cqV2Lt3L7p06QJ/f39HF8npMKAQkd0cv1KAf6xLcXQxiJxOeno6goODce+999a5vqKiAnK5vIVL5VzYxENEdvPE8kT2QSGq4W9/+xtmzpyJzMxMSCQSdOrUCaNGjcKMGTMwa9Ys+Pv7IyYmBgDw6aefonfv3vD09ERoaChefPFFlJSUGPe1cuVK+Pr6YuPGjejRowc8PDzwxBNPoKysDKtWrUKnTp3Qpk0bvPTSS9Dr9cbHaTQavPbaa2jfvj08PT0RFRWFvXv3GtdfvXoVEyZMQJs2beDp6Yl77rkHmzdvbrFjBLAGhYiI7iSCAOi1Lf+8MldAIrFo088//xxdu3bF119/jWPHjkEmk+HPf/4zVq1ahenTp5tNXy+VSvHFF1+gc+fOuHz5Ml588UW88cYbWLp0qXGbsrIyfPHFF4iPj0dxcTEef/xxPPbYY/D19cXmzZtx+fJlTJw4EcOGDcOTTz4JAJgxYwZSU1MRHx+PkJAQrFu3Dg899BBSUlLQrVs3xMbGoqKiAvv27YOnpydSU1Ph5eVl22PWCAYUIiK6c+i1wP5PWv55R7wKuFjWJOPj4wNvb2/IZDIEBQUZl3fr1g0LFy4023bWrFnG/3fq1An/+te/MG3aNLOAotVqsWzZMnTt2hUA8MQTT+CHH35AXl4evLy8EBkZifvvvx979uzBk08+iczMTKxYsQKZmZkICQkBALz22mvYunUrVqxYgQ8//BCZmZmYOHEievfuDQDo0qVLkw5LczCgEBEROYGBAwfWWrZz507ExcXh/PnzUKvV0Ol0KC8vR1lZGTw8PAAAHh4exnACAIGBgejUqZNZjUdgYCDy8/MBACkpKdDr9ejevbvZc2k0GrRt2xYA8NJLL2H69OnYvn07oqOjMXHiRPTp08fmr7khDChERHTnkLmKtRmOeN5m8vT0NLt/5coV/OlPf8L06dPxwQcfwM/PDwcOHMDUqVNRUVFhDCiurubPLZFI6lxmMBgAACUlJZDJZEhKSoJMJjPbrirU/N///R9iYmKwadMmbN++HXFxcfjkk08wc+bMZr9OSzGgEBHRnUMisbipxdklJSXBYDDgk08+gVQqjmn5+eefm73f/v37Q6/XIz8/HyNGjKh3u9DQUEybNg3Tpk3D3Llz8c033zCgEBER3e3Cw8Oh1WqxePFiTJgwAQcPHsTy5cubvd/u3btj0qRJmDx5Mj755BP0798f169fx65du9CnTx+MHz8es2bNwtixY9G9e3fcunULe/bsQc+ePW3wqizHYcZEREROqG/fvvj000/x73//G7169cLq1asRFxdnk32vWLECkydPxquvvooePXrg0UcfxbFjxxAWFgYA0Ov1iI2NRc+ePfHQQw+he/fuZh1zW4JEEFrfLAVqtRo+Pj4oKiqCUql0dHGIqB6d3txkdv/KgvEOKgndicrLy5GRkYHOnTvDzc3N0cWhSg39Xaw5f1tVg7Js2TL06dMHSqUSSqUSKpUKW7ZsMa4fNWoUJBKJ2W3atGlm+8jMzMT48ePh4eGBgIAAvP7669DpdNYUg4iIiO5wVvVB6dChAxYsWIBu3bpBEASsWrUKjzzyCE6ePIl77rkHAPD888/jvffeMz6mqpcxIFYZjR8/HkFBQTh06BBycnIwefJkuLq64sMPP7TRSyIiIqLWzqqAMmHCBLP7H3zwAZYtW4bDhw8bA4qHh4fZxDOmtm/fjtTUVOzcuROBgYHo168f3n//fcyZMwfz58+/6687QERERKImd5LV6/WIj49HaWkpVCqVcfnq1avh7++PXr16Ye7cuSgrKzOuS0xMRO/evREYGGhcFhMTA7VajbNnz9b7XBqNBmq12uxGREREdy6rhxmnpKRApVKhvLwcXl5eWLduHSIjIwEAzzzzDDp27IiQkBCcPn0ac+bMQVpaGtauXQsAyM3NNQsnAIz3c3Nz633OuLg4vPvuu9YWlYiIiFopqwNKjx49kJycjKKiIvz666+YMmUKEhISEBkZiRdeeMG4Xe/evREcHIzRo0cjPT3dbBpea82dOxezZ8823ler1QgNDW3y/oiI6M7RCgej3tFs9fewuolHLpcjPDwcAwcORFxcHPr27YvPP/+8zm2joqIAAJcuXQIABAUFIS8vz2ybqvv19VsBAIVCYRw5VHUjIqK7W9V07qZdCcjxqv4eNafbt1azZ5I1GAzQaDR1rktOTgYABAcHAwBUKhU++OAD5OfnIyAgAACwY8cOKJVKYzMRERGRJWQyGXx9fY0XwfPw8IBEInFwqe5egiCgrKwM+fn58PX1rXWdH2tZFVDmzp2LsWPHIiwsDMXFxVizZg327t2Lbdu2IT09HWvWrMG4cePQtm1bnD59Gq+88gpGjhxpvALimDFjEBkZiWeffRYLFy5Ebm4u5s2bh9jYWCgUima9ECIiuvtU1b5XhRRyPF9f3wZbRSxlVUDJz8/H5MmTkZOTAx8fH/Tp0wfbtm3Dgw8+iKysLOzcuROLFi1CaWkpQkNDMXHiRMybN8/4eJlMho0bN2L69OlQqVTw9PTElClTzOZNIaI7140SDfy9+GOEbEcikSA4OBgBAQHQarWOLs5dz9XVtdk1J1U41T0R2U3Nqe63zhqBiCB+ZonuVnab6p6IiIioJTCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRtRgJOIkWEVmGAYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBAREZHTYUAhohYj4ShjIrIQAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRC2Go4yJyFIMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYhazMmsQkcXgYhaCQYUImoxb/x62tFFIKJWggGFiIiInA4DChERETkdBhQiIiJyOgwoRERE5HQYUIiIiMjpWBVQli1bhj59+kCpVEKpVEKlUmHLli3G9eXl5YiNjUXbtm3h5eWFiRMnIi8vz2wfmZmZGD9+PDw8PBAQEIDXX38dOp3ONq+GiIiI7ghWBZQOHTpgwYIFSEpKwvHjx/HAAw/gkUcewdmzZwEAr7zyCjZs2IBffvkFCQkJyM7OxuOPP258vF6vx/jx41FRUYFDhw5h1apVWLlyJd5++23bvioiIiJq1SSCIAjN2YGfnx8++ugjPPHEE2jXrh3WrFmDJ554AgBw/vx59OzZE4mJiRg6dCi2bNmCP/3pT8jOzkZgYCAAYPny5ZgzZw6uX78OuVxu0XOq1Wr4+PigqKgISqWyOcUnIjvq9OamWsuuLBjvgJIQkTOw5vzd5D4oer0e8fHxKC0thUqlQlJSErRaLaKjo43bREREICwsDImJiQCAxMRE9O7d2xhOACAmJgZqtdpYC0NERETkYu0DUlJSoFKpUF5eDi8vL6xbtw6RkZFITk6GXC6Hr6+v2faBgYHIzc0FAOTm5pqFk6r1Vevqo9FooNFojPfVarW1xSYiIqJWxOoalB49eiA5ORlHjhzB9OnTMWXKFKSmptqjbEZxcXHw8fEx3kJDQ+36fERERORYVgcUuVyO8PBwDBw4EHFxcejbty8+//xzBAUFoaKiAoWFhWbb5+XlISgoCAAQFBRUa1RP1f2qbeoyd+5cFBUVGW9ZWVnWFpuIiIhakWbPg2IwGKDRaDBw4EC4urpi165dxnVpaWnIzMyESqUCAKhUKqSkpCA/P9+4zY4dO6BUKhEZGVnvcygUCuPQ5qobERER3bms6oMyd+5cjB07FmFhYSguLsaaNWuwd+9ebNu2DT4+Ppg6dSpmz54NPz8/KJVKzJw5EyqVCkOHDgUAjBkzBpGRkXj22WexcOFC5ObmYt68eYiNjYVCobDLCyQiIqLWx6qAkp+fj8mTJyMnJwc+Pj7o06cPtm3bhgcffBAA8Nlnn0EqlWLixInQaDSIiYnB0qVLjY+XyWTYuHEjpk+fDpVKBU9PT0yZMgXvvfeebV8VERERtWrNngfFETgPClHrwHlQiMhUi8yDQkRERGQvDChERETkdBhQiIiIyOkwoBAREZHTYUAhIiIip8OAQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBAREZHTYUAhIiIip8OAQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBAREZHTYUAhIiIip8OAQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBAREZHTYUAhIiIip8OAQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6VgWUuLg4DB48GN7e3ggICMCjjz6KtLQ0s21GjRoFiURidps2bZrZNpmZmRg/fjw8PDwQEBCA119/HTqdrvmvhoiIiO4ILtZsnJCQgNjYWAwePBg6nQ7/+Mc/MGbMGKSmpsLT09O43fPPP4/33nvPeN/Dw8P4f71ej/HjxyMoKAiHDh1CTk4OJk+eDFdXV3z44Yc2eElERETU2lkVULZu3Wp2f+XKlQgICEBSUhJGjhxpXO7h4YGgoKA697F9+3akpqZi586dCAwMRL9+/fD+++9jzpw5mD9/PuRyeRNeBhEREd1JmtUHpaioCADg5+dntnz16tXw9/dHr169MHfuXJSVlRnXJSYmonfv3ggMDDQui4mJgVqtxtmzZ+t8Ho1GA7VabXYjIiKiO5dVNSimDAYDZs2ahWHDhqFXr17G5c888ww6duyIkJAQnD59GnPmzEFaWhrWrl0LAMjNzTULJwCM93Nzc+t8rri4OLz77rtNLSoRERG1Mk0OKLGxsThz5gwOHDhgtvyFF14w/r93794IDg7G6NGjkZ6ejq5duzbpuebOnYvZs2cb76vVaoSGhjat4EREROT0mtTEM2PGDGzcuBF79uxBhw4dGtw2KioKAHDp0iUAQFBQEPLy8sy2qbpfX78VhUIBpVJpdiMiIqI7l1UBRRAEzJgxA+vWrcPu3bvRuXPnRh+TnJwMAAgODgYAqFQqpKSkID8/37jNjh07oFQqERkZaU1xiIiI6A5lVRNPbGws1qxZg99++w3e3t7GPiM+Pj5wd3dHeno61qxZg3HjxqFt27Y4ffo0XnnlFYwcORJ9+vQBAIwZMwaRkZF49tlnsXDhQuTm5mLevHmIjY2FQqGw/SskIiKiVseqGpRly5ahqKgIo0aNQnBwsPH2008/AQDkcjl27tyJMWPGICIiAq+++iomTpyIDRs2GPchk8mwceNGyGQyqFQq/PWvf8XkyZPN5k0hIiKiu5tVNSiCIDS4PjQ0FAkJCY3up2PHjti8ebM1T01ERER3EV6Lh4iIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETocBhYiIiJwOAwoR2YUgCI4uAhG1YgwoRGQXzCdE1BwMKERkU7lF5aw9IaJmY0AhIptZeTADQ+N2YeG2NDCiEFFzMKAQkc3M35AKAFi2N521KETULAwoRERE5HQYUIjILuqqPxnRzb/Fy0FErRMDChG1GJlU4ugiEFErwYBCRHZRVxcUdkshIksxoBCRXQgmjTxPDOzgwJIQUWvEgEJENiOppwXnnhAlgLr7pRAR1YUBhYjswrQ5R1qZXDj0mIgsxYBCRHZXX80KEVF9GFCIyO6YT4jIWgwoRGQXZq05rEIhIitZFVDi4uIwePBgeHt7IyAgAI8++ijS0tLMtikvL0dsbCzatm0LLy8vTJw4EXl5eWbbZGZmYvz48fDw8EBAQABef/116HS65r8aInJKVfGEXVCIyFJWBZSEhATExsbi8OHD2LFjB7RaLcaMGYPS0lLjNq+88go2bNiAX375BQkJCcjOzsbjjz9uXK/X6zF+/HhUVFTg0KFDWLVqFVauXIm3337bdq+KiBzCtJ7EdJgxK1CIyFou1my8detWs/srV65EQEAAkpKSMHLkSBQVFeHbb7/FmjVr8MADDwAAVqxYgZ49e+Lw4cMYOnQotm/fjtTUVOzcuROBgYHo168f3n//fcyZMwfz58+HXC633asjohZVXwWJcRQPBxoTkYWa1QelqKgIAODn5wcASEpKglarRXR0tHGbiIgIhIWFITExEQCQmJiI3r17IzAw0LhNTEwM1Go1zp4925ziEJETMW3OYRMPEVnLqhoUUwaDAbNmzcKwYcPQq1cvAEBubi7kcjl8fX3Ntg0MDERubq5xG9NwUrW+al1dNBoNNBqN8b5arW5qsYnIjiSorkVhH1kiao4m16DExsbizJkziI+Pt2V56hQXFwcfHx/jLTQ01O7PSUS2I0HVRG0OLggRtRpNCigzZszAxo0bsWfPHnToUH2NjaCgIFRUVKCwsNBs+7y8PAQFBRm3qTmqp+p+1TY1zZ07F0VFRcZbVlZWU4pNRC1IqKuNh4jIQlYFFEEQMGPGDKxbtw67d+9G586dzdYPHDgQrq6u2LVrl3FZWloaMjMzoVKpAAAqlQopKSnIz883brNjxw4olUpERkbW+bwKhQJKpdLsRkStBzvJEpG1rOqDEhsbizVr1uC3336Dt7e3sc+Ij48P3N3d4ePjg6lTp2L27Nnw8/ODUqnEzJkzoVKpMHToUADAmDFjEBkZiWeffRYLFy5Ebm4u5s2bh9jYWCgUCtu/QiJqMQaT/GHWB6XFS0JErZ1VAWXZsmUAgFGjRpktX7FiBf72t78BAD777DNIpVJMnDgRGo0GMTExWLp0qXFbmUyGjRs3Yvr06VCpVPD09MSUKVPw3nvvNe+VEJFTMWvhkdReRkTUEKsCiiVXInVzc8OSJUuwZMmSerfp2LEjNm/ebM1TE1ErxlE8RGQtXouHiOzDrI+spOYiIqIGMaAQkd0Za1CYUIjIQgwoRGQX5tfiYRsPEVmHAYWI7KLOqe5ZhUJEFmJAISK7YwUKEVmLAYWI7MJ8HhROdU9E1mFAISK7Yw0KEVmLAYWI7MJ03iQO4iEiazGgEJFdmDXxVF2Lh208RGQhBhQisjs28RCRtRhQiMgu6qosYf0JEVmKAYWI7MJsojYHloOIWicGFCKyK9PmHXZBISJLMaAQkX2YziTLTihEZCUGFCKyK9NowgoUIrIUAwoR2YX5TLJVCxlRiMgyDChEZBdVWYTNO0TUFAwoRGRXElR3lGX9CRFZigGFiOzCbJgxK1GIyEoMKERkVxxmTERNwYBCRHZhGkYknKqNiKzEgEJEdlGVT0zDicBeKERkIQYUIrIvCTjXPRFZjQGFiOwiMf1mrWXsg0JElmJAISK7eO2XUwDMK1AYUIjIUgwoRGR3nKyNiKzFgEJEdmU2zNhxxSCiVoYBhYjsSsJBxkTUBAwoRNRiBHZCISILMaAQkV1JJJzqnoisx4BCRERETocBhYjsShxmLFahsIWHiCzFgEJEdiWRSNjEQ0RWszqg7Nu3DxMmTEBISAgkEgnWr19vtv5vf/tb5RdS9e2hhx4y26agoACTJk2CUqmEr68vpk6dipKSkma9ECJyfrwWDxFZyuqAUlpair59+2LJkiX1bvPQQw8hJyfHePvxxx/N1k+aNAlnz57Fjh07sHHjRuzbtw8vvPCC9aUnIqfHS/EQUVO4WPuAsWPHYuzYsQ1uo1AoEBQUVOe6c+fOYevWrTh27BgGDRoEAFi8eDHGjRuHjz/+GCEhIdYWiYhaCfZBISJL2aUPyt69exEQEIAePXpg+vTpuHmz+qJhiYmJ8PX1NYYTAIiOjoZUKsWRI0fq3J9Go4FarTa7EVErwSoUImoCmweUhx56CN9//z127dqFf//730hISMDYsWOh1+sBALm5uQgICDB7jIuLC/z8/JCbm1vnPuPi4uDj42O8hYaG2rrYRGQnptmEFShEZCmrm3ga89RTTxn/37t3b/Tp0wddu3bF3r17MXr06Cbtc+7cuZg9e7bxvlqtZkghaiXU5TpOdk9EVrP7MOMuXbrA398fly5dAgAEBQUhPz/fbBudToeCgoJ6+60oFAoolUqzGxG1PpzqnogsZfeAcu3aNdy8eRPBwcEAAJVKhcLCQiQlJRm32b17NwwGA6KiouxdHCJygKp5UBhPiMhSVjfxlJSUGGtDACAjIwPJycnw8/ODn58f3n33XUycOBFBQUFIT0/HG2+8gfDwcMTExAAAevbsiYceegjPP/88li9fDq1WixkzZuCpp57iCB6iO1RVA0924W2HloOIWg+ra1COHz+O/v37o3///gCA2bNno3///nj77bchk8lw+vRpPPzww+jevTumTp2KgQMHYv/+/VAoFMZ9rF69GhERERg9ejTGjRuH4cOH4+uvv7bdqyIip1J0WwsAKNcaHFwSImotrK5BGTVqVIPtyNu2bWt0H35+flizZo21T01ErVBEkDf+YM0JEVmJ1+IhIruS8EI8RNQEDChEZFc152njSB4isgQDChHZlURiXovCfEJElmBAISK7kkokMG3lYT4hIkswoBCRXUkkbOIhIusxoBCRXdXsIst4QkSWYEAhIvsSO6EY77IChYgswYBCRHZ1KqvQ0UUgolaIAYWI7M6sDwobeYjIAgwoRNSi2MRDRJZgQCEiu+NkskRkLQYUImpRrEEhIkswoBCR3UlMeqGwDwoRWYIBhYjszmwmWeYTIrIAAwoRtSjmEyKyBAMKEdkdp7onImsxoBCR3fFigURkLQYUIrI7s06yTChEZAEGFCJqWQwoRGQBBhQisj+zJh4mFCJqHAMKEbUoNvEQkSUYUIioRTGfEJElGFCIyO44zJiIrMWAQkR219nf0/h/xhMisgQDChHZ3aBOfsb/swKFiCzBgEJELYqjeIjIEgwoRNQijLPJMp8QkQUYUIioRTCfEJE1GFCIqEVIKqtQ2AeFiCzBgEJENtHY8OHqGhQmFCJqHAMKEdlEYzUjVX1QWINCRJZgQCEim2gsd1Rd0Zj5hIgsYXVA2bdvHyZMmICQkBBIJBKsX7/ebL0gCHj77bcRHBwMd3d3REdH4+LFi2bbFBQUYNKkSVAqlfD19cXUqVNRUlLSrBdCRI7V6AyxEgu3IyJCEwJKaWkp+vbtiyVLltS5fuHChfjiiy+wfPlyHDlyBJ6enoiJiUF5eblxm0mTJuHs2bPYsWMHNm7ciH379uGFF15o+qsgIodrvAalcjvmEyKygIu1Dxg7dizGjh1b5zpBELBo0SLMmzcPjzzyCADg+++/R2BgINavX4+nnnoK586dw9atW3Hs2DEMGjQIALB48WKMGzcOH3/8MUJCQprxcojIUSztg0JEZAmb9kHJyMhAbm4uoqOjjct8fHwQFRWFxMREAEBiYiJ8fX2N4QQAoqOjIZVKceTIkTr3q9FooFarzW5E5FwaG51j7IPCGhQisoBNA0pubi4AIDAw0Gx5YGCgcV1ubi4CAgLM1ru4uMDPz8+4TU1xcXHw8fEx3kJDQ21ZbCKyAdagEJEttYpRPHPnzkVRUZHxlpWV5egiEZGFugd6AeA8KERkHZsGlKCgIABAXl6e2fK8vDzjuqCgIOTn55ut1+l0KCgoMG5Tk0KhgFKpNLsRkXMx1FOF4iIVv2Y4kywRWcOmAaVz584ICgrCrl27jMvUajWOHDkClUoFAFCpVCgsLERSUpJxm927d8NgMCAqKsqWxSGiFmSoJ3i4ysRgwmvxEJE1rB7FU1JSgkuXLhnvZ2RkIDk5GX5+fggLC8OsWbPwr3/9C926dUPnzp3x1ltvISQkBI8++igAoGfPnnjooYfw/PPPY/ny5dBqtZgxYwaeeuopjuAhasWOZtysc7nCVWZ2v76aFiIiU1bXoBw/fhz9+/dH//79AQCzZ89G//798fbbbwMA3njjDcycORMvvPACBg8ejJKSEmzduhVubm7GfaxevRoREREYPXo0xo0bh+HDh+Prr7+20UsiIkf4+8rjdS6Xy8SvmWKNDgDw2Y4LLVYmImq9JEIrnNZRrVbDx8cHRUVF7I9C5CQ6vbmpzuXDwtti9f8NNVt/ZcH4lioWETkRa87frWIUDxG1Xq3vJxAROQMGFCKyKwYUImoKBhQisivOe0JETcGAQkR2xRoUImoKBhQisivmEyJqCgYUIrIvJhQiagIGFCKyuf1v3G/8P/ugEFFTMKAQkc2F+nng3q5tAQB/HdrRbN3I7u0cUSQiamWsnuqeiMgSK58bgsyCUoQHeAMAXhzVFUv3pqNrO08Hl4yIWgPWoBCRXchdpMZwAgCVFzPmqB4isggDChG1CInxesZERI1jQCGiFlFdg8IqFCJqHAMKEbWIqvoTxhMisgQDChG1jMoqFFagEJElGFCIqEVU16AwoRBR4xhQiKhFSNhHloiswIBCRC2KTTxEZAkGFCKyiXtClACAbgFeda6/XaEHAJz5o6jFykRErRcDChHZRNd2YjB5ekhYneu/2ncZAHDqGgMKETWOAYWIbMJQ2XYjZV8TIrIBBhQisomqviVSJhQisgEGFCKyCb1BTCgSK4frCIKAsgqdPYpERK0YAwoR2cTWs7kAALnMuoAy++dTiHx7Gy7kFdujWETUSjGgEFGzZRWUGf/vKrPua2XdyT8AAP/Zf9mmZSKi1o0BhYiarVyrN/m/oUn70DftYUR0h2JAIaJmM+0YqzPUnTS6B9Y9P0oVXuWYiEwxoBBRsxkM1eFCp687aMx+sAcAoGs7z7r3wYBCRCYYUIio2fQm4aK+GhSFq/h14y6X1bMP25eLiFovBhQiajbTWpN7u/rXuY20cvhxfX1NOHsKEZliQCGiZjNtnunV3qfObWSVAaW+viYX80tsXzAiarUYUIio2XSVfVA6tHGvd5uqfrQanQH7L16vNTlbduFtu5WPiFofBhQiaraqTrKyBqa5rxrpk3GjFM9+exQvrj5htr53PTUvRHR3YkAhombTWxJQakyBvzftullzT+8ODChEVM3mAWX+/PmQSCRmt4iICOP68vJyxMbGom3btvDy8sLEiRORl5dn62IQUQsyBpQGrsNT1wSzhy8XGP/PTrJEZMouNSj33HMPcnJyjLcDBw4Y173yyivYsGEDfvnlFyQkJCA7OxuPP/64PYpBRC2kaphxQzUodV1E8OlvDpust325iKj1crHLTl1cEBQUVGt5UVERvv32W6xZswYPPPAAAGDFihXo2bMnDh8+jKFDh9qjOERkZ5Y08TRUuwIAEtahEJEJu9SgXLx4ESEhIejSpQsmTZqEzMxMAEBSUhK0Wi2io6ON20ZERCAsLAyJiYn17k+j0UCtVpvdiMh5NKUPSk2sQSEiUzYPKFFRUVi5ciW2bt2KZcuWISMjAyNGjEBxcTFyc3Mhl8vh6+tr9pjAwEDk5ubWu8+4uDj4+PgYb6GhobYuNhE1g0UBpZFvG+YTIjJl8yaesWPHGv/fp08fREVFoWPHjvj555/h7l7/HAkNmTt3LmbPnm28r1arGVKInEjVRG0NNeM0VoPCKhQiMmX3Yca+vr7o3r07Ll26hKCgIFRUVKCwsNBsm7y8vDr7rFRRKBRQKpVmNyJyHlUTtUkb6oPSwDoAAC8WSEQm7B5QSkpKkJ6ejuDgYAwcOBCurq7YtWuXcX1aWhoyMzOhUqnsXRQispOqJh6XBvugNLwPA/MJEZmweRPPa6+9hgkTJqBjx47Izs7GO++8A5lMhqeffho+Pj6YOnUqZs+eDT8/PyiVSsycORMqlYojeIhaMYMFw4wba+LRswaFiEzYPKBcu3YNTz/9NG7evIl27dph+PDhOHz4MNq1awcA+OyzzyCVSjFx4kRoNBrExMRg6dKlti4GEbWgqqsZNyegGBhQiMiEzQNKfHx8g+vd3NywZMkSLFmyxNZPTUQOYkkn2cb6oDCfEJEpXouHiJpNbxD/baiTbGODdLaeqX+qASK6+zCgEFGz6Q1iQmmok2xjNSiZBWU2LRMRtW4MKETUbHoLhhm7NDZTGxE51MnMW/j31vO4XaF3dFEA2OlaPER0d9FZMMzYx93Vsn3pDXCp69LHRGRXjy09BABwlUowe0wPB5eGNShEZAOWdJKVu0gbnAuld3sfRH+agPB/bsGBizdsXUQislDytSJHFwEAAwoR2YAlnWQBNFgzIpVKcCm/BADw12+P2KxsRGSdfReuO7oIABhQiMgGLOkkCwDyBgKKgVPJEpEJBhS6K5zLUePjbWkoq9A5uih3JEtrUFxl9a9P+cM5qpWJyDmwkyzdFR5behDlWgNulmoQ93gfRxfnjqO3oA8KALiy8ysRWYjfFnRXKNeKP/ET0286uCR3pqomnsbmOmFAIXJ+4QFeji4CAAYUusvcLKlAipP0UL+TbDiVAwDIuFHa4HZyF37lEDk7wUmuO8FvC7qrFGt0mPDlARxK5zBWW6qaBTahkd7/jXWirXJv17bNLhMRNU369VKczLzl6GIwoNDdafvZPEcX4a5kaRNPudY5ZrIkultVTdrmSAwoRNRiXC1s4ilzkqm2ichxGFCIqNncXWUAgNdjGp4e+1RWoUX703NOFKK7HgMK3fEu5BU7ugh3vKpe/5HBSpvsz+AknfSInJ5eC9y6ClSOpLuTMKDQHS9fram1zFl6qd8pNDqxSUbRSBPOiG7+Fu2PFShEFhAEYN/HQPIa4Mq+Zu3KGft9MaDQHWnXuTy8HH8SxeVaeLvVno+Q5z/b0ujEX28K14a/UsL8PCzaH2tQiCxwdm31/68mNmtXt2v0+7L06uP2xJlk6Y40ddVxAECwjzuGhdcesuo05z+DASjKBLxDABe5o0vTZJrKifAULrIGt7N0HhT2QSFqhLYcuH7BZrsrq1GDMtzC2k57Yg3KnayiDMg9I7ZR3qXy1eWIP5pVa3l24W0HlKYOmYeA5B+Bs+scXZJmsbSJx3QelN9nDEOIjxtej+mBNf8XBdNZ8p0mQBI5K4Ntv9dv17hO2abTOSi67dhzBwPKnez0T8C5DcCV/Y4uicPIpBIM7Nim1vJd5/MdUJo6/JEk/ltw2bHlaCZjE08jNSinTWbxDVK64eCbDyD2/nDcG+6PjLjx2DBjOACxiefqzVJo9Xdexz8im0jbatPd3a6o/Vn76VimTZ/DWgwod7LiXPHf62mOLUcLO5tdfRJ0kUmM/RlqBhVBELDvwnW8+vMpFJffvbVMtlAVUBprwikorTD+v42nHJIaFxeUVj48p6gc9320Fy/Hn7RtQW2hMBM4tPiu+1yRE9HrgJuXbLrL0jqu9P75zos2fQ5rMaDcqbTVTRg3Klycp0mjBRzNKDD+30UqRYlG/OD1CPLG2F5BxnUbTudg8ndH8b8T1xz3Qawoc8zz2pBObzD2GWmsiefVMeI8KZNVHeucVVZaI7BsTsm1USlt6PRPgKYEOLO28W2J7OHUj7WXefg1a5c1O8kCQKmDJ0xkJ9k7UervQN5ZAEC5To83d+Rg5+bduLJgvIML1jJMmwVcZBKUVgYUb7kED3aQYcsZAYAEKw5mGLerupYMNUKnEcOvu69x0U2TWpHGRvE81CsIR/85Gu28FHWub+xqyHajKQFc3ACZBV+J+tq/NJtFEMR+Yq24kzS1sKJrtZcJzWsOdcbZm1mD4kj554E9cUBZQePbWkpTbAwnAKA26eRkt/Z8gx5I+RXIPGKf/VuppLz6BCJ3keLMH2oAQK+SRHS++isGSsSe7yczC43bOUWfzNbQMzTxS+DwMuC2eCGxottaRH24y7habsG1dgK83Wo17VRxSD65XSg22Rz/rnqZwQAU5wHlLXDl67Nrgf2fiOWwVMFlGPLOt473jCPpNEDaFqCi4atsGwkCcHkvcNXx16FpkEcdF9NsZkD516ZUAICbyY+MbyYPatY+m4sBxZGqRm4c+cqGOzX/hr+UXwIXiMnYbhPx5KcCNy4C6bvts38rhbX1NP7/6o0yJF6+CQCQ5qWgrEKPodJztR7jFN/zzj7aquQ6oKusLck/DwD4z37zzr0uFl4MsD41m3haRFUH5bKb1cuuHRUDS+JS+4eUqqGiOafqXl9WYB5eNMVQH/kvvl72MVb++j/7lq0xgiB+9lsiyDXF/k+B7GTg4BfAtePiD7iGqLPF+UQuJwDZTtj/CRDD8+06ftQ280ssp6jcuJvBndpg4oAOeDAysFn7bC4GFEfJSzW/fyreNh/yGl/w53LUxoByLsdOU747WT+KqiGvALD1bHUfhltlFRAEAVLU/qXhFDPLaiuPY+lNsWZtT1zd2xkaDpq7z+dh6spjuF5cewbdZjH9wr4lNo+Zdnq1hToDira87i9fQWj8hGMJmUnTSknl6K70PdXLbl2p/7HNfd/oTP5GhVdrrz/+nfgD5vCy6qnMy4twMrMQ5To9Ck9tat7zW6tcLf49qty4KNaeJi5t+j5rTNFut8/ixR3AoS+Bgoz6t9GZvDYbj5JpDoNBwKmsQvG77dox8/dd1wfEf5tRg2J6zAUAv0y7F5/8pW+T92crDCiOkvqb+f2CDOD0z83fr8kbrVyrR7FGBznEX+b/PVzHF6AJrd4Ag7UTZN0udJqakyp1dfYCAIVMikClG2SS2h9kuYsUOL9ZDAWX97ZMlUrN56j6cjz6dfWymtX+Z/4nnqwaODH/feVx7Dqfj9g1J2xTTkAMRVVDogFA2R4AjP17AKCdd939SqzhmbENs1x+RVfJHwCAkdJT0Oz9uPbnBQAyD4snnNwzzXtS05OS6WusImlg6PSNZk6UdW5D9f+L/jBfJwhAcR4Kb1eInZB1t8VAc+IHOKIlzKApxZE172PTd+9BX9VcXNjMYaiXdgIHPzM2GeYXl2PIh7vwr42pjTywGTIbmHG1kfBfJ70OOPEDcHFn9bJbV6pHUdrAD4ev4pElBzFv3Rkg63D1ioCeQNuu4v+bEVBM+59U6JxnaD8DiiPUd/IrvdHoQ02baQwGAQcvXq8xmU71vpfvSwcAhEnFX4W/n8qud78bT2ej2z+34M9fVX94/7UxFc9+e6Th0HJpZ/3r6lBcrsUtW/7qzjtb60uyVFP3l8zQrm3hX9k50wclZut8XXXVVexXE41fLj8fz0KnNzchMf0mbK5mk07VfTef6mX5Js1RuWfE5gBNcb3TWucXV59sj2YUmM/IWlEmNmdkHq5uqqmhoLQCKw5m1P4bXdhmfl8wQKs3YH1y9Xvqh6lD6tynGU2xGALqac5S3BDDxgRZImTQY4D0IpYlpOOXLdtrvw8v7xX/Pd/MWoSLO6r/b9DX/nwKDZy0bjUc+ht1w2T0mGeNmTv1FcgqKMPKQ1eweM9FzIk/At11cWhphUl/MkEQxFoIW4XqcrVYo2tStqIyLUbP/xGJl2/gYlYOzm77j7jCkk7FDck6Jr4XDy8HTv+MxA3f4npxOf5zIAN6g4DZPyWj05ubELu6CWHbpGbmQl4x8tSVn416/mZrT1zDnjNN+HsWpIudVq8dE+9rSsTJF4+vsMkF/HR6A975XexX+EvSNcCvK8q1emQX3YbgooCxWb++gFLjfVHXlAqmPzTa+7o3u8y2woDiCE3sa3Bv3C5EvLUVfeZvA/Q6vPfBWzi26g38/b3FyCmqHEZc+WYUanT7VKCBUHA9Dbt3iyegpKu3UK7VI+NGKf5zIAP7L97AuC/qmehNrzP/gm1AQWkFVh7MQO/529H//R0484eFzVmCINYuaW8DN9PF6u78c+KvzbICccTSydVizUduCgCxKacmGfQIbSNeB+bl0d3wqs8e86epWSNR2dzyxq+nAQBPf3MYl/LNQ02z7f/E/L6+styBkdXLFF7V/zf95VfXL30Ai3eZz42wcr/J3+fQF8Cpn8TmizouLCYIAsa/H4+lGw5i1k/J5itr9o/QFGOPyWR3vh6uiAhSVu1IbK6s64SZuAS4sF28wFkVvVb8+xZkGFsoBUFirPkDgD8Kb+PmHxeAvQvw+/of0enNTTh4qTLQN/ckacpFUTt0m37xX9pVe3sTOr0B126VIelqQeNNFTVDYs0fKDqN2YSCN88fwJV9awAAZyrn+jEIUrz/+2n8tOSf0Cb/1PDzWSojQfzMpfxqXHTfx3vMmkalty6LYc70ZG9tQKpRW3HjaioyUo8jAIVwgQ5d/7EZa0+KtUqbUnJw5UYpNqfkWN6XTid+J+5IzcPmMzn48VhmnQMF0nKLMXdtCmb/fAordxwzblPh3xOD/rUTk787Cl0djxMEAUczClB6+7bpQvOmurxm1u4BmLs2xey+3jMAy/el4+fjWdiv6V7drF9XQCm5DiT8W+woDGDVoSvoPX87tqTkmG9mElDiXxja7DLbCgNKYwQB5afX4/KGj6C71kiKL8yq7juwJ058UxgM+DXpGn48avIrv56TCwDxF0UdxMQs/gJQl+tQdGYrfDXih3eELAWfbK+qahaQfr0E3yea/xKY7vI7OkpykXf5lPFLRV2uRdymVOQnrkHYjX1QScWUfj39JOI+/Qiyyr4r53OLxZPIhW3m7fFljdf4lNzKR/xns/HiB59j/obqatu5a1Pw3IqjZie5mgRBQE7aUQinfhTnnLh6SAwlZ9cDJ74HjnyFotva6i+dcxsBbXmdc7481bP6RCKBBJOHdsTfh3U2LrtwLgXnc9VYe/IazueqxRPmydWY5fIrXKDDMGkKfty4Vfx1VC6OCtp0OgfTfkiq/kVSVgCos7EzNc+s8+i201kIf/M3/NBIE5vxBGUaYE2bz1wab0JRm/w66iHJRPGOuOpRXaYnkJzTQHkRDNoKbE7JQW5RObYkXcKfZQn4iywBhy6IX2CbTmXj5UXf1wp9GWePYtYPByGFASrpWbw93CRIXT0o9knIqOPqqjVPYga9GFYOLAJOxUNS+WswG20hh/lwXknyj4Ag4PLx7QAEHLtagONXCwBp/Rc1S8stRsaNUly9Wc8oDr0OkEihryrXtePAtePQmfzyXX/yGp5YehDFN7OBrKPmj3dTGv+r0xsQ/s8tGP7vPZi4LBFL96bX+ZQ/HL6Kh788gOK0hNorK0rFmq7kNUg9sh2Ft6uPey9pBir0BrNaslvwQsGReOTk5WLngUPNq0WpCgyV/WLOZBdh5Vcfo0JnQGGZFr4mtY5ZBWVAwkKxU2mlC2eOY8Pa76FNN/9BU3Rbi0eWHESnNzdhyR6TAF2jz91/j4ifj2dcdiFGerxW8UZ9vBcvrj6B3m9thFB6E1/vS0fk21vFzyvEmgGzIFHZkftsThEMgniqW7L3Em6WatD5zQ3o9OZGrPt9LRasTUTisSOY5fIr+ksv4o/C27h6sxT/S7mJGyUa7LtwHU99fbg6cJYXQdCU4P6P9+IvXyXiu/98YX4MU3+vvq8tE/uyNKF/4b4L17FkzyWx1sREwnmxdvecIQw/JN9Cam7V36XmZ8sAHPuP+J7ITgYAY03M9NUnzAL0jRLxfdbe1x2hFl7QsyVwHpQ6GAwCpFKJ+GZLWIjdKTm4kF+MYTfyMXgMgPYDjNueyipEsI8bApRuwMn/io8XBCRnFSK8/Bhw+RjeSYhEKdwRHuCFwW3KqqumASAgwvhBAiD+emvXAzi8FAiNArreD6D2PB3Lft4AN5OG6F+TruHXpGtQohR/dxG/NHbpByBCmonp/eT4/VQ2HpMdwI/fHcCLo8KB++ZgzZFMrNh/Ae4uYniKkp5DlPQc/vdfIFIKREqvYqt+CM4LYbh1fj/a5J8A/jgB3D9XfFKTmQwr9Abo9AZ4CILYmdInFGklbliz+F9oIynGUOkttMcNhFY2N23OjsIeIRR70q7Xnp8l6xhwKwPd1ijwpGwvHgl3Qdd2FfDzlEOrF1B0W4t2XgrcKqvA94evIshbgScHh4mPPf4ttqd2Mu5KBj2ele3A88o2AMyrLudFd4B/+RUsTDJgpOw0tlaexzMLyhARfgSLfjsAAJgo249gyU3gchpwqLJGYuTrxj4ex8+m4VvVdXiU5yHYxx0LEgJwSeiAk5mF+HJiOM79/DZmuAAfrS9HmJ8Hpnx3FB/H+OMJADdKNFC6u4rDc/XiiUGruY2r10uQllsM9W0t/jxYg3JBhm17jsBL4YLonoEQIMBFEPDUN4dx+LLYo3/LyyNwIa/6JDJWJp5Mrx2Mx6T0B/BZwC0IAhDk44YrN2+g6ORbkHi0wYuXhqC7JAvjZEcglQBSGKBEKcoyk3Hxl8/RGcCqG8Ajfdujs78n9AYBv536A3+WqdFGItY8PSxoAdwrPnFG5Qnq6iGgy33VB9z0fQ6I4aBGTU7Vj8H2khv4tu8FHKgeMY81RzONswK7VdYIXsovQb/ursYvslKNDil/FGFwJz9cL9YgZlH1/kd088fnT/XHvPUp+GvXctzrkQ3cvIStZ3JwPq92n57onoHoGaTEhoMnMVyagW0rPPDEwA7mG0nFZ16y5xI2nRZD3UjpKbihAh9vM0CZuQPP9pAAg/4OyFyBzMP46rc0XBPa4aXVJ/Hdg1JjKAMg/njIPokr6eewPblGnxQA21PN+zW0lajRViKeoNPyiqH99j1M+NtcSFzkuJRfgva+7nCXy8TaGr0GUHiLtUB/JAH3zgRcxc/E4dQMHF7zHoZEdMK9UcNQUFqBnefyAOQhbsMpjJCexkBpdX+btLxilGh0GNLJD5kFZRjUyQ+bfxI7yh6+kYwRWQeB4a+gXHBB33e3Gx/30bY0dG3nheJyLc6d2I85nfUordDj+8QrZq+rm/QaUNmkJ4cOFagOoc/LNmLFZ5twsiwIZYYoPLRoP47Pi8agf4k1X1feGiqOyCrKMr5fvtA/DjdoMM1lA344fBUDJEr0lGbi6tEi9AXQ16Sb0frK455scAMQBH8UIfPqLfxzvTc+/FM3IHEpNp3OhqygN6QINm9Grbw+TtatMkglErSv6mxdmg8MmAxBEHAhtxhdArzEiQpvFwKX9wDh0eLfBuIPs/O5xZj8XY0wDAFSCFizNxm9KqsWdqTmITE1A5sGl6Kjf2VYLisQ+zP6dzN/ePZJzHIRa8WW6h7BjDUnsWSSeC67eDULAbiFfoHecCYSwYHDF5YsWYKPPvoIubm56Nu3LxYvXowhQxpvx1ar1fDx8UFRURGUSmWj21vj1Z9P4X8nriEiyBubh56DpOwmPt9dXU3+xIAOeClnDPKy0iGTGHBL8MYzsl1wl4gnF7mLFFGd/LD/Uu3ahXX64Vg9+Ao85DIAEijdXZDe80V0yd4A12LxQ3Ehrxjqci0GhrUBJMD/MBqdPSrw5LoCGCBFL0kGHpDVHv62SjcGt6CEEiX4u8tWVAguWKp/FG8o1uLFUeFYtMu8M98fgj9+0d8HlTQVUXUMuzW1SPcEpso245+j20N9W4uN+W3wzY3eeKzoewCAq0xqVnX61OAwJF29hbic/nhCVsev6Epr9SPgiXLM7K3DB+eD8P4z90HlWwj3c2tRVqHDtAQZekoyjce2IbGjwuEqk+JsdhFeOtMFE2SJ+PPAUAQqFSir0EPpVvev7FtlFXjnoAZdpDl1rq9PyYDp+M/R6+gnuYRRsuRa6y8bgmvtM8sQgHQhBKeFLnjJZW2tbc8o+mPAiHG4ueNTeEvMa4E266MwTmY+z8x6/TCoBU90k/wBlUw8ky/WPQY9ZAjCTTzlYt6MVZ9FuomY5WLZcFWvzkNQkmH+xTk6IhC92/sA980RE8beBdUr2w8Euj0IGHTmzToAMHSa2PfARIXegKV7xeD73L2dseJQ3SMuvteNwWQX8cT3h+CPwJH/h6eGhGL4v8XXLIEBT8j2QQoBv+tVCJPkI0BSiLa9oqE+sxV9pJfx4qhwlGl0WFnj5GhqcCc/HLtSPaSzbwdfDOzYpvr9FDEeA5dfRbFGjwq4Vv5AEKvT0wyh6CGtvlBlRz9PRAR7Y9vZXCzXTUB/6SVESc+hTFDAHRUI83PHxAEdcOpaIfakNf1aUc/d2xm5Bm98dSgXmw1RmOayAX8ZFIo/bt1GuzY+2Hs2C+193XFfny5wGToNi7afgTRxsfHxhYIXfCXVQXebfjBiZHXX7NZH1aUt8tQaFA1+GW9tqLokgIDekgwUwhM3BR+84LLRqn1u0Q9BKdzxhKy65mmR7gnj/ztJcvCANBm92wJXC0rxh+CP9pIbuGIIwnqDeI2nqhO0JVIMnbHLMMD42VilG4NfnmyPTgX78eWeS7W2f2ZIGAKGTUbCb//ByctikJw8tCOOZBSgVKODT/SreP+nBDwqPYgDhl44IXTHLJdf8fyILvCUu+BifjG+yOuDfEVHHMm4iR6SLHiiHBlCELRwwf+5bDZ7vuuCL1bro+GBckyXb8KM+7tBct8cHF27CJLiHAzq2MY435BBEJCarcbO83kAxM9MmiEUaUIoDJDi77ItcJdoENXJD6qu/mK46f0E7MGa87fDAspPP/2EyZMnY/ny5YiKisKiRYvwyy+/IC0tDQEBAQ0+1l4BZcXBDLy/4QwGSC7AS1KOflLbXuugJo0gxzL9wwCAEYpLGKhPtnofoW08kHVLrF2pEFxQDA/jL6pFuifw68NuGKQ5ivO5arMht87olKEr+krrrhZvyHlDGCKktUcTvDy6m/mvUwAI6Wes7qyyPvkPXKlsAsgwBKGztGWP02lDF/SRik1CFYIL5JLmzVSqFjwR3VmBoyYn1oYYBCmkdYxsqsuXukfxF1kCAiTiqIsBYW0wslu7Jpe1FoU3MnPyIJGI7+3fT2Xj8g3L+v7kCW0QWFmu5jph6IZukmu1gmKV64IveinLkWfS3NJU+/R90FeaDh9J3c1Q3Uf8BWeSD0NeXP0eX66bgB96JOJgeuPNrLb016iO+NuhtoiWWddpVS9I6xw9Z4l+ob5Iziqsc90ZQ2f0kjYwbBhVP8ZGifuq5wdFXSoEFxgghZvEtkPpm6pnkBLnKpuzAPF9c0LoDneU4/9ZGfbq86fewQgPqKxFcfcF+j1j3mnfBqw5fzusD8qnn36K559/Hs899xwiIyOxfPlyeHh44Lvvvmv8wXbSFdfwkstaDJedqRVOLhtCLNpHheCCRbon8IXucZwydK13u2RDV6zRP2C8v18Tjr36fo3u//nhXdCzsjPixP4d8Hj/9uhUOTGZXKIzhhMAGNc7CAOGPgAMeBYRQUr0D619Vd8q7bwUmHF/OCICveHj7orp93XFy6O74a9RHRst07e6cfWua+/rjqnDO0PVpS0GhLXBtJFd4VbPFW+bEk4AYJthED7XPW62bGjntrXDiae/WJVaw6P92uMvg0LxYM9AyHqaNzcNDGuD2FHh9U7B7lLHcm+Fa62e8FNUnep8fJKhO1xN+lqYhpNN+tqd1bRC462y94XJcW9Xf4zqXnfQv2wINrtvGk76hfpixv3hZut/1o3CN7rx+FL3KHRwQYK+DwAxnIzoVmPkSXNFPoywwLbGDs3jegfBf/QsfK37E24K4vteLpPWKiOAZoWTlboYfK37EwDxRHDQ0AvHDBH1bi+Htt5wMnloJwwIq/+zBgARJlXp1+FTbzh56YFuGPdgDGa/9g4W6SZio34olusmYGZMHwy+/xFMu68rXn6gG/o+/R426FWNvcxmeemBbvAfNhn/e2+68e9TU47QFqcNXWotH9LJB2Mig+p4RLUXR4Vj1ujutW6jugfgmSFhGB0RiOdHmO+7sXACANcFH8wdG4F543vilCA+fmS3dphxfzjcXcXvIg9XGQaE+eGF6H54/L7BkLtIIZfo8NLIDpg1unu9NbAhPvYd8eIpFz/vU1SdEHNPkPG7v2s7L4y5Xzx/GKw8jQ/q6IfOJpNZmurSzqQv2e3C6j4sDuKQGpSKigp4eHjg119/xaOPPmpcPmXKFBQWFuK338znPNBoNNBoqqv51Wo1QkNDbV6DImSfxJndP8FL4YKsW2U4kXkLGYYg/GYYjnnje6Js+79gEAREdfJDkI87fNxdcO3WbUSGKHHdtx8Ubu4Y9cMNqOGJyaqOeH5EF3QQciHRFEFI24LNKbm4VVqBw8X+2Gio68tEQIz0GB70u44SnQxH1b7oLr2G0DYe6Ozvif6hvmKVnXcg0GOc2DnQdM4MADqDAVq9AHe/ELHdu0rpTSDzEF7ZL4FL5n68O8JLbJsGYHBvC1nUC+Ib8epBsZo+pL84+yLEic+2n81DynUtyuAGf4nY4everv44GPAMBnYNQvj5ZSgs06KgtAJfXA7GvbKzeGJAB3Ro4wHc86jYvuoVBMhcIAgCtGnbgWvH8cWeDLhI9Ojd3gcarQEX8qv7Avh5yPHEwA741XAfhncPhOH499D4dUeJuhDtBj2KDiHt4eoiw4It5/HVvsvoLsnCw67H8Kc+wejUoYNxbgV0VAFh91Zf66TqWkUdVUBgL+DoN+Ly0MFAeDTysjOR9OvHuK97O3h2GQIUZaG0++N4aV063u94EoU5Gca+ANNGdoVbcARO+UbDU+GCDmWpcMvYhaLbWqw4lIE0/xgsm/UUkL4bpZcOYvXhTPQM8caI8HbQdRyOG20H49i+zbjndhIyb5UhOasQvu6ueOj/LUCQvx+0KeuQf+kkArwVcJVJUT7sdVxIWAP5jXNwlUnFUVa9g+DZayx057fDx93ki1QZgrhrvVFy9Ae0kxTC31OBXP+hWHUtGC8P88dI7xy0uX4c/l5yXC/RwN9LAemwmeJw5uJsfJbRHqtPFGDf3DFwd5Vh57l87LtwHaN6tENUl7bwyjks9jPpNFycedNUn7/UP6+P3NN86vGIcYB7G7FzcNuuldemqTDrFFyq0cFDLoPk/EbjvCcCxGrrczlqXKvsGN23gy9G9WhnDKcCBEgggQABh9Nv4siVAvh5yCGVSLCtNBztXUuw29AfX0wZDjdXGXqFKOEik0IQBLy7IRW+Rz9GZLASUV3b4b+6B9Dh4hpcvFGOM0Jn44+Ydl4K/HlQqPk0/x0GQbh2DEcuF0Dp7orsTo9i3b4TcFVnYv5wN/i6y1Gu1ePardvwGTsPbpe34ecNm1Cs0SFI6Ybgbv3Qc9STCPD1MXbM0ekN0BkEuFWeVCEIYsdqj7aAVCzzoh9+heRCdVPAzAe64fDlm0jxvBcbT2cjWnYCxbI26NHvXmQnVQ/Pvr9HADpHP4+K3HPYvGUjhnZpi+4TXjX/fgkfDYRWNsEXXYNw4nsU61ygHToTP65dC18PVzwz8c9467czSDiaZGyK6ervhQl9Q4x/j8yCMgR6u0Hq4oI9btHwvXUGvVyyxJPxPY8Bnu2AK/urh9hLXcQmwiruvkDkI0DSKgDA+Vw1JBIJQtu4I03rj4TDR6EWPDGhhwdKXdti8OMvQaFwh1ZvwAebzsHXRYeXO2ZAUpwDffvBKDy1EX4eckiGvyy+NwuzjP0Jq+gMBly7dRvrk//ATv0AeIZE4NPHeiDk4n9RUq5DclYhkjKrA3LUg08izyMcCev+g47SPOPyHoHe6N3eB64yKW6VVeDqzTL8548weFbW2PcI9EZOUTlGRwTARSZFcFAwpOWF1QVpP0DsBwgAo94EJBKk5RRh57fzoC2vrmn0VriiWKNFjtAWClTAT1IMd1cZ2j/8FsYJ+yEtyoJGp0epRgcXmRRlFXrIB/0Vfu27iaO3qkZnRj4MBN4DW3L6Jp7s7Gy0b98ehw4dgkpVfaJ+4403kJCQgCNHzNva58+fj3fffbfWfuzRBwVn1wHufuIHUaaovv47IHY+urIf6Dis9pwFlqgoFVOpMqTWjK/1EgRx7gqFUnzOmo8rV4sfKqlMHHkikVl20TF1NuDhD0CwaHQIBEF87ooy8cRv0ALKDtVDPHUacZhbZac7qHPEYX5+tX9N1aLXir3ctbcBr0DbXTSt9IbYMbGuKkqDofpvq84Re9u37Wq+XlcOyD1qP05f9Vo9xOMiteIXjF4LQCJ+4bq6VS7TAeprgEQKuLgDXnU0mVQd/7rKb7rMoBW/0KUNTC5mVh4dcGS52ObcbYzl78u6FFwG5N7V5ReE6uOjvQ1AYvKatYD6D/E9aDqU2hIGvfj6dBXiMZNUdmi/dUW8oqu+AvAONn8tOo1l7/OaSq6LHXl7jBfLXvV1adBDKLsBiUJZXQadRnxPVH0mtOXi30NRo+OhwQCU5Irb+1WOJKu6YKDMVXzfudrgl7lBLwZInw7Vz1NT1etp6O9e3za3C8ULLFb9TWvSa8XvGfc24vtd7mn+N6j6O1b9H5L6P0sVZbU/i3qtOJqv0wigXff6y98YbXnlZ8/ke0enETvaegUBmqLK19mMv0nV37bqcysI4vlA7ln7fWrQi8tMn6/q82/Qi8fds8a1eLS3xc+fIIiBIusooC0FuoiDLFB0TZxc0fT4luQDpdcB3zDx+8z0e7K+964N3HEBpaVqUIiIiMh+rAkoDhlm7O/vD5lMhry8PLPleXl5CAqq3U6pUCigUDR/Gm0iIiJqHRzSSVYul2PgwIHYtat6VkaDwYBdu3aZ1agQERHR3clhE7XNnj0bU6ZMwaBBgzBkyBAsWrQIpaWleO655xxVJCIiInISDgsoTz75JK5fv463334bubm56NevH7Zu3YrAwEBHFYmIiIichENnkm0qe84kS0RERPbRKiZqIyIiIqoPAwoRERE5HQYUIiIicjoMKEREROR0GFCIiIjI6TCgEBERkdNhQCEiIiKnw4BCRERETsdhM8k2R9Xccmq12sElISIiIktVnbctmSO2VQaU4uJiAEBoaKiDS0JERETWKi4uho+PT4PbtMqp7g0GA7Kzs+Ht7Q2JRGLTfavVaoSGhiIrK4vT6NsRj3PL4HFuGTzOLYPHueXY61gLgoDi4mKEhIRAKm24l0mrrEGRSqXo0KGDXZ9DqVTyA9ACeJxbBo9zy+Bxbhk8zi3HHse6sZqTKuwkS0RERE6HAYWIiIicDgNKDQqFAu+88w4UCoWji3JH43FuGTzOLYPHuWXwOLccZzjWrbKTLBEREd3ZWINCRERETocBhYiIiJwOAwoRERE5HQYUIiIicjoMKCaWLFmCTp06wc3NDVFRUTh69Kiji+TU9u3bhwkTJiAkJAQSiQTr1683Wy8IAt5++20EBwfD3d0d0dHRuHjxotk2BQUFmDRpEpRKJXx9fTF16lSUlJSYbXP69GmMGDECbm5uCA0NxcKFC+390pxKXFwcBg8eDG9vbwQEBODRRx9FWlqa2Tbl5eWIjY1F27Zt4eXlhYkTJyIvL89sm8zMTIwfPx4eHh4ICAjA66+/Dp1OZ7bN3r17MWDAACgUCoSHh2PlypX2fnlOY9myZejTp49xYiqVSoUtW7YY1/MY28eCBQsgkUgwa9Ys4zIe6+abP38+JBKJ2S0iIsK4vlUcY4EEQRCE+Ph4QS6XC999951w9uxZ4fnnnxd8fX2FvLw8RxfNaW3evFn45z//Kaxdu1YAIKxbt85s/YIFCwQfHx9h/fr1wqlTp4SHH35Y6Ny5s3D79m3jNg899JDQt29f4fDhw8L+/fuF8PBw4emnnzauLyoqEgIDA4VJkyYJZ86cEX788UfB3d1d+Oqrr1rqZTpcTEyMsGLFCuHMmTNCcnKyMG7cOCEsLEwoKSkxbjNt2jQhNDRU2LVrl3D8+HFh6NChwr333mtcr9PphF69egnR0dHCyZMnhc2bNwv+/v7C3LlzjdtcvnxZ8PDwEGbPni2kpqYKixcvFmQymbB169YWfb2O8vvvvwubNm0SLly4IKSlpQn/+Mc/BFdXV+HMmTOCIPAY28PRo0eFTp06CX369BFefvll43Ie6+Z75513hHvuuUfIyckx3q5fv25c3xqOMQNKpSFDhgixsbHG+3q9XggJCRHi4uIcWKrWo2ZAMRgMQlBQkPDRRx8ZlxUWFgoKhUL48ccfBUEQhNTUVAGAcOzYMeM2W7ZsESQSifDHH38IgiAIS5cuFdq0aSNoNBrjNnPmzBF69Ohh51fkvPLz8wUAQkJCgiAI4nF1dXUVfvnlF+M2586dEwAIiYmJgiCIYVIqlQq5ubnGbZYtWyYolUrjsX3jjTeEe+65x+y5nnzySSEmJsbeL8lptWnTRvjPf/7DY2wHxcXFQrdu3YQdO3YI9913nzGg8FjbxjvvvCP07du3znWt5RiziQdARUUFkpKSEB0dbVwmlUoRHR2NxMREB5as9crIyEBubq7ZMfXx8UFUVJTxmCYmJsLX1xeDBg0ybhMdHQ2pVIojR44Ytxk5ciTkcrlxm5iYGKSlpeHWrVst9GqcS1FREQDAz88PAJCUlAStVmt2rCMiIhAWFmZ2rHv37o3AwEDjNjExMVCr1Th79qxxG9N9VG1zN34G9Ho94uPjUVpaCpVKxWNsB7GxsRg/fnyt48FjbTsXL15ESEgIunTpgkmTJiEzMxNA6znGDCgAbty4Ab1eb/aHAIDAwEDk5uY6qFStW9Vxa+iY5ubmIiAgwGy9i4sL/Pz8zLapax+mz3E3MRgMmDVrFoYNG4ZevXoBEI+DXC6Hr6+v2bY1j3Vjx7G+bdRqNW7fvm2Pl+N0UlJS4OXlBYVCgWnTpmHdunWIjIzkMbax+Ph4nDhxAnFxcbXW8VjbRlRUFFauXImtW7di2bJlyMjIwIgRI1BcXNxqjnGrvJox0d0qNjYWZ86cwYEDBxxdlDtSjx49kJycjKKiIvz666+YMmUKEhISHF2sO0pWVhZefvll7NixA25ubo4uzh1r7Nixxv/36dMHUVFR6NixI37++We4u7s7sGSWYw0KAH9/f8hkslo9mPPy8hAUFOSgUrVuVcetoWMaFBSE/Px8s/U6nQ4FBQVm29S1D9PnuFvMmDEDGzduxJ49e9ChQwfj8qCgIFRUVKCwsNBs+5rHurHjWN82SqWy1XyhNZdcLkd4eDgGDhyIuLg49O3bF59//jmPsQ0lJSUhPz8fAwYMgIuLC1xcXJCQkIAvvvgCLi4uCAwM5LG2A19fX3Tv3h2XLl1qNe9nBhSIX0oDBw7Erl27jMsMBgN27doFlUrlwJK1Xp07d0ZQUJDZMVWr1Thy5IjxmKpUKhQWFiIpKcm4ze7du2EwGBAVFWXcZt++fdBqtcZtduzYgR49eqBNmzYt9GocSxAEzJgxA+vWrcPu3bvRuXNns/UDBw6Eq6ur2bFOS0tDZmam2bFOSUkxC4Q7duyAUqlEZGSkcRvTfVRtczd/BgwGAzQaDY+xDY0ePRopKSlITk423gYNGoRJkyYZ/89jbXslJSVIT09HcHBw63k/26Sr7R0gPj5eUCgUwsqVK4XU1FThhRdeEHx9fc16MJO54uJi4eTJk8LJkycFAMKnn34qnDx5Urh69aogCOIwY19fX+G3334TTp8+LTzyyCN1DjPu37+/cOTIEeHAgQNCt27dzIYZFxYWCoGBgcKzzz4rnDlzRoiPjxc8PDzuqmHG06dPF3x8fIS9e/eaDRksKyszbjNt2jQhLCxM2L17t3D8+HFBpVIJKpXKuL5qyOCYMWOE5ORkYevWrUK7du3qHDL4+uuvC+fOnROWLFlyVw3LfPPNN4WEhAQhIyNDOH36tPDmm28KEolE2L59uyAIPMb2ZDqKRxB4rG3h1VdfFfbu3StkZGQIBw8eFKKjowV/f38hPz9fEITWcYwZUEwsXrxYCAsLE+RyuTBkyBDh8OHDji6SU9uzZ48AoNZtypQpgiCIQ43feustITAwUFAoFMLo0aOFtLQ0s33cvHlTePrppwUvLy9BqVQKzz33nFBcXGy2zalTp4Thw4cLCoVCaN++vbBgwYKWeolOoa5jDEBYsWKFcZvbt28LL774otCmTRvBw8NDeOyxx4ScnByz/Vy5ckUYO3as4O7uLvj7+wuvvvqqoNVqzbbZs2eP0K9fP0EulwtdunQxe4473d///nehY8eOglwuF9q1ayeMHj3aGE4EgcfYnmoGFB7r5nvyySeF4OBgQS6XC+3btxeefPJJ4dKlS8b1reEYSwRBEGxTF0NERERkG+yDQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6DChERETkdBhQiIiIyOkwoBAREZHTYUAhIiIip8OAQkRERE6HAYWIiIicDgMKEREROR0GFCIiInI6/x8LZY3SlOcKYgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"mNrm\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"mNrm\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.655213Z", - "iopub.status.busy": "2024-07-11T15:30:48.654967Z", - "iopub.status.idle": "2024-07-11T15:30:48.748413Z", - "shell.execute_reply": "2024-07-11T15:30:48.747903Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABcb0lEQVR4nO3dd3yTdeIH8M+TpEl3Syl0QBe0lL33UBBkiFvv0OMUx52ngh7nQLnTc9x5Ve/n5HAruHGCCojsvUpZZVPoYnTTpjPN+P7+eJrVkaZpmrTweb9eebVNnj755knyPJ/nux5JCCFARERE5CEKbxeAiIiIriwMH0RERORRDB9ERETkUQwfRERE5FEMH0RERORRDB9ERETkUQwfRERE5FEMH0RERORRKm8XoD6TyYQLFy4gKCgIkiR5uzhERETkBCEEysvLER0dDYXCcd1GuwsfFy5cQExMjLeLQURERC7Izc1F9+7dHS7T7sJHUFAQALnwwcHBXi4NEREROUOr1SImJsZyHHek3YUPc1NLcHAwwwcREVEH40yXCXY4JSIiIo9i+CAiIiKPYvggIiIij2p3fT6IiIjMhBAwGAwwGo3eLgoB8PHxgVKpbPV6GD6IiKhdqq2txcWLF1FVVeXtolAdSZLQvXt3BAYGtmo9DB9ERNTumEwmZGZmQqlUIjo6Gmq1mhNPepkQAoWFhTh37hySkpJaVQPC8EFERO1ObW0tTCYTYmJi4O/v7+3iUJ0uXbogKysLer2+VeGDHU6JiKjdam6abvIsd9U+8V0lIiIij2L4ICIi8rLnn38egwcPbtH/TJw4EfPnz/d6OVzBPh9ERERe9sQTT+CRRx5p0f/8+OOP8PHxaaMStS2GDyIiIi8RQsBoNCIwMLDFw1fDwsLaqFRtj80uRNQqOzOK8G1qrreLQdRu6HQ6PProo+jatSt8fX0xfvx4pKamAgA2b94MSZLw66+/YtiwYdBoNNi+fXuD5g6DwYBHH30UoaGh6Ny5M5566inMmTMHN998s2WZ+s0u8fHx+M9//oP77rsPQUFBiI2NxQcffGBXtqeeegq9evWCv78/evTogWeffRZ6vb4tN0ejGD6IqFX+8NEeLPjhMNLPlXm7KHSZE0KgqtbglZsQwulyLliwAD/88AM+/fRT7N+/H4mJiZg2bRpKSkosyzz99NN4+eWXcfz4cQwcOLDBOl555RV8+eWXWLJkCXbs2AGtVosVK1Y0+9yvvfYahg8fjgMHDuDhhx/GQw89hJMnT1oeDwoKwtKlS3Hs2DG89dZb+PDDD/HGG284/drchc0uROQW50urMaB7iLeLQZexar0Rff/5m1ee+9iL0+Cvbv6QWVlZiXfffRdLly7FjBkzAAAffvgh1q1bh48//hgjRowAALz44ou49tprm1zPokWLsHDhQtxyyy0AgP/9739YvXp1s89/3XXX4eGHHwYg13K88cYb2LRpE5KTkwEAzzzzjGXZ+Ph4PPHEE1i2bBkWLFjQ7LrdieGDiNyCk08SAWfOnIFer8e4ceMs9/n4+GDkyJE4fvy4JXwMHz68yXWUlZUhPz8fI0eOtNynVCoxbNgwmEwmh89vW4siSRIiIyNRUFBgue+bb77B22+/jTNnzqCiogIGgwHBwcEtfp2txfBBREQdgp+PEsdenOa153angIAAt67PrP7oF0mSLIFl165dmD17Nl544QVMmzYNISEhWLZsGV577bU2KYsjDB9ERNQhSJLkVNOHN/Xs2RNqtRo7duxAXFwcAECv1yM1NdXpOTlCQkIQERGB1NRUXHXVVQAAo9GI/fv3t2oOjp07dyIuLg7/+Mc/LPdlZ2e7vL7WaN/vIhF1GGx1IZJrNB566CE8+eSTCAsLQ2xsLF599VVUVVXh/vvvx6FDh5xazyOPPIKUlBQkJiaid+/eWLRoES5dutSq6c2TkpKQk5ODZcuWYcSIEVi1ahWWL1/u8vpag+GDiNyCVxwlkr388sswmUy46667UF5ejuHDh+O3335Dp06dnF7HU089hby8PNx9991QKpV44IEHMG3atFZdzO3GG2/E3/72N8ybNw86nQ4zZ87Es88+i+eff97ldbpKEi0ZP+QBWq0WISEhKCsr80onGCJqmfinVwEAPrp7OKb0jfByaehyUVNTg8zMTCQkJMDX19fbxfE6k8mEPn364Pe//z3+9a9/ea0cjt6Xlhy/WfNBRETUzmRnZ2Pt2rW4+uqrodPp8L///Q+ZmZn4wx/+4O2iuQUnGSMit2CrC5H7KBQKLF26FCNGjMC4ceOQnp6O9evXo0+fPt4umluw5oOIiKidiYmJwY4dO7xdjDbDmg8iIiLyKIYPInILNrsQkbMYPojILSTO9EFETmL4ICIiIo9i+CAi92DFBxE5ieGDiNyC2YOInMXwQUQuO19a7e0iELU7Qgg88MADCAsLgyRJOHjwoLeL1O5wng8icsnXe3Ow8Md0bxeDqN1Zs2YNli5dis2bN6NHjx4IDw/3dpHaHYYPInLJf387afc3LyxHJDtz5gyioqIwduzYRh+vra2FWq32cKnaFza7EJFbMHoQAffccw8eeeQR5OTkQJIkxMfHY+LEiZg3bx7mz5+P8PBwTJs2DQDw+uuvY8CAAQgICEBMTAwefvhhVFRUWNa1dOlShIaGYuXKlUhOToa/vz9uv/12VFVV4dNPP0V8fDw6deqERx99FEaj0fJ/Op0OTzzxBLp164aAgACMGjUKmzdvtjyenZ2NG264AZ06dUJAQAD69euH1atXe2wbAaz5ICKijkIIwKj3znMrfZyaSe+tt95Cz5498cEHHyA1NRVKpRK/+93v8Omnn+Khhx6ymzJdoVDg7bffRkJCAs6ePYuHH34YCxYswDvvvGNZpqqqCm+//TaWLVuG8vJy3HrrrbjlllsQGhqK1atX4+zZs7jtttswbtw4zJo1CwAwb948HDt2DMuWLUN0dDSWL1+O6dOnIz09HUlJSZg7dy5qa2uxdetWBAQE4NixYwgMDHT/NnOA4YOI3IKtLtTmjHpg22veee4JjwOq5ptKQkJCEBQUBKVSicjISMv9SUlJePXVV+2WnT9/vuX3+Ph4/Pvf/8aDDz5oFz70ej3effdd9OzZEwBw++234/PPP0d+fj4CAwPRt29fTJo0CZs2bcKsWbOQk5ODJUuWICcnB9HR0QCAJ554AmvWrMGSJUvwn//8Bzk5ObjtttswYMAAAECPHj1c3iyuYvggIpcIIez+5gynRE0bNmxYg/vWr1+PlJQUnDhxAlqtFgaDATU1NaiqqoK/vz8AwN/f3xI8ACAiIgLx8fF2NRUREREoKCgAAKSnp8NoNKJXr152z6XT6dC5c2cAwKOPPoqHHnoIa9euxZQpU3Dbbbdh4MCBbn/NjjB8EBFRx6D0kWsgvPXcrRAQEGD3d1ZWFq6//no89NBDeOmllxAWFobt27fj/vvvR21trSV8+PjYP68kSY3eZzKZAAAVFRVQKpVIS0uDUqm0W84cWP70pz9h2rRpWLVqFdauXYuUlBS89tpreOSRR1r1GluC4YOIiDoGSXKq6aMjSEtLg8lkwmuvvQaFQh778e2337Z6vUOGDIHRaERBQQEmTJjQ5HIxMTF48MEH8eCDD2LhwoX48MMPGT6IqONhnw8i5yUmJkKv12PRokW44YYbsGPHDrz33nutXm+vXr0we/Zs3H333XjttdcwZMgQFBYWYsOGDRg4cCBmzpyJ+fPnY8aMGejVqxcuXbqETZs2oU+fPm54Vc7jUFsicgtmDyLnDRo0CK+//jpeeeUV9O/fH19++SVSUlLcsu4lS5bg7rvvxuOPP47k5GTcfPPNSE1NRWxsLADAaDRi7ty56NOnD6ZPn45evXrZdXL1BEnU7zXmZVqtFiEhISgrK0NwcLC3i0NETRj84lqUVlmHPX71p1EYm8iZHMk9ampqkJmZiYSEBPj6+nq7OFTH0fvSkuM3az6IyD1Y9UFETmL4ICIiIo9i+CAiIiKPYvggIrfgJGNE5CyGDyJyCw61JSJnMXwQkUvqj5Nj9qC20M4GZF7x3PV+MHwQEVG7Y55CvKqqysslIVu1tbUA0GDq9pbiDKdE5BZGE89QyX2USiVCQ0MtF0zz9/eHxLY9rzKZTCgsLIS/vz9UqtbFhxb9d0pKCn788UecOHECfn5+GDt2LF555RUkJydblqmpqcHjjz+OZcuWQafTYdq0aXjnnXcQERHRqoISUfv28fZMTjJGbmW+JL05gJD3KRQKxMbGtjoItih8bNmyBXPnzsWIESNgMBjw97//HVOnTsWxY8csV+z729/+hlWrVuG7775DSEgI5s2bh1tvvRU7duxoVUGJqH07mFvq7SLQZUaSJERFRaFr167Q6/XN/wO1ObVabbkQXmu0KHysWbPG7u+lS5eia9euSEtLw1VXXYWysjJ8/PHH+Oqrr3DNNdcAkOeY79OnD3bv3o3Ro0e3usBE1D6xRpzailKpbHUfA2pfWhVfysrKAABhYWEA5EsE6/V6TJkyxbJM7969ERsbi127djW6Dp1OB61Wa3cjoo6I6YOInONy+DCZTJg/fz7GjRuH/v37AwDy8vKgVqsRGhpqt2xERATy8vIaXU9KSgpCQkIst5iYGFeLRERexJoPInKWy+Fj7ty5OHLkCJYtW9aqAixcuBBlZWWWW25ubqvWR0SeUX+8P7MHETnLpbEy8+bNw8qVK7F161Z0797dcn9kZCRqa2tRWlpqV/uRn59v6bVcn0ajgUajcaUYRNSOsOaDiJzVopoPIQTmzZuH5cuXY+PGjUhISLB7fNiwYfDx8cGGDRss9508eRI5OTkYM2aMe0pMREREHVqLaj7mzp2Lr776Cj/99BOCgoIs/ThCQkLg5+eHkJAQ3H///XjssccQFhaG4OBgPPLIIxgzZgxHuhARERGAFoaPd999FwAwceJEu/uXLFmCe+65BwDwxhtvQKFQ4LbbbrObZIyILm+8qi0ROatF4cOZC8r4+vpi8eLFWLx4scuFIqKOh30+iMhZvLAcEREReRTDBxG5BSs+iMhZDB9E5BJew5aIXMXwQURuwTBCRM5i+CAiIiKPYvggIiIij2L4ICK3cGIkPhERAIYPIiIi8jCGDyJyC04yRkTOYvggIrdgswsROYvhg4hcw7BBRC5i+CAiIiKPYvggIiIij2L4ICK3EGyHISInMXwQERGRRzF8EJFb5Gt13i4CEXUQDB9ERETkUQwfRERE5FEMH0TkEnYvJSJXMXwQERGRRzF8EBERkUcxfBAREZFHMXwQERGRRzF8EBERkUcxfBAREZFHMXwQERGRRzF8EJFLhOBMH0TkGoYPIiIi8iiGDyIiIvIohg8icomRzS5E5CKGDyJyiYnZg4hcxPBBRK5h+CAiFzF8EJFLBNMHEbmI4YOIXMIuH0TkKoYPInIJswcRuYrhg4hcYmLVBxG5iOGDiFzC7EFErmL4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2L4ICIiIo9i+CAiIiKPYvggIiIij2px+Ni6dStuuOEGREdHQ5IkrFixwu7xe+65B5Ik2d2mT5/urvISERFRB9fi8FFZWYlBgwZh8eLFTS4zffp0XLx40XL7+uuvW1VIIiIiunyoWvoPM2bMwIwZMxwuo9FoEBkZ6XKhiIiI6PLVJn0+Nm/ejK5duyI5ORkPPfQQiouLm1xWp9NBq9Xa3YiIiOjy5fbwMX36dHz22WfYsGEDXnnlFWzZsgUzZsyA0WhsdPmUlBSEhIRYbjExMe4uEhEREbUjLW52ac4dd9xh+X3AgAEYOHAgevbsic2bN2Py5MkNll+4cCEee+wxy99arZYBhKgDGBkfhr1ZJd4uBhF1QG0+1LZHjx4IDw9HRkZGo49rNBoEBwfb3Yio/Qv0dfu5CxFdIdo8fJw7dw7FxcWIiopq66ciIg8SQni7CETUQbX41KWiosKuFiMzMxMHDx5EWFgYwsLC8MILL+C2225DZGQkzpw5gwULFiAxMRHTpk1za8GJiIioY2px+Ni3bx8mTZpk+dvcX2POnDl49913cfjwYXz66acoLS1FdHQ0pk6din/961/QaDTuKzUReR3rPYjIVS0OHxMnTnRY3frbb7+1qkBE1DGw1YWIXMVruxAREZFHMXwQkUtY8UFErmL4ICKXcLQLEbmK4YOIiIg8iuGDiIiIPIrhg4hcwlYXInIVwwcRERF5FMMHEblEcLwLEbmI4YOIiIg8iuGDiFzCPh9E5CqGDyJyCcMHEbmK4YOIiIg8iuGDiFzCDqdE5CqGDyJyCZtdiMhVDB9ERETkUQwfROQSVnwQkasYPojIaalZJSjQ1ni7GETUwam8XQAi6hj2Zpbg9+/vAgBkvTyTVR9E5DLWfBCRU3aeKbL7m6NdiMhVDB9ERETkUQwfROQSDrUlIlcxfBCRS5g9iMhVDB9E5BQJkreLQESXCYYPInKJqNfu4uvD3QkROYd7CyJyC/YBISJnMXwQkUvMWWPmwCivloOIOh6GDyJyibmmY0RcJ/lvL5aFiDoWhg8iahVJYkdUImoZhg8icom5psOSPVj1QUROYvggItfUtbuYaz443ToROYvhg4hahY0uRNRSDB9E5JT6XTvqN7twqC0ROYvhg4hahTOfElFLMXwQkUvMNR2Wmg/vFYWIOhiGDyJyibmDKes9iKilGD6IqFUU5tEu7PRBRE5i+CAip1TWGuz+tmQNNrsQUQsxfBCRU97fctbub0ufDy+UhYg6NoYPImoVyyRjrPogIicxfBCRS+q1uhAROY3hg4haRcG9CBG1EHcbROQS8+gWTjJGRC3F8EFErWI77TqH2xKRMxg+iKhVJJv0wexBRM5g+CAil3CoLRG5iuGDiFximV7dttnFS2Uhoo6F4YOIWoUdTomopRg+iMgl9a9qK9/Hug8iah7DBxG1ioLNLkTUQgwfROQSa9BgswsRtQzDBxG5xDLJmF2zi5cKQ0QdCsMHEbUK6z2IqKUYPojIKVK9lGG5sJztJGPs9UFETmD4ICKn3DQo2v4OTjJGRC5i+CAip0j1qz4s91t/Z58PInIGwwcROaX+HB7mvxRNhBIioqYwfBBR6zB7EFELMXwQkUssQ23t7vNOWYioY2H4ICKn1M8VjY12ISJyBsMHEbWKXc0Hh9oSkRMYPojIJY1dWI6IyBkMH0TkEnMth+1oF/b5ICJnMHwQkVNsg8Xj3x6y/G7f7EJE1DyGDyJyim2w+GH/OWsYYbMLEbVQi8PH1q1bccMNNyA6OhqSJGHFihV2jwsh8M9//hNRUVHw8/PDlClTcPr0aXeVl4jaGftmF9Z9EFHzWhw+KisrMWjQICxevLjRx1999VW8/fbbeO+997Bnzx4EBARg2rRpqKmpaXVhiaj9ELy2CxG5SNXSf5gxYwZmzJjR6GNCCLz55pt45plncNNNNwEAPvvsM0RERGDFihW44447WldaImp37K9qS0TUPLf2+cjMzEReXh6mTJliuS8kJASjRo3Crl27Gv0fnU4HrVZrdyOi9qepJhVeWI6IWsqt4SMvLw8AEBERYXd/RESE5bH6UlJSEBISYrnFxMS4s0hE1EYam16diMgZXh/tsnDhQpSVlVluubm53i4SETmh0enVWfNBRE5wa/iIjIwEAOTn59vdn5+fb3msPo1Gg+DgYLsbEbU/TeUKznBKRC3l1vCRkJCAyMhIbNiwwXKfVqvFnj17MGbMGHc+FRF5WWOjXXhtFyJyRotHu1RUVCAjI8Pyd2ZmJg4ePIiwsDDExsZi/vz5+Pe//42kpCQkJCTg2WefRXR0NG6++WZ3lpuIPK2JXMGr2hJRS7U4fOzbtw+TJk2y/P3YY48BAObMmYOlS5diwYIFqKysxAMPPIDS0lKMHz8ea9asga+vr/tKTUReZ67lsKv5YMUHETmhxeFj4sSJDmcxlCQJL774Il588cVWFYyI2jfzbkDBeT6IqIW8PtqFiDo2troQUUsxfBCRc+qFjMZqOXhtFyJyBsMHETmlfgVHYblOvp81H0TUQgwfRNQqlyr1lt9Z70FEzmD4ICKnNDWk9mJZteV3troQkTMYPojIKYommldqDCbPFoSIOjyGDyJySlNdO67p3dXyO2c4JSJnMHwQkVOaanYJVFunCzKxEoSInMDwQUROaXJQi80DPx4454miEFEHx/BBRE5x5qq2eWU1HikLEXVsDB9E5JSmJhDjtV2IqKUYPojIKSYnrmrLDqdE5AyGDyJySlOxoqkhuERETWH4ICKnNN3sYlPzwYoPInICwwcROcWZDqdERM5g+CAi5zhRq8GKDyJyBsMHETmlqc6krPkgopZi+CAipzTVn0Mhsc8HEbUMwwcROcXkxDwfbHghImcwfBCRU5qq1Wjqmi9ERE1h+CAipzQ52sV2GVZ8EJETGD6IyClN13w0vwwRkS2GDyJyUlOjXTi9OhG1DMMHETnFmVoN1nwQkTMYPojIKcwVROQuDB9E5JSmhtraYkAhImcwfBCRU9ikQkTuwvBBRE5xJnswoBCRMxg+iMgpgsmCiNyE4YOI3IZDbYnIGQwfROQUpyo+mD2IyAkMH0TkFNZqEJG7MHwQkVOcqfkID9K0fUGIqMNj+CAipzgzz8eAbiEeKAkRdXQMH0TkFEfZY3SPMHkZD5WFiDo2hg8icoqjYCFBvrgch+MSkTMYPojIOQ5yhc2FbYmImsXwQUROcTTaxRw+WPFBRM5g+CAipzgKFpZmF/b6ICInMHwQkVMc9vlgzQcRtQDDBxE5xZmhtgwfROQMhg8icorDZhfJ3OxCRNQ8hg8icorjobZ1y7Dqg4icwPBBRM5xECwsfT48VBQi6tgYPojIKc7UfDB9EJEzGD6IqFkVOgMOnytr8nGFxKG2ROQ8hg8iatbnu7IdPs6htkTUEgwfRNSsnJLKZpbgaBcich7DBxG1Gms+iKglGD6IyAmOrxxXVWsAAPx86LwnCkNEHRzDBxE1q7mr1u7IKAYA7D5b4oHSEFFHx/BBRM1qJnsQEbUIwwcRERF5FMMHETXLxI6kRORGDB9E1Cxes4WI3Inhg4iaZbIJH6seHY/OAWovloaIOjqGDyJqlm2zS7/oEEjNDX8hInKA4YOImmWq1+zy39sHAgAWTE/2RnGIqINTebsARNT+mer1OJ3UuytO/Gs6fH2UAIDkiCCczC/3RtGIqANizQcRNaux0S7m4AEAT0yTa0C6d/LzVJGIqANj+CCiZtVvdqnP10felQRqWJlKRM1j+CCiZjU30lbiHKhE1AIMH0TUrOZqPnhVWyJqCYYPImpWs+Gj7qcA0wcRNc/t4eP555+HJEl2t969e7v7aYjIgwKa68vBmg8iaoE26R3Wr18/rF+/3vokKnZCI+rIhseF4cf955t83Nzng9mDiJzRJqlApVIhMjKyLVZNRF5gbk6Z1i+i0cetfT4YP4ioeW3S5+P06dOIjo5Gjx49MHv2bOTk5LTF0xCRh5jn+VA0Ma06x7oQUUu4veZj1KhRWLp0KZKTk3Hx4kW88MILmDBhAo4cOYKgoKAGy+t0Ouh0OsvfWq3W3UUiolYy12g0dUkXY106OVNY6akiEVEH5vbwMWPGDMvvAwcOxKhRoxAXF4dvv/0W999/f4PlU1JS8MILL7i7GETkRl/ulmsvm5rPY3/OJU8Wh4g6uDYfahsaGopevXohIyOj0ccXLlyIsrIyyy03N7eti0RELWS+bsuq9IuNPs6uHkTUEm0ePioqKnDmzBlERUU1+rhGo0FwcLDdjYguDwXlNXhr/Wnka2u8XRQiakfcHj6eeOIJbNmyBVlZWdi5cyduueUWKJVK3Hnnne5+KiJq5x76Yj/eWH8Kcz7Z6+2iEFE74vY+H+fOncOdd96J4uJidOnSBePHj8fu3bvRpUsXdz8VEbUTth1RTSYBhUK+Iy1b7gtyIq/cG8UionbK7eFj2bJl7l4lEXUgJiGg4OBbInKA13YhIqcNi+vU6P1qlXVXYmTvUyJqBsMHETntXzf1b/T+W4d2t/zO7EFEzWH4IKJmmWs2Qvx9Gn08QG1twTVPOEZE1BSGDyJqljlQKJuaXt22wymrPoioGQwfRNQsc/hQNLHHUCqs6WNf9iXO60FEDvFa90TkkMmmGUXVRPqwveDcvUtSAQBZL89s24IRUYfFmg8icshgEz6aanZRcGQtEbUAwwcROWTbh0OpbKrPh9Tgire1BlNbFouIOjCGDyJyyOhEzUdjjz327cG2KhIRdXAMH0TkkG2zS1MdTgH7fh8AsPJw41fAJSJi+CAih5zpcAo4DiZERLa4uyAih2ynS3fUsbR+zQcRUVMYPojIIcsEYwoJUgv6fBARNYXhg4gcam52UzNmDyJyFsMHETnU3OymZkpO9kFETmL4ICKHzOHDUWdTgH0+iMh5DB9E5JC5w2lzFRsKBwswlxCRLYYPInLIUvOhdLy7YIdTovarpLIWizdl4EJptbeLAoDhg4iaYenz0Uy4cFQzYjNal4i84G/fHMR/fzuJP3y429tFAcDwQUTNsA61dbyco2YXABBMIERes+VUIQAgq7jKyyWRMXwQkUPu6nBqYvYgojoMH0TkkKXDaSuH2ppY80FEdRg+iMghk5M1H8F+Pg4fL66oxZxP9uJEntZtZSOijonhgzq8gvIaPLMiHccu8KDWFgwm54ba+vsoHT4+OmUDtpwqxPQ3t7mraETUQTF8UIeXsvoEvtidg+ve5kGtLZhsru3iiI+KuxOi9iqus7+3i2CHewvq8E7klXu7CJe1WqNJ/mkwOVxOreQ8H0TtlU9zw9U8rH2VhsgF2mq95XeD0fEBklrus13ZAJofotfedm5EZNXeTg24t6AO77zNjH39nvsNvx3N82JpLj8bTxQ4tVxzM6ASUfvwyfZMbxeB4YMuLzqDCX/5PM3bxbgi+bDZhajdqjEYLb+/uPKYF0siY/ggIoc6B6idWk7Nmg8i9zPUuuX6BNW1xuYX8iDuLYjIoduHdwcAXN2ri8PlWtLnw8jpTomal/49sO014OSvrV5Vezs5aF+lIaJ2x2CUg0LvqCCHy7UkfNTo29dZGFG7o6sAik7Lv1881OrVRYX6tXod7sTwQR3OmcIKPPh5Go6cL/N2UZpn6vijb8xDbDUqx5OI+aic7/Oha2bYLtEVb+cit66uUmdw6/pai+GjI7tCr5Vx/9JUrDmah9vf2+ntojimrwF2LwaO/+LtkrSKrq6jmqaZScRaMsMsr/NC5FntrbaR4aOjqigAtr8O5Oz2dkk8zjzfRI3e1L4v015wTK46zTvi7ZK0irXmw/HuIr0FNVEm9vkgalr1JfevkuGD3OLEKrkX9JlN3i6JV+Vpa7xdBAcujwOsuYlE3Uz4eGJqstPrbNfZoygDqCrxdinoSrb7vYb3tbIJt6reaBdvN8MwfHRU5ZxIC5BrPzqE9lxD0wxzzUdzveVD/R1f1daWsb1uj5JMIP07YM/73i4JkT1D60606je7vPiLd+f6YPjoiC6DToyuqt/MYk7vXYM03iiO88pyvV0Cl5mv7aLxcby7sB3t8uJN/Sy/3zgousGyH249i9Ssdli70IHfJ7pMaC82fr9wvdlEbzRBb7Tfd36zz7ufdYaPjubUb8DW/1r+NAmBkspaLxbIs+p/gcxViYFqBZKlHARC7g9SUlmLsio9Ptp2FgXeapqx3YnUVnqnDC1h0AHFZwCT/U5OpzfXfDge7WLbLLM/+xK+/vNofP/gGLw5azA+uGuY3bJLd2bhd+/tclPBm2HQAbWOr0tjYWqDdnGjvvlliMz0TXxWW1Fb2N46mwIMH22nNBfYlOL+Phnn9wPCWvPxaVoRhv5rHbKK2vDgdnodcPDrdlHjYjtFMABU1co1H4OVZ/H91YW4S7keAHDf0lQ89cNh/HvVcdz9yV6PlxMAkJdu/d3YAQJi+nfA4W+BHGsoEELgTGEFgOY7nNp2cenfLQRjenbG8PgwKBQSpvaLRNbLMxGkUdn9i0cmG9u5CNjxFqC3XgMINVqgsqjhDt3d4eP8fmDr/wEFx53/n9IcIHdvh26q85jz+5uuKWhMaS6Qsb59B0If98/HUVTR/vY/DB9t5cAX8s82Ho1yrlQ+q//l0IU2fJJ9wKUsQHuu7Z7DSbYJXqNSoFIn/x0v5cNHoYBGkr9kB3NLsfaY3C/mRF655wtan7KdNwuZjPKOGQAyt1nuTli4GsV1NWvNdTgts7m68L3jEhpdRl8vwHrkjMx8oDH3k7qUDexaDOz9EMg7bL9sK6q2G3XqN/nn0RVNL1M/ZBz4EsjYAOz7xL1lcYWuQr61RxcOyNs3bSlQcta5k6MDXwC5qfKsoe1V/WCkMAd218Oox2oZW4Dhoy3U35mUZAJG9/csNpoEVJC/cFJbXdPL9rVI3v+46Gw6mOoMJry48igA4FRhNVTt+cJmJpsdStZ24NA3bfKZcJmu4RwdpVX2Z0ul1Y7PFif36Yr4zv6YMyYOSkXj70VTzWZtxvaAVHhS/plrUxN2YnW95T1YPW2uHd32f3YHeAGBX49cxJo9hx38sweYjHKt0c5F7euzanZyjfX3Q98AW16xvsfNaa+1SiYjcPAr69/dbJorW1Hmogpdg/uu6d3V5fW5g/ePJpejs/WaWg4tAw5+4fanKazQQQV5Z3mpqo2qEW2/zApV08t5SP0z5Xyt/KUyQNnggGdXo19ZLE9R7MmzuKAI6++Gui9/dalcs1ByFsjcYr98eT5waq1980A9eWU1ePK7Q+6f3bWRHVv9YNA/OtjhKoJ8fbD5yUl44ab+TT5HkshGCKzvgT7vhNzPpD59tTw5W0krL/1t00SJCwfknyYH3xWTzUH2Ulbrnru5uRrMtaNGA3Bhv/z7+TRU1xpxMr8cJ/K0DQJgm8rZDRz7yRrYDDYHLEPTn8km1WjlZucaD85EfOTHph9zNUDpKuQmOk/Qnrf/u9dUwM3nVI9d2wsjE8Lwzuyh7l1xCzF8tIWcPQ3va0m7pJOOX9TCRzJABQM+3t7KnXRjasqAo8utf7eL8NF41aoAIDn6lu79QD7L3bmo9Qc0Z9luL/NBrdpmhEduvb4o+z8DzqcBx1c2ucopr2/Bd2nncP2i7e4rp8kEpH7c4O7yGvuddY8uga17nqPLMV25F/eq5DPWKYo0qE8sl/uZGOqdmWXvlCdnO7Ssdc9Zkd/wvkvZ1t/Detg/ZtvscvDr1j23TfNVs4SQb6fW2g1D9uRQ8poT65GRvhf6s3Xltt0WJhcO3Ed+kAPNkR/lz1htJRb+eBjzlx3wzuSArg5V3blIbqKrLpX/zt4l1064qd9Ihc6Aa1/fgud+OtLMPtY92+zRyUn49i9j4OvjuAN5W2P46KBqDEYcOlcKAAiB486mQgj86dNUvLSqheO6q4pdLJ2bFJ2Wd142OypzB9P6FDZfzGsV+xyv98wGAEBxhQ4v/3oCZwvbqDakzOYsxrzzbmrnUqO1LlOc0eQqK5qaGMiol8/Uc1OtO0lnVeTbH1wC5epY8+fLaSaj3MlW10Qfm3pV4v0VmdbaFXONlPm9dtckX7ZT2yuUDWt46nfu82Czi4DAumP52J5RhJIqveXgaLBpmqrU1R3g3HWwNhnlviTHfrK7+/SFYry39QxWpl9A6uaf5c+Q7WfC4EINjLmPTXkecPAL6Le+ibV7j2DFwQs4XyrXpBy7oHW9v1pTbc1NbCtjrQu1N7bMr+fsZjnA5rinH8XqwxdxuqACn+7KBhQ2c+VozBdybMfNya3A8OFJDjpEXaqsxej/bMAra04AAIyXcvDLosew4ZfGm2ve22Ktqg6RHISPGi327t2JDcfz8OG2TEt1/Ydbz2LAc78ht8TBEMRD39j/7WAHKITA57uz8dG2szAYXThb09fIO8S8I9bnSf9errbd/LL8hUfDs3Gz38daD3j9FFmOn0upBgA89cNhvLflDK55bUuTocZl9a9Cad6R254tRVjnwoC2+R1wQbn9mduJPJt+Gkd+kM/UM9YDqR81+v9F2irc8ua6hrVkFw/WK6t8AF7wvbXPwWf3jWy2fMjdI9fa7Pxfw8eaqPL+8cA5ZBRWwHRun1zzs+9jmAwGx00jLWF7thsQ3sg8Hjaf6UtZ1quIukP+UYcPX6rS4+jFMuzLLsHcr/Zj17Z1AOxnnqys0cmzGe95r2HtkCu0F+Tmvfxjlu9ZYbkOt7+93rJI+vkyoLLQPoi1coIrlJ1HrdFk+W7uOlOM+KdX4bq3t+GRrw9g5xkXmjX8O0NA4M0Np/DmhlPQm/c79Ya1CyHw4i/HMPP1tSg3hzm/UBhNovlmLdt9tiTZf46zdrS8zPWU1+ixaJP1M6cz6FFYocP3abk42Hm69XnlF9JwBdm75BpdIVBUocPsj3bj50bCnLlJeubAqFaX2V0YPmrK7A94TRFCHgKnr5arhBtrp25OaVaTDw351zrkaWvw7uYzOJ59Acs/fhln8i8hfc8GrDvWSNWxjYHSWfjAgJpavXwQt5X6IXQHf8DUutqAC6XVMOj1eGn1cZTrDJjw6ibr62tWI8tkbkXu4S24+Z2deHbFEfx71XHMWeLk0FbzWdjR5fKOOv+YfKa6+eWGX+xs+SzDsvOoZ2KvLgCAR69JavCYhHphKDgaMJmQfvwEAAEfGPD01w1HJbWqarh+R0Zz+79t+Cix+QzV37k3cgZue+E2JYxIeft/ct8RwL4pqYnq4C9enYuri77CWytT7R+o/9xVxajVmg8GAoDAVXXbF/oaYN8S+TtQX2MH24ITct+GjHV2dyts3pOVhy8g89BWoOw8Lp7PwahnlmHBd/tR6Y5AGGnT/6Q8X+7sa0sI63VmmmlmqdAZsOrwRXy5JxuF5Y0HASEEckuqIBp7D8y1ORWFQGWx3fwzoxTHcXyn3Nz2/X7rqLJVB3LwxfJfUFCQ17Lhuk2xrXnLl685lPLrcQTCWitQrTfKNXG2fZJKbZqqXFBcqcOH285iqOI0xiiO4snv7TvTLt6UgS92ZyPT2SkDTEagsgjbM4qw0yiH+G2n6z6zNs1Fh8+Vot9za7B55w700aXjcK588mVSB6Ln31dj8IvrsK+Jye5WHr6ArftthstLCvvRUZ3iWt308u+Vx5FbYt32lypr8eWebJy4BPz+82aCsBDySdnFQ4D2Al5bexI7Morx6NcH7BYzGK3XwHru+r6tKq87XfHhw7DzHRxa9zkK961w/EEqOCYPgdv+JnB2i9xOXZSBNennMe+r/dbqcNuDTsIE+3Uc+kauvjSZHB7sL5zaj3Ol1g/knz+zNiNkV6nx44FzuCSCsM8kX0sjXpGHuaoV2PPT+3L7pK4cQgik/Hoc6dmFuFBWjT6KHHSCFshPx/YlC9FfOgtlXWdVCAEc+FxuXzeXy4kDr7GiGAe3rcIP3y7FkVxrE82OjGL86dN9SFnteGepzTsDoc2TD1C19arqM7eiRm+0PwCdWI3iRserC0h1ZwcKScLV5gNlnb5SNgwmEw6fK8WB3Ety08SWV3CnaiMmK/bjHuUa9Dj9sdxkcGI1YKjFppMFGPTCWvyaXtdXR3sBKD6DfVklePjLNEvv8fSsixj79KeY8eZW+7ASXO8Mo0Cu0bI7o9fXWJso6ncybWReENux+gOlsxiiOA3TwSb6RFzKBopOY8PxfOw6U4zCMutOPUk6ByEEjp27hLf/PR/HDtmHxbJqPV575RkAAncp1+HRMJs5J3L3yNXPZ+t1lgWArn1sVlLX5HR0uTyq48JBu0X9oINRWHc/F8vkA/E3+3KhhgE+MOLDbWcbf211zhZWYPvpIuSWVDV+oTqTESg4Yf++XMqGsAnR+7JLMOD537B7byNV6F3sr1XT/7nfMPer/Xh2+WFMf3Nro2X6fHc2Jry6CZ9uO9XwwZO/yrUXqR/h/Nq3sOao/SUSJDS82q9u7xIUVeqw4sD5RkckOa3snPyZqPueZBVX4suli3E84wz81UrEKeqd4JxeCxRaX0NJXhbWfrAQl1a9YFerV6M34pZ3diD+6VUY/8pGu+HWtj7fbQ0voxTHoYH953tHRjGeWXEE0/9vLXDkB1y6mIWbFu/AllOFjb+ecvl7mVlYiaMiHp8YpuPw+VKUVtfiqZT/Q/zTq7DijXk4+c0zSNCfxY3KnYhT5ENRVwNw0qbW8Pb3dqHa3PyXswdI/x5vrzuOeV8dwP4Vb9rPLWTbHKhQyceDDGutkbPKqvTIKqrE6iP2fQHPFsjlEpBQazDhdH45TKJes4vJKB9DNr9sc58B5y5Z9yG2NTr55TqYBOCjlBAe2H6G/Hu/B6E3nUvD/uwS7DxTBM2ZlXioUzCQOLnxZW1ChYAABCClf4cv1wHbTAMRHqjB89f3tq9ujxzYsNNZcQaQvUNO0cPuBRQN81/q5l/gW+/zNvuj3ag1mDAgNxPBUhV+M05CuFSGScldselkAQDgwKE0jJuUCFXBCaRLSXh/y1n4qaw7lTmqtTi2Uf59irIYg8UZfGG8FjXlxfA1HyyMekClbnxHJ0Td2ZcEdO2NqS/9gBuU8nNPVexDskKu0j5iSsD648Ow/jjw2NRe0KhsOjaVZAKnfsPii0n4ce8Z3BOcg7tGx1lqNqxPJfB1ag6qao24b1wC/HyUwMVD+HyftY1eggkjpZPwkezPkIfEdMIP44bh6Y9+Qo7oijCpHP/bZO1HkRAeYJncaoDCpsbA3NHTNwT3LikFAMz/cjem36lDbUEG1CoFXl+nxE5Tf6xOz0PWS1Ox4aO/4/cq4GBBLn7Y3wMXS6sRFaLG7eVNdDA26mEUArUGEzIKKtAray80yZORX1KCwvNl6BsdDIUkAbVVOJinw82L5RqgjJdmIN/mTDlYkpvLTuaXI+WTvfhjdR6GxXWCRqWEzmBE4Zr3oFYp8GjaEFRDg5mh2ehpU4xdRzJwbMWrMOkMWHusDGEBakQG+1rW6SfpMF/1AwDgnv5hckjyDW68xgOwjuIx02kBfVjjywLoI2VDKVlrP/x8FJYmQH9JB380X81/zWvWAHTLkG54Y9ZgrDp8EaGKaoxTHgXyjuDcpSp8v/8cVAoFhsaG4sh5Lar0BgyL7YQJSV3wxfbT+LNiG3b/DIye3Mv+CRTy5zarqBKb675jExSHMVA6i68rr8H769PxQM9SSFGD5G0D4J8/ybU/b605jDnThH0n6OAoQHsBQgh8l9Zwamu90QRtvYN3qCT3hanSG3H+4Hp069pXbj5qiq5CrrFIuBrQyB2EDfpafPf+S+gTGYTB1z8IAFhxUP6+f/zDLzhU6oeZyhN2q9mTWYxRCXKzhgQJG3bsxvnSauTm++B+/9VARH9AocSsD3bjUG4pAODcpWp8tjML1w2Mwjc7TuCvvgb4q5X4oJEQGSmVIFtENrj/PuUa7NoThD2ZK3HIcDvmfLIXWS/PxD+WpyOjoAKf3zsM6poiQJLfm8gQX1RqrfuEpTuzEAVgkJSBrGI5cF+tOGj3uvZkFuOC6AwgHioYEIpKTHtzK7YumASc2YjjeVqcTD8EHwwHAFTUGOAbqJQP+pogCCGgNwmozbXfualA4pSG74UQclNeYASg9rd7aNCLaxsuD+DJb/bjdypYwtm1b2zFF72LMT4uUF5fbRWQ+iHgG2r/jzVluLXscwxTVWKFcRxeWXMSKbcOAABcLKlAEKqQEKxEEyPgveKKCx+7zxZDo1JgSGcTcHotzhTIX26dwSSPPkicjPXH8rHlVCEKymvQuSgNL9462NLhSqmQ8OXuHBRV6jC2ZziGKYqggMDnO414fHxnBNk+mY8/MOExYNvr1vvOpVqHbZVfBEK64XS+/Vm/r9TwrHdHhlyzMKDuOC4goRSBGNQ91BI+AODXI3nwKzuEl85WWms2mhAuyVWQ36dm4Y/mDHQuFYgfB8POxTAYTPD1UeJiWTWOXtBiZFwugrPXoUZvxPBtQ3CXIs2yLnPwAOSOhKmmZJQhEAVaHTQqBbrWHdjMoxf0aV/AD0NRXKnDTwfPIzkyCMF+Plh1+CIm9e6KSp3BchZVUlmLbqHyDiavuBS3KPage3wi7h0aht27curGq9v33B5Wsgrfjc/DMztyoYX9F7/aAHyzt2E1clWtAf5qlU2bscBDqp/x1nfWZUYqgJ2m/lDCiPM//8ty/2DFGTzxnRw8JykOYOiQapwtrIQutCeGBxSh1C8GyQBKyivx2UZrdWpm0XKEKwdi7w/fy5u/tBph/j7o4/szbv5J7vgZinJMemYpcoV16O4QhbyO347mYY/hPIaqtDh2sWFg9Edf9JOy0LPC2iTSQ3ERad+m2I2qWJaag/l33oiy7PQG7e+hfmq5ZsY3GPDxtTbtFZ0GOifKZ9O737V/YmOtwzbxGf4nYNtysS3D+pxq6OFT99nderoQypgijEsMx/82nsb/rT2FZ2b2wemTRzFOcRS7TP1ggoQNB05iff9IzP1qP+arvseIiYlQKxWWJgyDyYS9NtXrm7JrMSFJrjU0MwkhBz8zYYK2Ro+J/7fZctcwhVwbMF6RjurNa5FRHIUg3/UITxwGlb4SNyiP4hfjaGigx5HzWnTvHAh1zHAEFB6Qz6pz9tidodqq0huxdFdWk9vsu7Rc/B5vI+qm5/G3ZWnQqDV4cmIUwtPr+vgM/L1cIwsAFw8DkxbCYDRhwnPfYZaiBvnaGkTt+hpf77IG8XNlesxUHmrwXLvOFiOzqBJ52hqMTwy3dBC1NHtueRWmcX+zBA+z19adwrLUXIzQrsOHijxM6xvZ6KXcb1FuxwbjUExW7scywyTkoTMAQCPVYk+mvK9TwAQTFBBC4Js9Z3G/8lec+GYF4joHIFMRg1hDLXZfsK472xRhqcEZobB2blZLTTffzVH+hiCpGmsvDYdOPwEayN+pJAWQpJBrmPO0NXKNgTDCVFuNt+u+v38YGYuuQb4wCgElgLJKHRa8lIL+vZMxYNRkJFbsQ3dt3bYNjgZiRqIyJAkv/NKwefIO5UZEStbPp22Zt58uksMHhNxUW1vV8HIBJ1Yhu0Teb92s3IE390YhPFCNu0bHoTx9Je5XbUU3pR+w+STQ90b7/mZeckWFjx/SzuHxugPEibsl+ALIt+nEd/RCGf77v1WovXAE1UKDcvihj3I3/vehtT/AtX0iUFQp7zXNO+khitMYojiNrxb9jOn9I9ElUAOlQkKNTsBHpYR/7CggZw8ullXj0NH9GNezM4J8fZD+yyIcMMThg5O+ALrgHuVvljMdW7OUm/C98SoYoYRUV2UsIKFUyGc2vboG4VSBHGDOFFYAhTugNyoxUtFElaUNHxjwxfpU/OFaAb3RhJU/fIUFhcV4RNWwvfHIJ4uR1DUQtQaB+00/QJKabpq5V7UGJqHA2sUrUK4zIG/wfDw3LQ62Ywui6r5smcWVyCy2NgusPGztMCWEhLyyGnQL9cO5S1X4g3IDQqRK3BKmQlh5Ia7rX695Q+kj195UFCDQV4XERjqffrO34X0ALGdoqSYJwACMUTQ+Omi+Sg4K36XZ3z9GcRRppl4YKJ3Fz4fkbXPoXBlOK3KQbdLBtyIdtftWIsamsutsUSW2LXkV3eqOeeZOpDvPbsU0RSz6KHIsy2439sc+0RtDJPv35iHVz42WEwACpGoMUNifeXaTimBs5K1bnK5AbnoZIm2Ov3eMiJV/qa0ADKH2fYrSvwcGzWo4XBWQ+zUUNt3sNqB7aJOdDBUQlj4h+3Mu4c2P9mD3wsn4v7WnAAgsWpWKe1VrEKUA1DCgm1SEcKkMH3yRizEK+f/Ka/QI0DS9ezto6omvU+2bRt7eeBo3DIxGz8hQuWOhMGH8S2sQjGpoEQA1rLUSPRRyzdYqc7Ncag5Gxoehp1SCntIFSBDYcCIfhUKHXLEfQxWn8eBVPXGqoBwbTxTYPW+RCLGcCADA54ZrMVxx0u69NztdUAHVyhcQfywHW40D8cXBwxid0Bll1XoMKf8Myw+ch95owqwRsehyKRuv7a7EBMnaB8A2eADAaMUx1AoV1JIBwb4+0NZYX2NeXU3b9gz79+nLPdkorNChX9ESALGW+3+n3IwaoUatVmUJdb8da/rq25OV8twmd6g2YZtxAM4L+xqdIFShDIH482dp6CdlwU/SYaPlREuusTTBOvz7jIhGHOTwESg5Htli/ogH1S03VbkP2en9kFSvX1snqRzrj5djX1YJ7ul+EXv3Wmv+Np4oQKBGhYzCCnTVb8OaLdswVJEN46ls3HssEH9V/YhxPcMxIj4MGRknsXL5ZrxpuA2AhH5SFsYr0rHL1BfnRbhd8KhPQJKDsRA4evwoMg6ex5S+EQhQWz/f9fsgPaj8GambE7FoYx/MV8lNhJYJ/o79LJ80qLzbBCMJrwy4bppWq0VISAjKysoQHOx4UqOWKK2qxeAX1wEQUMOAh1U/Nfs/jfnFOAZa4Y/Zqg0Ol6sVKrxjvBkAcOZf10K7NgWf1p3VdA5QIyrED0cuWHc4qaZku7QOAFcldcHW03KAyDRF4ifTOPxZuQoBUg2+NExGv+ReWDrkDGoKzuC9rS50gAVQLvyggQFqybrTWWscjqlKuZ/Jb8YRuFpxqNHamJb4wnAt/qiSOx3W38k5ss44HKUiAJ8PO23Xi/vhujNbO4PvbNBpcOnOLJRWy2U/aYqxq6Fpyk5jPxwSPR0e1J21y9gPY5Tymc5K42hcr2zddPvfG6/CV8PP4scDzk11v8k4GD2lC4hVyDvtiCBfu8ANACdMsZAg8JtpBHpIFyxlHB4XhvGJdQeE5Blyn4XWUChRrauFtlqPiGBfLNp4GkYhsNvUF6Ntgl6eCGuwM87q/RecP7oDIxQn7T6rzvrROAG3Kq3NQluNA3GVsvEZRLvE9sF13aqx+WQhjhcb4C/psNfUGyMVJxpd3pEzpmhcQhCG1/tum/3l6iSc6v0wbl68DdMU+1AsgpEqeuMv3bPgl2ft61UtNPCT5APMoO6hTg2D/t2wGLyUKtBL4dxnZf7kXvjH2T7oktmyfeOXhskYrzjSsN9IPWN6dEZ1rRF6ozwyw0+txKTkrliys/F5d342jkWl8MWdqo0O1/um4XYAgAoGzFOtcKrMeSIM64zD8H7vAw3ClbtFh/jhQpkccs6LcJw2dcdE5UG7ZX4/LAbf2jTF7TX1xk6T3Fn6L8pfEKzS49YxffHNdrmTsFqpwNDYTtid6Xg6hA8M1+MBldycHOavxt1j4uUHEq6SZ0/18XXDK7RqyfH7iulwmlNSBSWMuFu5tkHw+MQw3en1XBCdUYhO+NQwtcll9puS8IlxhuXvns+uw9Bt1tnkiitr7YIHIFcT3jKkG8b2lHf2Q/r1wdDYTugWItcVJCjyMF/1AwIk64Hjoat7AoPvhG/yZAyL7eSw3H8c3xt9o+QPw82Du+HRa5Jw46BoBEnVDXbm5uABAMdFHGrhg8aE+avl9QyMRp/IYMyc2vR2vM7moOts8LgoOuOoiMN5dMEb9h24GwYPAOgU3+Cue8bG49Yh3TGwWwj6j5ho91hMJ3/MnZhoadIxG6s8agkeykbmElDUu+/6AY0PX9MLFcoQYF3OZht8Z7i6wfJ5ouk+Ema3K7ciNswftwzp1ujjR0z211SZpDxoCR4AcMfIGLvHVxlHY41pJH41jYIJCmSIbjAKBeI7B2B0D5vytDZ4AED34fAb8UdE1DXBXT8oGp8ZpmK3qS/2mKydVR8ZHtDgX+NPvI9xyiONBo8+kY53cosMtyBHRCDN1AuzR8XhePzdDc6ybTu/7skqw6e7spBdUgn/ugO+OXhM7xeJq5LsOzQ7ooYBQWh8OPvNg7vB76pHMLB7CAQUWGMaiVTRG/Gd/fH0LWNxw8Bo3DEiFt3GzsKHxpmW/3N2/pXv0nKdDh5/Gt8DGPwH/Pu+mxDi1/j3XQip0X3lbNUG/HOcH/x9GtY06YQ8rP2mQd0wKqEzJiZ3xbV9I3DnyFjcPLgbQvx8cPfoOAyPC8O9Y+0/uzcqdzYbPADAz0eJpfeOgAEqS23w/Mm97MrTIzwQt/1tEX5/z2PwUSoQKZXgo74HMTyu+e9ca5mDByDXOtYPHlEhfogO9cMMm1rc2ycMtuzjVDBCbzRZggcA1BpNTQaPflHW74M5eADA9P42fWwytwKH602l4GFXTLNL74gg3KrchjDJvn/FeuNQaBHYoOqze6gfzpVWo1fXIGQWV2JITCj2ZpWgGvKO8xKCcO0116KbPhsqYcBH261V26mmZNTAvkpLNJPzuoX6IS4sAHFhARjZoysw9hFg+xv43fAY6I0mmIRAgVaH43lajErojBv7T0SPWLmdFMHRGJsYjrQc63TOfxgZi7AANXaeKUZlr1sRPqIPpmo+wNS+kUBdM1CP8EColQrUNjEvh3mHHCJVNjq33uzRcVBIEnqMvQU9QuOAwC6YM+wWfPfZ/zA2uADrj1vPhOpvd0CuASqurEWaqZelLd1sc+T9WHrfSHzzolxbclGEoSfkmo9Zw+0PoOh3i2ViLDsDbgfSv0dsmD9iw/xxzVUT8J1ah/O75HbxW4d0gyRJGJcYjrG7R+JR5XIobDpBBmpU+NP4Hnjx3GB8lwF8MuAoRnTW49C5Uks/G8PYvyHRbxWuSjJYaqmm9o1EoEaFRYabYTzY+IRn21PmIPuHDEvHvzlj4pGmHoHUzT9bznDNru0TgcPnyjAkNhRJEXKvou6d/PG54VrcpbIfwrrT1A9ZIgLXK3ejk78a1/Tuit1nihHqr8b44YMhVV3EvEmJeGNjFlYYx+E8umDD41djsqXzpoS9sX/C48NPOTX3iFNiR8kdVmPHyJN6jXsUUGqQoFRh181GpKw+gaFxQzA1/xOolBJUCgX+PL4HPtzesKPidf2j0K2TH4SQ58MID9JAAnA8r2F/FwDIMHWDEUp0DdLgpul3ocuw7nhPCCQsXG2pYVEpFPhZPxo3KuUqdWO976paqcCdI2OhUkoI0sgH5ohgX0un0VqhwkXR2XLm/9drkrDxZAHSz5fhiIjHvZ0Oo37xLnUdjdjrfg9ogiAB2PLkRCzZkYU/X9VDDsNCoOewS0BYD0z364bfCg8CDkZeXhJB6NTId8ysR3gA+kWH4Je6Js3JIweju7IUSoWEYN+6sBESA0mSMOdvryBv7Rv4dl8uDvgMhVpXgmQpF8e6XAdtnga/GMfgBqW1g/j4xHB08lfjvvHxlo7d1w+MxsrDF6CRahER5IuE8LpA2bW3deRXnbAADcYnyvvL+ZN74WxhBYxCIDLYFx/vcDwb8aj4MMz/03SU1F38cJVxNBYlyWcqd4xNxNKtJzGlTwT69h0AdA4EqnWYOzHRbh2zR8bhS5s+YCuM4zAh9BL+OawWizc3PuHf+4br8RebA7utxC6ByLCZuPC0qTuSGgmB1/aJQKcANboGya89OSII3UP9oFYp4NNDg1tnTMRflx2AzxHnhpzvMvbDc6OAviF69O8WgvXH86E3ykPJu4SFoMt1/7C/oJ67vt8uumKaXVCeh/Pr34FOb0RUqB++3ZeLS1W1WGy4GY9e2xezKr/A9owiTEruik5dooHkGTClfSaf5Y6ZCyFMuO/LdGzK0GLB9GTcNy7BOj3t0eWoOncEu84Wo1dEEBYUzUSInw98fRRYcdD6Bv9RuQ4TuwE/nwtAkFSFLlIpALla7nfDu8s94/1CgaF3y8O4bDuq1jdpof3fxWew8RyQeuAAnow9ZX92fvVTcqfAzC2AOhDoPly+EqT2IgQE0rIv4fjFchTX9WXpFuqH6wZEQTH8Hqg7dYdyy8vQG02oNZhw7eZY/F61GSG+PvKVS/06AaMftC+LyQTUVmDlqQqotryM4fFhCPX3wZHzWmw+ZT0LnzsxET4hkcDw+2A8fwBKvxC5M25EP2tPfaMJif/4FZ2gxRzVWtw7NgEhUT3lOVca2xabUqy/j3sU2PG2/LskAROfBgDUrn8JSoUk12r4dwZG3I+dZy8h8dgiaFRKLNmZiYhgX9w2tLt89lFvW4szm/H2qlScDb8Gb/1hmDx/xL5PkFlcCaUkITbM31Kuc8f3IPLCemQXV+GXwxdwda8uSLzxSQSFdpHn/tj9ns37tECeR6DuglkllTr4qVXwm/qM/euqk9FvHu58Zwv8dfn4y02TEeKnxm/H8nHHyBiMjVY17AQa2R/oPhLQV0LrH4OdGUUYmdAZYQHquvkpqtG9k588HLG2Sh5e7hsi9+2w1WOiPD/OhXrVUUofuS3Zdj6K3jOBqIENyt6o7W/aDTk2CYGDuaWWUAcAf52c1OQ0+mnZJSiqqEVJjcDfi67FL7PCsbM4AJMH9UDPelPDH8otRfqXTyNIo8J1A6KQkXgPYk9+gg+3ncVxUxz6KOSDUWwnf9w6tLv9E131JLD1v5Yhu6UjHsOerEt468vl+HJcAcICbE48Ji0E0r9Hbf5JrDmSByEEbhwcDWnS353bJjaycnOw4v3nLH/fOzYBKoWE/dpAfFI5DjWnN2O4dBI3/PFRrP7yTctytw3pjpjrFwAmA9KXv4oLpnBMve1+SJVFQHpdb2pNoHzCY2b+vCVPR22XgaiurkRIcDAqdQYcOH4aF9YtwoWyakzvF4netjVP8eOBopNynx//zjApNVCU1+0DowYBva+rmyvmY3l+mZDYhjP6jn7Q7nthHnFjEgJD1vZEGQKQ8QcdlEUnIQ24zTIk+uVfT2DrqUJ8cf9IhAVq5NEpW16VV9JrqtzMkJfe5OULLpRV48bdvVGEEPzrpn64a1AwsOd9XCirxn/31uKc6IKAiJ7o3ysRc6f0Qd9/rsZfVT9ifGI4fH2U6B0ZBCEAn7oai0qdAavTL+LJ4pmIRhHWTsyBWqWw1tpe9QSw/1N5W9XX/1bL68r49h92/eAm947AhhMNm7jmv/CB/B3U1wDb37B/sHMiMPB38mionYvk+yQFMPGpRreFq1py/L5ywkdNGbDrHevf/W6GKTQB2Voj4jv7Q7IdM93nBuvkREI0f8lYowHY+l/5d5sPTaNlyEtHTZcBKNGrEZ2/2X7+g05xwKA75ecTwjqOe8hseY4RQD5z6HmNfFBozLk0eYy+rfpBxVZlMXDoa6DnJGhz06EuybCGKvP/5ewBzmwExj6CzHIJ5b++iAHdQ+SDwLB7Gs5pYauRgya6jwBiRso7gujBgLphNXt9NXojNEoJkk4rBzTzes07FbPMrfIoi5iR8kHSvPNRqYEJj8u/73lfHq8fN0ZexuzEautQ6eAo+T2IHgxED2m2fADkWUbNcyOEJ8k1L5nbGk5sZft+6MrlEBJq7biHS1mAf7hcS1A33NPyHjS1nsYc+EKeY8Ns3KNObesGyvPkicUAIOlaObyaTEBVEeAXZv3sm4OG7fOOfkh+v5xRWSxf26ZTvHyBrfKL8oiTvLMwmQRC/H2swWPsPHkq6uO/yCMARj4gz1xbftE6Aqc5tp/NSQuBzK2oNQrougzAhV//D9tOF2LOmHjLwQSAPHpNpbH+b2is/P0E5INd+nfWCd/MnwFdBXB+HxDQRR6q3PMaoLPtwGfnCVE3p82ZTfKlBwB5fpV+N9stZzCaUHF8A0IL9wEDfgeEJzZcGSDvu6qK5ZpD222W+pF8UBwz1zKM2KYQ9nNMmJlfb2URcG4fEDdW/rxlbZc/Q71nWk4qLApOWK8fFdFX7rwcOcD+velxtTxPSde+9pPGOcO8nqF3AyHd7AOJrf63ApogmAKjUFCuQ2SIr/W1GmuxPbMcARolhtg0b+sMRlRV1aBTxWm53BX5QHA3+TN4+FvAPwwY9Rfrc9i+Zz2vkWsES3Plz0yPq4GMjdaZkCc+bX0/NqXAYDIhs6gScTGxUOusNdzakCRkHU1F3+hgqCb/o+HrNosZYR0ObH4ssr98rHOjlhy/r5hmlwYH6659oACQ0NiQeaVNm6czOzGlSt7JSlLTocBchvjx8AUQDQA+I6zho8/18pfO9nnrztQhSc0faMxs5w3pkmy/zsYEdJZ35ACCOyXIB9Cyc/LQMLPYUfINQIIGwOAR8jDLfjc7Dh6A/KUvOAaExMjXKgix6asQP8651wRYA5H5QNb/VvlLHl3vyoxx4+WDT2Ck/bYIsinnsHvkmpP6ozR6TZMPnkFR1oN+S/S71XoVVfP/B0bYLxNRb4ZBTZDNNRzqNNJ3BbGj5EC15z15Tg1Hcz2Y+YdbQ4CkcC14APavwa9u56tQWJu6hvxRrsI1f9YG/E6u/fANcT54APJnsVddX6ou1jk3gk+tlUOJWc9rrNts4O/s16FpOMNtk9T+9kMWE66CGoAaQPId/0GyySR/xiry5M9TYFf7fQNgHxoVSmDQHdadu6ruAKYJtIbcVg5xNE+mZ7dfqn9AB6BSKhDa/1pATHG8D1Oq7K++bDbkLnm4dP3Ppvm5fUMaXq3WPEdSQDiQbNM3pEfD/k0WXZLlIcKBEY2+DgDy9yFubNPrcCRxijznjHl/plDKr9lokE/2OifJrzO8FyBJUADW4AHIr1WlwfikhiNDNColNMEBQPBg+Q5zSOvcUz4eaOodfHtOkoNyRaH1BDU0Bhj/N/l5ArrIk/clXWv/no34E1SpHyGpaxAQ2BmwCR/B3ftjYNlp+TU1RRMIxIy2/p0wQT7uJDh4XzzgygkfLeHj3/wy9bVkJ2sWEC5/8apL5Ul76nMm+NQX0R8oygA697CvEXCG2t96IHF0cOt3i3y27t+5+XWGdLMPHO7SJbnxGiaFwj449bsFyN0tj9YwU2nks7QG/6sEQro3vN9ZkmSZ/MgiPEkuQ22F3KQQ48Q1Uhytf+AseS4WZ9Yj2YSv+gfNlj6vWWOhLDRGvpmpNHKNkbskXSufEQZFyGHTle9FYwK6ArVZTT+uUDT9+R00S67lih3d8DGzxg7c7uJnPQNHp4Sml3N1W6k0jodiJk2Vz9jjxgIxo+RlXXkuSWq8FqjbUOC8PBS3VVfTjhnR8L7BfwQu7LebiM3tmjoeDJ0jz3Jr+7zm7RYaCwy9q+H/BNp2cK7XUNElWa5tqn+SYxY9GOg13f69iR8PxI1z3/fIRVdm+Ggs6feeKV/AqWvv1h2AWsrF6tcmKX0ang22hCQ1HxYUSufOvNuDrr3lm7dIknuf3z9MrqFx6rltwoftwcoVAeFySA6KbnZRt5Mkua9AW6zXVWE9Gp/fBJBrOQqPywflthIxQJ7CXh3g/n2IM8ITgfHzG14V2F38bEah2H6O3SE4Cgie2fxybUHp07oTAVsJE+TPcGMnUoNmyc3aPSY2/jn3cvAArrTw0W2YXH3bY1LDx6IGOt8xjqgjsN3BNHXZAGcNv1++YJe7dpztQc/JQMXXrlfpNyVujHxrSwpF2wSylmir4AHITSJm7g4fHZ25T2Ckg+OVo3DcTlxZ4SPpWjkttuWXhqi9sA0fITFNL+cMhQKX3bRAgV3kER7t4CyQ6gnoUtfhWtXwOiZXunF/lUcK1e8I3MFcWeFDkhg86MoRbNN8xgNs47hd2idJkg+y5t/JysfvsjiOXVnhg+hKEt5LvohUYMOrhxK1ewwdDbWvmTFaheGD6HIlSe3i6pVE5Ca2Q7s7OIYPIiKi9mzUX+TJB6MGebskbtNmPcgWL16M+Ph4+Pr6YtSoUdi7d29bPRUREdHlyz9MnvvElckP26k2CR/ffPMNHnvsMTz33HPYv38/Bg0ahGnTpqGgoKD5fyYiIqLLWpuEj9dffx1//vOfce+996Jv375477334O/vj08++aQtno6IiIg6ELeHj9raWqSlpWHKlCnWJ1EoMGXKFOzatavB8jqdDlqt1u5GREREly+3h4+ioiIYjUZERNhPYR4REYG8vLwGy6ekpCAkJMRyi4lp5WRIRERE1K55fcrChQsXoqyszHLLzc1t/p+IiIiow3L7UNvw8HAolUrk5+fb3Z+fn4/IyIaTHWk0Gmg0Dq6eSERERJcVt9d8qNVqDBs2DBs2bLDcZzKZsGHDBowZ08YXWyIiIqJ2r00mGXvssccwZ84cDB8+HCNHjsSbb76JyspK3HvvvW3xdERERNSBtEn4mDVrFgoLC/HPf/4TeXl5GDx4MNasWdOgEyoRERFdeSQh2teVarRaLUJCQlBWVobg4I59yWAiIqIrRUuO314f7UJERERXFoYPIiIi8iiGDyIiIvKoNulw2hrmLiicZp2IiKjjMB+3nelK2u7CR3l5OQBwmnUiIqIOqLy8HCEhIQ6XaXejXUwmEy5cuICgoCBIkuTWdWu1WsTExCA3N5cjadoQt7NncDt7Brez53Bbe0ZbbWchBMrLyxEdHQ2FwnGvjnZX86FQKNC9e/c2fY7g4GB+sD2A29kzuJ09g9vZc7itPaMttnNzNR5m7HBKREREHsXwQURERB51RYUPjUaD5557jlfRbWPczp7B7ewZ3M6ew23tGe1hO7e7DqdERER0ebuiaj6IiIjI+xg+iIiIyKMYPoiIiMijGD6IiIjIo66Y8LF48WLEx8fD19cXo0aNwt69e71dpHZt69atuOGGGxAdHQ1JkrBixQq7x4UQ+Oc//4moqCj4+flhypQpOH36tN0yJSUlmD17NoKDgxEaGor7778fFRUVdsscPnwYEyZMgK+vL2JiYvDqq6+29UtrV1JSUjBixAgEBQWha9euuPnmm3Hy5Em7ZWpqajB37lx07twZgYGBuO2225Cfn2+3TE5ODmbOnAl/f3907doVTz75JAwGg90ymzdvxtChQ6HRaJCYmIilS5e29ctrN959910MHDjQMqnSmDFj8Ouvv1oe5zZuGy+//DIkScL8+fMt93Fbt97zzz8PSZLsbr1797Y83iG2sbgCLFu2TKjVavHJJ5+Io0ePij//+c8iNDRU5Ofne7to7dbq1avFP/7xD/Hjjz8KAGL58uV2j7/88ssiJCRErFixQhw6dEjceOONIiEhQVRXV1uWmT59uhg0aJDYvXu32LZtm0hMTBR33nmn5fGysjIREREhZs+eLY4cOSK+/vpr4efnJ95//31PvUyvmzZtmliyZIk4cuSIOHjwoLjuuutEbGysqKiosCzz4IMPipiYGLFhwwaxb98+MXr0aDF27FjL4waDQfTv319MmTJFHDhwQKxevVqEh4eLhQsXWpY5e/as8Pf3F4899pg4duyYWLRokVAqlWLNmjUefb3e8vPPP4tVq1aJU6dOiZMnT4q///3vwsfHRxw5ckQIwW3cFvbu3Svi4+PFwIEDxV//+lfL/dzWrffcc8+Jfv36iYsXL1puhYWFlsc7wja+IsLHyJEjxdy5cy1/G41GER0dLVJSUrxYqo6jfvgwmUwiMjJS/Pe//7XcV1paKjQajfj666+FEEIcO3ZMABCpqamWZX799VchSZI4f/68EEKId955R3Tq1EnodDrLMk899ZRITk5u41fUfhUUFAgAYsuWLUIIebv6+PiI7777zrLM8ePHBQCxa9cuIYQcFBUKhcjLy7Ms8+6774rg4GDLtl2wYIHo16+f3XPNmjVLTJs2ra1fUrvVqVMn8dFHH3Ebt4Hy8nKRlJQk1q1bJ66++mpL+OC2do/nnntODBo0qNHHOso2vuybXWpra5GWloYpU6ZY7lMoFJgyZQp27drlxZJ1XJmZmcjLy7PbpiEhIRg1apRlm+7atQuhoaEYPny4ZZkpU6ZAoVBgz549lmWuuuoqqNVqyzLTpk3DyZMncenSJQ+9mvalrKwMABAWFgYASEtLg16vt9vWvXv3RmxsrN22HjBgACIiIizLTJs2DVqtFkePHrUsY7sO8zJX4nfAaDRi2bJlqKysxJgxY7iN28DcuXMxc+bMBtuD29p9Tp8+jejoaPTo0QOzZ89GTk4OgI6zjS/78FFUVASj0Wi3kQEgIiICeXl5XipVx2bebo62aV5eHrp27Wr3uEqlQlhYmN0yja3D9jmuJCaTCfPnz8e4cePQv39/APJ2UKvVCA0NtVu2/rZubjs2tYxWq0V1dXVbvJx2Jz09HYGBgdBoNHjwwQexfPly9O3bl9vYzZYtW4b9+/cjJSWlwWPc1u4xatQoLF26FGvWrMG7776LzMxMTJgwAeXl5R1mG7e7q9oSXanmzp2LI0eOYPv27d4uymUpOTkZBw8eRFlZGb7//nvMmTMHW7Zs8XaxLiu5ubn461//inXr1sHX19fbxblszZgxw/L7wIEDMWrUKMTFxeHbb7+Fn5+fF0vmvMu+5iM8PBxKpbJBT9/8/HxERkZ6qVQdm3m7OdqmkZGRKCgosHvcYDCgpKTEbpnG1mH7HFeKefPmYeXKldi0aRO6d+9uuT8yMhK1tbUoLS21W77+tm5uOza1THBwcIfZWbWWWq1GYmIihg0bhpSUFAwaNAhvvfUWt7EbpaWloaCgAEOHDoVKpYJKpcKWLVvw9ttvQ6VSISIigtu6DYSGhqJXr17IyMjoMJ/nyz58qNVqDBs2DBs2bLDcZzKZsGHDBowZM8aLJeu4EhISEBkZabdNtVot9uzZY9mmY8aMQWlpKdLS0izLbNy4ESaTCaNGjbIss3XrVuj1essy69atQ3JyMjp16uShV+NdQgjMmzcPy5cvx8aNG5GQkGD3+LBhw+Dj42O3rU+ePImcnBy7bZ2enm4X9tatW4fg4GD07dvXsoztOszLXMnfAZPJBJ1Ox23sRpMnT0Z6ejoOHjxouQ0fPhyzZ8+2/M5t7X4VFRU4c+YMoqKiOs7n2S3dVtu5ZcuWCY1GI5YuXSqOHTsmHnjgAREaGmrX05fslZeXiwMHDogDBw4IAOL1118XBw4cENnZ2UIIeahtaGio+Omnn8Thw4fFTTfd1OhQ2yFDhog9e/aI7du3i6SkJLuhtqWlpSIiIkLcdddd4siRI2LZsmXC39//ihpq+9BDD4mQkBCxefNmu2FzVVVVlmUefPBBERsbKzZu3Cj27dsnxowZI8aMGWN53DxsburUqeLgwYNizZo1okuXLo0Om3vyySfF8ePHxeLFi6+ooYlPP/202LJli8jMzBSHDx8WTz/9tJAkSaxdu1YIwW3clmxHuwjBbe0Ojz/+uNi8ebPIzMwUO3bsEFOmTBHh4eGioKBACNExtvEVET6EEGLRokUiNjZWqNVqMXLkSLF7925vF6ld27RpkwDQ4DZnzhwhhDzc9tlnnxURERFCo9GIyZMni5MnT9qto7i4WNx5550iMDBQBAcHi3vvvVeUl5fbLXPo0CExfvx4odFoRLdu3cTLL7/sqZfYLjS2jQGIJUuWWJaprq4WDz/8sOjUqZPw9/cXt9xyi7h48aLderKyssSMGTOEn5+fCA8PF48//rjQ6/V2y2zatEkMHjxYqNVq0aNHD7vnuNzdd999Ii4uTqjVatGlSxcxefJkS/AQgtu4LdUPH9zWrTdr1iwRFRUl1Gq16Natm5g1a5bIyMiwPN4RtrEkhBDuqUMhIiIiat5l3+eDiIiI2heGDyIiIvIohg8iIiLyKIYPIiIi8iiGDyIiIvIohg8iIiLyKIYPIiIi8iiGDyIiIvIohg8iIiLyKIYPIiIi8iiGDyIiIvIohg8iIiLyqP8H9Z2OtS+CekEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"cNrm\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"cNrm\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "**TODO**: Handly Risky as an aggregate value." - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.750139Z", - "iopub.status.busy": "2024-07-11T15:30:48.749866Z", - "iopub.status.idle": "2024-07-11T15:30:48.752381Z", - "shell.execute_reply": "2024-07-11T15:30:48.751883Z" - } - }, - "outputs": [], - "source": [ - "# pct.history['Risky'][:3, :3]" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.753911Z", - "iopub.status.busy": "2024-07-11T15:30:48.753543Z", - "iopub.status.idle": "2024-07-11T15:30:48.755906Z", - "shell.execute_reply": "2024-07-11T15:30:48.755428Z" - } - }, - "outputs": [], - "source": [ - "# pcft.history['Risky'][:3, :3]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.757436Z", - "iopub.status.busy": "2024-07-11T15:30:48.757078Z", - "iopub.status.idle": "2024-07-11T15:30:48.869869Z", - "shell.execute_reply": "2024-07-11T15:30:48.869296Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACQgklEQVR4nO2deXwUVbbHf9WddGffyB4CSdjXAAFCWBQlGoFBcRtEFGUURyQqMm44Co464iwyqIOijojjew44M+qbEQbFKDoIgrKoCCJ72BLWLCRk6673R6erq6qruqu6q7uqu8/382noVN+6derWXU6de+65DMuyLAiCIAiCIAyMSW8BCIIgCIIgvEEKC0EQBEEQhocUFoIgCIIgDA8pLARBEARBGB5SWAiCIAiCMDyksBAEQRAEYXhIYSEIgiAIwvCQwkIQBEEQhOGJ0lsALbDb7Thx4gQSExPBMIze4hAEQRAEoQCWZdHY2Ijc3FyYTJ5tKGGhsJw4cQL5+fl6i0EQBEEQhA8cPXoUXbt29ZgmLBSWxMREAI4bTkpK0lkagiAIgiCU0NDQgPz8fG4c90RYKCzOaaCkpCRSWAiCIAgixFDizkFOtwRBEARBGB5SWAiCIAiCMDyksBAEQRAEYXhIYSEIgiAIwvCQwkIQBEEQhOEhhYUgCIIgCMNDCgtBEARBEIaHFBaCIAiCIAwPKSwEQRAEQRge1QrLF198gSlTpiA3NxcMw+CDDz7wes6GDRswbNgwWK1W9OzZEytXrnRLs2zZMhQUFCAmJgalpaXYunWrWtEIgiAIgghTVCssTU1NKC4uxrJlyxSlP3ToECZPnozLLrsMO3fuxLx583DnnXfio48+4tKsXr0a8+fPx6JFi7B9+3YUFxejoqICp06dUiseQRAEQRBhCMOyLOvzyQyD999/H1OnTpVN88gjj2DNmjXYtWsXd+ymm25CXV0d1q1bBwAoLS3FiBEj8Oc//xkAYLfbkZ+fj3vvvRePPvqoVzkaGhqQnJyM+vp62kuIIAiCIEIENeN3wDc/3Lx5M8rLywXHKioqMG/ePABAW1sbtm3bhgULFnC/m0wmlJeXY/PmzZJ5tra2orW1lfu7oaFBe8EBwG4HDnwKAOiw2/Hafw+CtQPJcdGIjTZj66FzaG6zoaGlHQDw2KR+6JMl3HHy22N1ePWLAxhZkIbirinonZWIeKuj2HedqMc/tx/DwdNNAIBXpmTB3H0UZv11J66J340sy0Ucix+ALvEWnKhrwfnmNtRdbEeUCTAzDO65rCe6xFuFMjeeAOw2IDlfeLy9GUjIArL6A8e3A7Z2v4unsbUdi/7vB5R0T0VMtBn1F9sxJDsamc0H0DUrA412C3Y0JON4fTPOXmjD5X0z0T8n2Wu+3xw5h8NnmpGWEI3vj9WjtqEFx+taAAALp/TH8g0HMHVoLsb0yAALFp/sOYX/+eoIAOCF6/ug4/R+vLz5NFo7bOha2Ad3jC2ExWx2v1BrA1B3BLAkAFFWIDFX+Lu9HTi7H4hNBRKyPcq860Q9jp1vxpX9s2Hq3MSrqb0DXx04ixEFaUiKicahM01os9nd6ogLFjj2DZDRB0jMAdoc9aK5vQOf7qnFyNxoZKZnCk+5eN4hY1wXdKQU4IWqfRjePRWX9s6UyN/B/3x1BEfONSM9zoSk+h+RmRSLpOwidMnIRmF6PBh434QMAHDsa8f/aYVAXLqyczzl03WE+28XzwFnDwC5QwFTFNB2ATi1p/O6RQBjctT5zAGO5KcP4vMjrVh/qBXx1igkx0ZjQG4yruifBbPE5mpfHTqLI2ebkB5vxckGRx1rbu3AiB4ZGNqzu6N8O+WoPtOAeesb0TuFxaNX9UVKnAWnG1uw9aejOH1gJxrbWZxP6I0D59oAAK/PLJGudx5oaz4Py7n9qMsowfLP9uJEXQsyE62YM74HjpxtxtBuKWDqjwEMAyR1dZx0+kfAEgekdAfAAiwcdfv8ISB7MAAGh882Yc33J3HHmEKcaWrFnz75CT0yEtAl3oLCLgkYWZiGj36owXfH61HTcBGzRhegtcOOYd1ScfBME05UH8TYHqlgpPqV2h+Ez6/tguO5JXcDAFxobcf2I3WIjmLw92+OoUdmAqYOyUVeShyXTYfdjovtNnyypxZ5thOw2i5g8JCRYM7uA7KLHc/ZR3adqMOfPtmHsT3T8cVPp/Hw1FHoN/wy4NxB4NAXjnaW0ddzJgwDSLzb1za04MsDZ2BmGFzWNxNJMdGOH1rrsXHHLry+x/H31YOzYT9/GNsaUmBigON1LUiwmvGnaUNgMZtxqrEFT3+4G1f0z8I/tx/HoLxkfH+8nrvOwin90SM9wbOMaYVAlx4AgPYLZ/HBmjX48NtjKCtKQ7cucTjd2IpPfzztdtq88l4Ymp/K/V13sQ2JMdEwMXDvCxgG6DnBsxwBJOAWlt69e2PWrFkChWTt2rWYPHkympubcf78eeTl5WHTpk0oKyvj0jz88MP4/PPPsWXLFrc8n3zySfzmN79xO665hcVuQ8dnz6G5zYYVXx5SfFq02YR+2Um4rE8GXvh0n9vv8ZYoTOiXiX99e8JvEScPykGvTO/bcnNYE4DWC35fFwCWVv0k+9sNw7ri4921nDLn5K5xRYizyOvJ26vP44t97o1KilmjC/HVwbPYU+NZYR3fOxND8lMU5ekLLMsKnvO8Cb0BCMvnltLu+J8tDqWqtLALyoq6AAAutHbgwOkLGJCbhCNnm3Hg9AUMzEtGbnIsDpy+gF3H63HobBOXz/2X9+J2NW3tsCHabIKJYdBms+Ovmw/jQmsHAEc5f3usHl8fPoeKAdmckvTBzuM4zMtPjLM+7TpRj8SYKHRPi9eiiILGO1uP4FRjq9vx9AQrcpJj8P3xehSlx+Pq4jz8+9sTOHBGvi2kxlowvCAVA3IdSjb/eQ7IScahMxfQ3G7zKI+zLkjBsize2VqN0xeE8k7om4XGlnZsPXzO7Zzrh3ZFflqc23FPsGDxQpWjfmYkWN2u54mrBmRj3Q81AIAr+mVxZaGGlz7bB5tdOMxkJcZg+kiHQvP3bUdxvO6i23kzRnZHRqLV7bgaxG3TybxHfwd8/Qaa2jpQU9+CogyXom6zszCblCnt/DoxuqgLRhY62rWdZfGixHWlGNszHRv3n1GU9oZhXdE1Veb5R1mBcfMBAP/91wps2/pfRXkCjnpa29CCv31dzR3rEm/BTSO6IdrMUxZNUcClDynOVwmGsrAEggULFmD+/Pnc3w0NDcjPz/dwhq8weOTrhM43Ly8aOB878OVR4C9HIX1eC/DZDgBwPZyRph/dkg3NT8WOo+ex1S5/7a3fAv97RykYBkD7ReDETscPOcWAJQ5tNjuqf9iC7gl2R8VzKitJOUBqgSCvtd+fxLfH6jGjtBsaLrZjYJ5851Tb0IKtdve3Hud9fHe8Hg0t7ai2Z6IGadzvhU35uDQvAylx0W7nNrZ04I/rtwHoIntdwb1vBIDczo/w+k522ntg64/RGG/PwOxxRRC8ZB8RWfC6DgfM0W6/syyL17bVoSWlF+6f0Mt1/UPncLHdBpYFttpdb9K2/FL8cKJeUD5bNwPOurD1AFB2WSl2Hq3D77/YCyAN2AOMNDkU2N0nHQpYAxuPH9l8xKMFA0yHAQC/rTqG3Wx3AEAXXEAP0wlc0S8L6/fUYpe9EM1wdPBHd8bgZL0FQAa++g54585SAMC7610vAOKy2mrvi63fAsVdk/HtMYfszvMA4MeaRqzYeAh3jC1En5g6tJw9gqo9teiTlYiemYlAXgkQZYEqan8AWjoVzqwBQIyow+I/o5zBwMnvpPOJTUE9EnGq0TGA7LT3QBt4z7Kh84McbD0FDE0ajL+dkn5rz2XOoitzGucvtmH9nlp0G1CG+HM/cL93sGa8eTyH+1uqHJ18H9UXg3jtqKa+BR/9UIuPdtd0HikUnDvS9COqfqxFotUh+/f2QlyEa9Ae3XDGpbBExwBmK9BSL8gDWQM4q8eZpnbct8kKrh9SaYze+j2QBAv6mqpxsr4FA4aOdj0juw04ylscEZvqeMM/9g1YsNjfmoKTyMTmDvdyTmyJwvTuJfjheD3eP+f6fTBzEDGMw0K14+h5XNm/07LZvcwtDzl2Vtdh+9HzuGVUd1xsswnaZjFzEFamDbA5rvHxD7U4cq4JI3p3w5ixl+Hg6SY8/n8O94V37iwFWhuBGpc7A7qNgrMTOXSmSdjG9wPvjC8FywLfb/oPAKCOTcBPbFdBHRH351t/AgBlFsqt3wjbJACHtfzYNwKr+f4TDmX3sD0bp5DiNd/2riPx5vq9+M7OU4YaAZzKxq2juruO+WHp0oKAKyzZ2dmora0VHKutrUVSUhJiY2NhNpthNpsl02RnS5vhrVYrrFb/NG9FmEz4Z11PwaGFP+uPnUfrOOvI178uR6zFjIGLPpLKQRG/uqI36j79ExIZ11vGjSX5yEmOweoj8dhkHwgA+OmZiShbXIWzTW2C8y/mj3VYLZrOuhSWbqPQZknBpX/4DOMunMXYjFZcXcyb8kjOB4rG461Nh7HoX87OOAlAEl49ygKIwpu398dlfd2nFmx2FqWPrQUw0O03Z8P8qbYRAHCIzcEO1jXIb9oKYGsbDj93hdu5R47XY5Nd+dufFPyOobSwC17ZNwCtsGDTj8A1141CVlIM74IihaXbKMCa6Pb7x7tr8f35RHx4NhdpAwtwa1kB7HYWP39tLe9kV1kcTh6Oq//yOaTKBwDyUmKBovGY+toaQRrxwHeeTcAm+0Bk4jynsDQgjqsPvZhj6IETWL/H0XZ22nviDDoHx/PCa7KFl4JhGGyyu6wr4us5891UDQCdLwBF4wE4nvlVr60F0APv/gs4MLc/lr/nmC7dd+oCuqbU4bpR98AUq/INnD/o5Q0DkrsKf+c/o7wSocKS3gs40/kWm9EX972zF0M7f/rG3gcXIG+JGPd3O8TPZ2RhGrYeOofhzI/oanZZ+Q5a+yLqpEuOdkRxZQU4yrGkWyoGd01BTLQJS6tcv01ZA3x471BO+R/16Bo4BifpAcr5TBpbHYPPTntPnIWrTGeDZ3GOSUFHUj6ijn8tzCSnGKj9Aa0dNjy1qQWb7CWy5SDmvst74sVP9wuOxeMi+pqqsetEPWKb8zCmf2d+HW0ChcWWUoA/7k7FVQ11+GzvKWy198Ume3dItoOLQHv3S7D15BFssruGoQJzLWLg6N9Odk4DIzaVq4feuPdvO/Dvb5sAZOKpHy7i/XtGY5Pd1V/2Nh+DFW2w21mYABw552gPr/1oxZiZ41Hxxlq0dz5btvBSx/QbX2EpvAQwORSgy0TtFwD+51QhHv9gF+ZFORaMHGazsMk+kHuuHaxZUHfk+PrX5fjn9mNIiY3Go+99L/xRXBatjQ6FpZO9NY3YXn0ePUzAmLLReOhLl5Lx9NSBeOKDXSjumozVvyxD3yccfqRnM8uwvLoZXLvvZNN3wK03i66nIwFXl8rKylBVVSU4tn79em76x2KxoKSkRJDGbrejqqpKMEVkFH4xtlBgpkyLtyDB6p/eV3l5T0A0V2hiABPDYLvdNdhbokzY9sQVOLR4EiYOdClzre12xxee+aDfU5+h9+P/wcl6R6M/KGP6dikr7ny2V3qVFn9uVUvkTNVv3DYcXy1QN2+aFBON4T1z0cp7yz4nUvTckTYD86ecVnx5GADQ2Dn1IsWDf//W41WO113EtiPu5n5/8TS3e+C0/DSQJ259wzFANrcJ73fLwbOCv4/VXcS81TtxqtMPRDECk5dC3xkn8Y5B386yAGPCuWb//LImDszGgWcnQezq8sInP0lOM/HpkZmA5NhoWKPMiI0W+q387KWNDjnt6mffKwYIX9pO1LvK9+CZJsz+6zfYcfS8+DQAwKnGVrAqyvSPNxZjXnlvXNI7QzbNw//4HgWPrsH5pjaIC2rzwbN4a/MR2X7DiXO25eyFNvzn+xrZdN26KJ/6OnOhFWcvtOLfomn2ynd2CP52lseu43Vot9kFv7Xb7EiJc1kIG1rk23iH6Fwnj3+wy+0Y3yLCgsHPBjusc13i5a2RGYlW3H1pD9w0shve+sVI2XQsy+L+VTuxbtdJsJ09QMXSL7jfx4ue5a2juuPwc5Pxf5VjEcOrpy9vECqpRkW1wnLhwgXs3LkTO3fuBOBYtrxz505UVzvmvhYsWICZM2dy6e+++24cPHgQDz/8MH788Ue8/PLLePfdd/HAAw9waebPn4/XX38db731Fvbs2YM5c+agqakJs2bN8vP2AkNijEtBcc51fnjvWEwenCOZXmr6gw/DMHjiZ/1x9yU9uGNOS8ADFQ5nwocq+gjSvzxjGPf32aZW7K1pBOyOBnbsfLPQHN6JwF1JwgFRTL7cXKmId39Zhv8+fJns749P7ud2rLahBTcu34S//Pcgd8zpfFxamIZXZgzDkPwU3HVJESb0y0J2cgyGd091y0eOxqguiB57H/iD4EUv/gZKyEl2PJcLHhSWHdV1XvO5/c2v0V1FhyyFePjzNDj95t8/uPkRKOG/+86gua0DF9uEZffcOvcpzE9/PIVfS3TYnuHJ7LVOun5nweJiux1fHTyLFz/dh8/3nRWUBwsGXzwkXyelSImLhtnEIC1OaL397ngjvj1WJ3vet/YeAiVF7jZu/stXksdjouW74cwkoSwHTzehw+4YLP/+zTF02Fl8/tNpnOD7gDAM2m12/PvbE7B76OI3L7gcr97qsJbcd3lP3FDSFSYTg7/+YiSm8K2xEgx9ej3qRQN69TllSrGzGo5aXCXpp+PEU5nzaWm3Yfgzn6DkmU/cfpPyjQGAu/9nO/cyBzjaUk19C24pdU1//HffadmXgOWfH1AkGwCM7pnO1Y/y/pn4883D8O3CK7HtiSvw2CT36f7Z44TThHxn8TiLUBn+6IdafLKnFj/WNuLYefd7dVuUIcMXP0n7DfbLMdaqW9UKyzfffIOhQ4di6FCH8XX+/PkYOnQoFi5cCAA4efIkp7wAQGFhIdasWYP169ejuLgYzz//PP7yl7+goqKCSzNt2jT88Y9/xMKFCzFkyBDs3LkT69atQ1ZWlr/35xetHcJO+vphDnO11GqDgXnJWHbzMMGxLx+9HHddUoR/zR2r6Hox0WbMm9Ab90/oxa00+fnwrvj8ofGYc2kPQVqGYbiOrnzJF6hY+gW+rnF0ZP/Yfgw2uK9OeOWLAzjt5U2RT7td+i2ihTfwvzO7FCML05CfFodUGcXsznFFbsdKn63C14fP45k1e9Bus+P5j/fi6Q93AwC2HDqHiYNy8MHcMXhskkvZiTIrf1s81tgBmKPwyfxLJeWWRGakGcBb2bTpwFn88aO9aPKgsCihsaUDR842C4792ya0KHp7O1bz9twjIwFtHdLP0xsP/f077DhapyjttiPSb/vKUHY/dpbF37ZW4xdvfYOvDjksPcs2HHQrj/y0WFVXt0Y52szEQUKrhrtiKGRCvxzBS8mdYwsh5lRDC7466D44j++TgXG95C0aM/j+A5042zBjAphOad7ddhRnm1xt+8jZZrTZ7LCDQUn3VGx69HJBHh/NuwQ5ybGoGJCNw89Nxvwr+wh+l2sr/DK+929C68XJev+mc53wp23bZCwZwuuqtOoBSGKase9Uo+DYsfMXwfcvrXxnB16okrY8/PFjl7OtJUp+GH1yiuOF89ZR3TF1SB6KuzpeupI768u04d24tE5l5FeiZzG8QPii1tTawb18fs5TNByrgISuFSYT8MHcMUiLt+D31w92k8/5AnZY1Bc5SU9Q6ZMWYFQrLOPHjwfLsm4fZ/TalStXYsOGDW7n7NixA62trThw4ABuv/12t3wrKytx5MgRtLa2YsuWLSgtLXVLE2zE4/UlvR0maJNCD/K8lFg8NqkfunWJw38fvgx/v7sMM8vcOyAHDO8b7zvDoHuXeMlrihWnG/+yDc0j7sErHVdLXqGtw45P9jgrtONcvrVITEubdKd1vFOTH5SXjNE9XHPxmx6dgAl9s3CJRAdclC6/2uRvW6vx0qfeTZINF92VhN5ZrqV+T07pz313dqw9MxOQ3dkBnm/ybcrgh5P1go76z5/tl7SwZPP9Y3zgvNXzWy0fqefGApy5WUzX1FjUXfQ2JSbNmu9P4pdvb/OajgUD1YsOGTUWFgc1DS3cFE0j61BKDrC5ECs8DMMI/bYkGFngcgi3dI5W0R4GIDE9MuJxy6jugjb7wBXClUEWswlvbHStMjSbGCRYozCsWwpevbWEuy4ANLOuN+JLemUgIyEG4qa/tnMaRbzklK8QORWOBsThYptNYAF68/YR6JPteWVhTLT7C4+Y/+53TQueudCKXcfr3axcTrY+NgFX9s/C8lu8+9Pw29GB095XNK7b5T6t9OG9wpfEsT3T8c85ozn5Mpg6dNiEdfVCawdWf3NUcGz118K/nXWM/0yeuUbeJ6Wgi6Pfi7NEoaBLvNuzTI6Lxp9vHorlt5Rg91NX4fBzk93KPibajI2POKyFzW02DFj0EWfJ/NtWl3Fgw97T+MVKly+L01o0JD8F2x4vx89HuC9MGVXkeYFDq48vOYGC9hLyQKzI/BZl8l5cRRmOCrrmPmGDyU+Lw4iCNOESMQBZSd5MdvKduNTSuze/Po1WyGvFaqYFxM53Tn7V6aMhfkOJtZgxKC8Zw7q5T928OWsEKgZIW8wW/p/Qj2bWmALJdM7VM8JrugbuG4e7GuSEvq5r1XT6Vfxlo2v6SRr38jxRL21SljKhepv688atowrcjv3qit5YdvNQ7m/nIPDcde5vSywYh0OvBK0ddtRfdChsnt4IleJ8sxfXwfOq/Uj4CosXuToVmvbOTpQBi7/aKrCi4yqcRTJ6ZLqUV+fKBm8D8xme35S102L5w3FhPeMPvJmiZbZSfQIjUrzabHa8+oWr7pUVdcGu31TgvXvGwBplRjTPcngoxWVlG9otBQAws6xAkJ/TIVd8HX57/CG9Arvt3bHV7rBQ8gfBNA++E05uH+16sZKz5PGP/8+WI1ydkCIlzoLXZg7HVQOzZdM44T+z4+cvelVkfycxPSn2K3xx+lCUiKaU7TzlmgWDL/efwdFzwvbuTLH7ZAP+uf0YV/bXDXM5h1cMyPboj+KNnw3O9Vou8aJQEO9sqXZLIy7/KF7bFNcVJ9EyVmunj+TWQ9r72vkDKSxeuLnUZbJzTkl4eov8z/3jsOWxCbLxCgaJlgqLzX9qiDK7Pz5vjqU2kexi3wQ1tLQr1767d4nHwk7zqDfkA6u5c/8Exyqu64blCQZPs0TZ9PUyeEnx7jfiNywHSz8Rxli4fXSBR2dFJ3PG95D9bRrvDSg7KQYZiVbMHF2AEYVdcO2QPEHaSaJpC4Zh8Nx1g2R9a9o67JyyKp4H94fBeSkCJVz1nLcPTrd8X6R2RKEBDkXFWbOvGZKHRyc6BupWXtqRhS5ripODZ1x+F876c+aCsA3xW8zgvBTBb1FmRrWvsHhqk19+RRkJuGNsIe4aV8RZUBZM6otLO+sWX0k4c6FV9tLHTLn42D4C7Z0LQa08JVWJ9SQ51qV8P8lrt0LlRf7Gh+ULlYMohVZpAMhNdindu0745uAvVqSdSlpPnlIrniJduemwZF4sy+Lj3TU4er4Z018T+iHdd3lPbnqHT2aiFbNGu08NKrUiivHlJcOsYApdagwBFEyf6wQpLF747VSXuS+aU1jk01ujzMKlsyLEJuobSzo1dR8qskniHLsXkzxnYel0zOvo/Ps2mamqVzYcQMGja9y8773RN9sxcI3v41oWnZGgzAFMSdCmF24agrX3jcPlfbOw9dcT8PyNxW7WKyfOAFX8jlASHzuTnQuvwJNXD0CNxFz63+8W+qV0T4vDuF7CJa0VA7LwhxsGC+rN5X0z8dikvtzA0b2LcEqNYRhu8DAzDOaO74GrBubIBiNst9m5KU6LTDn5gjXKJGgPnqb+pOGVucn7QHqqsYULZCbG6e7Av7vSTpO3xWzC/9zhZZq58z4SGHmfCPHUrFyH7wlxLeNPQVnMDBKt0YLgitYos6zVUe4KjTyH2KlDc2EyMZgzvgduKOkqmEZVwtVDcjj/PW+wYNA3K9FNeVc6jS5lpVEyLSSGrxTy6+QNJfncddptQguLHPz69kOnldc5VeJcVSSWuig9QaD0+YsvCouSGQEpRfLtO0Z2rlw1HqSweIFhGG7ecVDn25XPoYEhbLhxFrOsqU4JUpXtzc5lt3Lwl1Y286wrj03uJ7l8zmluFTvYeWNC30xMGZyLX17qcrhV2uiUONdOGpSD/rkOpSgzMUbwnMQ4FU3xMkZPtNvsAidGOSYPyuE6rc9+dF/OOaJA+FYfE23GFpGZddqIfNw4PB9mXgeTEmdRHCLfbGYcnRPDuL013jLKoay1ddg561q02YQRBamadKiDuyZzlgsWjOIIoZLEuVtAmtscDoaOlTEM/rtPPiJoW4fj/viK/OgeXfC32aOw8dHLJOsff+rAKXs8Kxwg+YOZePBUYzmQg69AuivdjvwvlbHeyU3DVJ9zOFEO65aCX4xxvOk/clVf/PHGYtV9jolhkJ8aBxMjfTWxxTm705FztBf/CKX84EMYBX49HN3TJUecJQo9MhLAALDJLCrgw4LB3tpGt+NOy51zGlFsqRa7E7jwrb5EmRi396kOmx0FHlYaKmmLUi+943plIDnW0aclefBx1ANjSWNQdiy8Es1tHVz8Fd83MxCiKB8PnYsvg4OriTKc2c9sYmAxmzTpfJ1Em03okZEARKmffjAreDOQWqklP0/ryK/N5q3AeY6Tq3ei5+4jXuXge9GLp9uW/LzYLX1MtMlNqchOcll+5lzaAzY7q8gKIvVWGBNt5t7+po/shtROZarN5poSMpmA1XeVARs2YPfJBnTYWKTGRWPpN27ZyeK8sjXajBHdU7HreD1wQZ2PlDe+PVqHz3jL3nPN1YjyUEWP1l3EQLPYj5dBWQ/5gdMSZUJJdipq6ltQ3Ll9Q4fNLrHGzkFMlElQ7g4nZ+VLXAH3QYLvRyC3KsZZt52l29phk7UKbDpwFp92Ks/XDuvqkxUoMcalzDrbo1xXJJbYGSTP4ulhqUCq2drtLA6eaUKPDGmLHt+6ECPqg5zl32HnW1iUs6P6PD7e7Vi84FxZ9ux1A/HA6m+5NFL9kz8wDOM2Xuw52YjDZ5shZ9NU0p/LiekcW7Qa67SCLCwKSI6NRg5vOoH1y8biQhgXRH0F90Vh4QcAc1pYYqMdlh5v+S3+zx7OcRNwvLEFAiUNzbuJ2fW7U2GRC/YkxYffnRT8LWcd4g8G/A6wtDBN4JjnxCqhwDktRQADa5TZNR3gpdNzXi2KS8cIYt7ERJu4ztnOstx0oZlhYDIxMDEMBuYmY0h+CnJlnHXFTBBFPjYxjs7UGSOnQ8Fbq/RdiI6yLK5Z9qXg2O/W7fVodXIO4GosCFEmBu/+sgwbHhrP+XYkiSxPfMWgWLQn1S0Sy469MVdkbudbVT7e7TnomhNXrB9h+f1332lB4MJWH30RspJi8PTUgVjy82KuXzDxpiGdNLW5ltgyYLHhwfGcsuDPYJfOix8i5Zf1zJo9KF/yOQoXrHX7DXD0jU5H2AqRQ6vD7YhVtacSn2tf3sR9d/oGXTu0K/rz/Lc01lckuXWF+z573PUhbT0RI6dYObtX8UuY3pDC4gMavkT6hV/md4bB/+08DsBlvvSmKLz6+UEU/+Zj7u/rS/I8pPYdv+5LgsbODRirxFM2aaL4MJ2Nl6+UObmmWHq5MH/6im9d4Pvu8LF6CBLmDfFAvPBn/RFvicLPnH5RDMOtUgMcSpZLYXFNB0ope9FmE169tQRPT5VfogkACSITsVOBcF5HhU7okZc3uFstWMhP+zl/Bzofo8IRI9psgtnECJSGQV1dDqOXi56j2PLlOM/9Wi9OHyq5GuflGcPcVtHtrXGfcvCGVB1Ni7NgW7U/cXCE3Dqqu0Dplir7Uw0tAl8Q51SCJ56+xt353jk96VwG7FLiXav8vtx/Bm937srubTPaKBODql9din9XjnWbllXqTwN4j3XEd2ZOV7JRo4aaTJ2fkZ0B+bLgv+gYCVJYfMAZ60LOHKkt2k4J8XGudHEGolKbn9Ws3WoTPlpMTbG8juF/O5cAHjojisSZJK2EvPyZ+3Jus4nBr0TxNQDgf79yLS/sl+NahXRFfxmFxdMUmWxn5jg+otOKMXWIQ0G5vG8WZo8rEjgTx/N8MixmEzfIsCzLvS3JvVVVDMjGJC/LK/ln8peJMozjXf+TPbXqwvPLdIh/+Giv5HGxj4dz6S8fJW+WTqQsZ6OL0nBp7wzMGNkdg7umCGwYSge7q4tzse3xcrfjUivV+G/6Vw3wvuwXkK4q55odq5vUBBRUg1S5dthZvPqFS7nkz+bKvdhNHer+orPk58VYdvMwzueKv6N4Y0sH1u+uxYy/bMETH+zCNx6i4zoxmxikxFkwqKtotSbDdN6HUDilZSZOZ+WtuOK73sla+drVB7nzD8/35W1KSLXBNMCQwuIDvbMS8dWCCVh7/zjtMvVB865Vu2+L8IJuR9QqLFrE85BCzRuQEpTL6bguP2aGEzMDSc95vrmaHyuhZ6b0Emp/lMxRRV0w97Ke+P0N7r4xDhhudRbgWFpp4nU8zs7HkwxKVhY4GdfT5QjKH8zmrd6pOA+18J/lZb0z8LbEyh81RSylHJtMDIbmp/L2DHOlUeObIDVopca5WyD4qdxWA4nycA6Ypxpa3c4NHPJTbXx/LAbC+rNdxtojVf8u75uJyYNzuAB34pWWs//qcrA6qGBfLE91nGG0Kze+hUVry3AwkFPuycISZmQnx3h+W1aA2tDhbmhcl9Q2OLmgQ/4iZ2HxNl0hxxOdfh1ql3PyYRjvvhFK2rbnIvacv4lhUNAl3jVoi+Xp/HvJz4sxdUgupo3oxiWxsSy31YInC4Sn2A3TR3aTLQN+3IZAbY7JQuj31dzWIbnxqNLVVYD6Zcn+KtNSZc/3mfEUeZpPh8J5aU3HG4nMvj4sVEr45SO3Ck2qDMT1ih8CQWzVePif38EbnhRLqevLB8fzDF9h4e8hFgwfFif+WNTE1ZnzV+q8LfJhITRDSWAgOaSqoZq3a8C3GBRKkFOc1Cyx4yuTzhUPmYleQud76GXkmu1lfTJ4abw3bjXTFdJ4P/+6YV2x9KahsESZuI7bzrJ45B+Ojl4qYrATvrIo3gAvNtose/UuvAFGHPLcM8rT5qbECpYVOwft8n6O6TfnoltHNVbqw+I93Xieo7GJASziwGsqnqlUE+OXudI22GGzKyo5rRYIOPJyHxzF2z3wlcV4q/QLnZIXI182KnXGWwI8KZYOCfkLtP1Z0cPvZ87ygnaGiq1F3B/98pIiwXGW9RwoNdiQwqIjwnogU8U9NCZ/fD2kxpTAmDTVV3a5TlvJzqMl3VKRkWDFKN4eR84i9Kfzdj6rGbzIxwDwm6tdVh8lL709MjxYedyetbfn4T29s+M5dKaJ23/HE/w6lS3aNuKtzYe5S4gjcpgY12CmfqWQMi6Idgd2OhE3i2JgqLGw9ONNoclx80jXSiCziUG0SsWej1QbU6PfOcu4vfPej7IZuH6ofFC3QI01VgXTrLd0bjVReZlwKlWsIFze193fq7eKaNdOlO5+zjCMoP76YzUL1LS4FEqD96lBrLDM7/TT4z8joywyAUhhCWnEnZ8gNL2JwSfzL8ErM4aJT3ME4pJYzqFGAXp95nDpHwZMVZyHHHKK05ieXTBnfA+8cNMQ2XPH9crAjNLugtgLTnOz+ziqXEFgO08W6xR8s7eS+V75gFI+IDMlJHWIb672BL/sT4gi99pZVlYZ4Jv021WNwO5p5d7oxHF0nObqTQfOCo6reWF+jLcMXA7+c/XXQiYZndqHEcHZVqvZLJ6vjQN+bv7ubyXIl5cx35rhRKzE9s5MwI9PX4UHK4TbjyhREGKjzRjSNUWVfEq7L/Ej8G+aVu4a2r/8Pf/zYuz/7UTcPrpAszzF9dFpNecf1zK2kr9Q4LgQRmyJiIkyoanzbdPEOBw/e2Ym4otVwpHaxrKQ2oRTjYUlXm7gTRBvcCjMs2JAFj76oRae8NQJKI79wmtw3EoZBRYWucHSeVQ8YPMfgd9vs3KdnB+dn9oBlt/RfnesTvCbVLRN13lqJZNm7jvbsUYUA8dJm80ueMVKkVlCq+aelUT7FawSCoDCoiYCs1Q+nhQAqVhAqhEFreMdkk3rRMm+RXJZqS1rRekZxs3p1p9nKtdnBmpKKMps8hBcUH0HJFd1hKu9jKOwkIXFKPjQaDxZWPgDTxYjdIyz2V0OmADwhxscO/8qCYnvJFqxKVRY2ZdOG+r1DP/9PKTz8/qiwDCyzoxcDBMZJzXAt7le9Xvv8FEyJeTh9IHXecx9QI5wSaiJUTPZohRhmYmVlRaWF0mY92zyUmIxbaT0YGwyQVOvR3GH7U/WUs9D6Rss32ncuWtwZmKMx2cst7+Wb7hUfim/D62XUwfKcdUkIaevsndLUzYNpSX1ovgrI0VxZtTgLQ4LQAoL0Ykvuwfzce4X4oRf+cTh3/nY7KwgwNeNwx0bgsm9LWRLbOboq79LjILAaVp3VM7slCgUfIdR/hQZZ2Fh5JXEOeMdc/XOOD1KuGaIyuB7ngpH4jeP5veMPkBeidvhbxddia2PTUB6otCC4dHCAv8HLClLw4+sawdrZ/5xlijcWJKPVBkLi7+r98SKnzi0u3s1Un7fUu1GoCR7eL5r7huH0kLhNgO1CvyStMKXeDT+oGZaZVyvdIVTkU4Li8JVVp3PNjXOgkF5QgV+XK90WRkDuUpIbLUSR/LVAn49NdCMECksevDhvWMxo7QbFl83WNN8lXq721gWWw66B1+Sc3ZNjo1GmWgjM18dfpV0QlpbWLh9WLw2PEZgebqdtz28nLLDL/OrBmZj84LL8eJNQiuS08fA6U8wtqfLIfinU+qjnLrE9V5OXstb4vfk2GhkJsXAIgoMaDYxinxYfKVJIgS7FN4MgVrv41LSPRW9sxLd2oAvSJWTUiflaLNJcuWN1u1FFmV6lWrk8nJN5Xq/mDXKhBuHd0WXeIubY7z79YT5XWy3gWXlrxFvicJtZQUoTI+HUuU0kE9E7Ogr7orvn9ALCyYK/Ybk4PdrUQILvSuNkXxYSGHRgYF5yfjttYPcnOX8RW7QGCV6K7PZWLy56bBbOr5WzQ8r3mazIyc5RjatFvBDnmvSATPujc/NtCnhtGrjvaXF8fx0nOeKZROXQ05yrNvb599ml2LyoBzHhoMAlvEcoXMkrFe+o3JKCPCoxYk7xiiziSsy8Ruqz0+Md32pPWNmjS50W47e1OZ5yaun6sOPc+LcxdgbJpMJkwbmuFk3tELNMnCpKUvx7Wof6dbdh0W+jWp3bTVK8E+1F5CeYMXWX5fjt9cO8pwvlFtYAFcQO1XTawFUIsViiJ/FA1f0Fux95wl+deLfH1/pp2XNRECQG5xKC9MwY2R3LoqknOmUP/jyVxccOtPkNgjLxotQ0FB/f4O7ZYm/x44aXxolcDEFFKQ91BkSnGGEHYEzQBn/9pwb/3mjZ2Yils0Yhj6dU4DJgkBhHpw+vebtrnCJ8Uf5myLaP8nEyE8JaUFTq7sikpcayy17dT4/uTl15yDkkFFa0M8eHI+//mIkfnpmIhZO6a9MMDdFV9lpSvHoIyAq8B1H6wV/swjMihRvBCOoq5pLOKfHvb5IMY79qMSp3EL4S+BNYZnP37ojgGO8uE17vGUvdYP/K9/Cwi9HsrAQylHRGcnF2WAYBhmJVs6K0W63S76FxVvMGNYtBUO7paCnKF6I2Mzuj1Lx8+H5bscaeTE2tLHeMG7fvLW7XScacF3nTqzOWBuTBuZgUF4yhndPASDsHLSQU9njZaS/K5peUyuRiwG5wk48ysTghhLHs+uZKawfDS2+bsTm2cLi+ZHJKS7yN52eYMUlvTP8ip9R3LncVmofI19w7h9UqMABu8MmbV0KhsqS1WnpireYNZ2Gknv5OdUYoH13vMjOD5jI8v71Ng3O/zVQsYgACf1Zo2fBD0TKz9NA+gota44knGvs5UzQDMPgn3NGAwAq39kh+E3cpwRy3jxRIty6P3CyezFt/meXa4WKUxnpnZXoCGLVmQm/IWtRBpniaUFrItDqq1+LLxYW5b2R2cSgpHsqvnz0cmTWfQsc+oz7zee3sKxBwNGvgaQcSYWlR3oCTp/xnEVRRryi/WV8RlSGl/TOwBujhmNEYZrk72qpvLwX+mQnYVRRGtDsvo8VHzn/HIZhAm66nzgwG4ebu2Hq2GH417cnpBP5UBapErtaA8BFL1N/fMb0VD5d502JH1mYhn/z7s9ZrN7aUjMvOm8g+0ctV63xeWKy0OJoNjGw2VlDrRIihSWCcIYhd4T19uw86e7eEfh3uMXXDcLFNhsytfDr4PuwdN6rtzE1jrd5oVto8M5GK2dCVcvLM4bhy/1ncEOJaGmuWU2gLyUWFu2em1OJy0uJBRo9WyhYllVWZxKzgNH3AtGxaPrhlNvPJpPJa4dc3i8Lr532PNCrgn9BhnFTdM0mEyb0E8cbkqZraiyOnb/oMY0lyoTJzpVlzR6TwixjjWAYBHQaAnDsBP7gmD5AYoLfU0I9MxOw/5Rjm4U4mZhOJ1Vs7lp5WS+FKZ2O48LC4u/uLq8UCv/ulyOMktys0GncX8T9mFbTc1cPEW7FYWIAG4y1rJkUlgjCaXptV/A2zJ/uGNcr3a0Ry7cR31uPVPRM33F3uvUWOI6/4ZpsrgoDdnlj0qAcTBoktfzZj95Hclmz79mJ8aSgiZdasqyKNz+rY3qp4aL0tJJrikecoeNvS4D2tNICrft68fN0vnjwB2HNnW4V+kblpSjfzPXflWNx7992YOfROvzy0iK/xAPklR4pGAbogCg97znxqznLc88V3/H9E4RKUkt74KaB+IgtaSbGhHhLFJra1CtMQp88sW+Mo04ZyYeFFBbDo+FcMc/C4g1+5c1Jdg9OpYOfnzokpm68heZXEjaff9+6byfv9hB8mBIyKe/on7x6gOsPUafZLS1OMFDaWVYyQJcnamTeqL3dguRzMHwFVYr7ICLVeoN2u50XkipzcQh+T8RazPjLbcOVW+K8oKYtMgxwEeLtDORfRJxVXSxnvGjquj2AfitS8jhhGGWbeHpDnAN/A0SjYNxXE0JzXHENlKQVDvj9c4Xmz1gFIbf1xd3C4s206fFNwt4uylX7eB+KUHlNqcHg1lGuzfzQbTSQkAn0LPeal9jRlo9YMVL7Uma3s1j6yT51J3XibwBGzygpb/k0WvuVpLDSO20HuyqKr5eZaO30PfO/fjpJV7DZqRPFU58M0xmxWfhc+AO+bF5erhEsS4S4H3PI61sF4Je/+PacSqCRLCyksIQJExVFO1SuMfNfMhgG3OoQJ5r4mQQSH5xj5cLyAwDqjrrlFRALi5SsSmNeSJru3c8a1rniCQBgiQNG3AHkj/Aqmrf7vbxvBvdd7bz38+v3Sv/A8Kf0pK9/5QDtI31qhdZdvdwA7ymydSBwb1Pat4V0FXGqlETQdiIl6awxhSjoEodnpg4UbEbJwjWV7E35FE8RBQp3HxZttswQ1y2lL3rBhBSWMIHvMKoEb/Pc4n2JdJ/+UA3j9s1bw1MyVRYOU0K+OuJ6O+/5G4dw39X2ccs+OyD7m7fuWPfn4IHrVW8+6PlexL9qHyROyVXdFWEG0NzM48xNyT0qWRLuzJWRGOCzk2Ox4aHLcMuo7u4O95wcnunexZ99wZTj7sOCgKxrd7YrUlgI5SjsBJQkU+p86kjLt1AoEkG5IABSNdz23pscSkPze7SwiPICgJP1AYoToSHS7h2+9W7eFAMTzyNUSR1Tilhcqb2tAHGfHciBXHne95f3cixXDuKlgzG8BG07AIWoqdMMA4+RbltECovS8TpYJeK+rJmvgGn39J1T3gaaESKFxTAEoQNwXqGppcPrW4tgSigATXHdvEsEAZq0R70PixILS6vM25c+eJ8SkurIfX2aIldEiWu5vmvZybnetB0MyU9xS9M1VfkKFeVX7MQi77vjjWizCStuH4HL+2bid9d7DhkvLUrw1DA1uNUrhvtBs2skaByPyYm0hK6j/NU+/H7Sm+IiXg0vSWp3mR+UI7Ws2f16/jdA5zMmHxbCnSCa3XYcreO+X9YnQzIN/23aL4u7zH1lJcWo2tVYNYmuOBmyoflFrZwfbVeOWhWxIQKDh4ehcPonUFNCvm5Jv3jtHg+/MhJ6GeP8wh1Ts6RWNSYT0H20/O9eyiXOEoUVt4/AtBH+L9vnKwrBmQ5ykwCAzJSQxgRkR2iGwYHTTQILi3ivKvGUkLMqe7MwKrLyMP4PudIWFl+dbuV/c0YLMNKUEC1rNjzaNdrTFxyh+9tsdq65yjVC/uCjx14lPjN8FlBXDeQM5Q5xq6NY5//SSymfX/9TMCTUDgXPRSpEia/jgLe+li8Oq8IH9NUvPAd9E3fGUvIHvEvVYKDRAkbwXcuJN08X1U7pNQLnm9sEfw/OSxbco3hKyFm7kngbZ+p5+2L9wWSCh2HCd0Hlw0Hoh0+tcNmyZSgoKEBMTAxKS0uxdetW2bTt7e146qmn0KNHD8TExKC4uBjr1q0TpHnyyScdWiLv07dvX19EC118Dsfugr8TrRT1EoG55Doe8bJmn/FwbkAU98RsIH+kIMIWf0po0/4zKFywFss+2+9T9kFV3rhr+X5NKXnl4p14zYv/R6b7xoG+Wli8XpfzvWI65XC/p62HzkmfFG4ouK0eGfFIjo3Gi9OHek/sI/IWFj/L3ebeR2luSWI9SzmYtxGiIHCcJnXK/zw8+7ColUb+TE5hMZCFRbXCsnr1asyfPx+LFi3C9u3bUVxcjIqKCpw65R5WGwAef/xxvPrqq3jppZewe/du3H333bj22muxY4dwr5oBAwbg5MmT3Gfjxo2+3VGo0iG9caFS1DqKOzsBuR1Ixcua1UnCv5Cnyh6chsB3ur35L1sAAH/4SGYZbUjh/cFIKZubD5z16WqCvKzusU/4vyt9su1KVmaJ/w5TXUQJSm59eEEX7Fx4Ba4OoI+Y23SNVg/l4nlt8pGFQZRZGIclT+T/NHVInnBHedZ1rhGQjsPiG55Odb7z2UJZYVmyZAlmz56NWbNmoX///li+fDni4uKwYsUKyfRvv/02HnvsMUyaNAlFRUWYM2cOJk2ahOeff16QLioqCtnZ2dwnPT3dtzuKYHx5A5CbEvLkw2L1Y6dbPXCKr8WbgpIB1i/UPEMFaaUer9XHoH/eOkZ+/fvvvtOK8jx0xsumhZ0WV6Ec3I+KrqEJijwqgyGGEj+JAFoCGacPizD/ptYOBHtAT0+w4rFJffHO7FJV543uIdwoMTXOAr7sJhMj2FFeqtfQc0rsiv7CuEOmAD1vbpVQqDrdtrW1Ydu2bSgvd0XFNJlMKC8vx+bNmyXPaW1tRUyM0KkpNjbWzYKyb98+5ObmoqioCDNmzEB1dbWsHK2trWhoaBB8whaVy/XUIqeweNqVONTecLUMMf3hdye9JwokKgtfqmP1NYq3mkvfv2qnonRqYqhwU0K6TMt5TBRIAWT/ckxX6ONfIn5sDS3S+0AFmrsu6YHRPVS83DIMEmOiodQGKJfK28angayj1w3Nw8+Hu+L7aBU4ToxrSigAmfuIKoXlzJkzsNlsyMoS7lSalZWFmpoayXMqKiqwZMkS7Nu3D3a7HevXr8d7772HkyddHX9paSlWrlyJdevW4ZVXXsGhQ4cwbtw4NDZK+3UsXrwYycnJ3Cc/P18yXaShZvmZs6OTt7C4vgeq8QXL0sj5QLhdkD+FYaBWqRjvz0XLRxeIatCqYMM4uRW0bukEzzAwfld6IyfZ5X0zvabR8qqyfYKGZefMSb5l+tZmHXFYJA6quIq3DTcDuW2HycRgfB/R8w7A5ZzTfhG1rPmFF15Ar1690LdvX1gsFlRWVmLWrFmCIFMTJ07EjTfeiMGDB6OiogJr165FXV0d3n33Xck8FyxYgPr6eu5z9OjRQN9GSNBhU1+x5JYWmyWcVid37i48e5z/u6sGEyVvCnXNrjfE9ASrajOzdmjb80i9bc8Z31Px+SXdUz3mJUS97C0dwhUZv79+sCiF+9tjSK1a05gcmeXbZg8W0UBghFVCZy60eU8kger6w3vRubK/42V99iWe+8BAR18WbhGidptRF57Oc9YprffD8gdVCkt6ejrMZjNqa2sFx2tra5GdLb2fR0ZGBj744AM0NTXhyJEj+PHHH5GQkICiIvkHnpKSgt69e2P/fumVHFarFUlJSYJPpMMwwO1jCri/F01xX8XBx1kFh/EGJD5REj4sv7thMFbOGuF5zwwVnYFxmoFwKeOfbx6qzswcMDrL0o+3WamBJSdF+T5Qs3h1KhCDlHgJ6aCuyRjWLUVwjHOa1vzqBsRLGRfnu1aw8C1KgkE4CC5mwdgNITkg0bAZOFYBy1tbxcf5KV+cPhT/nFOGuZd5VvrT4i1+yOgdQf8coIfhrFIh63RrsVhQUlKCqqoq7pjdbkdVVRXKyso8nhsTE4O8vDx0dHTgn//8J6655hrZtBcuXMCBAweQkxPAwGIhg/LKePelPbjvY3sqG3DlTJdCp1vH9wRrFMb3yUSUF3OoUfE07fPxbpcSboS3R62Q6su8zb/z4ds3BGdpVEatok37okzehxJdno6nTjuI9cW9vTqdYF1HfH/fVoK00610Uv/k6JuViOHdNdzWoBOGYRAP35b2x0SbUdI9TdaC8vlD4/HvyrEBi9LrRLjXm+9WR0+nGdGSqXrkmT9/Pl5//XW89dZb2LNnD+bMmYOmpibMmjULADBz5kwsWLCAS79lyxa89957OHjwIP773//iqquugt1ux8MPP8ylefDBB/H555/j8OHD2LRpE6699lqYzWZMnz5dg1uMHNQMRBY4oroqWSUULj4snuAHkzK2PqbuWUg9O18VssD4sAgtLGYT471e6NGP8uMkScQKCRgefSukp4E0Lx4JGdyDq2mExbWBIMMw2u7DxOUL9DCdEB5Mlt+kUk031b1LPAbx4rgEyi5oEvXPuckiq6nCzlWJu66BDCzqI91OmzYNp0+fxsKFC1FTU4MhQ4Zg3bp1nCNudXW1wD+lpaUFjz/+OA4ePIiEhARMmjQJb7/9NlJSUrg0x44dw/Tp03H27FlkZGRg7Nix+Oqrr5CRIR02nnCHAaNqQBlh2ovttt6yCgtf+QnU+BBsR1elDc/TgN43OxE/1vgf5E8WjbUCqeerbmWOzLSDFD7I3tIutrCY3C0sTqdpLnCc+/XuGFuITV8eQe+sRJ9lCQXknoHAwhKEe1/1dfD8BjUNHMcw0uUTJ60YsWAMORcZJbKAjyrqgphoM3426RLNruHd6Tn4+GS3qqysRGVlpeRvGzZsEPx96aWXYvfu3R7zW7VqlS9iRDy/vKRIENZcYL6XaJNlRV2w+aAjaJgVjrdENVNCyjDeQCH7FqHg3sVkJFoDq7Cowcc4LIFcwaAW8Zu6yeTu5KfEwvfoxL7Yk30W/esDHXjMmPi8u7qPXGj1vu+WT6iom4MFlgzfLqGkbrnixhmn3ZhEzzvabMKIgjQgQ7RRZ4CCyumFoY3fBDzWmnjRPKm3ChZrcQUMMzGON1s5hy0pp1utCbapUenlPClooebfIrn5YTBGNIW4+7CY3OqFm9eGxD1Fm00YnJeMKFOAujSDPHc5KQTPOZD7HnVeZ1wv/Z3Su3eJ955IAn5ZuZYne3q+RrIxOPD9hVI9IbtKiDAWbh27l3q754QrwF4Ha0axhzcU/rLmQA1wZbyIk2/9YmRArgG4yuV0o7LtDzITrbK/GWisRzDisAS6rxJbWMwm9y39xFNCgUftdfSvFCZB3CSNM5eoBNcOzXNPJ+MQ7A/ah0RjBANwtIIoiv61gcDUDbNGz9uz063v+QYK2q05THAEQ/Jcwy60ugaHz+3FiPUQol2NA6+vpCdYsXPhFYi1mGGN8i1cfCDITJJf9ht4z3mBvVpKAFW5BdcipP5a4q0OohQ43bpuydP1DNjb+gTj8U8nmm1WqpDAxRlRdr+A72/+Ft7WIjFetqlgYUT7iuiF0o+6rqSfN9L9k4UljBD2U+4Vkf97PeI9Bw0KkskxJc4ScGUlUOIHOtaCV3yMw6KGQHdWbaIpIZOJQa4oOFpgAo8rxX+lUUvkrtzOK0fNdQlzFNClp2MlTWxq5zXU+YX5CgN5y5pPdZNhBNOGSvy5vEW11QOtAgXeODwffbMTBSExnHDtzkAaC1lYDI9vlVHy5Vz0t6eKHmXmNwg/LxwCZCZaAZX+mstvKQmMMBpirCksd9pE0ZmjTAx+O3UgokwMbi3rDuA7xaH5g0Yg58l8zJu/LD8gVsDBNzpk68w71Hy5fOGl6UPx5qff4YreWd4TBxn+FKA/bTzeGoV186RXFhnxERtPdSR8gmEcnX1GohWx0Wbkp8ZJpvH0N59gOnUFGvk3dNfxmE4rz9PXDPCSl4u0+EBE4lSDEh8WYz87sYXFbGKQmRSDV24p4aING+MODCKFzPPkbzvBBMrpNhgrkUT3x//roYo+Abie/E9TinPx3j1jOndzNhbBiJPlxEj7rJGFJYxgGAabHr0cNjsrmKflfhfv/OqhngvisBijr/YZJfJXn28GoNwxFwB6Zib6KpI8Ghe2vwOLKj8BH2QX+7BI+ka4KdoKrhPISqtG8w8SObzAYcEQJ2jPgJeF2xSsb3NCMocDVWgBChwXBOVR/1rtDiksYYOjekWbTZD1I+PVQBbAl/vPyuYm3PzQiFU3MGyrNmAcD9ny994ZGt065mZhkZDXTdHmvhj73nzD89I/uTtO5Q3mwZgGDNZUY6D9l9Tlbpz6xpck0GEKDLSqmaaEDI/H0NyskmSuNCouq10cFv1ruxLxm1jHG2qi1fM0T6iNkYHeNdZfxBYWuc7Xk/OlC43qWqg9ZIgGMKNYWHzL2e1IIHqQATmODXNHFXXxklLj+9So3PjZBOylpDNfIyksZGGJINTU63CKdOsNlmXxH7sjDszVQ3J1loaR+S6Bgp7E6GNvK09hSfSwYRx/gNTlngxSkGIxXp4xDDjzXdDlMIIe7JNvRWcBlvfPwtheGR5DOxgZ7+3Bfy3DAI/YDVJYwgQllUvN23Yk+bDYWJazsIw1QARP5QR+SkjV25UP13JOCf16Ur/OVUEyWavN2ODxZ7Tgl5cUoeegHOAzkcUjkJFuOzH6VKM3GDAhq6wAoteaQE8JBTR3ddCUUJigpP8Y18u1maQ383owvdB1Q8Lk6T2QUmiVhb8DS6AfvVNhSY23eA7ixfA3P+wUqqU+sMLpgQoNUc+aGLgZIV7G0Y54PIft2dyh8n6Z3HdtpyqC7YzrH8r3jvJdfiPeOikshkdZrVHinJYSq3wZrs9xWAyJ5xuw83q+gO1FoxX8XkRBj+3vs6sYkI1emQmYPrKbfxnJ4FRYvIVIZ6T+OBmEqRDd677Y6Vbex0f6jMCgTBH2U5IRdwD9r8Y3bB8ut9dnDvcvz6ATmKch8FkS/KW9PcRIewnRlFAI0y3NFWtF2SpD5Y2H3yEdPtOkSq5Qw67CwhL4yPxSF5C5qNm7Aip+5mpjWcREm/HxA5cEzMrW1unDYpVYhs+ng/eQ9NEhgnVVb/sSSH4VJgmCqPEWqaFDiwvz8rAmAlkDYMdh169GfO3XAZNXHxb/cWZrHHWFLCwhzTVDJDYg84BdhabMHyD4371iwA7Fm0h2lgULBgxjrJ2MvWL1HgdGfDveV0W4E8iYG85VQlJxg8Q4a6EBq1jQkL11BYqMliTHRWOqzg7qPr34q648xqxswVglZETlkBQWo+Oh0phNDPpmOwatqVK7p4pQsycGfxddI21MGAicHZ+SjcDUTKv5jSJFwfMzFXc6RuuDnFNCFrOR6pjKQtKyUH00v4snjoKB3ivq+nUuTdaGQNkRApMvv5oE2gHaQDNCNCUU6vxf5RicbmxFV4lQ/GKETo2eKzm/khptkFOLN/FtnRYkJauoHpnYF8fOX8RNI/M1kMwX1D0MsVXNaI+SU1gUWFicyN6DkXrWACH05ZHxZwlSg223BaC8Fcj+4b1jUbXnFH55aZGWF1aQxjj1i7+kmyLdEiGDNcqsSFlRS1kP19RBdChNk0gg34E7Vwk5Gr8Sh9v0BCv+dtcorUSTlUkr7Gqm83Sg1ZvCwlNCuJVtemjQemntCnd+1CNOTYdYYRFb+wIkyMC8ZAzMS/bxbBmZ5Nq+Qd/WhC+UgZbROH0ITQkRkkTzpo/U+XUYs4F7wun4GXqSeycj0RrU6906Sj6WihTOspddJXT6R7dD4ficlBLoUPVq6LALoxSjWyAVeUIOQfd8oVazfJ16kJEMl6SwGB79OqgeGfEAgEE+v80YA28luPb7k2DBoLG1IyjyqMaPN6hgO879YmwhAM9Ra/k0dZa59KoTAC0NmsgVWLQs49DxYeGz154PWBM0yEledk2qskEtJmrh1xKBD8u2tzS7hpGUYyc0JRShKNGaX55RgqPnmnF530zviUOQ/acb0RNA3cV2vUUJGoF+WXJ2cUqUvw6bHc1tDufuJAXOzK7AcQTgYewN0qA8oiANh4JyJT1RF/coWPBjo0g63Wooq3HumiwshAf6ZCeivH+WIZe3qUFO/H99eyK4gijBW1kb/FnwO8+vDsrvBg4AF3hKTWKM8nengNdHQf4q4uLoiCAyf5CumZsSG6QrEWL4SkTAQvPTlBBBGAcjNURpjDcwytNp/eCJ/OrnBzye0djiUFhiok0CnynfCeQDDdKzcKuU6q9rHJ3WMILwMKJM/uFxWbM/08k+nxk4SGExOsbpfZRhQHnl5mL5C2gMr7uEIQ0tjqm4xBhlsW3cnlF0jLYChQlG9D0gtCWYYSd82hU7QJDCEqF42/wwEvhyv+cpC33w8lxOua+aMRKCrY68pG246LCwqJkOElyj4BLxL6ryUXdRT78ZwenWJQNLTVs7BBXaLp8uyCTzfL4CF+k2INn6BTndEmGPERueOkLnBtT4l9Q0XAQAZCeps5RwV4gSL9kO4Jug0Vcr8X1YQqe6BJ8wKZyMRCtemj4UsdFmmCMo0i1ZWCKMCX2zgntBI9V2IuDwu05vj7613fHGGmdRFpbfFTjOB8H85fReHS4qTXJsNBiGQR7P6dWbm3A4QFNdQqYU56K8f+D6c2d5G6kHJwuL4dG2kVKTJwKJmikhNRsfCq4RSbVY4u35trIC2FkWUTKOymFiRDAIWhdm6DwcI9YjUlgijGiVg4N6DFjLFWEQuZnQtu2rmU93huXXZoWQluhY7goskiaGcStnQ9YUX+pvwOu8IUvK0LAGspIbracgAkz3NMe+Q5HkdCvXBxqnGYYPwikhzyXs3DxP+S7iRg0cZwCJBHFYqFsn/MeI70s+1exly5ahoKAAMTExKC0txdatW2XTtre346mnnkKPHj0QExOD4uJirFu3zq88Cd/hV8L7Lu+pnyBBJNQD32lJwF6WnGWsoqidOzWrtfqp29vKT4Jed/x/QFTdPaC2cKgwDYVqhWX16tWYP38+Fi1ahO3bt6O4uBgVFRU4deqUZPrHH38cr776Kl566SXs3r0bd999N6699lrs2LHD5zwjigA2GLIwhAgh1Gmq8S/hfFhUTgmZ5RQWA5mugw2/3ElBJ7SAc7o1ULNSrbAsWbIEs2fPxqxZs9C/f38sX74ccXFxWLFihWT6t99+G4899hgmTZqEoqIizJkzB5MmTcLzzz/vc56E7/A7s0NnmnSUJHiEVvcdWGmjAmydUDNWtvnodBvoeyCI0Cc8LXWqeoq2tjZs27YN5eXlrgxMJpSXl2Pz5s2S57S2tiImRhhnITY2Fhs3bvQrz4aGBsGHUAcL4JvD57XP2Ii1XAGh69OjrmMa3DWwO2+rWdbsnBJSa2EJVKAs5YhuLKDy+BCaPwBSeEO6/WgsiSbZqc1E77qmPyEb6fbMmTOw2WzIyhKu/c7KykJNTY3kORUVFViyZAn27dsHu92O9evX47333sPJkyd9znPx4sVITk7mPvn5+WpuI6LhNz+7kWx9AUT38c1ABHq6gK9MeKtfO47WAfAwxeONcHywWrTJcCwXAOkJFr1FMCYen3d41YWAu5O/8MIL6NWrF/r27QuLxYLKykrMmjULJpPvl16wYAHq6+u5z9GjRzWU2GiQD0ugMKRVxetOwW4nBEoSn+CL39Ju85j2206FZc33JwMoUeQRbvrKspuH4e5Le+CyPpl6ixKRGOm9VpXWkJ6eDrPZjNraWsHx2tpaZGdnS56TkZGBDz74AE1NTThy5Ah+/PFHJCQkoKioyOc8rVYrkpKSBB9CGfzOzG43UE0MIEodQScPygmwJOEPv6y3V9cpOmf/qQsBksZHVCuNWhIZbVINkwfn4NGJfbWxDtIqIcU4yztkFRaLxYKSkhJUVVVxx+x2O6qqqlBWVubx3JiYGOTl5aGjowP//Oc/cc011/idJ+E7LJgATQmFXgOPtzjiJ84Z30NnSeQIoTL1QVRD+9CG4IAVUZGAiYBhxFqkOtLt/Pnzcdttt2H48OEYOXIkli5diqamJsyaNQsAMHPmTOTl5WHx4sUAgC1btuD48eMYMmQIjh8/jieffBJ2ux0PP/yw4jwjGlrW7DfeipDt/OjvzBnKdAZ186EIffZhCQo6T8v5UKB6VGNGqjcxZHvSWSZz6AWXN9I4obr0pk2bhtOnT2PhwoWoqanBkCFDsG7dOs5ptrq6WuCf0tLSgscffxwHDx5EQkICJk2ahLfffhspKSmK8yS0g//2ZYuQKSGvdFqa/HCr0hAjdvLK8UX6S3tneE2THBsNNHpLFYD6HOxBV5NbCJ7M+alxOHq+GV1TY70nDkk0Kss+E4Hj3wA9LtcmvyBgRH3TJ3WvsrISlZWVkr9t2LBB8Pell16K3bt3+5UnoSFBr4T6K0XebtkpIZnS/UeNlcrEAHYWmD2uyGvaoD6ZRJ7vnL0jmFfWhGAGjps0KAc/nKhHr4G9gnbNkCR3iOMTgtBeQoRuOLsyloZnbpUQyzq+G25mwoivOF5QI3JOsuOt3Bpt9p5vMGtrdrHre0db8K4bgsRGmzG8exqS46L1FkUZIdim9MKpp7z91RF9BeFBCovRCWADC8ibmFueBuggFPiwAKEa0tw4bz+AOsXCOSVpVlDuQX00IVkPXIS29AYjxOuCP3z+02kAwHfH6nWWxAUpLBFG8Juf/gOq90G004fFCH2TVAfpZ6d5dXGuX+erQY2oNkP5DvmBpvVG3F5Cw+mWMBgGmsbRklDvKgi1UGfmhrNth6aFxbvMSbHGXJngjAOkZJUQ+YerwSj12Chy8DGiTIRSSGGJMIS7uuooSBBRtqzZgD4sRqd4mtshNXXKGQdIyZSQdMygAD0wPRtGmL4ZEzoRZp08KSwRCgt613DiHCNCMw6L9wEuYGNgUp7re2fRqSlDpw+LyZOmaE0AAKQnWFWLF/5IP9iQrMZGhQrTUJDCEsHEWQIxVWC8Bi4nESv6Zoy+yRBC+Iwa6Z3TPB4tLEWXAQDK+2XitrLuuKFigu/CBQwtn5n/2mVo16AAY4xGTvgIKSwRTGF6vN4iGALjrhIymjzeUVOGnIXF0zlmx3LZOEsUfnPNQHQdM10+bTjOpviwE6/hqrEaQlp4vYicMiOFhQh7vA2ijjgsBlklJIl/28cHbhx3v7aaIvRplZDJe8yWiMcog75R5BBgRJkIpZDCErEwxuxPdMTjm37fScERIgAPJZh+nKqcblWsElJGOJpYlBMX7ZjiHdYtVWdJCCIwGHO9IxEUImVBgrfh0LkCRXawtcQDOcUyP+qN94doD+KaYFVTQipWCUUMqhqlMO0vxhagw8YiJp4clInwhBQWQltCbPA53+wKvS4bYC4qJkjSBAabATVTlmVdq7O0srAY8D6DSZTJhCiymXsmxPono9DSbsOGvadgNplwRX/9NiWm6k2EPZ76qJP1LQBCOQ6LghgmBoy6xheJLCyeoLIh9OdcUxvu/p/tmPvOdl3lIIUlQmEj2IelV6YjtgcDoMNu544bLg6LRvIEx8IiLWv9xXbJ4zaexqKZhUUvHxZN640G96BLPTZY2zEM4VEuHTZHvWzrsHtJGVhIYYlgIsWCLp7qmTWmEADQs1Nx4dIZtW/xKJj3h9iho4XlT+t/kjzOj1yrndMtYSyM+FyDJFPhOCAmGeg+OjjXc0PbNv/L/9mmaX6+QgoLEf6I+ijn+M+KGrXx4rBow+V9MgEACdbgu6zVdE65iRFYWHwt9nB8XpHyFhHuFIwFyu7hIjWHOntONugtAgByuiW0JgQGEecAyTo2EXJ8D1UfFgUD3LVD85CWYMHA3GRtr81/1jbpqR+zWbpQ+dNUmk3FBXKwzx0KnNgR+OuEKiHQ7gEY0+gTUMLrhklhiVCC1uUaoHMX96WMy8QiKAdD+LAEQAaTicFlnVaWYBMlowU2tXZw30NiSig+I0gXErUXI9TJoBJp90uogaaEiIjD2SWKVamIGxuCgJwy8tx/fnSl0azgg6QcG76iGF0+gvANsrAQgcUAnbtYAqclhRVZfwxhYQkz5Cwsn/54ivvucZVQWhFgTQQSs7UWzXcMYDU0HhLP0JDNyZBCEQohCwuhPYWXuL4bsHOX27vGTV/J7Ov4v9uogMojDyP6P/SQs7BEmxV2PeZoYNQ9wMDr3X8zGeV9S8PnY8D2QhBGwSgtnggnCsYAh77QWwoO8eof5zJnlhWOD26RbvtdAxReCsSlBVpEgXThhJzCIrZueUSsYRZeAjSeBNJ6iDNVKR2hGaFinWy/qLcE2hMqZa8BpLBEKGyYDYxq4C9rjol2DYZuY6vJFGRlJfyIkjFn+RUapmCMHycbnUh3ug0wF2r0loDwA5oSIsIeOR8WALBGmQE4FLgopdMUhGLk/IJUWVgUQxYWAKTkeITKJpShHpqIOHirmtHc5lheOzBP4xglvhJmg02sJQAWlnAmZKe1pOqtD3U5rovfkhDhC00JEWGPWAfg3vpZFuv31AIAdh2vD7JU4YD3ASk22ix53B6IgTlkB3uCo9eVgNkC5AzWW5LQJkzbAllYIpTwrM7KkIvDYjicipUnq8vgnwPRMcCgG4Ijk0osUXIWFsOXvk5EeLlY4oC+k4DkroHJP8wsmJEGKSxE2OO2+scJy/8aoh1Zlx7AmHlAei+9JZFEbvlyYHZ9DYfdmn1g4HX6Xh/QvwwIacLsuZDCEsFkJln1FiEoyLVZY77L+tDBGLhTkgscd2NJvvYXsyZpn2cokNFHdMC49YEg/IF8WCKQa4bk4eiFLDw2qZ/eouhKYFaqEHzkSjgp1tH1/PKSIu0uljUQaDoNpHTXLs9gQ3UywJAyF8r4ZGFZtmwZCgoKEBMTg9LSUmzdutVj+qVLl6JPnz6IjY1Ffn4+HnjgAbS0uLadf/LJJ8EwjODTt29fX0QjFFDYJR7P/3wIuiREhoVFDA0JgWXacJf1RG78tXXOCHkMy68WkwnoOQFI76ldnoRCpELzk3JAaItqhWX16tWYP38+Fi1ahO3bt6O4uBgVFRU4deqUZPp33nkHjz76KBYtWoQ9e/bgjTfewOrVq/HYY48J0g0YMAAnT57kPhs3bvTtjghCIazAh4XQioVT+nPf5axYNrtDY5GbMopcQqwmxnROw7lNSxGE9qhWWJYsWYLZs2dj1qxZ6N+/P5YvX464uDisWLFCMv2mTZswZswY3HzzzSgoKMCVV16J6dOnu1lloqKikJ2dzX3S09N9uyOCECHvw2LAwUFS2NAa1OOtUfjZ4BwA0vFWWJbFqq+PAgjRDSft7XpLYBxG3AmMuANIK9RbEmWEYn0zEKvu0mtfNQeqFJa2tjZs27YN5eXlrgxMJpSXl2Pz5s2S54wePRrbtm3jFJSDBw9i7dq1mDRpkiDdvn37kJubi6KiIsyYMQPV1dWycrS2tqKhoUHwIQilOF/6DaiuiDB45+qh83fu3yRVxh/9UIvWjhC2sHS0BS5vLXxYgjkoR1mBhMzgXY/QBecWJnkpsbrKoUphOXPmDGw2G7KysgTHs7KyUFMjvUfDzTffjKeeegpjx45FdHQ0evTogfHjxwumhEpLS7Fy5UqsW7cOr7zyCg4dOoRx48ahsbFRMs/FixcjOTmZ++TnB2DFARE2iJc1ZzlXR5GDY8DgYt1IlPEPJ1xB+jT1YdENDe8ha4B2eREShEN9ExP4ezJKZOqAL2vesGEDnn32Wbz88svYvn073nvvPaxZswZPP/00l2bixIm48cYbMXjwYFRUVGDt2rWoq6vDu+++K5nnggULUF9fz32OHj0a6NsgfMYgNZ2HMzbI6cZW7phx4rAYRQ7/8KSH8HUYud2cQwveDQ2f5V9WYWWtCIdnSwCAvVNj0XtGTdWy5vT0dJjNZtTW1gqO19bWIjs7W/KcJ554ArfeeivuvPNOAMCgQYPQ1NSEu+66C7/+9a9hktjNNSUlBb1798b+/fsl87RarbBaI3OFC6EecSNrau3QRxAtMIVGJAJuSkhCX+VHuQ3JKSFPxKToLQFBaI6zzertc6bKwmKxWFBSUoKqqirumN1uR1VVFcrKyiTPaW5udlNKzObOHXJlTPIXLlzAgQMHkJOTo0Y8wpAYb0BqDUiU1SBhvOKUxCmmVAh+vnlZ7w5QG8LhHiKEsKhvStDWsu3MTe/iU/26Nn/+fNx2220YPnw4Ro4ciaVLl6KpqQmzZjlMoTNnzkReXh4WL14MAJgyZQqWLFmCoUOHorS0FPv378cTTzyBKVOmcIrLgw8+iClTpqB79+44ceIEFi1aBLPZjOnTp2t4q4Q+6D8l5NbGQq3P0ruX8AXejthi+C8q4TElZDSoTAltcTZZ2W1OgoRqhWXatGk4ffo0Fi5ciJqaGgwZMgTr1q3jHHGrq6sFFpXHH38cDMPg8ccfx/Hjx5GRkYEpU6bgt7/9LZfm2LFjmD59Os6ePYuMjAyMHTsWX331FTIyMjS4RUKSUBwEfYQR3avUnRvGh4Uvawg/I2fHJmVE5R8ihYUgAom27UvvLsmnCfHKykpUVlZK/rZhwwbhBaKisGjRIixatEg2v1WrVvkiBkH4hFiBIbTHxFlYJKaE7GRhiQgM2c6MKFPooHfp0eaHRNgjbmR6N7rwwVMcFsf/0k63ru9nL7S6JyAIwpjo3HmSwkJEHFKOnvp72nggBOPFuKaE3GXvsLucns82BTAIW6RiSMsGEQ7o7cNCCotRKLwkyBeMnE5N3H8buz/3JpyhhefwZGFpabdx38NuWTNhbIzd+A2P3s2VFBaj0H00kN5LbykIQhM8heaPs7hc56LMYdAF0SBIRAh6+/+FQW8RJjAMENdFeCyrv3RaQhVKVgkR2uLJwhJrMQdXGILgoNbvD3qXHiksRqb/NXpLEJZwQZAEx/RuilIYUSZlcHsJSdhY2nmB++xG2aSECAChW38JafQ2JpLCEqnoXfMIaSSfS+gN6s7bkNJH2m0uhcUWbgqLIdqVEWQgwhFyuiVcGKKzIwxNiNQRrmOTmBNqs7mOdUmgPcGIIBIi7UcVwbynUAwcRxChTMitEjZFu75HxeonhxgPHaUrcJwLlmXxy7e34ePdrs1TZ40pCIxsBBHJBKiT01vfIwuLoQhD7T9kMHDZ8zcPNUfLpzMQUrs1bztyXqCsPD65H2KiyQGXIAKGxhqG3puVksJCEETA4Dvd/v6jvYLfLFHh0v3o1Ikb3VSo9+s4oTl6P9Fw6THCj8x+Ab6A3lVPP6RWrhiH8HgunpxunUSZqPsJCKQoeIDKxh/0rlrUYxiVovF6SxC2JMaExrRKKPetUrs1i2+HotwSRGhBq4QIF3qrrxFCcddkvUUIe6R2axbPf5tIYSGCDfWxfqF38ZHCQkQceoeXjgS4IuZZWMQzQOEQlV9XqB4TEQZ1GZFKsDo7ozsGEgHB015CTvRecWBYoizK0hm+bdHzDTf0brKksBgVvWsGQXjDQx11/uIp9D4pLDKYFSosslC5ykNl4w96t1lSWIiIhTHiaqFwGcQlAseJ0bvzIwhCHXq3WFJYCMKw8LqH/JGO/3tcro8oKjFJBI4Tz2CEp89tgG9q2K2BzZ8gPKC3/x+F5jcUwawMYTlahC89JwAFY4Go0Nh7R2q3ZjeFJVw0lmB24sldg3etcCRirHoBCs0fkFyVQxYWI9HawPtD76oRWSy/pURvEbwTIsoK4BoXPPmF0pQQQYQWejdZUliMRGON3hJEJFmJMbhqYLbeYoQVrsBxPAuL6K0vXAwshkPvUcWJUeQQYESZAom296v3lBApLIbCgE6gEUC/nES9RQg7GAmn27CdEiIIIiiQwkJEPGZD7WnDG8QN+YaqDKndmsWbHdKUEEGEDkZ4vzBST00INl4JcO2gwYKDLCzaI+V0O6qoiyCNETpAIsIIx34vSAEE9Z4OAkhhIQgD7xqsfwfhK0qcbs0G6AAJglCGEVqrUXtqggg4hgwcFyZwTre8Y+Kot0Z4Y9MGg92HYcrVKHJ4YegMvSXwDyY4w7gRqhUpLARhVIzQQ/iIy8LiUlJsInOLmeaE/MOaoLcE4UFKN70l8I8AWYjFu9ozBlBASWExEoIOPdCVQ//KR4QvJokpocaWDkEa1vCb9xmUwT8H0nsBva7UWxIijHn9tuGCv9tsdp0kcUGRbgnCSISwVYWP1CqhNzYeEqSxedgYkfBAlx6OD0EEkMzEGMREm9DSrr+i4sQnC8uyZctQUFCAmJgYlJaWYuvWrR7TL126FH369EFsbCzy8/PxwAMPoKWlxa88wxPqwAk+oa+8iIPF8RFPERmSrAGdXxTKGiYKZ9hCz0cVRpgG4qNaYVm9ejXmz5+PRYsWYfv27SguLkZFRQVOnTolmf6dd97Bo48+ikWLFmHPnj144403sHr1ajz22GM+50kQhLFRskooJAwssSl6SxC6kHKgHxq9DBjtEapWWJYsWYLZs2dj1qxZ6N+/P5YvX464uDisWLFCMv2mTZswZswY3HzzzSgoKMCVV16J6dOnCywoavMMWygOC8EnhJ+R883Mk1ISE0UudAQRUPzsQ4zWA6nqMdra2rBt2zaUl5e7MjCZUF5ejs2bN0ueM3r0aGzbto1TUA4ePIi1a9di0qRJPufZ2tqKhoYGwYcwKqHwGk1oDed06+H5D+2WGiRpAozWimUoTJWFLEYbgo2N0UIPqHK6PXPmDGw2G7KysgTHs7Ky8OOPP0qec/PNN+PMmTMYO3YsWJZFR0cH7r77bm5KyJc8Fy9ejN/85jdqRA8RqKMiwgOun/NQpcWh+g0NKRHqScjynobQhpgkoEX7F3djqStBWNa8YcMGPPvss3j55Zexfft2vPfee1izZg2efvppn/NcsGAB6uvruc/Ro0c1lJgg9ISR+R5aSAWOIxRisLda1YyaA5TcBsSl6S2JO6FetnIMnub432TWV44Ao8rCkp6eDrPZjNraWsHx2tpaZGdnS57zxBNP4NZbb8Wdd94JABg0aBCamppw11134de//rVPeVqtVlitVjWihyAUh4UIXaQCx4UmOrSTUC+z2BRyVg42JudQrnF9NdgwocrCYrFYUFJSgqqqKu6Y3W5HVVUVysrKJM9pbm6GSRSJz2x2aIEsy/qUZ9gS6h0VoS1h8DYYEiuBFBE2N0LwGTBVbwm0QckcrC/Zapqb/6gOHDd//nzcdtttGD58OEaOHImlS5eiqakJs2bNAgDMnDkTeXl5WLx4MQBgypQpWLJkCYYOHYrS0lLs378fTzzxBKZMmcIpLt7yJAgitDAxNCVEGJyRs4H4dL2lMDQh7XQLANOmTcPp06excOFC1NTUYMiQIVi3bh3nNFtdXS2wqDz++ONgGAaPP/44jh8/joyMDEyZMgW//e1vFedJEERoET5TQjpgsEEivAgPH7FgYbSq6FNo/srKSlRWVkr+tmHDBuEFoqKwaNEiLFq0yOc8CSJiYMKjQw2MgVpHgql4kZIXOIw2AmtGYO7LaKUVQusKIwEKHEeEB5wpOeLGXmpXRPhgtCkhUlgIwkic5sUeMlhnoQZn4Dh7RFgLQvc5EWEG197Cs92RwmIkIqJzJzzSekFvCbRBYrdmgtAfUi7VYLTSIoWFIAjNcfmwuDQWs8lo3Z8aSPMiIg+jGXlJYTEU/E6RAscRofuMpHZrDml9hQg/jDYaGxJjlREpLARBaI44ND/Lsmi3kZWC0Bm+kkLzlV4xmk5HCgtBGBWj9RYq4HZr7hwUPvzupI7SaAANboSRCVBfYbQeiBQWI0GdIhEmiKeEPtlTK5+YIPQghF8IIhVSWIwKxWEJOAw5UgYM8ZRQ+OwpJAG1JSJMMVrVJoWFIAyLwXoLNYimhEI/Hkuoy084COE2pQitNz80VnmRwmIowrBTDPmBivAFcWh+e6iaWIz2ikkQQcRo1Z8UFoIgNMe5W3Nzqw1ACFtYQlVugtAAg+krpLAYCpbisBA8jPZ6o4LjdRcBAFsPnwMA2Ox6ShNEQviZRQT0fFRBewkRBBH2bNx/RvD3l6K/QwapCHgEYVRYFmg6E7b1lRQWIiLJSLTqLUJEcbHdprcIkUFaod4SGBxjWQy0g3dfW1/nHQ6v+yWFxVCEp1ZsRJ67bhAAICU2WmdJIpMxPbvoLYJKPLXN8BoUIoYwG8wDgdGKKEpvAQgZjFZTwozL+2ai8IbB6Hr+ot6ieCB064Anyat+dSnyU+OCJgtBcJgiZMiza2PRNNowRBaWSMVoNTHIMAyDoowEWMzUBAKBp+pVlB4PS1SIlXtmf70lUEhkt2uv5I/g/RHGZcVqpLAYrIxCrNcIc8LUUYqIPDx1dEZbeaCIuDSXFsZQtxmyRMW6vodiPVSKRmOJ0YooQuxjBBGCGK23iHSG3wEc/AwoGKe3JIQWkOLpFaP1QKSwGAqysAQVsmgFjLDUtRIygME/11sKwi/8aPMhVanDs28jFTNiCaXGRxAEoQH+BOfMHqypKKEAf/p28qAcHSVxQAoLQRiW0FUqQ+plNJyggvcCT2EJpymhAD13fq6/GKt/jJ8wemJhAE1REGGC0VYXBI9Ive8Qgd/HhrNyp9VYwisis0n/8iKFhSAIgogMonmrhMwU7dobjMx3vSCn20glnN8uCN2JqOplqJs1kiwGxGQGxs0HwAAmhe/r5mjA1g506RFQ0bRFq2XNDO+7Jln6BSkshoKmhAgeBuggiBAjIVNvCYxPlErLyqg5QNNpIKV7YOQJKNp1IkaY5iWFhSAIzZELDnf9sK5BliQU8eHFZfgs4Ox+IL9Ue3EiHUu84xOBCKaE9NdXyIfFUFiTXN/DZs8LshpFIv1zXHV5z8kG7vtVA7P1ECf8ScwGCsY6pi8IIgCRbklhIUQYrHYQOhO6deDG4S5LSuU727nvBlhoQBBhSKCWNTOS3/XCJ4Vl2bJlKCgoQExMDEpLS7F161bZtOPHjwfDMG6fyZMnc2luv/12t9+vuuoqX0QjlBI0hUj/Sk4EH3Nn/UqwRqGp1bURmynkFHE95A21MiLCFX5zVeqjHEhUzzusXr0a8+fPx/Lly1FaWoqlS5eioqICe/fuRWamu8PXe++9h7a2Nu7vs2fPori4GDfeeKMg3VVXXYU333yT+9tqpSVn4QFNCakiZzBw8ju9pfAbZ0fHsixYXh0IOX1FEVrfFLUZwl+0r0MhaWFZsmQJZs+ejVmzZqF///5Yvnw54uLisGLFCsn0aWlpyM7O5j7r169HXFycm8JitVoF6VJTU327o5CGOqrgYsDyTspzfWft+snhJ87OTVzCIblTM0EQhnjZUKWwtLW1Ydu2bSgvL3dlYDKhvLwcmzdvVpTHG2+8gZtuugnx8UKv6w0bNiAzMxN9+vTBnDlzcPbsWTWihQcZfRz/x0aiska4cXqv3hL4jMvCIvT/Ix8WgggCmjnd8n1Y9EfVlNCZM2dgs9mQlZUlOJ6VlYUff/zR6/lbt27Frl278MYbbwiOX3XVVbjuuutQWFiIAwcO4LHHHsPEiROxefNmmM1mt3xaW1vR2trK/d3Q0OCWJiTpPhaIzwRSQ3G9vwhzFGDrANKK9JYkdGFt3tMYHOGEUCj6sBBE5CJc1qx/2w3q2tk33ngDgwYNwsiRIwXHb7rpJu77oEGDMHjwYPTo0QMbNmzAhAkT3PJZvHgxfvOb3wRc3qBjjgKy+usthTaMmgu01ANJ+u/wGVIIOgX9Owhf4VtYzje1uR0PW8L+BolIIqSXNaenp8NsNqO2tlZwvLa2FtnZnuMrNDU1YdWqVbjjjju8XqeoqAjp6enYv3+/5O8LFixAfX099zl69KjymyCCgyWOlJUIxvk2xgLosLtsLGRhIYhgEIA4LJrk6B+qFBaLxYKSkhJUVVVxx+x2O6qqqlBWVubx3L///e9obW3FLbfc4vU6x44dw9mzZ5GTIz3gWa1WJCUlCT4EQRgQUb9phE6PIMIOuRcBP18Q+CuDjPCyoXqV0Pz58/H666/jrbfewp49ezBnzhw0NTVh1qxZAICZM2diwYIFbue98cYbmDp1Krp06SI4fuHCBTz00EP46quvcPjwYVRVVeGaa65Bz549UVFR4eNtEUSI0uGaPjGEDdZH5CQ3haPXrdbPKbNzWjghQ9t8icghTCPdqvZhmTZtGk6fPo2FCxeipqYGQ4YMwbp16zhH3OrqaphEEWb27t2LjRs34uOPP3bLz2w247vvvsNbb72Furo65Obm4sorr8TTTz9NsViIyOP4N3pLoAmcD4vIxGKAPs/4FF3mWN6eWqC3JATBYYQ4LD453VZWVqKyslLytw0bNrgd69OnD1gZjS82NhYfffSRL2IQRPhha+f9oX8H4StcHBZRsw85C0t0TPCvGU7O90RIY7TND8Nlhz2CUI9GZlPCHZeFRYgR5sEV0e9nwLlDQM4QvSUhCP3gx2ExQNMlhYUgCM1x9m1iy2rIGFiyBzk+BBGSaOTDwv9uAI3FANsZEQQRdoS6hYUgQplAON1qkqN/kMJCEITvFE8DoqzAgGslfxb3m6SvEEToYDQfFlJYiIigR0a8+0FLXPAF8QpvhDdCD+GNtCJg7ANAZl/BYbkVBWRhIYhAEPh2ZYS2Sz4sREQgOf+aPRioP07LR/1Fomzl+jYjdHoEQSgjpDc/JIiwwmR2rAYxLEboInyDL3lavAXnOvcTCnt9JexvkAgNtHe6NUJ3RFNCRERggLYWUfDfzPJTY7nvIbNKiCBCGY0iNvD1byNYR0lhIQgjESaxYfhdm13glqN/p0cQkYN2ewkZoeWSwkIQhObw9RI7S7s1E0Qowt9awwgvG6SwEIRRMUAH4Sv8NzO+0YimhAgidOC3XSM0XVJYCIIIKPxJLrKwEEQAcGtX2k8tG6HtksJCRAQGaGsK4Xc0ISO0OzzR+eH5Q+c5EAQhUHsM0HZJYSEIQnMoDgtB6IhGzvvbjpznvhuh6ZLCQkQEcpFXDUdsmt4SaAK/tIU+LCHyHNQQjvdEECKM0HZJYSEiAgO0NWUUjNVbAk3grygQrhLSQxqCIPzFCE2XFBYiIjDCkjxFRFn1lkATBBYWuR8IgggQ2jvdGqELJYUlEkgr0lsC3TFAW1OPEXoIH5GLwxIyU3MEQeDm0m7cdyO0XVJYIoFBNwAjZ+stha6YqKbrht1Oq4QIIqgEIGK2EdoudeORgMkMxKfrLYWuGOHtQBmMzPfQgl/etjDZboAgjItMX+GnliEIHGeA7ogUFiIiIGfP4MLv3Gw2UlgIItQxwksfKSxEZGCE14MIJfwtLFS3iPDHCC99pLAQEYERGlskIXS61U8OgiD8gTY/JIigo39TUwi/UzBAB+ErfPNxYkwU9z01zqKHOARB+IkReiNSWIiIwAhRGiMJRiIQyyszhsFMpi6CCEmM0IWSwkJEBHeMLQQAjO+TobMkkQG/b3P6sFiiqLshiFDFCFNCUd6TEEToM3FQDj5/aDzyUmL1FiXisHU6sZCViyBCC6P5y5PCQkQM3bvE6y2CAsJjUBfsJdSpsJC+QhABIkIaF9loCYLQHH73eaK+BQBZWAiC8A9SWAiC0Bwp3YQUFoIILYw2JUQKC0EYlRAe4KUc9MJ2gVAIPyeCCCV8UliWLVuGgoICxMTEoLS0FFu3bpVNO378eDAM4/aZPHkyl4ZlWSxcuBA5OTmIjY1FeXk59u3b54toBBHahPHgZwpbjYUgjIqfewnBWCYW1QrL6tWrMX/+fCxatAjbt29HcXExKioqcOrUKcn07733Hk6ePMl9du3aBbPZjBtvvJFL8/vf/x4vvvgili9fji1btiA+Ph4VFRVoaWnx/c4IdyxxektAqCK8BniaEiKI0CLkp4SWLFmC2bNnY9asWejfvz+WL1+OuLg4rFixQjJ9WloasrOzuc/69esRFxfHKSwsy2Lp0qV4/PHHcc0112Dw4MH461//ihMnTuCDDz7w6+YIMTRgEPpBBhaCIPxBlcLS1taGbdu2oby83JWByYTy8nJs3rxZUR5vvPEGbrrpJsTHO5aYHjp0CDU1NYI8k5OTUVpaKptna2srGhoaBB9CAW1NektARDBGCDxFEETookphOXPmDGw2G7KysgTHs7KyUFNT4/X8rVu3YteuXbjzzju5Y87z1OS5ePFiJCcnc5/8/Hw1t0EQBiZ8B3WysBBEoIiMxhXUVUJvvPEGBg0ahJEjR/qVz4IFC1BfX899jh49qpGEBGEgwswiQT4sBBFaGMyFRZ3Ckp6eDrPZjNraWsHx2tpaZGdnezy3qakJq1atwh133CE47jxPTZ5WqxVJSUmCD0EQxiZ8FZZwvS+CMBaqFBaLxYKSkhJUVVVxx+x2O6qqqlBWVubx3L///e9obW3FLbfcIjheWFiI7OxsQZ4NDQ3YsmWL1zwJIrwJr4EwbPUVgghT2jrseosgQPVeQvPnz8dtt92G4cOHY+TIkVi6dCmampowa9YsAMDMmTORl5eHxYsXC8574403MHXqVHTp0kVwnGEYzJs3D8888wx69eqFwsJCPPHEE8jNzcXUqVN9vzOCIAxF+FpYCCI8+de3J/QWQYBqhWXatGk4ffo0Fi5ciJqaGgwZMgTr1q3jnGarq6thMgkNN3v37sXGjRvx8ccfS+b58MMPo6mpCXfddRfq6uowduxYrFu3DjExMT7cEkGEMGE8qJsorjZBBAijeZsEBp92a66srERlZaXkbxs2bHA71qdPH7AeItAwDIOnnnoKTz31lC/iEAQRApCFhSAIf6B3HoIwKmE2wNOyZoIIMuHWh+gtAEEQkQEFjiMIwh9IYSEIQxG+g3rY3hkpYoTeGG3TnwBBCgtBGJbwGgjNNCdEEIGBiYyhPDLukiBCkZRuekugKUyYKWAEYRjMPq2f8UpRenxA8vUVUlgIwqh06am3BJpCMycEEVpkJFr1FkEAKSyRRJgNgGEJf1QPsxE+zG6HIMIeo7VZUlgiCaPVPiKioFVCBEH4AyksBEEEBfK5JQjCH0hhiSToDTfECK/nRU63BEH4AyksBEEEBdKXCYLwB1JYIgoaMQj9CF+FJWxvjCAMBSkskUT4jhhECEBTQgQRbMKrzZHCElGEV+UlQgtyuiWIIBNmL6mksBCEUQmzzoaWNRNEsAmvNkcKSyRBAwahI2Fb+6wJektAEBFBYDYgIAxK2A4ZRAhgCleFOTYVGHAtEB2jtyQEIcTPNme0TaBJYYkkwnXAIEKDcK5+mX31loAgJAivRkdTQgRhWMKsswmv2yGIsMdo77iksEQUBqt9RERBTrcEEWTCrM2RwhJJhFnlJUILqn0EQfgDKSwRBQ0ZhH6ErdMtQRiW8GpzpLBEEjRghBZh9rzC7HYIwvj42ejK+2UBALrEW7SQxm9olVBEQSMGoR+ksBBEaHH76AJ0TY1DSfdUvUUBQApLZEEjBqEjtJcQQQQb/9pclNmEqwZmaySL/9CUEEEQQYH0ZYIIMmHW6EhhiSjCq/ISoQU53RIE4Q+ksEQSNGCEGOH1vMLrbgiCCDaksEQUNGQQ+kH6MkEEmTBrdKSwEAQRFCjSLUEQ/uCTwrJs2TIUFBQgJiYGpaWl2Lp1q8f0dXV1mDt3LnJycmC1WtG7d2+sXbuW+/3JJ58EwzCCT9++tJmY5tB4QRAEEUGEV6evelnz6tWrMX/+fCxfvhylpaVYunQpKioqsHfvXmRmZrqlb2trwxVXXIHMzEz84x//QF5eHo4cOYKUlBRBugEDBuCTTz5xCRZFK661J7wqb9hDFgmCIJQy6Ebg+78Lj4VZH6JaK1iyZAlmz56NWbNmAQCWL1+ONWvWYMWKFXj00Ufd0q9YsQLnzp3Dpk2bEB0dDQAoKChwFyQqCtnZxlnvHZaEWeUlCIIgOknvCTAmgLXrLUnAUDUl1NbWhm3btqG8vNyVgcmE8vJybN68WfKcf/3rXygrK8PcuXORlZWFgQMH4tlnn4XNZhOk27dvH3Jzc1FUVIQZM2agurpaVo7W1lY0NDQIPgRBEARB8Amvl1RVCsuZM2dgs9mQlZUlOJ6VlYWamhrJcw4ePIh//OMfsNlsWLt2LZ544gk8//zzeOaZZ7g0paWlWLlyJdatW4dXXnkFhw4dwrhx49DY2CiZ5+LFi5GcnMx98vPz1dxGBBNelZcgCILgIbaih5lVPeCOIna7HZmZmXjttddgNptRUlKC48eP4w9/+AMWLVoEAJg4cSKXfvDgwSgtLUX37t3x7rvv4o477nDLc8GCBZg/fz73d0NDAyktSgizyksQBEHwCe8+XpXCkp6eDrPZjNraWsHx2tpaWf+TnJwcREdHw2w2c8f69euHmpoatLW1wWJx3wUyJSUFvXv3xv79+yXztFqtsFqtakQnAIR7ZQ4/Qvt59c5KwE+1FwAA/XOSdJaGICKR0O5DxKiaErJYLCgpKUFVVRV3zG63o6qqCmVlZZLnjBkzBvv374fd7nIE+umnn5CTkyOprADAhQsXcODAAeTk5KgRj/CGiVZeEcHj3/eOxVcLJmD/bydizX1j9RaHIMIfsX4SZlZ11XFY5s+fj9dffx1vvfUW9uzZgzlz5qCpqYlbNTRz5kwsWLCASz9nzhycO3cO999/P3766SesWbMGzz77LObOnculefDBB/H555/j8OHD2LRpE6699lqYzWZMnz5dg1skOPJKgIRMoHCc3pIQEYA1yozs5BhEmU0UNI4ggkJ4tzPVr9zTpk3D6dOnsXDhQtTU1GDIkCFYt24d54hbXV0Nk8mlB+Xn5+Ojjz7CAw88gMGDByMvLw/3338/HnnkES7NsWPHMH36dJw9exYZGRkYO3YsvvrqK2RkZGhwiwRHdAwwwt0niCAIgggDbO2iA+GlwDAsy7J6C+EvDQ0NSE5ORn19PZKSaK6cCGGazgBbX3d8v/RhwGT2nJ4gCMLJZ4uFf4+5H7DE6SOLQtSM37SXEEEQBEEQhocUFoIgCIIgDA8pLARBEARBGJ6IWudqs9nQ3i52SiL0QBybh5AivBzmCIIg/CEiFBaWZVFTU4O6ujq9RSF4pKSkIDs7m5a8EgRBBISQX1MjICIUFqeykpmZibi4OBogdYZlWTQ3N+PUqVMAQAECCYIgAoE5vCLCh73CYrPZOGWlS5cueotDdBIbGwsAOHXqFDIzM2l6iCAIQmvM4TXEh73TrdNnJS7O2GvRIxHnMyG/IoIgCMIbYa+wOKFpIONBz4QgCIJQSsQoLAQRElgTXd9JoSMIguAghSUMefLJJzFkyBBV54wfPx7z5s3TXY6IJ8oKlN0DjK4khYUgCIJHeHnkEAAcu1/fe++9qs557733EB0dHSCJCFXEJOstAUEQhOEghSWMYFkWNpsNCQkJSEhIUHVuWlpagKQiCIIgCP+hKSGD09raivvuuw+ZmZmIiYnB2LFj8fXXXwMANmzYAIZh8J///AclJSWwWq3YuHGj21RMR0cH7rvvPqSkpKBLly545JFHcNttt2Hq1KlcGvGUUEFBAZ599ln84he/QGJiIrp164bXXntNINsjjzyC3r17Iy4uDkVFRXjiiSdoxQ9BEAQRECJSYWFZFs1tHbp8WFZd5MGHH34Y//znP/HWW29h+/bt6NmzJyoqKnDu3DkuzaOPPornnnsOe/bsweDBg93y+N3vfof//d//xZtvvokvv/wSDQ0N+OCDD7xe+/nnn8fw4cOxY8cO3HPPPZgzZw727t3L/Z6YmIiVK1di9+7deOGFF/D666/jT3/6k6r7IwiCIAglROSU0MV2G/ov/EiXa+9+qgJxFmXF3tTUhFdeeQUrV67ExIkTAQCvv/461q9fjzfeeAMjRowAADz11FO44oorZPN56aWXsGDBAlx77bUAgD//+c9Yu3at1+tPmjQJ99xzDwCHNeVPf/oTPvvsM/Tp0wcA8Pjjj3NpCwoK8OCDD2LVqlV4+OGHFd0fQRAEQSglIhWWUOHAgQNob2/HmDFjuGPR0dEYOXIk9uzZwyksw4cPl82jvr4etbW1GDlyJHfMbDajpKQEdrvd4/X51hqGYZCdnc2F0weA1atX48UXX8SBAwdw4cIFdHR0ICkpSfV9EgRBEIQ3IlJhiY02Y/dTFbpdW2vi4+M1zxOA26ohhmE4JWfz5s2YMWMGfvOb36CiogLJyclYtWoVnn/++YDIQhAEQUQ2EamwMAyjeFpGT3r06AGLxYIvv/wS3bt3B+AIY//1118rjpmSnJyMrKwsfP3117jkkksAOPZX2r59u18xUjZt2oTu3bvj17/+NXfsyJEjPudHEARBEJ4w/qgdwcTHx2POnDl46KGHkJaWhm7duuH3v/89mpubcccdd+Dbb79VlM+9996LxYsXo2fPnujbty9eeuklnD9/3q/Q+L169UJ1dTVWrVqFESNGYM2aNXj//fd9zo8gCIIgPEEKi8F57rnnYLfbceutt6KxsRHDhw/HRx99hNTUVMV5PPLII6ipqcHMmTNhNptx1113oaKiwq8dkq+++mo88MADqKysRGtrKyZPnownnngCTz75pM95EgRBEIQcDKt2na0BaWhoQHJyMurr692cPltaWnDo0CEUFhYiJiZGJwmNhd1uR79+/fDzn/8cTz/9tG5y0LMhCILQkM8WC/++bIE+cqjA0/gthiwsEcCRI0fw8ccf49JLL0Vrayv+/Oc/49ChQ7j55pv1Fo0gCIIgFBGRgeMiDZPJhJUrV2LEiBEYM2YMvv/+e3zyySfo16+f3qIRBEEQhCLIwhIB5Ofn48svv9RbDIIgCCKQDLsV2P623lIEDLKwEARBEEQ4kNxVbwkCCiksBEEQBEEYHlJYCIIgCIIwPKSwEARBEARheEhhIQiCIAjC8PiksCxbtgwFBQWIiYlBaWkptm7d6jF9XV0d5s6di5ycHFitVvTu3Rtr1671K0+CIAiCICIH1QrL6tWrMX/+fCxatAjbt29HcXExKioqcOrUKcn0bW1tuOKKK3D48GH84x//wN69e/H6668jLy/P5zwjBZZlcddddyEtLQ0Mw2Dnzp16i0QQBEEQuqBaYVmyZAlmz56NWbNmoX///li+fDni4uKwYsUKyfQrVqzAuXPn8MEHH2DMmDEoKCjApZdeiuLiYp/zjBTWrVuHlStX4sMPP8TJkycxcOBAvUUiCIIgCF1QpbC0tbVh27ZtKC8vd2VgMqG8vBybN2+WPOdf//oXysrKMHfuXGRlZWHgwIF49tlnYbPZfM6ztbUVDQ0Ngk84cuDAAeTk5GD06NHIzs5GVJQwzl9bW5tOkhEEQRBEcFGlsJw5cwY2mw1ZWVmC41lZWaipqZE85+DBg/jHP/4Bm82GtWvX4oknnsDzzz+PZ555xuc8Fy9ejOTkZO6Tn5+v5jZCgttvvx333nsvqqurwTAMCgoKMH78eFRWVmLevHlIT09HRUUFAIeFatCgQYiPj0d+fj7uueceXLhwgctr5cqVSElJwYcffog+ffogLi4ON9xwA5qbm/HWW2+hoKAAqampuO+++zhFEnAohg8++CDy8vIQHx+P0tJSbNiwgfv9yJEjmDJlClJTUxEfH48BAwa4+SYRBEEQhBYEPDS/3W5HZmYmXnvtNZjNZpSUlOD48eP4wx/+gEWLFvmU54IFCzB//nzu74aGBnVKC8sCtnafru035miAYbwme+GFF9CjRw+89tpr+Prrr2E2m3HjjTfirbfewpw5cwSh9k0mE1588UUUFhbi4MGDuOeee/Dwww/j5Zdf5tI0NzfjxRdfxKpVq9DY2IjrrrsO1157LVJSUrB27VocPHgQ119/PcaMGYNp06YBACorK7F7926sWrUKubm5eP/993HVVVfh+++/R69evTB37ly0tbXhiy++QHx8PHbv3o2EhATty4wgCIKIeFQpLOnp6TCbzaitrRUcr62tRXZ2tuQ5OTk5iI6Ohtls5o7169cPNTU1aGtr8ylPq9UKq9WqRnQhtnbgv8/7fr4/jPsVEGXxmiw5ORmJiYkwm82CcujVqxd+//vfC9LOmzeP+15QUIBnnnkGd999t0BhaW9vxyuvvIIePXoAAG644Qa8/fbbqK2tRUJCAvr374/LLrsMn332GaZNm4bq6mq8+eabqK6uRm5uLgDgwQcfxLp16/Dmm2/i2WefRXV1Na6//noMGjQIAFBUVORzsRAEQRCEJ1RNCVksFpSUlKCqqoo7ZrfbUVVVhbKyMslzxowZg/3798Nut3PHfvrpJ+Tk5MBisfiUZyRTUlLiduyTTz7BhAkTkJeXh8TERNx66604e/YsmpubuTRxcXGcsgI4ptwKCgoEFpGsrCxuZdb3338Pm82G3r17IyEhgft8/vnnOHDgAADgvvvuwzPPPIMxY8Zg0aJF+O677wJ12wRBEESEo3pKaP78+bjtttswfPhwjBw5EkuXLkVTUxNmzZoFAJg5cyby8vKwePFiAMCcOXPw5z//Gffffz/uvfde7Nu3D88++yzuu+8+xXlqjjnaYenQA3O0X6fHx8cL/j58+DB+9rOfYc6cOfjtb3+LtLQ0bNy4EXfccQfa2toQFxcHAIiOFl6XYRjJY07F8sKFCzCbzdi2bZvAOgaAU3LuvPNOVFRUYM2aNfj444+xePFiPP/887j33nv9ukeCIAiCEKNaYZk2bRpOnz6NhQsXoqamBkOGDMG6des4p9nq6mqYTC7DTX5+Pj766CM88MADGDx4MPLy8nD//ffjkUceUZyn5jCMommZUGDbtm2w2+14/vnnuXJ/9913/c536NChsNlsOHXqFMaNGyebLj8/H3fffTfuvvtuLFiwAK+//jopLARBEHrRbRRQ/ZXeUgQEn5xuKysrUVlZKfkbfxWJk7KyMnz1lecC9JQnIU/Pnj3R3t6Ol156CVOmTMGXX36J5cuX+51v7969MWPGDMycORPPP/88hg4ditOnT6OqqgqDBw/G5MmTMW/ePEycOBG9e/fG+fPn8dlnn6Ffv34a3BVBEAThEyndwlZhob2EQpzi4mIsWbIEv/vd7zBw4ED87//+Lzcd5y9vvvkmZs6ciV/96lfo06cPpk6diq+//hrdunUDANhsNsydOxf9+vXDVVddhd69ewscfQmCIIggk1YE9PsZMDxALhU6wrAsy+othL80NDQgOTkZ9fX1SEpKEvzW0tKCQ4cOobCwEDExMTpJSEhBz4YgCCKy8TR+iyELC0EQBEEQhocUFoIgCIIgDA8pLARBEARBGB5SWAiCIAiCMDyksBAEQRAEYXgiRmHhbw1AGAN6JgRBEIRSAr5bs95YLBaYTCacOHECGRkZsFgsYBTslkwEDpZl0dbWhtOnT8NkMsFiCY+owwRBEETgCHuFxWQyobCwECdPnsSJEyf0FofgERcXh27dugm2ciAIgiAIKcJeYQEcVpZu3bqho6MDNptNb3EIAGazGVFRUWTtIgiCIBQREQoL4NqdWLxDMUEQBEEQxods8QRBEARBGB5SWAiCIAiCMDyksBAEQRAEYXjCwofFueF0Q0ODzpIQBEEQBKEU57jtHMc9ERYKS2NjIwAgPz9fZ0kIgiAIglBLY2MjkpOTPaZhWCVqjcGx2+04ceIEEhMTNV8m29DQgPz8fBw9ehRJSUma5k24oHIODlTOwYPKOjhQOQeHQJUzy7JobGxEbm6u15hcYWFhMZlM6Nq1a0CvkZSURI0hCFA5Bwcq5+BBZR0cqJyDQyDK2ZtlxQk53RIEQRAEYXhIYSEIgiAIwvCQwuIFq9WKRYsWwWq16i1KWEPlHByonIMHlXVwoHIODkYo57BwuiUIgiAIIrwhCwtBEARBEIaHFBaCIAiCIAwPKSwEQRAEQRgeUlgIgiAIgjA8pLB4YdmyZSgoKEBMTAxKS0uxdetWvUUyLF988QWmTJmC3NxcMAyDDz74QPA7y7JYuHAhcnJyEBsbi/Lycuzbt0+Q5ty5c5gxYwaSkpKQkpKCO+64AxcuXBCk+e677zBu3DjExMQgPz8fv//97wN9a4Zi8eLFGDFiBBITE5GZmYmpU6di7969gjQtLS2YO3cuunTpgoSEBFx//fWora0VpKmursbkyZMRFxeHzMxMPPTQQ+jo6BCk2bBhA4YNGwar1YqePXti5cqVgb49w/DKK69g8ODBXKCssrIy/Oc//+F+pzIODM899xwYhsG8efO4Y1TW2vDkk0+CYRjBp2/fvtzvhi9nlpBl1apVrMViYVesWMH+8MMP7OzZs9mUlBS2trZWb9EMydq1a9lf//rX7HvvvccCYN9//33B78899xybnJzMfvDBB+y3337LXn311WxhYSF78eJFLs1VV13FFhcXs1999RX73//+l+3Zsyc7ffp07vf6+no2KyuLnTFjBrtr1y72b3/7GxsbG8u++uqrwbpN3amoqGDffPNNdteuXezOnTvZSZMmsd26dWMvXLjApbn77rvZ/Px8tqqqiv3mm2/YUaNGsaNHj+Z+7+joYAcOHMiWl5ezO3bsYNeuXcump6ezCxYs4NIcPHiQjYuLY+fPn8/u3r2bfemll1iz2cyuW7cuqPerF//617/YNWvWsD/99BO7d+9e9rHHHmOjo6PZXbt2sSxLZRwItm7dyhYUFLCDBw9m77//fu44lbU2LFq0iB0wYAB78uRJ7nP69Gnud6OXMyksHhg5ciQ7d+5c7m+bzcbm5uayixcv1lGq0ECssNjtdjY7O5v9wx/+wB2rq6tjrVYr+7e//Y1lWZbdvXs3C4D9+uuvuTT/+c9/WIZh2OPHj7Msy7Ivv/wym5qayra2tnJpHnnkEbZPnz4BviPjcurUKRYA+/nnn7Ms6yjX6Oho9u9//zuXZs+ePSwAdvPmzSzLOpRLk8nE1tTUcGleeeUVNikpiSvbhx9+mB0wYIDgWtOmTWMrKioCfUuGJTU1lf3LX/5CZRwAGhsb2V69erHr169nL730Uk5hobLWjkWLFrHFxcWSv4VCOdOUkAxtbW3Ytm0bysvLuWMmkwnl5eXYvHmzjpKFJocOHUJNTY2gPJOTk1FaWsqV5+bNm5GSkoLhw4dzacrLy2EymbBlyxYuzSWXXAKLxcKlqaiowN69e3H+/Pkg3Y2xqK+vBwCkpaUBALZt24b29nZBWfft2xfdunUTlPWgQYOQlZXFpamoqEBDQwN++OEHLg0/D2eaSKz/NpsNq1atQlNTE8rKyqiMA8DcuXMxefJkt/KgstaWffv2ITc3F0VFRZgxYwaqq6sBhEY5k8Iiw5kzZ2Cz2QQPBgCysrJQU1Ojk1Shi7PMPJVnTU0NMjMzBb9HRUUhLS1NkEYqD/41Igm73Y558+ZhzJgxGDhwIABHOVgsFqSkpAjSisvaWznKpWloaMDFixcDcTuG4/vvv0dCQgKsVivuvvtuvP/+++jfvz+VscasWrUK27dvx+LFi91+o7LWjtLSUqxcuRLr1q3DK6+8gkOHDmHcuHFobGwMiXIOi92aCSJSmTt3Lnbt2oWNGzfqLUpY0qdPH+zcuRP19fX4xz/+gdtuuw2ff/653mKFFUePHsX999+P9evXIyYmRm9xwpqJEydy3wcPHozS0lJ0794d7777LmJjY3WUTBlkYZEhPT0dZrPZzUO6trYW2dnZOkkVujjLzFN5Zmdn49SpU4LfOzo6cO7cOUEaqTz414gUKisr8eGHH+Kzzz5D165duePZ2dloa2tDXV2dIL24rL2Vo1yapKSkkOjctMBisaBnz54oKSnB4sWLUVxcjBdeeIHKWEO2bduGU6dOYdiwYYiKikJUVBQ+//xzvPjii4iKikJWVhaVdYBISUlB7969sX///pCo06SwyGCxWFBSUoKqqirumN1uR1VVFcrKynSULDQpLCxEdna2oDwbGhqwZcsWrjzLyspQV1eHbdu2cWk+/fRT2O12lJaWcmm++OILtLe3c2nWr1+PPn36IDU1NUh3oy8sy6KyshLvv/8+Pv30UxQWFgp+LykpQXR0tKCs9+7di+rqakFZf//99wIFcf369UhKSkL//v25NPw8nGkiuf7b7Xa0trZSGWvIhAkT8P3332Pnzp3cZ/jw4ZgxYwb3nco6MFy4cAEHDhxATk5OaNRpv912w5hVq1axVquVXblyJbt79272rrvuYlNSUgQe0oSLxsZGdseOHeyOHTtYAOySJUvYHTt2sEeOHGFZ1rGsOSUlhf2///s/9rvvvmOvueYayWXNQ4cOZbds2cJu3LiR7dWrl2BZc11dHZuVlcXeeuut7K5du9hVq1axcXFxEbWsec6cOWxycjK7YcMGwfLE5uZmLs3dd9/NduvWjf3000/Zb775hi0rK2PLysq4353LE6+88kp2586d7Lp169iMjAzJ5YkPPfQQu2fPHnbZsmURtQz00UcfZT///HP20KFD7Hfffcc++uijLMMw7Mcff8yyLJVxIOGvEmJZKmut+NWvfsVu2LCBPXToEPvll1+y5eXlbHp6Onvq1CmWZY1fzqSweOGll15iu3XrxlosFnbkyJHsV199pbdIhuWzzz5jAbh9brvtNpZlHUubn3jiCTYrK4u1Wq3shAkT2L179wryOHv2LDt9+nQ2ISGBTUpKYmfNmsU2NjYK0nz77bfs2LFjWavVyubl5bHPPfdcsG7REEiVMQD2zTff5NJcvHiRveeee9jU1FQ2Li6Ovfbaa9mTJ08K8jl8+DA7ceJENjY2lk1PT2d/9atfse3t7YI0n332GTtkyBDWYrGwRUVFgmuEO7/4xS/Y7t27sxaLhc3IyGAnTJjAKSssS2UcSMQKC5W1NkybNo3NyclhLRYLm5eXx06bNo3dv38/97vRy5lhWZb1305DEARBEAQROMiHhSAIgiAIw0MKC0EQBEEQhocUFoIgCIIgDA8pLARBEARBGB5SWAiCIAiCMDyksBAEQRAEYXhIYSEIgiAIwvCQwkIQBEEQhOEhhYUgCIIgCMNDCgtBEARBEIaHFBaCIAiCIAwPKSwEQRAEQRie/wdts9Anqz5togAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(range(5000), pct.history[\"Share\"].mean(axis=1), label=\"original\")\n", - "plt.plot(range(5000), pcft.history[\"Share\"].mean(axis=1), label=\"frames\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.871726Z", - "iopub.status.busy": "2024-07-11T15:30:48.871462Z", - "iopub.status.idle": "2024-07-11T15:30:48.985555Z", - "shell.execute_reply": "2024-07-11T15:30:48.985020Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtFklEQVR4nO3deXwTdf4/8FeSNmnT+75LLyj3DaVFEIQVPBdFl1UUWREWBBXBXeH7c71WF/fwZFdddxVYj2XV9VpUFDlVKmChchcoRzl6AKVND5q2yfz+mCadJJM0bZOmHV7PxyOPNpPJ5JPJHO/5fN6fz6gEQRBAREREpCBqXxeAiIiIyNMY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOH6+LoAvmM1mnDt3DiEhIVCpVL4uDhEREblBEATU1NQgMTERarXrOporMsA5d+4cUlJSfF0MIiIi6oDTp08jOTnZ5TxXZIATEhICQFxBoaGhPi4NERERucNgMCAlJcV6HnfligxwLM1SoaGhDHCIiIh6GHfSS5hkTERERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUx+cBzooVKzBq1CiEhIQgNjYW06ZNQ1FRkcv3rF69GiqVyuYREBDQRSUmIiKi7s7nAc7WrVuxcOFC/PDDD9iwYQOamppw7bXXoq6uzuX7QkNDUVpaan2cOnWqi0pMRERE3Z3Pb7a5fv16m+erV69GbGwsCgoKMH78eKfvU6lUiI+P93bxiIiIFOt0ZT1OXKjD6PRIBPhrfF0cj/J5DY696upqAEBkZKTL+Wpra9GrVy+kpKTg5z//OQ4cOOB0XqPRCIPBYPMgIiK6ktUZm/FhwRkUnLqErw+W+7o4HtetAhyz2YzFixdj7NixGDhwoNP5srOz8dZbb+HTTz/FO++8A7PZjLy8PJw5c0Z2/hUrViAsLMz6SElJ8dZXICIi6hG+P3bB+n9xRa0PS+IdKkEQBF8XwmLBggX48ssv8d133yE5Odnt9zU1NaFfv36444478Pvf/97hdaPRCKPRaH1uMBiQkpKC6upqhIaGeqTsRL7S2GyG1q9bXasQUTdnbDbh1c3FNtMe/lkfH5XGfQaDAWFhYW6dv32eg2OxaNEirFu3Dtu2bWtXcAMA/v7+GDZsGI4dOyb7uk6ng06n80QxibqV4+dr8WnhOYzNisbodNfNukREFiZzt6nb8BqfX/YJgoBFixbh448/xqZNm5Cent7uZZhMJuzbtw8JCQleKOGV63CZAf/Ydhyl1Zd9XRRy4ptDYru5tKqZiKgtF2oafV0Er/N5gLNw4UK88847eO+99xASEoKysjKUlZXh8uXWk+qsWbOwfPly6/Onn34aX3/9NY4fP47du3fjrrvuwqlTp3Dffff54iso1pf7ylBrbMY3hyp8XRQiRalvbPZ1EegK99/d8jmrSuLzJqrXXnsNADBhwgSb6atWrcLs2bMBACUlJVCrW2OxS5cuYe7cuSgrK0NERARGjBiB7du3o3///l1V7CuKytcFIKe6TwYduWv/2WpsOFiO3MwojMmI8nVx6ArU0GRymBYS4PNwwON8/o3cyXHesmWLzfMXX3wRL774opdKRIDtDqBjAmu3Vd/oeKCi7m1DS3fc/OKLDHDIJz748bTDND+18i5lfR7gUPdzrKIWxyRdBoN13EyIiJTiQq3y82+AbpCDQx1nMguoNXq2Lb+hyYT//XQOh0pbB0Psii7IhoYmNDabvf45nXG6sh4f/HgaF2uNbc9MsvafrcY3B8thVlAPDkEQsLvkEk5X1vvk8y/VNeJoeY1bteFEzihx62GA04O99d0J/GPbcXx31HM9aJpMjkGGt7sTVtU34s1vT+Ct70949XM668OCMzhz6TLW7S31dVFkdfdun4IgYMPBcuw7W43jF5QzqNipi/XYWnQeHxa0Jm02NJnw3dELOHCu2uufv3r7SazbW4oTF1zfv89CEAR8vrcUnxaeZVDUhou1Rryy8ShOXXR/3X5YcAZvbCuWzXPpLjJighymKXFTYIDTg1lqb3adrPTYMjUy7bDePnGevChe+V7uIfkk1ZebfF0EWXLBaXdSfL71JFHio9oObzA0OG4P6/aWYtfJSnx9oLzLhlkoq26Qnd5sMtvswxdqG3GkvAbHz9dh18lLXVI2ZwRBwKmLdR6vifaUf+Wfgsks4KPdZ3G4zNBmQHi68jJOV9ajzmjC5sPdt/epWqW8fBs5DHB6KPugo6y6wSNXYyqZPlPNXg5wunvNg73uWl5jSxOf2Szg3ztLsLmoex1gj5+vlfzv3hVxT+An6eFZVS/mNkibqyoMXdOkWSMTJBScqsTKTcfwdv5J6/FBem7z9fhJxy/U4aPdZ/HWd9279hYQh8146ZujuOCiibrR1HqRZrlw625Kqy/b5FhenR0DgE1U1I38e2eJw/MdJzpfkyPIbObePKGbzQKKzyujuaLC0IByQ4PP8kuMzeLB9fviCyirbkBhSZVDNfnJC3XYU3LJJ00Tem1rsnq/BO/cIqXZZMapi3XW2ixBELcvuVqWC7VGbDpc3unaAz9Na8Sw/6zjjXxd5bB1ttZS2ix18JzjZ287IgYwl+qb0NiyTjzZpN0egiBg46FyFJ6usk4raQkCOnqMOV9jxJ6SS126z7laf9Ldqj1NVJcbTV1WA/vFvjLr/9nxIUgMC+ySz/UFdo/poc7XOF5FeKLbqdx5z3Li9IaDpQacvdTzR0puNpnx7g4x6AwJ8MPsvDT4abx7/WB/UDe3HB9/lDQ7nLhQZxNMfLznLAAgXK9FerRjO7y31BmbPdqU6szKTeLtWrJig3HTkESs3HQMJrMAlQpYPNn2Pjv/LTiD+kYTLtY24vaRHb8Bb6mkaahOZgA/s4tgctfJSozvE9Phz/6k5feUYx80NDabUW80uZ2r42lnLl3G3jNiTtLgpDCo1Sp0tqXknR9OAQD8NWoMTArrbBHd4qrMHYmz6ozNeGPbcYQE+OG+cRkAgO3FFxCk9cOQlPCOFdIFf438F1BiPhZrcHqgrt4QDZe91z5+pLzGa8t2x8VaY4eu4O3f0yDpAVbT0Gxz0vMW+6bD5pYIJymi9YrsUn1rd9ByQ2uZTnQwyVcQBNTI1Ia05Vu7q15XJ/22uHOle6yiFk2S3BO5j7OMIdTZ32r3qdaAUqtRO+yfrr6qJ2tH40IDbJ5btgcLY7MZF+u83z34cqMJXx0ow5lLtk000gslS0K2XM5fR+w9U41P9pzFF/s81wHA2XHWVfNqR3qCnmm5wKtpEI8plXWN2HG8EpsOV3ilZqpPXIj1f52futNBZnfGAKcH8lROzOVGE7YXX8AlyUFPbsl1jc1eaaYSEwy7rp3aZBZwurLeeoKsMzbj3R0l+Me249hdcsnlidv+YPd2/imb50a76uiuiEG32OXYWM5nSeGtAU5UUOtNZn84ftH6/0+n29+755uD5Xjpm6P457cn2t2sKB12AACaTR1bQduLL+Cvm45hu0zuiPTkolI5Bg9NJjN2HL/o0CPGUydZQGyu+lES8AC224J9U5mfk6vpjrBvXrZfx43NZoffwaLgVCWOeuhi4/tjF3DwnAEf/Gh7K4DG5tbynK0ST+oaD51dyw0NOHGhDkVlNR4bbsLYgeVIg7ihbta+2P9u0mVY1pMnSQduzXGjxv/Mpfpu27GiLQxweiBP7MA1DU14fWsxdhyvxNcHW9tk5a5aBAGobXBey/H53lL8e2dJu6823B1sqr6xucO1ViazgP1nq2FoaMKO4xfxYcEZrN9fhv1nq1FmaLCeBLcWncd7O0qcLsf+Kt++fb0jB8POOmCXc2G5YpfWcEi3lY5sN9KD7b6zrUHR1wfKZef/cl8pfnSjKeqci55FTSYzjlXUyDaN7jguLluab2ZoaEJlXSPe29EadEYGaR1qev666Ri2F1/ER7ttm3U8OYKrscnskKMhPYG9+a1tMq22E82Y9icd+2Rm+wDn26PnbZJLASAmRIcKQwO2HbngseEPaozyJ8PLDhcBAlSSAKe9OSjOtudyQ4NH8lk60s1bun51/u79ttJDm9ksYEvReetzb/Qusxym+8aHIFjn5/JWPBU1DfjgxzM9IglcDgOcLvDVgTJ8sqftMSfKqhvw7o5T+Me243hxwxFsO3Jedj5XJ9P9Z927MrckHwLAuarWk7e0hCoVEKH3BwC8u/MULjeacLjMYHMFLAgCjpTXoKy6AduLxRqCyrpGFJXZDjwmCAJKLtbb3GTQnYNQWXUD/r71uHV4+/YqOHUJGw6WY60kCftYRS02HCzHZ4XnbOatbzQ5DdLaCq/sazRqjc3YUlSBt/NPotlkRsGpSpy4UAdBELzWxGjJy5LWXOQfb/2dA/w17VrewXMGvLq5WHabCpQ5eJdcrMfhshp8e/SCTRnkThQVBiMq61p7HNVJDuTfHj2P//1UivX7yxzeJ+fNb09gzfaTuFTfemJVq1Ru1xJ1tgYnMby1aWifzLpy9XMHdWKU8Pxix1qsWmMzjM0mfLGv1GEMHul+bmEyC9gjSfr1xLap1bRuZ+/var0lgH1C9VcHymxqFSvrGtHQZEKzm8GJswTtDwvO4H8/nZN9rT0KJDVxc8dn2LxmWU+1xmY0mcw4W3UZq74/4VZzZ0OTbUKxdDs3CYJNd3+VCth7psrDeZB2vela/sr99F900zG/3MUkYy+raWiy9m74fF8ppgyIh7+Tqzb7nlEFpy5BrVIhLzMK6paDcEOTCWu2n7TOkxETZNMmvOFgOQYkhqK0ugERei0CtfInNXdyX+ZfnYkv9pXiUn0TjE1mvL612Pra4sm9oVKprD0zADFhMiE8wBo4HCkPxqR+sdBr/XC0ohaf7y1FkE6DeeMzAbhXo2A5AB44Z8C1A+JbAgRY14ccs1lAQ7MJeq2fNfCoM7p3gPhyfxluGJzgMN3UxsnyR7vxRDYcLLfmmfxv7zmcvCA2xSWGB6DJJODO0ak236HJZMaHBWeQFB7okHS6p0Rc9rDUCJdlOFpRi5yMKDRJyir93tJAw53bb3x1oMz6XewTOJtMAtbtPYdekUEYlCy+Jt0W6hqbERrgj81FFSgsqZJd/qmLdThWUYvvj12A1k+NhROzALQ2n7XVldxsFnDSyQBs9icRe9KTaGdqcPaeqZINHKQEiD223A3YLtU1wiQIiA7WuZyvSWabvFhrxOnKyygqc6+56VJ9ozXQBICq+iZEBGndeq9Us8mMbw5VICMmCMGSmzaerbqMxmYzLjeZHJLMD5XallFag3pN39g2E2zrm5zXbrhq+t55ohLfH7uA20YkIyVS73Q+ae1JsM4Pt41ItuYOFZ+vg7llwESnnHTYeGPbcei1GmtCsZR9s+qXLT2ezl66jOsGOR6XOsLyESq75kFLTaMgCCiprEd0sM7mogEQ9zmTIDg9h3U3PaOUPZSx2YR/Sqqkj5bXWnsRuGvXyUoclhyspF0sAWDqwHiH95y5dBn/2XXaIWByhyWK99eoEOCvQUiAv+x8lpOZfZAirRU5VlGLT/aIz4srHAONnTJNGZarz2MV4neWNmW8uOEIXvrmKF7eeNTmys/eZz+dw9+3Hsf5GmO785XsA78LtUa8uOEI/rv7jMO8FYYG5BdflD2RBmpbdy1LcAOIV9Hna4w2vW32n63GXzcdQ1l1AwpOXbLJhThSXoMtReexpeg8zkna46VXeZYg1pI8aJ9cWt1ykJImQtcaO5dXVWtsxtHyWnxzSKxZO19jtLlqrjM248t9pQ7BTVp06wnlaEtwA7gX7G48ZFuLZ2w2Y3OR81rOd100OUqbS5xdBLhScKoSf99ajI2H2h5r6NTFOrydf0q256N9srUgCFi9/STezj+FhiYTDpyrxsd7zliD0yaT2Vp7kBju2L23zmhCUTtyaeyv2ldvP2mTkyctl2V72XH8Il7dcswmYC48XYVDpQZ8vrcUgXY1hSaz0O4mjk1uDJJ3tNx1HphczaEgCNZtTjrytNTFWiOOltcgOULcVi2j/kpz205eqHMd3KA1vimtvmxNuD5fY4TJLKCmQexVaF8zYxYEm04CFoedBKy1xmZsOFjuVnOapfb4YktqgOW4ZT/22Z7TVfho91l8ZlcL9tWBMry88Sj+uumYTVAMiOM/HS2vcXvE567CAMeL7Nv6AfGkKNXQZMKnhWddXnF9daDMmlRZYXeQ1Plp8PDPbLu/Wnbc6stNsicxl9WddrObzE7auavFcthv6A7ztXxfaTEsY1/IdQ9fu/M0ispq8L+fxIOHsUn+8/OL5QOcxmaztRvs3jNVbld3S1mCmqKyGodkYouoYC3e3VGCH45ftAk6LbUBbdUYWa6e6loOUFKW8l+oNdocRKXJq9LgNaXlQGy5ILNvmtlefAFNJjMu2G070oTTExfqbIIm+6aKtpoTLd11LX44flH2oDw2K9r6vzvDA1hODMZmk8PFQUOTCQYnyY9tBUzS2g9n49TsPFGJHS2BdJPJbB3EDxCbeF3dyT0uNMBaO+CqJso+wJA2P5+vMeLrA+U4eaEer20pxud7S/H6lmJrjoZl3x6QGIqYELG256sDZU7XiZSrmovV20/CZBaszbW7Sy7hpW+O4pWNR3G6sh7biy/C2GTG+5I7UksvOMrsjnH2uTfuenHDEZdNZgV2ydz2PtlzFmt3luDFDUestTGNLrbj05X1eHHDEfwr/xTW7S21bnuWpl1pjatcU6Q9QRD3o7U7T+ODH8+gzths83t/d/QCXt1cbPMek1mQPWZbunZfrDXi3R2nrBeA/9h2HPvPVuO1LcV4O/+kQ881C7NZwEvfHMVL3xy17vf2AaKlbJZegfYjY0vHWfqvJDhsNpnx3s4SrNtbio92n8WLG450m0CHTVReJDd0+uGyGuRkROF0ZT3C9f4oKhOHTG+rOn7HiUpcqm+y1oTYSwgLkG3//XjPWUTo/TE6PRIatQp/33pc9v3biy8gL7P15GM5ASdH6B2qkgHgv7vPYMGETNkgTo40IfK/u89g0TVZsvNJA6a2rpDe+u6E9Yajw1LDMSE71uagd/Ccwa0anIFJYTZ5JpagRq7LaUyIDudrjNarIMB24C93a4wsB7E3tjn+HgfOGRwSiAHxQFJUVoM+ccE20y0HP8sByn6ck8NlNbLBRvH5Why/UGezTd17VTrCAv3x6hbbA+9fW8aXkSMXTEhrraRcNY01mcw2uTgA8MGP4nYmF+h2JgFTGrDZD1svCAIq6xqtV/rpMUF49wcxoJw+PBmHy+R7IkmFBvq5rGGIDwtAWXUDzIKAxmYzVCpxLJcaSTK/fQ2DpXax8HQVxmREWa/adf4al0Pv94rSw2QWrN2RAeC2Ecl46ZsjTvODXtl4FABw05AEbJXUkknLdLG2ETUNTQjW+dkEjPbHqHd/kL9IcIfhcjPCWvIAG5pM+M+u08iOD3Erf096PPzHtuOYnZeGvS4Ck21HbWsDLe/vzG0NpIeDPSVVTgMQi1pjs+x5o8kkwNDQhI/3nEVNQzP+91MpHv5ZiM08F2ob8cGPZ/Dwz/rAbBawvfgiDA1NGJgYJjvQpSV3zP7rudOcX2tsxj+/PY7J/eIQ4K9x2D8/2n3W4cLbFxjg+IA0h0bO4sm9kX/8orXHiIV980lWbOuJbtqwJLxmd1ICxKuS05Vi4CDXZm+x43glsmKCHa5mBySGYuuR87InMbnPk/PT6SqbMVgA25yVe/LSZNdJW3lC0qBpT0kVxveOsbmSdDfYGJUWgcTwAKc9g6SuH5Tg8vdLidS7dVdps+QK2V2nLtbj1MV6fLHPdrolGL3cZGrX0PtyQfVb353A/RMz29XjSu7gaW9AYihSo/Q2oxnbq280YdX3Jx2mr9/vOKYKIN/EMCYjyqH5MkinweVGs01zkPQ3On6+Dl/sK8V1A+Oxvfgijl+os6ntsgQ3AGSbKgExYEkMD7Re/Sa0BDA1TnofWrrq1hqb8fYPYnPUz4cmOnStdkaaDxcS4OdyLJMhKeHIjAlGk8mMLUXn0TdePDG6k09sqUl15p/fnmhzVGr7/fCavrFuNUEBwA8nLiJE54dR6ZHW442z2tu2rJbZb5tNZpTXGG2SoS0sSczSYOquMb0caiudESDgYl3rduTOQJdrdzqWw8K+B56zQR5PXazDqYv11os9Z60D1/a3TW8QINaauaumoRkf7zmLG2VyFgGx1lXn1/7mX09igONh9Y3N+GTPOYcT+i9GpcjuRHJUKhXyMqPRZBJsBhGTumlIAtKiWkeiDfDX4MbBCU67ep6RaQ4YkBhqU1MgzVmwnOBUKhUWTsxq14ZvT+5gJj0JtacXS05GpEPgZ9GRkXJHp0ciXK9FuF7rVoCjbyNfY+rAePxDplbGntzBtiN6xwVbW9Dtt5VrB8Q5fCf731yOfbW5PfvEdmkAIGfu+Aybmpt54zNka66c5Wm0Z+Td9OggHC4zoEqSHDkrNw3+GjXW7iqxdqW2H3iwqKzG7cRceyoVcMfoVJjMAg6cq4axyYxhKREwNptttlWdv9p6pWvZ5qWBvrvBjb0QnZ/TG20CQEbLiNX+GjV+1j9Odp5fjEqBv1rlMm/JGWdj68hZMCETfmqV0wBnfB+xFtnSy9PSLOKJ29DIWemiZtJCGgxbmgLlqFUqPDS5N7YdOY+CU5fw48lLDp0PPMnZfuFurbqmpebXcvzo6G1DnJ1zXt1cjBsGJ9gMLNjVmIPjYev2ljoENwsmZCKqAz0TBiWFOc0PyIwJdrgVQFxYgOy8cuLDAqzJc+6QS3yTmjs+w3plCABhgfLJyfb6xoe4NZJmVLAW9+SlIS8z2trbxt72dl7ZLZ7c2yYnxFU36tHpkbhvXLrDPIOTbXsXOWuCiQzSOm2WA8Smj3uvSpd9zdn3BYDrBybI3h4AELcRe6PTI50uS86UAY5J7DcNTkSvqNYcDmnNSHa87cHs9pHJDuskSOeHxZN7t6scbUkMD0CvKD1iQ3S4JzcNt41IxqJrsvDwz/ogwF8DjVqFmTm9PPqZFoNaephp1CrcP0H8TLVahTHptoOoSQd+a2+Ct6uLAGf7fUZMEOaMS3foLWPxq7Fp0PqpccfoVCSFByI21P3jR0cF+Gvgp1HbJOzeOzbdepzLignBiF6RCAlw79o71M3jTGfYX9Q4G8BvbJb4e7vTQzXHjf0wN7Nzt91pS0cGWbxpSKLT1zJighyOVW2lGXgbAxwPKrlYL5s4KXfiTLYLGBZMyMSkfrG4b1zrSS4ySIv7J2Ri3njH7oRyB60gSfV//0Tn1cZRwVrcOjwJBheD99m7tn8cBiaFYc64dNmgK1jnh9HpkQjw1yA3Mwr35KW5tdzxfWIckmKvGxRvN080ZuWmIbIlSNT6qXHXmF64eWgi7p+Y2eZnDEsNx6zcXkiJ1GNQUhh6RemxYEKmwzocJOkKLT2o6bUajM2Klu1RliC5UZ3l5D4h2/HeQrNye7nsWpkapUdYoD8WT+6NX41Ng85fjZgQHRZP7u3yZo1qtUq2GWTe+AwE+GuQYHfycxZ4zr/acT3qtRr0TwzFTUMSkB0fgluHJ+G+celQq1W4eUgiYkMdr2Z7RekxLDUc1w6Iw8M/62PtiWJPpVJhcr84p/fDcucEYDE7Lw0zRqXi1uHJUKtVUKtVSInUe70r6y9Hp6BfQqjTE5H9UAbS7bytEbzvHWsb7N43Lt1hmkWok56OPx+a5PQ1QLwf2cKJWYiXbCNBOvkgf+rAeCyY0LqN2B+/ALH5RtpL7t6x6TY91KTvka6zAK0at49MxsycVGu+jauaEqkUu3LcOjwJD07qjRG9XA+p0Dfeea3CoKQwm96p9vf3u7pPDGbl9sK88Rk2FwCWCwpnzZIWi67JQl5WNB64JguZsbYXIeF6f/SOC8a88RkYkxGF6cOTXS7LwtkFg9x+bWE5/DkLgOVkxQZj4cQsDElxvO9X3/hQaP3U1uO0OM13tTcAm6g86qBMVe20YUkAHBPVbh6aCI1KhYOlBiSEBSLAX4PByeEO71epVAjS+WFISph1fJDJ/eSrmTVqFbLjQ1BW3YDczCiMTouUbQq5e0wvqFQqhEqukvw1KpscnV+Otr35YLhea63e1mrUsjkaUcE6zL86w7rD3DWmF6ovN1rb8XMzoxzaz4N0fvDTtFaNWsam+FJyx9ukcMeTZEyIDjEhOqe9LGJCdIjQa1FafRmj0yOh14rjWLgyJiPS2sNsQGKYtafSL0elys4/Oj3SpldGakvPlCHJ4daeLpP6xcr+rlLSg7FKpUK4Xot7x6bDT62yrsvFk3sjv/iiTVW9pSeM/QF1cHKYdQC5GaNSsOXIeTQ0mjB1YDxUKhXuGJ2Kf+8swYTsGJRVN2Bi31jZINySW5EVG4KsWNsDlZ9GjTtHp+Klb47aTE+LCsKARMeDn5xByWEYlBwGs1nAyxtbl3PfuHSEBPgjLiwAR8pqUHy+1rpt3js2HXqdxibpuT3jtvRLCHW7SWVUWiQC/NXW5qyZOalYf6AM9Y0mzB2XAY1aZRPgtmVAYigKTl1CenQQTGZxrBE5D/+sj01zwQ2DE8TcJa1j/orl+JKXGYXdJVUQIMDYZJateXPHvPGZaGgyQeentvltg3V+CPDXYPHk3jCZBfhp1GhoMlnzYqYMiEdMiA63DLPdx+ZfnYn9Z6tReLoKNw5uvfqXBn9ajRqxIbaBeP+EUNkcsakD49EvIRRf7ivFyYv1GJ0eidSo1uNFXGgANGoVxveJwVUttbPSbQsQj0NDksNtEu+DdBrUGU0YnByGSS3H1+y4EBgamhCut92+1GoVolrGKJLWXoa3BGc3D010GEQUEC86E8MCrYG3n0aNm4ck4uSFOqhVKqRGOR7nUqP0uDo7BgfPGTCiVwSKymowrnc0/iXp3Wm5WLszJ9VmLKFfjU1DoFaDqGAtLtY2OjQtW/Lh7CsHLQnwzmj91MjLjHa43Ut0sLieZoxKsW4Xw9sINL2NAY4H9UsIsR48f9ZS42FhvxFpNWqoVKo2T34WeZnRqDOakBwRaB1YTc71doNBaf1ag5H7xqWLQ3O3nDQzooNxdXYMUiL0iA7W4lJ9E8IC/dvMibHvailt9pBeDViCkIcmBeNCrRHRwTo0NputyW+WamidnwZzxqXDX612GJMkJz3S5grTnkqlsvmOadF6DEwMQ3KEvt3jm/hp1NaDmyXQUalgvaq0mDIgHsXnazEqLRJmQcDmlhOO5b5CarUKYzKicOZSvUMC5uR+cSg8U4XsuBAMTg5DhcEo2/xnH3CoVCrkZUUjNNAf9Y0mXKg1YmrLScx+DAzp91apVJiYHWvzenxYgGwPh1+MSsHlRpN1PJu2bohpf+V305DEDo3Mq1arbPKFLDVlmTHByIwJhsksYM32k9D6qREaKG6/loC/vQfQKQPi8LP+cdZt3GQWWrre2uaeRAZpcVVv8QQ5KDnMmiw5Kzet3d/PIipYh3njMxDor4FJELDvbDX2nam26Tloqf2T7oNxkpP/4OQwRAZprQnWlprGnIwojE6PxOUmE87XGK3BdkfIBbuW31WlUlm38wB/De7JS0NZdQP6JTi/Uh+YFOYwUGRiWACGpoYjNkQnW4OQFevYvAq0NpVPHRhvDbTC9VqkRQWh2SzYlN0SRE0fnoytR89jcsugo6EBfg6fOXdcBi7UNlpP0pb32wc39ixjEWn91NZlSpuG+yeG4uA5A2JCdE6DzjQntZgWw1MjMLxlkE/L8WRmTioKT1chNzPK+p3jQgNw05AE6wWlpbZ22rAknK6sR7/4UGuwd0tLYCydz6JXlN4a4IQE+MnWSMn1LLM0F0oHznS3qdFbGOB4kHTAJPvqcfsdqj3VgoB4MHHV/unM7SOSrQfvIK3tjq1Wq6w7DgCbqkVXMqKDcLisBhF6f0zqFyc74JiUWq2ytu+P7xODhLAAfH/sAqYObA3G7KvSR/SKQNXlJrfaoeeOy0Cz2eyyh0576fw0+PXVGfBTOzZz9E8MlW0CjJAcDMVyO5bdUmthIXfV5or9iQIQg1ppl3a5edxhyYsI8NegocnktPnIGf9O3DjSyXBLAMST/azcXlCrWmu0rukbh2v6ytdkuqJSqSAtpqZl28zLjLLmcOWkR9oETp7oCWJZN5ZAQQ2VzYnL/r5M0pNEgGTQSLGGr3VfsQ9m9Vo/9Iry/GHdWXJ9ZJDW7eOGlFzgbf+6VGyoDsNSIqzHCWmgBbjOn0uN0uPuKNf5VyqVyu1mManIIC1m5fZyeuwZlhKOnPTITt2SQ05saACulQmYMmOC0S8hBOF6rXUdhgb4W2tV7x2bjot1RpugSqVS4d6x6Xjr+5Ykf8l1TZDOD+N6x+CbQ+U2zXbS7bNvfAgyYoJtaqauH5QAAYJHj8kdwQDHg6Tt1/a1IB68n1+7xIYGYOHELKhUrm9v0B4T+8YiPiwAfeJCOrTj9o4LQe82Muvtb1fgitZPDa0X0snc3TlvGZaEmoZmxHVBkqac7PgQZMUGQ60Sx8twlbPjjtl5abhU39hm4GrPk3fltmefUO9po9MjkR4dhMggrVc+q619z/6Erm4J6kyC4BBgSee1HzXYk6Q97nSd3KY64vpBCdhTcgnXD05wmUvka1Eyt9S496p01BqbuyRxW0qlUtlcONoL0/s71EgDgPQ6Tpr/3i8hFNnxIegdG2yzDUv/z8uMdlimfWcDX2GA40HSDd3+YK9SqTBlQDx+PFXpMP6At3X2hGcvwF/T5n2RriRtVTF3Bcv2pvXrfJARqNUgUNu+4Abo3Mk2Oz4EhacvITXKN+tSpVJ59WTUkVoguRMnIObD5KRHQuun9moi9TV9Y5EWHYSUCH27a5w9ITs+pNucKNsrLNDf7Z6k3YH0fCVtmh7cUhssF6DfMiwJxmazbMDUXTDA8bC40ABU1hltukFaOGvaIFICZydkd2j91Li7E/kt3dUNgxPw/bELuMFDN0q0yJMMb+Atfhq1T8cw8Tb7jhVXMmlOTWJ4AApOic1Qrmoeu8OFXVsY4HjYL0el9Ki7rRKR9/SJC1F0kNCT3Z2bhre+O9Gu8cCUShrgBOv8ce9V6Qjw7/nnMAY4HqZWq6CGjxJuiLpYhN4fl+qbOnRHbiJfCgv0x6JrsmwSZq9U9qugJzWvucIAh4g6bNqwJPxwvBKj0piTRT0Pa9pF0hwcAcpptmOAQ0QdFq7X2nQfJaKexxdJ5F2BAQ4REdEVrndcMAyXm20GluzpGOAQERFd4W4cnOgw4GRP1y0aIP/2t78hLS0NAQEByMnJwc6dO13O/8EHH6Bv374ICAjAoEGD8MUXX3RRSYmIiJRJScEN0A0CnP/85z9YsmQJnnjiCezevRtDhgzBlClTUFFRITv/9u3bcccdd2DOnDnYs2cPpk2bhmnTpmH//v1dXHIiIiLqrlSCs9sxd5GcnByMGjUKf/3rXwEAZrMZKSkpeOCBB7Bs2TKH+WfMmIG6ujqsW7fOOm3MmDEYOnQoXn/9dbc+02AwICwsDNXV1QgN5cB7TgkCYDYBGrZkdmumZv5GPY0giHdyJfIVsxmAADQ3AGp/wK/99xTzhfacv316VGxsbERBQQGWL19unaZWqzF58mTk5+fLvic/Px9LliyxmTZlyhR88sknTj/HaDTCaDRanxsMhs4VvL1MTYBgBvzcGOm1uRFQ+wGNNYAu1PlB8PQu4Ng3ttMG3gpE93H/wHnpFGA0AJGZgLblpo+CAPzwGtBQLT5XqYDs64GYbLH8lnhY+hkN1UCDAQhLbv9B+3wRcGwjYKwB0sYCaVc5ztNQDfgHdfwkXl8J6EIAqIBLJ4HQBKCxHgiKBs7tAU7vFMueNRnwd5Fgd2gdULZP/P+qxYC/ZLRqQQCObgDKfgIyJwGJw8TplgBRbr11VtVpYM874v9hycDQOwG1BjDWAttXitPHPwJoWsa0aGoAClYDly8Bo+YAwc5vdmj9To21gDZYLLehFKg8Lm6fSSPkfw9DqbgtBdjd8LPBAOT/TfxfpQZG3AOExLd+jnS9CIJYxsAIx/XVYBC3+4wJgD6y9XsJJsAvANj7H6DZCPS7GQiKAg79DyjbD8T0EacVbxLLHhQN1FaIv31qrjhvR1WeAH5aK/6ftwgwNwM/SC62xi1p3ffrK4GDnwA14p3TbX6fjji6ATjzo/j/wOni9wTEoFetAQ5/Lm6zIXEt27ce2P0vcR0BwJBfAhFp4n4YFC0+OsvUDJzbDQTFiMu2/IZmk/h7VBwCsq8DEoeK6+PYN0BUpvi7tNfFYmDv+0DmxJbtRSN+B21Q59Yr0LJPfw2c3W07PfMaIDXHcV5To7heLdv5yHvF9d4WUzNQ9IW4DuIGiIHH7jXi9t3vZnHZMjf97TBjLbB3LVB73nZ60gigz7W208wm8ZipjxTXbw/j0wDnwoULMJlMiIuz3Qji4uJw+PBh2feUlZXJzl9WVub0c1asWIGnnnqq8wVur6YG4LsXbaeNnmd7MBUEoPo0oI8WNzrLgU9q2EzxBB0YYXuisLf/I/Hv2AeBg5+KQYncQUMQgC3PtT6PHwT0u1H8v7mhNbixzHv4c/EBAIHh4glv6ExxpzM1A/mv2i4/YQhQ+hOgCwb63ghEposnrF1vit9jxGzxgH/sGzFQszjxrfjefR+KB5GIXsDBz4DyA2Iw0XS5dd6sSUDKaPn1cOh/QN0FYNjdwMWjwIFP5OeTunxJPBFkTQaShgMXjgCRGUDdeWD32/KfkTJaPMBmTABK8oGzBeJrR74Sy2v53IHTgf3/bX1vYDiQM1888AsCcGIbcGp76+tjFogBgtkknpAty81b1BKoATCcaw1uAKD6DHCuEEgeAZz9sXX6tr+IwZhfALDzDaCxTpy+603g6kdbD5yN9eIJURqEF74rBlGZ1wDJo8TgyKJ4k/g37SogfZy4vnf+Q5zmpxN/4xPbxJOZPcEM/LgK6JULnGq5kEkcKp70AOCnf4vBd2Q60P/nrYHkvg+BC0fF/88XAROWiQHX3vcdP2Pvf2y34/NHgPN/Ef8/uxu4+rfAgY/FEywEoN9NjsuorxT/6iPF30kwi+sIEAOjknzxJH7pVOt7tv/VcTn7PhDXo5yLx4DYfrbTjm8Vt/Xe1wIntopBePJIIGGo+DuHJQMBoeL/ZyS/9f7/ir9H/QXgwjHxd7D83jXlwJ53HT/fEphJjbxX/F4qlfhoNorHk6hMIH6IuD2e2SnuX4Hh4nsuV4kXRoC4Lo9tbF3e1Y8CZ3a1bjMAUPSlGJyZm1vWQzFw5Gvbcgy9QwyQnKk41LqPFW92fH3MgpbjmQGIymrd1vf/V9wesiYDKaNa5zc1A5XFYgBfXynug/bBDSB+D8Eszme5yMy4WvzdpE7/IG6/pXvFbTF9nHixu61lO/QPAIbcCfz4lvi8/AAQ0w84vgmoKRMfgiBu6wOmicdzQRC3+bAUscal7oK4raddJf5m+mjnNTFl+8X3mhodgxtAfA0Qv/uR9WKwdViS39r7Z+JvBjhe4F0sFrflgHAxwAxP7XyA6QE+baI6d+4ckpKSsH37duTm5lqn//a3v8XWrVuxY8cOh/dotVqsWbMGd9xxh3Xaq6++iqeeegrl5TLBAeRrcFJSUrzfRLV5hfz0sCSg+qz4vy5ErL3oKD+tWOvjch4dMHyWeOW84+/y8wSEiSfdpjrbg3RIvLijycm8Bqg46Px1i7wHgD1viwdBQNwBBv/CMTCyFxje+p62aIPEwG7nP8Sdvqv56Vqvit2R94AYADrbRlzJmuxYeweIv0fS8NYDqFTCYPFAK6WPbD2JW1iurLevFK/03DH+EfnPbK+rFgPnDwNF622nj7pPrEmyPxkPuEUMUjoi59e2+0LuQjFoqK8Ug4Lzh1uDh4BQ8SQJiOu3bJ94ovKEfjeK+6VKI9a+7vug9UTjSq88oGyv+79RR2VfJwYjzgyZAWh0Yq2QN+QuBDRaMRiQ1lh2RJ9rHYOoCcvEYKWqRD7Y64y0sUCvq4Ctf/Tsci2Gz3Jc78ExwIh7xcDu+5dbp6eOAUp+cFzG6LlAU70Y/AaGA32mAD/9x/0y9L1eDGakNZaAeF4at9T95bRDe5qofBrgNDY2Qq/X48MPP8S0adOs0++55x5UVVXh008/dXhPamoqlixZgsWLF1unPfHEE/jkk0/w008/ufW5Xs3BaWoQqzUri8X/vcly9SwIYvR/6H+dX6bar/WqauJy8cqjrUCks0ITxKaNzuroCS9jAnB8i3vzyh0kpbIm2V69doX4geLVmae4EzRLhaeKJ4i2hMQDw+8Bfni1c0G9K8GxYtOTlLsXEWHJYq1IRyWNaK1t63+zeEVbflB+3qBozwXizgJei0G3A5dOiDUBxhoxoMr5dWuNS1eT1gS4Sx8F1F/0TnnaEpYMDL9b/P9coeuATyo4Rr6mpLuwNGkaSm1rZz1p2F1AeIpHF9me87dPe1FptVqMGDECGze2nhDMZjM2btxoU6MjlZubazM/AGzYsMHp/F3uxFYx2JAGN32vF69E3DVxufiw7FRyrnq4NV9FpRJPcqPmtK+sctXyluDGIiBMLEtYkutl9b3BtsrSXUHRYjuzOzT+YrWzszyB9gY3kRni8nrlit/RFV2IWE2cONz1fMmjnL9mad5or6xJzl8bNrO1GcLemAXy87elreBm2F22z6XBjcrukBKZLl4lT1wOjPyV2EyQu9Axh8ET/APEsln2g4AwcbvMXSh+/qDbXL+/o8FNYIS4/D7XivtU3+vF6v2UMbbzJUm2HX99xz5LjqtmnIBQIDpLDCryFonlnPCoeLVuaZaOTBdrz8b/xnNlcubqR8XmNinp85G/Ems37fkquAHEJh2LxKHOj4VpY8X1a2m2687BDdCaA9eevMCoTNevx/a1fb7/w/aVycN83vViyZIluOeeezBy5EiMHj0aL730Eurq6vCrX/0KADBr1iwkJSVhxQqxKv+hhx7C1Vdfjeeffx433HAD1q5dix9//BFvvPGGL7+GqKZcvs02YYiY4+DKmAVA+X4gtn/rtLBkIPd+MRfDvmlJLhk2MFLyf4SYVyJHFyKeBC4ccV0mqT7XAcc2AOnj5XNSEgYDwXFilWl0b/HE4k6zxcDprQm4FpnX2LbXZ04Uq1gtRs8VE99KfxIDjraqrRMGi/Pt/69YxovHbPNZLBKHifkO9tQacX45/W5qrTmL6CUeLKS5JRYTlomvOWuSsgRYpmag4kBr27clQdVZrVB4qnxuheX7afW2216Yk6up0XNbc2gsNP5i81PpXjFHKCxJzAMJTxFPQpZEZqk+U4DacrHM6VfLHzxVKvE3DggTc0XkmmSSR4l5G+4Y/AtxPVjKHBwrH7BG93Zvee4aeofYjNVbkpgZP7D1f/sEU2l+U1s1XkNm2DYVjJkvNkfJbevBMfLLaCtojx8kPqTUGvF4Y6//z8Ucj13/FJ/L1UCNmA0cXtc63X6b0ke15sEMvRMofE/8v9dYMUfGbGo96UZlinkdbYntC1RI8jUH3CLuh4c/b83XkuOq1jEoGojpC5z8Tnxuf9EyeIaYA+cXIP492lKjG92S4N1Ws/q4pWItadNlMRdNmisGiBdevX8mNiGX7RM7N7TF2f4o14xlYdk37S9KbOZRi014FoN/AdRdFPP57PW7Sdz+KyTHuJDEtsvuRT4PcGbMmIHz58/j8ccfR1lZGYYOHYr169dbE4lLSkqglmSQ5+Xl4b333sNjjz2G//u//0Pv3r3xySefYODAgc4+ouuc+s5xmvTgJzX2QbFtuXizWE0YGC7fg8jSG0VafW6flGih8RMPIg1VYm2D2SS/cY+5XzzQuLoqGnir7fPgGPGgBIi5I3Jt/yFxYs2SpXfN0DuBmtLWBEC5JgB9pO0Bof/NYpAnDXDkrnYj0sSHqxZWjZ8YMCSPEk96zoIUi8xrxKRiwSyeqH9cJU4fOF1+/viBtrUnlt+l19jWACdjghicubpK0kuSzjV+YkAckS6eEC0nxasfBfa9L/bYsWffpBTbrzV4y30AKHxHDHJyfi2WY9BtYsJubF8xCB50u2OwB4jBDCAGiAmDbV/TBYuJulv/ZDs9NFG8ynVH0gjxIU28BFqrtYOixCR06XY6eq64PUjzCyIz3L8KbU/zW2xfcb1ZToTSJlDLScpV7Ym9YDd61ABiYCLdv3rliRcsgRFioun5otbXBv9C/GsfECS1UdPozPjfiNtEQLht7ohGKx4Dxv9G7LGm0YrzWS68kkeKTc2j59ou7+pHgeObxaTsIb9snS6tFfELEGuRpPRR8gFO75+Jn7Xj72K+VPxgMfA68a34emiCWJM86Dbxd1apHC+0wpLE3CK5fERdSOt3SB0jBmuWoMtaXl1reaXbZlBs6/vk8l3CksTAypIE7B8oXsCW7RcDibj+ju+JHyRuf2X7xOWW7RePkdKLmrxF4v5ony814h5xf3RGGyz+tQ9wpPmE0uDG+j2jgLEP2e6DQGuvRmmwJXdO60I+D3AAYNGiRVi0SP7ks2XLFodpt99+O26//XYvl6oDEoeL2fmAY62D/QFY7S9ebdp3y3MmeVRrcJB9vfP5Rt4LNF+WP2ENnC4eACwBY/IooGSHeNDseyNw6nsxoEoc5vqEIbfRW0i7Dkf0Eh/RfYDSQiB5tPxVRmA4kD1VPHHFZDu+HjfA+efJlTM8VVz3EWliAp3cupDjp21tFpQGYhHp8vNHZdn27FK1NEFJew/oo5yvyz5TxM9JH+f4WoBd27JaLf5+u95srZkbKdZyOiS8Srtoq9XiVZxUdG/5q/v4QWJA6m5uiFrT2hMMEHuStNX1XI7G3zYvIyRB/Js4THzUV7aejLTBjr0z2lPFnjNfzEMJiRfLbTgHFG9sTfqXGnCL2NR86aS4HfsHArFt1Iq4EtNXrNkMTQLMTa0BtBzpSUday5J9nbgOLLk+6pb9bcCt4nbRUCU2kWdM6FgZVarWE5WUZb/W+MF62tBHihcF5fvEoF6OWi02sdo3s0qbmeW6QKddJQZF9izBxpBfir9jWLIY3AXHix0kpNu+JZCwdFYIDBePeTF9xYBAKufXYg26ZXgHQNzOQhPkv5eFWbLvWb5H+tXyAY79fmgR38bFed8bgD5Txf3N8rvG9BHPNZkTW49v8YPF/fdcofjc0q277w1ibejA6a15V0kjWvcbjV2vq4TBrb1bndXoydX6WFIUpE3x9svuYt0iwFEM6YnfIR/F7iDsqlpQTky2WCsTkuB6QCaNH6BxckIPjrE92etCbE90mRPdK4t9gGPf7mrPciAEbJuf1JLNT3pgkRp4a9u5K5adMCRePDBKmyLcDW4cyiypVbE/AOf8Wuw5FtNXzFk68pU4XfqbDrpNnMe+WWTUHLEJJ3aAuNz2XGlr/MVhBqxVyy1/7WuxOjrWjiUnw9qM5kb/A+lnB3UguLHwkzS52u8bAeFi4OQfKF5dqlRi81DRl85PrM5og8QHIC4nLAnoP81x6AXLPP4BbW/f7lKpbGvCJi4XT9LHt4o1h8mjWmsBpetA+nv6B4o1GPYBjsZP3L+DYzzfFAeIF2RyUnM6lk8VGCFejGllamcB52OGWcoREGYbzERnOf+swTPE9ZUy2nF8Jgt9pNj83l5ytXLS44UlEHFnDDRX7I+B/X4OpJTb1tCo1UDcwNYAR9PymXI1sNIAMyDUedK7X4B8jp/cMcbfsl9Jvr+Pu4ozwPEW+4O0Qw1OOxNOVSrnTVOuSLsCOztItZc0ou99resaFnupOa0BjjtJyZYTjSt5D4pV3va1Hp3hH9jSRVVmnekjW69ypa9Lf/Po3vInmuDYjtVyWLgz4Fd7g2dP6dQghpJAyWFfUYsnQ+lrEWnySdQdYb/dqFRiM4AnOftNdCGtgaU78wO266ejievt5Y0rcXcGwZMKihabo9pLHynWEHpDaKLYTOhsELzQJCA1z3lg1VEaP/lkZ+mFgtyxYtDtQNXJ1uZniwG3yufVaLQA5AIcu2UHRrQeCzVacb0IZs9/73ZigOMtDgco+xqcLhqmfeB02wHYPEF61Z7cgdFHB04Xu2W7OolkXiOOshzaRu8tQLzKdjUCcUe1N2DyVWAh7Z4MiNX2ntCVI0gILgIcZ9M8SZpXNu6RbnbrC/vvLnmu6qoAx8frY9hMMUG+O97ewlXPIneauTwpOEZsDtQ5OXZFZ8nXdjlbr2qNmAN2arvYBN36htZ/B9xiO4K+StXaHOfj36s77cXK0lYNTlcJihabeVRqz1UXhiWLeQnu1K7IienTOqS8M97oRuxtngog2ytrkpigqNGKPTIiMzq3vKTh4iByzkaKdqY7nnzcNfiXQNHnQNo475zM27tuNP5iOcwmx2ZWX9TgeKr2tyNCE1t7yfUUlrG9ots4znlDe/dbe9LrGpVabLqLH2RbSyXdBjX+jrVF3eRYwADHa1xcdXU1ucTdzuh3k5i05m5vGaXLvEYcHr89PWo8Sa1prbXpTPOXRZ8p4uBxXXXyBFwnrneF4Bixm7PXtHP/V6mAsYtb7kNk/zv4oonKhwGOfUJwTzDsbjH53xs1y13J0pHAIfFcWovo0+H0XGKA40muotZuEtF6hC7Y/YTkK0FPrG1qS4dOnB7KwSGRO0FFVzVR+aIGZ+Ct4jhDWV7Kn/EmtaZrLxA8Stpc7CR4UTHAubI5BDQKCnCI5HQmiPfdHWO6hkd3f8m6UnvxEC7tIuzJu1m7Kybb87XP1D7OAmhfNJN2QPcNvXoiX7ZTE1E35sEIR9qc582Ty/B7xNyXEfd47zOoe5AGLNKLDXfGU/LrwC16ughrcDzJpveKTK+pgDAxCXToHSBSHjZRdQlprY03mwdC4ty7dxkpjGRfDHHRAyx7qjjSd1CU83l8jAGOJ7WVg5PzazE69nWXSyJv6FSemcKbcD2Zg6cLEa+sNdpu3TxAPYmT7dPVdutscNZuhGdab5HbMHgwIkXrxEk8bqA4lk9nu7h3Wx4O4HrlenZ5RBZtjUnVgzDA8ZqevWEQtVtnDoZ+WscbNSpJDz9RkMIpdPtkkjEREREpDgMcIvIQZV4FegbXDfUUykn4Z4DjLQqt8iNyits8UQ/lpJt4D8cAh4g8Izje1yXovhj8UY/BAIeIyJYvRrvtMRjgUDem0ACcRyQiIm/Jvk7sITbgFl+XhMg9CmqiYjdxb9GF+LoERORriUOBhCGKvUImpVDm9skAx9MG3QYYa4DgWF+XhIi6AwY31JMoaEBaBjieFt3b1yUgIiLqmKjeQH0lEJro65J0GgMcIiK68vTKBU7l+7oU3YO0llGtVsxNVplkTEREVx5v3om9J1NQkjF/YSIioiuaMvPEGOAQEdGVR0E1FSSPAQ4REREpDgMcIiKiK5lChzJggENERFcgNlEpHQMcIiKiKxprcIiIiIh6BAY4RER05VH7+7oE5GU+C3BOnjyJOXPmID09HYGBgcjMzMQTTzyBxsZGl++bMGECVCqVzWP+/PldVGoiIlKE5JFAeArQ+2e+Lgl5ic9u1XD48GGYzWb8/e9/R1ZWFvbv34+5c+eirq4Of/nLX1y+d+7cuXj66aetz/V6vbeLS0RESuKnA4bd5etSkBf5LMCZOnUqpk6dan2ekZGBoqIivPbaa20GOHq9HvHx8d4uIhEREfVQ3SoHp7q6GpGRkW3O9+677yI6OhoDBw7E8uXLUV9f73J+o9EIg8Fg8yAiIiLl6jZ3Ez927BhWrlzZZu3NnXfeiV69eiExMRF79+7Fo48+iqKiInz00UdO37NixQo89dRTni4yERERdVMer8FZtmyZQxKw/ePw4cM27zl79iymTp2K22+/HXPnznW5/Hnz5mHKlCkYNGgQZs6ciX/961/4+OOPUVxc7PQ9y5cvR3V1tfVx+vRpj3xXIiIi6p48XoOzdOlSzJ492+U8GRkZ1v/PnTuHiRMnIi8vD2+88Ua7Py8nJweAWAOUmZkpO49Op4NOp2v3somIiKhn8niAExMTg5iYGLfmPXv2LCZOnIgRI0Zg1apVUKvbX6FUWFgIAEhISGj3e4mIiEiZfJZkfPbsWUyYMAGpqan4y1/+gvPnz6OsrAxlZWU28/Tt2xc7d+4EABQXF+P3v/89CgoKcPLkSXz22WeYNWsWxo8fj8GDB/vqqxAREVE347Mk4w0bNuDYsWM4duwYkpOTbV4TBPEmaE1NTSgqKrL2ktJqtfjmm2/w0ksvoa6uDikpKZg+fToee+yxLi8/ERERdV8+C3Bmz57dZq5OWlqaNdgBgJSUFGzdutXLJSMiIqKerluNg0NERETkCQxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiIrmQqla9L4BUMcIiIiEhxGOAQERGR4jDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEikUvm6BB7DAIeIiIgUhwEOERERKQ4DHCLquKxJ4t/0cb4tBxGRHT9fF4CIerCU0UBsf0AX7OuSEJEnCIKvS+AxPq3BSUtLg0qlsnk899xzLt/T0NCAhQsXIioqCsHBwZg+fTrKy8u7qMRE5IDBDVEPp5zEYimfN1E9/fTTKC0ttT4eeOABl/M//PDD+N///ocPPvgAW7duxblz53Drrbd2UWmJiIgUTEG9qHzeRBUSEoL4+Hi35q2ursabb76J9957D9dccw0AYNWqVejXrx9++OEHjBkzxptFJSIioh7C5zU4zz33HKKiojBs2DD8+c9/RnNzs9N5CwoK0NTUhMmTJ1un9e3bF6mpqcjPz3f6PqPRCIPBYPMgIiIi5fJpDc6DDz6I4cOHIzIyEtu3b8fy5ctRWlqKF154QXb+srIyaLVahIeH20yPi4tDWVmZ089ZsWIFnnrqKU8WnYiIiLoxj9fgLFu2zCFx2P5x+PBhAMCSJUswYcIEDB48GPPnz8fzzz+PlStXwmg0erRMy5cvR3V1tfVx+vRpjy6fiIiIuheP1+AsXboUs2fPdjlPRkaG7PScnBw0Nzfj5MmTyM7Odng9Pj4ejY2NqKqqsqnFKS8vd5nHo9PpoNPp3Co/ERER9XweD3BiYmIQExPTofcWFhZCrVYjNjZW9vURI0bA398fGzduxPTp0wEARUVFKCkpQW5ubofLTERERMrisxyc/Px87NixAxMnTkRISAjy8/Px8MMP46677kJERAQA4OzZs5g0aRL+9a9/YfTo0QgLC8OcOXOwZMkSREZGIjQ0FA888AByc3PZg4qIiIisfBbg6HQ6rF27Fk8++SSMRiPS09Px8MMPY8mSJdZ5mpqaUFRUhPr6euu0F198EWq1GtOnT4fRaMSUKVPw6quv+uIrEBERUTelEgQFjcvsJoPBgLCwMFRXVyM0NNTXxSEiIvKd5kbg2+fF/4fMACLl82S7g/acv30+Dg4RERGRpzHAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiohYqXxfAYxjgEBERkeIwwCEiIqIWyrk9JQMcIiKiK5lKOc1SUgxwiIiISHEY4BAREZHiMMAhIiKiFspprmKAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiISHEY4BAREZHi+CzA2bJlC1Qqlexj165dTt83YcIEh/nnz5/fhSUnIiKi7s7PVx+cl5eH0tJSm2m/+93vsHHjRowcOdLle+fOnYunn37a+lyv13uljERERNQz+SzA0Wq1iI+Ptz5vamrCp59+igceeAAqlcrle/V6vc17iYiIiKS6TQ7OZ599hosXL+JXv/pVm/O+++67iI6OxsCBA7F8+XLU19e7nN9oNMJgMNg8iIiICABcVyr0VD6rwbH35ptvYsqUKUhOTnY535133olevXohMTERe/fuxaOPPoqioiJ89NFHTt+zYsUKPPXUU54uMhEREXVTKkEQBE8ucNmyZfjjH//ocp5Dhw6hb9++1udnzpxBr1698P7772P69Ont+rxNmzZh0qRJOHbsGDIzM2XnMRqNMBqN1ucGgwEpKSmorq5GaGhouz6PiIhIUUzNwLY/i/8P+SUQme7b8rhgMBgQFhbm1vnb4zU4S5cuxezZs13Ok5GRYfN81apViIqKws0339zuz8vJyQEAlwGOTqeDTqdr97KJiIioZ/J4gBMTE4OYmBi35xcEAatWrcKsWbPg7+/f7s8rLCwEACQkJLT7vURERKRMPk8y3rRpE06cOIH77rvP4bWzZ8+ib9++2LlzJwCguLgYv//971FQUICTJ0/is88+w6xZszB+/HgMHjy4q4tORERE3ZTPk4zffPNN5OXl2eTkWDQ1NaGoqMjaS0qr1eKbb77BSy+9hLq6OqSkpGD69Ol47LHHurrYREREytPGMC09ic8DnPfee8/pa2lpaZDmQKekpGDr1q1dUSwiIiLqwXzeREVERETkaQxwiIiISHEY4BAREZHIs0Pj+RQDHCIiIlIcBjhEREQkUlAvKgY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERFdyRR0ewYpBjhERESkOAxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiImqhnDFxGOAQERGR4jDAISIiohaCrwvgMQxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIhasJt4m5599lnk5eVBr9cjPDxcdp6SkhLccMMN0Ov1iI2NxW9+8xs0Nze7XG5lZSVmzpyJ0NBQhIeHY86cOaitrfXCNyAiIqKeymsBTmNjI26//XYsWLBA9nWTyYQbbrgBjY2N2L59O9asWYPVq1fj8ccfd7ncmTNn4sCBA9iwYQPWrVuHbdu2Yd68ed74CkRERNRDqQRB8Gqn99WrV2Px4sWoqqqymf7ll1/ixhtvxLlz5xAXFwcAeP311/Hoo4/i/Pnz0Gq1Dss6dOgQ+vfvj127dmHkyJEAgPXr1+P666/HmTNnkJiY6FaZDAYDwsLCUF1djdDQ0M59QSIiop7MbAK2/kn8f+idQEQv35bHhfacv32Wg5Ofn49BgwZZgxsAmDJlCgwGAw4cOOD0PeHh4dbgBgAmT54MtVqNHTt2OP0so9EIg8Fg8yAiIiLl8lmAU1ZWZhPcALA+Lysrc/qe2NhYm2l+fn6IjIx0+h4AWLFiBcLCwqyPlJSUTpaeiIiIurN2BTjLli2DSqVy+Th8+LC3ytphy5cvR3V1tfVx+vRpXxeJiIiIvMivPTMvXboUs2fPdjlPRkaGW8uKj4/Hzp07baaVl5dbX3P2noqKCptpzc3NqKysdPoeANDpdNDpdG6Vi4iI6MqinK7hUu0KcGJiYhATE+ORD87NzcWzzz6LiooKa7PThg0bEBoaiv79+zt9T1VVFQoKCjBixAgAwKZNm2A2m5GTk+ORchEREVHP57UcnJKSEhQWFqKkpAQmkwmFhYUoLCy0jllz7bXXon///rj77rvx008/4auvvsJjjz2GhQsXWmtbdu7cib59++Ls2bMAgH79+mHq1KmYO3cudu7cie+//x6LFi3CL3/5S7d7UBEREZHytasGpz0ef/xxrFmzxvp82LBhAIDNmzdjwoQJ0Gg0WLduHRYsWIDc3FwEBQXhnnvuwdNPP219T319PYqKitDU1GSd9u6772LRokWYNGkS1Go1pk+fjldeecVbX4OIiIh6IK+Pg9MdcRwcIiKiFmYzsPWP4v8cB4eIiIio+2KAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhEREQkUql8XQKPYYBDREREisMAh4iIiBSHAQ4REREpDgMcIiIiEgmCr0vgMQxwiIiIrmQKSiyWYoBDREREIgUFOwxwiIiISHEY4BAREZHiMMAhIiIixWGAQ0RERIrDAIeIiIgUhwEOERERKQ4DHCIiIlIcBjhERESkOAxwiIiISHEY4BAREZHiMMAhIiIixfFagPPss88iLy8Per0e4eHhDq//9NNPuOOOO5CSkoLAwED069cPL7/8cpvLTUtLg0qlsnk899xzXvgGRERE1FP5eWvBjY2NuP3225Gbm4s333zT4fWCggLExsbinXfeQUpKCrZv34558+ZBo9Fg0aJFLpf99NNPY+7cudbnISEhHi8/ERER9VxeC3CeeuopAMDq1atlX7/33nttnmdkZCA/Px8fffRRmwFOSEgI4uPjPVJOIiIiUp5ulYNTXV2NyMjINud77rnnEBUVhWHDhuHPf/4zmpubXc5vNBphMBhsHkRERKRcXqvBaa/t27fjP//5Dz7//HOX8z344IMYPnw4IiMjsX37dixfvhylpaV44YUXnL5nxYoV1holIiIiUr521eAsW7bMIcHX/nH48OF2F2L//v34+c9/jieeeALXXnuty3mXLFmCCRMmYPDgwZg/fz6ef/55rFy5Ekaj0el7li9fjurqauvj9OnT7S4jERER9RztqsFZunQpZs+e7XKejIyMdhXg4MGDmDRpEubNm4fHHnusXe8FgJycHDQ3N+PkyZPIzs6WnUen00Gn07V72URERNQztSvAiYmJQUxMjMc+/MCBA7jmmmtwzz334Nlnn+3QMgoLC6FWqxEbG+uxchEREV2ZVL4ugMd4LQenpKQElZWVKCkpgclkQmFhIQAgKysLwcHB2L9/P6655hpMmTIFS5YsQVlZGQBAo9FYg6idO3di1qxZ2LhxI5KSkpCfn48dO3Zg4sSJCAkJQX5+Ph5++GHcddddiIiI8NZXISIiukIIvi6Ax3gtwHn88cexZs0a6/Nhw4YBADZv3owJEybgww8/xPnz5/HOO+/gnXfesc7Xq1cvnDx5EgBQX1+PoqIiNDU1ARCbmtauXYsnn3wSRqMR6enpePjhh7FkyRJvfQ0iIiJlUymn1kZKJQiCcsI1NxkMBoSFhaG6uhqhoaG+Lg4REZFvbV4h/h02EwhP9W1ZXGjP+btbjYNDRERE5AkMcIiIiEhxGOAQERFRC+Xk4zDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwiIiJSHAY4REREpDgMcIiIiEhxGOAQERGR4jDAISIiIpFK5esSeAwDHCIiIlIcBjhERESkOAxwiIiISHG8FuA8++yzyMvLg16vR3h4uOw8KpXK4bF27VqXy62srMTMmTMRGhqK8PBwzJkzB7W1tV74BkRERFcYQfB1CTzGawFOY2Mjbr/9dixYsMDlfKtWrUJpaan1MW3aNJfzz5w5EwcOHMCGDRuwbt06bNu2DfPmzfNgyYmIiKin8/PWgp966ikAwOrVq13OFx4ejvj4eLeWeejQIaxfvx67du3CyJEjAQArV67E9ddfj7/85S9ITEzsVJmJiIiuaOxF5TkLFy5EdHQ0Ro8ejbfeeguCi+qx/Px8hIeHW4MbAJg8eTLUajV27Njh9H1GoxEGg8HmQURERMrltRocdzz99NO45pproNfr8fXXX+P+++9HbW0tHnzwQdn5y8rKEBsbazPNz88PkZGRKCsrc/o5K1assNYoERERkfK1qwZn2bJlsonB0sfhw4fdXt7vfvc7jB07FsOGDcOjjz6K3/72t/jzn//c7i/RluXLl6O6utr6OH36tMc/g4iIiLqPdtXgLF26FLNnz3Y5T0ZGRocLk5OTg9///vcwGo3Q6XQOr8fHx6OiosJmWnNzMyorK13m8eh0OtnlERERkTK1K8CJiYlBTEyMt8qCwsJCREREOA1GcnNzUVVVhYKCAowYMQIAsGnTJpjNZuTk5HitXERERNSzeC0Hp6SkBJWVlSgpKYHJZEJhYSEAICsrC8HBwfjf//6H8vJyjBkzBgEBAdiwYQP+8Ic/4JFHHrEuY+fOnZg1axY2btyIpKQk9OvXD1OnTsXcuXPx+uuvo6mpCYsWLcIvf/lLr/SgMplMaGpq8vhy6crh7+8PjUbj62IQEV1xvBbgPP7441izZo31+bBhwwAAmzdvxoQJE+Dv74+//e1vePjhhyEIArKysvDCCy9g7ty51vfU19ejqKjIJsh49913sWjRIkyaNAlqtRrTp0/HK6+84tGyC4KAsrIyVFVVeXS5dGWyDIWgUlD3SyKi7k4luOqXrVAGgwFhYWGorq5GaGiow+ulpaWoqqpCbGws9Ho9T0zUIYIgoL6+HhUVFQgPD0dCQoKvi0REJG/zCvHv8LuBsGTflsWFts7fUj7tJt4dmUwma3ATFRXl6+JQDxcYGAgAqKioQGxsLJuriIi6iM8H+utuLM1her3exyUhpbBsS8znIiLqOgxwnGCzFHkKtyUioq7HAIeIiIgUhwGOQgiCgHnz5iEyMhIqlcraLZ+IiOhKxABHIdavX4/Vq1dj3bp1KC0txcCBA31dpG4hLS0NKpUKP/zwg830xYsXY8KECb4pFBEReR0DHIUoLi5GQkIC8vLyEB8fDz8/xw5yjY2NPiiZ7wUEBODRRx9t13uu1HVFRKQUDHAUYPbs2XjggQdQUlIClUqFtLQ0AMCECROwaNEiLF68GNHR0ZgyZQoA4IUXXsCgQYMQFBSElJQU613cLVavXo3w8HCsW7cO2dnZ0Ov1uO2221BfX481a9YgLS0NERERePDBB2EymazvMxqNeOSRR5CUlISgoCDk5ORgy5Yt1tdPnTqFm266CREREQgKCsKAAQPwxRdfdPr7v/XWWxgwYAB0Oh0SEhKwaNEim9fnzZuHH374weVnzZ49G9OmTcOzzz6LxMREZGdn4+TJk1CpVHj//fcxbtw4BAYGYtSoUThy5Ah27dqFkSNHIjg4GNdddx3Onz/f6e9BRESew3Fw3CAIAppMXT8eor9G5VYPnJdffhmZmZl44403sGvXLpuxVtasWYMFCxbg+++/t05Tq9V45ZVXkJ6ejuPHj+P+++/Hb3/7W7z66qvWeerr6/HKK69g7dq1qKmpwa233opbbrkF4eHh+OKLL3D8+HFMnz4dY8eOxYwZMwAAixYtwsGDB7F27VokJibi448/xtSpU7Fv3z707t0bCxcuRGNjI7Zt24agoCAcPHgQwcHBnVpHr732GpYsWYLnnnsO1113Haqrq22+KwCkp6dj/vz5WL58OaZOnQq1Wj6u37hxI0JDQ7Fhwwab6U888QReeuklpKam4t5778Wdd96JkJAQvPzyy9Dr9fjFL36Bxx9/HK+99lqnvgsREXkOAxw3NJkE/G3zsS7/3IUTs6D1azvACQsLQ0hICDQajcNd1Xv37o0//elPNtMWL15s/T8tLQ3PPPMM5s+fbxPgNDU14bXXXkNmZiYA4LbbbsPbb7+N8vJyBAcHo3///pg4cSI2b96MGTNmoKSkBKtWrUJJSYn1vmCPPPII1q9fj1WrVuEPf/gDSkpKMH36dAwaNAhA5+48b/HMM89g6dKleOihh6zTRo0a5TDfY489hlWrVuHdd9/F3XffLbusoKAg/POf/4RWqwUAnDx50vo9LLVfDz30EO644w5s3LgRY8eOBQDMmTMHq1ev7vR3ISIiz2ETlcJZ7rou9c0332DSpElISkpCSEgI7r77bly8eBH19fXWefR6vTW4AYC4uDikpaXZ1LjExcWhoqICALBv3z6YTCb06dMHwcHB1sfWrVtRXFwMAHjwwQfxzDPPYOzYsXjiiSewd+9ep+X+wx/+YLOckpISh3kqKipw7tw5TJo0qc31EBMTg0ceeQSPP/640/yaQYMGWYMbqcGDB9t8Z8u8cuuBiKhnU864XazBcYO/RoWFE7N88rmdFRQUZPP85MmTuPHGG7FgwQI8++yziIyMxHfffYc5c+agsbHROuquv7+/zftUKpXsNLPZDACora2FRqNBQUGBw+0ILEHRfffdhylTpuDzzz/H119/jRUrVuD555/HAw884FDu+fPn4xe/+IX1udzd4i23QXDXkiVL8Oqrr9rUVEnZrysL6fe2NBnaT7OsByKink05t6dkgOMGlUrlVlNRT1BQUACz2Yznn3/emovy/vvvd3q5w4YNg8lkQkVFBcaNG+d0vpSUFMyfP9+aE/OPf/xDNsCJjIxEZGSky88MCQlBWloaNm7ciIkTJ7ZZxuDgYPzud7/Dk08+iZtvvrntL0VERD0Wm6iuMFlZWWhqasLKlStx/PhxvP3223j99dc7vdw+ffpg5syZmDVrFj766COcOHECO3fuxIoVK/D5558DEHN/vvrqK5w4cQK7d+/G5s2b0a9fv0597pNPPonnn38er7zyCo4ePYrdu3dj5cqVTuefN28ewsLC8N5773Xqc4mIqHtjgHOFGTJkCF544QX88Y9/xMCBA/Huu+9ixYoVHln2qlWrMGvWLCxduhTZ2dmYNm0adu3ahdTUVADindoXLlyIfv36YerUqejTp4/T5iJ33XPPPXjppZfw6quvYsCAAbjxxhtx9OhRp/P7+/vj97//PRoaGjr1uURE1L2pBEFQToObmwwGA8LCwlBdXY3Q0FCb1xoaGnDixAmkp6cjICDARyUkJeE2RUTd3uaWC93hdwNhyb4tiwuuzt/2WINDRERELZSRbwowwCEiIiIFYoBDREREisMAh4iIiBSHAQ4REREpDgMcIiIiUhwGOERERKQ4DHCIiIhIcRjgEBERkeIwwFEIQRAwb948REZGQqVSobCw0NdFIiIi8hkGOAqxfv16rF69GuvWrUNpaSkGDhzo6yJ1idmzZ2PatGkO07ds2QKVSoWqqqouLxMREfmen68LQJ5RXFyMhIQE5OXlOZ2nsbERWq22C0tFRETkG6zBUYDZs2fjgQceQElJCVQqFdLS0gAAEyZMwKJFi7B48WJER0djypQpAIAXXngBgwYNQlBQEFJSUnD//fejtrbWurzVq1cjPDwc69atQ3Z2NvR6PW677TbU19djzZo1SEtLQ0REBB588EGYTCbr+4xGIx555BEkJSUhKCgIOTk52LJli/X1U6dO4aabbkJERASCgoIwYMAAfPHFF12yjoiI6MrCGhx3CAJgaur6z9X4A6q2b3z28ssvIzMzE2+88QZ27doFjUZjfW3NmjVYsGABvv/+e+s0tVqNV155Benp6Th+/Djuv/9+/Pa3v8Wrr75qnae+vh6vvPIK1q5di5qaGtx666245ZZbEB4eji+++ALHjx/H9OnTMXbsWMyYMQMAsGjRIhw8eBBr165FYmIiPv74Y0ydOhX79u1D7969sXDhQjQ2NmLbtm0ICgrCwYMHERwc7MEVRkREJGKA4w5TE/Dt813/ueOWAn5tNymFhYUhJCQEGo0G8fHxNq/17t0bf/rTn2ymLV682Pp/WloannnmGcyfP98mwGlqasJrr72GzMxMAMBtt92Gt99+G+Xl5QgODkb//v0xceJEbN68GTNmzEBJSQlWrVqFkpISJCYmAgAeeeQRrF+/HqtWrcIf/vAHlJSUYPr06Rg0aBAAICMjo0OrhYiIqC1ea6J69tlnkZeXB71ej/DwcIfXV69eDZVKJfuoqKhwuty0tDSH+Z977jlvfY0eb8SIEQ7TvvnmG0yaNAlJSUkICQnB3XffjYsXL6K+vt46j16vtwY3ABAXF4e0tDSbGpe4uDjrb7Vv3z6YTCb06dMHwcHB1sfWrVtRXFwMAHjwwQfxzDPPYOzYsXjiiSewd+9ep+X+wx/+YLOckpKSTq8LIiK6cnitBqexsRG33347cnNz8eabbzq8PmPGDEydOtVm2uzZs9HQ0IDY2FiXy3766acxd+5c6/OQkBDPFNoZjb9Ym9LVNP6dXkRQUJDN85MnT+LGG2/EggUL8OyzzyIyMhLfffcd5syZg8bGRuj1egCAv7/tZ6tUKtlpZrMZAFBbWwuNRoOCggKbJjIA1qDovvvuw5QpU/D555/j66+/xooVK/D888/jgQcecCj3/Pnz8Ytf/ML63FIrZC80NBSnTp1ymF5VVQWNRuPw/YmI6MrgtQDnqaeeAiDW1MgJDAxEYGCg9fn58+exadMm2WDIXkhIiENTjFepVG41FfUEBQUFMJvNeP7556FWixV477//fqeXO2zYMJhMJlRUVGDcuHFO50tJScH8+fMxf/58LF++HP/4xz9kA5zIyEhERka2+bnZ2dlYu3YtjEYjdDqddfru3buRnp7uEJQREdGVodv0ovrXv/5l7a3Tlueeew5RUVEYNmwY/vznP6O5ubkLSqgMWVlZaGpqwsqVK3H8+HG8/fbbeP311zu93D59+mDmzJmYNWsWPvroI5w4cQI7d+7EihUr8PnnnwMQc3+++uornDhxArt378bmzZvRr1+/Tn3uzJkzoVKpMGvWLBQUFODYsWN466238NJLL2HpUh/UuhER9WRa5dR6d5sk4zfffBN33nmnTa2OnAcffBDDhw9HZGQktm/fjuXLl6O0tBQvvPCC0/cYjUYYjUbrc4PB4LFy9zRDhgzBCy+8gD/+8Y9Yvnw5xo8fjxUrVmDWrFmdXvaqVavwzDPPYOnSpTh79iyio6MxZswY3HjjjQAAk8mEhQsX4syZMwgNDcXUqVPx4osvduozw8PD8e2332LZsmW4+eabUV1djaysLLzwwguYM2dOp78TEdEVYeidQHMDEBju65J4jEoQBMHdmZctW4Y//vGPLuc5dOgQ+vbta32+evVqLF682OWIsvn5+cjLy8OPP/4omxTryltvvYVf//rXqK2ttWmikHryySetTWZS1dXVCA0NtZnW0NCAEydOID09HQEBAe0qC5EcblNERJ5hMBgQFhYme/62164anKVLl2L27Nku5+lI199//vOfGDp0aLuDGwDIyclBc3MzTp48iezsbNl5li9fjiVLllifGwwGpKSktPuziIiIqGdoV4ATExODmJgYjxagtrYW77//PlasWNGh9xcWFkKtVrvseaXT6ZzW7hAREZHyeC0Hp6SkBJWVlSgpKYHJZLLe3TorK8tmLJX//Oc/aG5uxl133eWwjJ07d2LWrFnYuHEjkpKSkJ+fjx07dmDixIkICQlBfn4+Hn74Ydx1112IiIjw1lchIiKiHsZrAc7jjz+ONWvWWJ8PGzYMALB582ZMmDDBOv3NN9/ErbfeKjsYYH19PYqKitDUJN4mQafTYe3atXjyySdhNBqRnp6Ohx9+2Kb5iYiIiKhdScZK4SpJiQmh5GncpoiIPKM9ScbdZhyc7sYyQi9RZ3FbIiLqet1mHJzuQqvVQq1W49y5c4iJiYFWq4XKjTt6E9kTBAGNjY04f/481Go1tFpljIZNRNQTMMCxo1arkZ6ejtLSUpw7d87XxSEF0Ov1SE1Ntd4ag4iIvI8BjgytVovU1FQ0NzfDZDL5ujjUg2k0Gvj5+bEWkIioizHAccJy92zerJGIiKjnYZ05ERERKQ4DHCIiIlIcBjhERESkOFdkDo5lbEODweDjkhAREZG7LOdtd8YoviIDnJqaGgDgHcWJiIh6oJqaGoSFhbmc54q8VYPZbMa5c+cQEhLi8e67BoMBKSkpOH36dJvDSFPHcT13Da7nrsH13DW4nruOt9a1IAioqalBYmJim2OLXZE1OGq1GsnJyV79jNDQUO5AXYDruWtwPXcNrueuwfXcdbyxrtuqubFgkjEREREpDgMcIiIiUhwGOB6m0+nwxBNPQKfT+booisb13DW4nrsG13PX4HruOt1hXV+RScZERESkbKzBISIiIsVhgENERESKwwCHiIiIFIcBDhERESkOAxwP+tvf/oa0tDQEBAQgJycHO3fu9HWRurVt27bhpptuQmJiIlQqFT755BOb1wVBwOOPP46EhAQEBgZi8uTJOHr0qM08lZWVmDlzJkJDQxEeHo45c+agtrbWZp69e/di3LhxCAgIQEpKCv70pz95+6t1KytWrMCoUaMQEhKC2NhYTJs2DUVFRTbzNDQ0YOHChYiKikJwcDCmT5+O8vJym3lKSkpwww03QK/XIzY2Fr/5zW/Q3NxsM8+WLVswfPhw6HQ6ZGVlYfXq1d7+et3Ga6+9hsGDB1sHNsvNzcWXX35pfZ3r2Duee+45qFQqLF682DqN67rznnzySahUKptH3759ra/3iHUskEesXbtW0Gq1wltvvSUcOHBAmDt3rhAeHi6Ul5f7umjd1hdffCH8v//3/4SPPvpIACB8/PHHNq8/99xzQlhYmPDJJ58IP/30k3DzzTcL6enpwuXLl63zTJ06VRgyZIjwww8/CN9++62QlZUl3HHHHdbXq6urhbi4OGHmzJnC/v37hX//+99CYGCg8Pe//72rvqbPTZkyRVi1apWwf/9+obCwULj++uuF1NRUoba21jrP/PnzhZSUFGHjxo3Cjz/+KIwZM0bIy8uzvt7c3CwMHDhQmDx5srBnzx7hiy++EKKjo4Xly5db5zl+/Lig1+uFJUuWCAcPHhRWrlwpaDQaYf369V36fX3ls88+Ez7//HPhyJEjQlFRkfB///d/gr+/v7B//35BELiOvWHnzp1CWlqaMHjwYOGhhx6yTue67rwnnnhCGDBggFBaWmp9nD9/3vp6T1jHDHA8ZPTo0cLChQutz00mk5CYmCisWLHCh6XqOewDHLPZLMTHxwt//vOfrdOqqqoEnU4n/Pvf/xYEQRAOHjwoABB27dplnefLL78UVCqVcPbsWUEQBOHVV18VIiIiBKPRaJ3n0UcfFbKzs738jbqviooKAYCwdetWQRDE9erv7y988MEH1nkOHTokABDy8/MFQRCDUbVaLZSVlVnnee2114TQ0FDruv3tb38rDBgwwOazZsyYIUyZMsXbX6nbioiIEP75z39yHXtBTU2N0Lt3b2HDhg3C1VdfbQ1wuK4944knnhCGDBki+1pPWcdsovKAxsZGFBQUYPLkydZparUakydPRn5+vg9L1nOdOHECZWVlNus0LCwMOTk51nWan5+P8PBwjBw50jrP5MmToVarsWPHDus848ePh1artc4zZcoUFBUV4dKlS130bbqX6upqAEBkZCQAoKCgAE1NTTbrum/fvkhNTbVZ14MGDUJcXJx1nilTpsBgMODAgQPWeaTLsMxzJe4DJpMJa9euRV1dHXJzc7mOvWDhwoW44YYbHNYH17XnHD16FImJicjIyMDMmTNRUlICoOesYwY4HnDhwgWYTCabHxIA4uLiUFZW5qNS9WyW9eZqnZaVlSE2NtbmdT8/P0RGRtrMI7cM6WdcScxmMxYvXoyxY8di4MCBAMT1oNVqER4ebjOv/bpuaz06m8dgMODy5cve+Drdzr59+xAcHAydTof58+fj448/Rv/+/bmOPWzt2rXYvXs3VqxY4fAa17Vn5OTkYPXq1Vi/fj1ee+01nDhxAuPGjUNNTU2PWcdX5N3Eia5UCxcuxP79+/Hdd9/5uiiKlJ2djcLCQlRXV+PDDz/EPffcg61bt/q6WIpy+vRpPPTQQ9iwYQMCAgJ8XRzFuu6666z/Dx48GDk5OejVqxfef/99BAYG+rBk7mMNjgdER0dDo9E4ZJCXl5cjPj7eR6Xq2SzrzdU6jY+PR0VFhc3rzc3NqKystJlHbhnSz7hSLFq0COvWrcPmzZuRnJxsnR4fH4/GxkZUVVXZzG+/rttaj87mCQ0N7TEHxM7SarXIysrCiBEjsGLFCgwZMgQvv/wy17EHFRQUoKKiAsOHD4efnx/8/PywdetWvPLKK/Dz80NcXBzXtReEh4ejT58+OHbsWI/ZnhngeIBWq8WIESOwceNG6zSz2YyNGzciNzfXhyXrudLT0xEfH2+zTg0GA3bs2GFdp7m5uaiqqkJBQYF1nk2bNsFsNiMnJ8c6z7Zt29DU1GSdZ8OGDcjOzkZEREQXfRvfEgQBixYtwscff4xNmzYhPT3d5vURI0bA39/fZl0XFRWhpKTEZl3v27fPJqDcsGEDQkND0b9/f+s80mVY5rmS9wGz2Qyj0ch17EGTJk3Cvn37UFhYaH2MHDkSM2fOtP7Pde15tbW1KC4uRkJCQs/Znj2SqkzC2rVrBZ1OJ6xevVo4ePCgMG/ePCE8PNwmg5xs1dTUCHv27BH27NkjABBeeOEFYc+ePcKpU6cEQRC7iYeHhwuffvqpsHfvXuHnP/+5bDfxYcOGCTt27BC+++47oXfv3jbdxKuqqoS4uDjh7rvvFvbv3y+sXbtW0Ov1V1Q38QULFghhYWHCli1bbLp81tfXW+eZP3++kJqaKmzatEn48ccfhdzcXCE3N9f6uqXL57XXXisUFhYK69evF2JiYmS7fP7mN78RDh06JPztb3+7orrVLlu2TNi6datw4sQJYe/evcKyZcsElUolfP3114IgcB17k7QXlSBwXXvC0qVLhS1btggnTpwQvv/+e2Hy5MlCdHS0UFFRIQhCz1jHDHA8aOXKlUJqaqqg1WqF0aNHCz/88IOvi9Stbd68WQDg8LjnnnsEQRC7iv/ud78T4uLiBJ1OJ0yaNEkoKiqyWcbFixeFO+64QwgODhZCQ0OFX/3qV0JNTY3NPD/99JNw1VVXCTqdTkhKShKee+65rvqK3YLcOgYgrFq1yjrP5cuXhfvvv1+IiIgQ9Hq9cMsttwilpaU2yzl58qRw3XXXCYGBgUJ0dLSwdOlSoampyWaezZs3C0OHDhW0Wq2QkZFh8xlKd++99wq9evUStFqtEBMTI0yaNMka3AgC17E32Qc4XNedN2PGDCEhIUHQarVCUlKSMGPGDOHYsWPW13vCOlYJgiB4pi6IiIiIqHtgDg4REREpDgMcIiIiUhwGOERERKQ4DHCIiIhIcRjgEBERkeIwwCEiIiLFYYBDREREisMAh4iIiBSHAQ4REREpDgMcIiIiUhwGOERERKQ4DHCIiIhIcf4/GRjzrAqY8/YAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "plt.plot(\n", - " range(5000),\n", - " pcft.history[\"cNrm\"].mean(axis=1),\n", - " label=\"frames - cNrm\",\n", - " alpha=0.5,\n", - ")\n", - "plt.plot(range(5000), pcft.history[\"U\"].mean(axis=1), label=\"frames - U\", alpha=0.5)\n", - "plt.legend()" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.987287Z", - "iopub.status.busy": "2024-07-11T15:30:48.987031Z", - "iopub.status.idle": "2024-07-11T15:30:48.990708Z", - "shell.execute_reply": "2024-07-11T15:30:48.990239Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[-0.32163767, -0.32163767, -0.32163767, ..., -0.32163767,\n", - " -0.32163767, -0.32163767],\n", - " [-0.29964502, -0.29964502, -0.29964502, ..., -0.29964502,\n", - " -0.29964502, -0.29964502],\n", - " [-0.31259768, -0.31259768, -0.31259768, ..., -0.31259768,\n", - " -0.31259768, -0.31259768],\n", - " ...,\n", - " [-0.25024318, -0.25024318, -0.25024318, ..., -0.25024318,\n", - " -0.25024318, -0.25024318],\n", - " [-0.19620811, -0.19620811, -0.19620811, ..., -0.19620811,\n", - " -0.19620811, -0.19620811],\n", - " [-0.22725778, -0.22725778, -0.22725778, ..., -0.22725778,\n", - " -0.22725778, -0.22725778]])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft.history[\"U\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.992207Z", - "iopub.status.busy": "2024-07-11T15:30:48.991976Z", - "iopub.status.idle": "2024-07-11T15:30:48.995506Z", - "shell.execute_reply": "2024-07-11T15:30:48.995025Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-0.32163767, -0.29964502, -0.31259768, ..., -0.25024318,\n", - " -0.19620811, -0.22725778])" - ] - }, - "execution_count": 16, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft.history[\"U\"].mean(axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:48.996930Z", - "iopub.status.busy": "2024-07-11T15:30:48.996699Z", - "iopub.status.idle": "2024-07-11T15:30:49.000831Z", - "shell.execute_reply": "2024-07-11T15:30:49.000350Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft.history[\"U\"][0, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.002464Z", - "iopub.status.busy": "2024-07-11T15:30:49.002057Z", - "iopub.status.idle": "2024-07-11T15:30:49.005841Z", - "shell.execute_reply": "2024-07-11T15:30:49.005367Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175,\n", - " 0.93895175, 0.93895175, 0.93895175, 0.93895175, 0.93895175])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft.history[\"cNrm\"][0, :]" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.007214Z", - "iopub.status.busy": "2024-07-11T15:30:49.006981Z", - "iopub.status.idle": "2024-07-11T15:30:49.010049Z", - "shell.execute_reply": "2024-07-11T15:30:49.009599Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "5.0" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "pcft.parameters[\"CRRA\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.011429Z", - "iopub.status.busy": "2024-07-11T15:30:49.011215Z", - "iopub.status.idle": "2024-07-11T15:30:49.015108Z", - "shell.execute_reply": "2024-07-11T15:30:49.014544Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "array([-0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767,\n", - " -0.32163767, -0.32163767, -0.32163767, -0.32163767, -0.32163767])" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "CRRAutility(pcft.history[\"cNrm\"][0, :], 5)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Visualizing the Transition Equations" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Note that in the HARK `ConsIndShockModel`, from which the `ConsPortfolio` model inherits, the aggregate permanent shocks are considered to be portions of the permanent shocks experienced by the agents, not additions to those idiosyncratic shocks. Hence, they do not show up directly in the problem solved by the agent. This explains why the aggregate income levels are in a separarte component of the graph." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.016566Z", - "iopub.status.busy": "2024-07-11T15:30:49.016336Z", - "iopub.status.idle": "2024-07-11T15:30:49.216285Z", - "shell.execute_reply": "2024-07-11T15:30:49.215738Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAOwCAYAAAD2pusOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVhUdcPG8XtUEFwwFxIXEisxFW3BNDMN9yVTs3LLpRJBqVwRTbFyLUXJzBAByzQfs3LPVMw9e7SkRc0NTcw9TZRSEJTz/uHLPJIbCMMZhu/nurhe5syZc+7xeVO457dYDMMwBAAAAAAAgNsqZHYAAAAAAACA/IASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAuKZOWk9PR0nThxQiVLlpTFYrF1JgAAAAAAgDxhGIb+/vtvVaxYUYUK3X6sSZZKlBMnTsjT0zNXwgEAAAAAANibo0ePqnLlyrc9J0slSsmSJa0XdHNzy3kyAAAAAAAAO5CUlCRPT09r93E7WSpRMqbwuLm5UaIAAAAAAACHk5XlS1hYFgAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAHAQqampmjp1qh555BFNnTpVqampZkcCAIdCiQIAAADkc4Zh6Ouvv5aPj4+GDx+u8uXLa/jw4fLx8dHKlStlGIbZEQHAIVCiAAAAAPnY3r171aZNGz377LO677779Msvv2jNmjX65ZdfdN9996ldu3Zq27at9u7da3ZUAMj3KFEAAACAfCgxMVGDBg1S7dq1FR8fr6VLl2rt2rXy8fGRJPn4+Gjt2rVaunSpDhw4oNq1a2vQoEFKTEw0OTkA5F+UKAAAAEA+cuXKFc2cOVPVqlXT7NmzNXHiRO3Zs0cdOnSQxWLJdK7FYlGHDh20Z88eTZgwQbNnz1a1atUUGRmpq1evmvQOACD/okQBAAAA8on169frscceU1BQkNq3b6/4+HiFhISoaNGit31d0aJFNXz4cB04cEDt27dX//799dhjj2nDhg15lBwAHAMlCgAAAGDnfv/9dz3//PNq1qyZSpQooR9++EEff/yxPDw8snWdChUq6OOPP9YPP/yg4sWLq2nTpnr++ed1+PBhGyUHAMdCiQIAAADYqX/++UejRo1SzZo19cMPP2j+/PnaunWrHn/88Rxd9/HHH9fWrVs1f/58bd++XTVq1NCoUaP0zz//5FJyAHBMlCgAAACAnUlPT9fcuXPl7e2t8PBwDR8+XPv27VP37t1vWPfkblksFnXv3l379+9XSEiIwsPD5e3trblz5yo9PT1X7gEAjoYSBQAAALAj27ZtU4MGDdS7d281atRI+/bt05gxY1S8eHGb3K948eIaO3as9u3bp0aNGql3795q0KCBtm/fbpP7AUB+RokCAAAA2IHjx4+rV69eatCggdLS0rR582YtXLhQVapUyZP7V6lSRQsXLtSmTZuUmpqqJ554Qr169dKJEyfy5P4AkB9QogAAAAAmSk5O1oQJE+Tt7a3Vq1crOjpaP/74oxo1amRKnsaNG2vHjh2KiorS6tWr5e3trYkTJyolJcWUPABgTyhRAAAAABMYhqFFixapZs2aGjNmjPr376/4+Hj5+/urcOHCpmYrXLiw+vbtq/j4ePXr109vv/22atSooUWLFskwDFOzAYCZKFEAAACAPPbrr7+qadOmeuGFF+Tj46Pdu3drypQpKlWqlNnRMilVqpSmTJmi3bt3q1atWnrhhRfUtGlT7dy50+xoAGAKShQAAAAgj5w5c0b9+vXTY489plOnTmnVqlVasWKFvL29zY52W9WrV9fXX3+tb775RidPntSjjz6q/v3768yZM2ZHA4A8RYkCAAAA2FhaWpqmTZumatWqaeHChQoPD9fOnTvVunVrs6NlS5s2bbRr1y5NnTpVCxYskLe3tz744AOlpaWZHQ0A8gQlCgAAAGBDq1atUp06dTR06FB1795d8fHxGjhwoJycnMyOdlecnJw0aNAgxcfHq2vXrhoyZIjq1Kmj1atXmx0NAGyOEgUAAACwgZSUFLVr105t27aVh4eHfv75Z0VERKhcuXJmR8sV7u7umjlzpn766Sd5eHioTZs2evbZZ9nFB4BDo0QBAAAAbGDr1q1auXKlPvnkE61fv1516tQxO5JNPPzww1q/fr0+/vhjff3119q6davZkQDAZihRAAAAABvI2ArYz89PFovF5DS2ZbFY1KRJE0liC2QADo0SBQAAAAAAIAsoUQAAAAAAALKAEgUAAAAAACALKFEAAAAAAACygBIFAAAAAAAgCyhRAAAAAAAAsoASBQAAAMgn/Pz85Ofnl63XvPPOO7JYLDp79qxtQgFAAUKJAgAAAJhozpw5slgs1q8iRYqoUqVKevnll3X8+HGz4wEArlPE7AAAAAAApLFjx6pq1apKSUnRtm3bNGfOHH333XfavXu3XFxcJEmxsbEmpwSAgo0SBQAAALADbdq0Ud26dSVJ/v7+KleunCZNmqTly5erc+fOkiRnZ2czIwJAgcd0HgAAAMAONWrUSJJ06NAh67GbrYny4YcfqlatWipWrJhKly6tunXr6j//+c9tr33kyBE9+OCD8vHx0fbt22WxWPT+++/fcN73338vi8WiBQsW5PwNAYADoEQBAAAA7FBCQoIkqXTp0rc8Jzo6WgMGDFDNmjU1bdo0jRkzRo888oi2b99+y9ccOnRIjRs3VsmSJbVx40bVr19fDRs21Pz58284d/78+SpZsqQ6dOiQ4/cDAI6A6TwAAACAHbhw4YLOnj2rlJQUbd++XWPGjFHRokXVrl27W75m5cqVqlWrlr788sss3WPfvn1q1qyZKlWqpDVr1lgLml69eikwMFD79u3TQw89JElKS0vTF198oU6dOqlYsWI5f4MA4AAYiQIAAADYgebNm8vd3V2enp564YUXVLx4cS1fvlyVK1e+5WvuueceHTt2TD/++OMdr7979249/fTT8vLy0rfffptphEvnzp3l4uKSaTTKmjVrdPbsWfXo0SNnbwwAHAglCgAAAGAHPvroI61du1ZfffWV2rZtq7Nnz6po0aK3fc3w4cNVokQJ1atXT9WqVdNrr72mrVu33vTcZ599ViVLltSaNWvk5uaW6bl77rlHzz77bKa1VObPn69KlSqpadOmOX9zAOAgKFEAAAAAO1CvXj01b95czz//vJYvXy4fHx91795d//zzzy1fU6NGDe3fv1+ff/65nnrqKS1atEhPPfWU3n777RvOff7553Xo0KGbrn0iXZvS8/vvv+v777/X33//reXLl6tbt24qVIhfGQAgA38jAgAAAHamcOHCevfdd3XixAnNmDHjtucWL15cXbp00SeffKI//vhDzzzzjCZMmKCUlJRM54WFhalPnz4KCgq66e49rVu3lru7u+bPn68lS5bo0qVL6tmzZ66+LwDI7yhRAAAAADvk5+enevXqadq0aTcUIhn++uuvTI+dnZ1Vs2ZNGYahtLS0TM9ZLBZFRUXphRdeUO/evbV8+fJMzxcpUkTdunXTF198oTlz5qh27dqqU6dO7r4pAMjnKFEAAAAAOzVs2DCdPn1ac+bMuenzLVu21DPPPKOJEydq9uzZCg4O1vTp0/XMM8+oZMmSN5xfqFAhffbZZ2rZsqU6d+6s9evXZ3q+V69eOnv2rDZs2MCCsgBwE5QoAAAAgJ3q1KmTHnjgAU2ZMkVXr1694fnAwED9888/Cg8P12uvvaalS5dqwIAB+uyzz255TScnJ3311Vd64okn1KFDB23fvt36nK+vr2rVqqVChQrppZdessl7AoD8zGIYhnGnk5KSklSqVClduHDhhpW8AQAAANzo22+/VYsWLXT48GF5eXmZHSfLHn30UZUpU0br1q3L1usSEhJUtWpVrV27Vs2bN7dROgDIfdnpPBiJAgAAAECStGPHDv3yyy/q1auX2VEAwC4VMTsAAAAAAHPt3r1bcXFxmjp1qipUqKAuXbqYHQkA7BIjUQAAAIAC7quvvtIrr7yitLQ0LViwQC4uLmZHAgC7RIkCAAAAFHDvvPOO0tPTtXfvXj399NNmxwEAu0WJAgAAAAAAkAWUKAAAAAAAAFlAiQIAAAAAAJAFlCgAAAAAAABZQIkCAAAAAACQBZQoAAAAAAAAWUCJAgAAAAAAkAWUKAAAAIANWCwWSdKGDRtkGIbJaWzLMAxt2LBB0v/eNwA4IkoUAAAAwAYaNmyodu3a6dVXX1XTpk3166+/mh3JJn799Vc1adJEr776qtq1a6eGDRuaHQkAbIYSBQAAALABFxcXrVixQqtWrdKpU6f02GOPqX///jpz5ozZ0XLFmTNn1K9fPz322GM6ffq0Vq1apRUrVsjFxcXsaABgM5QoAAAAgA21bt1aO3fuVHh4uBYsWKBq1app2rRpSktLMzvaXUlNTdX777+vatWqaeHChXr//fe1c+dOtW7d2uxoAGBzlCgAAACAjTk5OWngwIGKj49Xt27dNHToUNWpU0erV682O1q2rFq1SnXq1FFwcLC6d++u+Ph4DRgwQE5OTmZHA4A8QYkCAAAA5BF3d3fNnDlTP//8szw8PNSmTRu1a9dOBw4cMDvabe3fv1/PPPOM2rZtq4oVK+rnn39WRESEypUrZ3Y0AMhTlCgAAABAHqtTp47Wr1+vRYsW6bffflOtWrU0dOhQnT9/3uxomZw/f15Dhw6Vj4+P9uzZo0WLFmndunWqU6eO2dEAwBSUKAAAAIAJLBaLOnXqpL1792rMmDGaNWuWvL29FR0dratXr5qa7erVq4qKilK1atU0a9YsjR07Vnv37lWnTp3YwhhAgUaJAgAAAJjIxcVFI0eO1IEDB9SmTRsFBASobt262rx5syl5Nm3aJF9fXwUGBqpt27Y6cOCA3nzzTXbdAQBRogAAAAB2oWLFivr000+1bds2OTs76+mnn1bnzp115MiRPLl/QkKCOnfuLD8/P7m4uGjbtm369NNPVbFixTy5PwDkB5QoAAAAgB2pX7++/vvf/2ru3Ln67rvv9NBDD+mtt97SxYsXbXK/ixcvavTo0apRo4a2bt2quXPn6vvvv1f9+vVtcj8AyM8oUQAAAAA7U6hQIfXs2VMHDhzQ0KFDNXnyZFWvXl3z58+XYRi5cg/DMDR//nxVr15dYWFhGjp0qPbv36+ePXuqUCF+TQCAm+FvRwAAAMBOlShRQuPHj9fevXv1xBNPqEePHmrYsKF+/PHHHF33xx9/VMOGDdWjRw898cQT2rt3r8aPH68SJUrkUnIAcEyUKAAAAICdq1q1qr766iutX79eFy9eVL169fTKK6/o5MmT2brOyZMn9corr6hevXq6ePGiNmzYoK+++kpVq1a1UXIAcCyUKAAAAEA+0aRJE8XFxWnmzJlasWKFvL29NWnSJF2+fPm2r0tJSdF7770nb29vrVixQpGRkfrpp5/k5+eXN8EBwEFQogAAAAB27OrVq+rYsaPc3d21efNmFSlSRP369VN8fLz8/f0VGhqqmjVraunSpTesl2IYhpYuXapatWpp9OjR8vf3V3x8vAIDA1W4cGGT3hEA5F+UKAAAAIAdW79+vZYtW6azZ8/qm2++sR4vXbq03n//fe3cuVPVqlXTc889pxYtWmj37t2SpN27d6tFixZ67rnn5O3trV27dun9999X6dKlzXorAJDvUaIAAAAAdmzZsmXW7x977LEbnq9Ro4ZWrVqlr7/+Wn/88YcefvhhtWrVSg8//LCOHj2qlStXatWqVXrooYfyMjYAOCSLkYU90pKSklSqVClduHBBbm5ueZELAAAAKPAMw9B9992nY8eOydnZWWfOnLntz+OpqamaMWOG5s6dq169eun111+Xs7NzHiYGgPwnO50HJQoAAABgp+Li4lS3bl1JUuvWrbVq1SqTEwGA48lO58F0HgAAAMBOXT+Vp2PHjuYFAQBIokQBAAAA7NbSpUut3z/77LPmBQEASKJEAQAAAOzS77//rl27dkmS6tevr4oVK5qcCABAiQIAAADYoeun8nTo0MHEJACADJQoAAAAgB1iPRQAsD+UKAAAAICdOXv2rLZs2SJJqlatmh566CGTEwEAJEoUAAAAwO6sXLlS6enpkq5N5bFYLCYnAgBIlCgAAACA3WEqDwDYJ0oUAAAAwI4kJydrzZo1kiR3d3c98cQTJicCAGSgRAEAAADsyLfffqtLly5Jktq3b6/ChQubnAgAkIESBQAAALAjS5cutX7P1sYAYF8oUQAAAAA7cfXqVa1YsUKSVKxYMTVv3tzkRACA61GiAAAAAHZi27ZtOnPmjCSpVatWcnV1NTkRAOB6lCgAAACAnbh+Kg+78gCA/aFEAQAAAOyAYRjWEqVw4cJ65plnzA0EALgBJQoAAABgB/bu3auDBw9Kkp566imVLVvW5EQAgH+jRAEAAADswLJly6zfM5UHAOwTJQoAAABgB9jaGADsHyUKAAAAYLITJ07ohx9+kCTVqVNHVatWNTkRAOBmKFEAAAAAk61YscL6PaNQAMB+UaIAAAAAJmNrYwDIHyhRAAAAABMlJSVp/fr1kiRPT089+uijJicCANwKJQoAAABgotWrVys1NVWS1L59e1ksFpMTAQBuhRIFAAAAMBFbGwNA/kGJAgAAAJgkLS1NK1eulCSVKlVKTz/9tMmJAAC3Q4kCAAAAmGTTpk26cOGCJOmZZ56Rk5OTyYkAALdDiQIAAACY5PqpPGxtDAD2jxIFAAAAMIFhGNYSxdnZWa1btzY5EQDgTihRAAAAABP8/PPPOnr0qCSpadOmcnNzMzkRAOBOKFEAAAAAEyxdutT6PbvyAED+QIkCAAAAmOD69VCeffZZE5MAALKKEgUAAADIY4cPH9bOnTslSfXq1VPFihVNTgQAyApKFAAAACCPXT8Khak8AJB/UKIAAAAAeYytjQEgf6JEAQAAAPLQX3/9pc2bN0uSqlWrpho1apicCACQVZQoAAAAQB5auXKl0tPTJV0bhWKxWExOBADIKkoUAAAAIA+xHgoA5F+UKAAAAEAeSU5O1urVqyVJ7u7ueuKJJ0xOBADIDkoUAAAAII+sW7dOly5dkiS1b99ehQsXNjkRACA7KFEAAACAPLJ06VLr9+zKAwD5DyUKAAAAkAeuXr2qFStWSJKKFSum5s2bm5wIAJBdlCgAAABAHti2bZv+/PNPSVKrVq3k6upqciIAQHZRogAAAAB54PpdeZjKAwD5EyUKAAAAYGOGYVjXQylUqJDatWtnbiAAwF2hRAEAAABsbN++fYqPj5ckNWrUSGXLljU5EQDgblCiAAAAADbGVB4AcAyUKAAAAICNsbUxADgGShQAAADAhk6ePKnt27dLkmrXrq3777/f5EQAgLtFiQIAAADY0IoVK6zfd+zY0bwgAIAco0QBAAAAbIipPADgOChRAAAAABv5+++/tW7dOklS5cqV9dhjj5mcCACQE5QoAAAAgI2sXr1aqampkq6NQrFYLCYnAgDkBCUKAAAAYCNsbQwAjoUSBQAAALCBtLQ0rVy5UpJUqlQpPf300yYnAgDkFCUKAAAAYAObN2/W+fPnJUlt27aVs7OzuYEAADlGiQIAAADYAFN5AMDxUKIAAAAAucwwDOvWxk5OTmrTpo25gQAAuYISBQAAAMhlv/zyi44ePSpJatq0qdzc3ExOBADIDZQoAAAAQC7LGIUiSR07djQtBwAgd1GiAAAAALns+vVQ2rdvb2ISAEBuokQBAAAAclFCQoJ+/fVXSdLjjz+uihUrmpwIAJBbKFEAAACAXHT9KBSm8gCAY6FEAQAAAHIRWxsDgOOiRAEAAAByyblz57R582ZJ0oMPPqiaNWuanAgAkJsoUQAAAIBcsnLlSl29elXStVEoFovF5EQAgNxEiQIAAADkEtZDAQDHRokCAAAA5IKUlBStXr1akuTu7q4GDRqYnAgAkNsoUQAAAIBcsG7dOl28eFGS1K5dOxUuXNjkRACA3EaJAgAAAOSCpUuXWr9nKg8AOCZKFAAAACCHrl69quXLl0uSXF1d1bx5c5MTAQBsgRIFAAAAyKHt27frzz//lCS1atVKxYoVMzkRAMAWKFEAAACAHLp+V54OHTqYmAQAYEuUKAAAAMBdGDlypIoVK6YGDRro448/liQVKlRI7dq1MzkZAMBWKFEAAACAuzB37lwlJydr27ZtOnv2rCSpaNGimjx5sn7//XeT0wEAbIESBQAAALgLlStXvuFYcnKywsLC9PjjjystLc2EVAAAW6JEAQAAAO5CrVq1bvmcxWLRlStX8jANACAvUKIAAAAAd6FmzZo3PV60aFEtXLhQrq6ueZwIAGBrlCgAAADAXbhZieLk5KRFixapWbNmJiQCANgaJQoAAABwF/5dohQqVEgLFizQM888Y1IiAICtUaIAAAAAd8HT01OFCv3vx+k5c+bo+eefNzERAMDWKFEAAACAu1CoUCEFBASoZMmSevPNN9WzZ0+zIwEAbMxiGIZxp5OSkpJUqlQpXbhwQW5ubnmRCwAAALAZwzB0/PhxxcXFWb+OHj2q5ORkpaSkKDU1Vc7OznJxcZGrq6s8PT3l6+srX19f1a1bVxUrVpTFYjH7bQAAckF2Oo8ieZQJAAAAMNWePXu0cOFC7dixQ3FxcTp9+rQkyd3dXb6+vmrcuLGKFSsmV1dXOTs7KzU1VcnJybp06ZIOHTqkyMhInTlzRpJUvnx5a6HSpUuXW+7UAwBwLIxEAQAAgMNKS0vT0qVLFRERoY0bN6pMmTKqX7++dVSJr6+vKleunKVRJYZh6NixY5lGr2zfvl3nzp2Tn5+fgoKC1LFjRzk5OeXBOwMA5JbsdB6UKAAAAHA4x44dU1RUlKKjo3Xq1Ck1btxYQUFBeu655+Ts7Jxr90lNTdXixYsVERGhLVu2qEKFCurbt6/69u2rypUr59p9AAC2Q4kCAACAAikpKUkhISGKiYmRq6urevXqpf79+8vHx8fm9961a5dmzpypefPmKTk5Wf7+/po8eTI/PwOAnaNEAQAAQIETGxsrf39/JSYmauzYserTp48pP7smJSVp9uzZeuutt1S6dGnFxMSoZcuWeZ4DAJA12ek82OIYAAAA+VpSUpICAgLUqlUrVa9eXbt379bgwYNN+/DPzc1NgwcP1q5du+Tt7a1WrVopICBASUlJpuQBAOQeShQAAADkW7GxsfLx8dGCBQsUGRmp2NhYValSxexYkiQvLy+tXbtWkZGRWrBggXx8fBQbG2t2LABADlCiAAAAIF8KCwvLNPokMDAwS7vs5CWLxaLAwMBMo1LCwsLMjgUAuEuUKAAAAMhXDMPQyJEjFRISotDQULsafXIrGaNSQkNDFRISolGjRikLSxMCAOxMEbMDAAAAAFllGIYGDhyoDz/8UOHh4Ro8eLDZkbLMYrFo3LhxKl26tIYOHap//vlH06ZNs7vRMwCAW6NEAQAAQL4RGhqqDz/8ULNmzVJAQIDZce7KkCFDVKJECQUGBqpkyZIaP3682ZEAAFlEiQIAAIB8ISwsTBMnTtTUqVPzbYGSISAgQH///beCg4NVqlQpDRs2zOxIAIAsoEQBAACA3YuNjbWugTJkyBCz4+SKoUOHKjExUSEhIXrkkUfUokULsyMBAO7AYmRhRaukpCSVKlVKFy5ckJubW17kAgAAACRd+1nUx8dH1atXV2xsrEOtIWIYhpo3b674+Hjt3r2bn7UBwATZ6TzYnQcAAAB2LTg4WImJiYqJiXGoAkW6ttjs7NmzlZiYyJQeAMgHKFEAAABgt2JjYxUdHa0pU6bY/TbGd8vLy0thYWGKiorS2rVrzY4DALgNpvMAAADALjnyNJ5/Y1oPAJiH6TwAAADI90JCQhx2Gs+/XT+tJyQkxOw4AIBboEQBAACA3Tl27JhiYmI0duxYh53G829eXl4aM2aMYmJidPz4cbPjAABughIFAAAAdic6Olqurq7q06eP2VHylL+/v1xcXBQdHW12FADATVCiAAAAwK6kpaUpKipKPXv2LHBrg7i5ualnz56KiopSWlqa2XEAAP9CiQIAAAC7snTpUp06dUr9+/c3O4op+vfvr5MnT2rZsmVmRwEA/Au78wAAAMCuNGnSRFevXtXmzZvNjmKaRo0aycnJSevXrzc7CgA4PHbnAQAAQL60Z88ebdy4UUFBQWZHMVVQUJA2bNigvXv3mh0FAHAdShQAAADYjYULF6pMmTLq1KmT2VFM9fzzz6t06dJauHCh2VEAANehRAEAAIDd2LFjh+rXry9nZ2ezo5jK2dlZ9evX144dO8yOAgC4DiUKAAAA7IJhGIqLi5Ovr2+2XjdnzhxZLBbrV5EiRVSpUiW9/PLLOn78uI3S3tmePXv0zjvvKCEh4a5e7+vrq7i4uNwNBQDIEUoUAAAA2IUTJ07o9OnT2S5RMowdO1bz5s1TZGSk2rRpo88++0xPP/20UlJScjlp1uzZs0djxozJUYly6tQpnThxIneDAQDuGiUKAAAA7ELG1JW7LVHatGmjHj16yN/fXzExMQoODtahQ4e0fPny3Ix5RykpKUpPT8/xdTL+HJjSAwD2gxIFAAAAdiEuLk7u7u6qXLlyrlyvUaNGkqRDhw5Zj3l5ealdu3aKjY3VI488IhcXF9WsWVOLFy++4fW///67XnzxRZUpU0bFihXTE088oZUrV2Y6Z+PGjbJYLPr8888VGhqqSpUqqVixYpo+fbpefPFFSde2bM6YarRx48Ys5/f09FS5cuWY0gMAdqSI2QEAAAAASdb1UCwWS65cL2MaTenSpTMdj4+PV5cuXdSvXz/17t1bn3zyiV588UWtXr1aLVq0kCSdPn1aTz75pC5duqQBAwaobNmy+vTTT9W+fXt99dVXeu655zJdc9y4cXJ2dlZwcLAuX76sli1basCAAZo+fbpGjhypGjVqSJL1/2aFxWJhXRQAsDOUKAAAALALR48eVePGje/69RcuXNDZs2eVkpKi7du3a8yYMSpatKjatWuX6bwDBw5o0aJF1m2U+/Tpo4ceekjDhw+3lijvvfeeTp8+rS1btuipp56SJPXt21d16tTRkCFD1KFDBxUq9L9B3SkpKdqxY4dcXV2txxo1aqTp06erRYsW8vPzu6v39OCDD2rLli139VoAQO5jOg8AAADsQnJysooVK3bXr2/evLnc3d3l6empF154QcWLF9fy5ctvmB5UsWLFTCNJ3Nzc1KtXL/388886deqUJOmbb75RvXr1rAWKJJUoUUIBAQFKSEjQnj17Ml2zd+/emQqU3OLq6qrk5ORcvy4A4O5QogAAAMAupKSk5KiI+Oijj7R27Vp99dVXatu2rc6ePauiRYvecN6DDz54w5Qhb29vSf+bAnTkyBFVr179htdmTMc5cuRIpuNVq1a969y34+rqatruQgCAGzGdBwAAAHYhNTVVzs7Od/36evXqqW7dupKkjh076qmnnlL37t21f/9+lShRIrdi3pQtRqFIkrOzsy5fvmyTawMAso+RKAAAALALzs7OSk1NzZVrFS5cWO+++65OnDihGTNmZHru4MGDMgwj07EDBw5IurZ7jyRVqVJF+/fvv+G6+/btsz5/J7mxQG5qaupNR9MAAMxBiQIAAAC74OLikqvrf/j5+alevXqaNm1apikxJ06c0JIlS6yPk5KSNHfuXD3yyCPy8PCQJLVt21Y//PCD/vvf/1rPu3jxoqKiouTl5aWaNWve8f7FixeXJJ0/f/6u30NycrJcXFzu+vUAgNzFdB4AAADYBVdXV126dClXrzls2DC9+OKLmjNnjvr16yfp2vonffr00Y8//qjy5cvr448/1unTp/XJJ59YXzdixAgtWLBAbdq00YABA1SmTBl9+umnOnz4sBYtWpRpZ55beeSRR1S4cGFNmjRJFy5cUNGiRdW0aVPde++9Wc6fnJxss6lCAIDsYyQKAAAA7IKnp6cOHTqUq9fs1KmTHnjgAU2ZMkVXr16VJFWrVk0LFy7UN998oxEjRigtLU0LFy5Uq1atrK8rX768vv/+e7Vo0UIffvih3nzzTTk7O2vFihWZdva5HQ8PD0VGRurPP/9Unz591K1btxt29bmTgwcPytPTM1uvAQDYjsX494TQm0hKSlKpUqV04cIFubm55UUuAAAAFDBvvfWWIiMjdfr06VxZT+RmvLy85OPjo6+//tom189NhmHo3nvvVVBQkMaMGWN2HABwWNnpPBiJAgAAALvg6+urM2fO6NixY2ZHsQtHjx7V2bNn5evra3YUAMD/o0QBAACAXcjYnjguLs7kJPYh488h488FAGA+ShQAAADYhYoVK6p8+fKUKP8vLi5OHh4eqlixotlRAAD/j915AAAAYBcsFot8fX1tWqIkJCTY7Nq5LS4ujqk8AGBnGIkCAAAAu1G3bl1t375dqampZkcx1eXLl7V9+3am8gCAnaFEAQAAgN3o0qWLzp07p8WLF5sdxVSLFy9WYmKiunTpYnYUAMB12OIYAAAAdqVJkya6evWqNm/ebHYU0zRq1EhOTk5av3692VEAwOGxxTEAAADyraCgIG3ZskW7du0yO4opdu7cqe+++05BQUFmRwEA/AslCgAAAOxKx44d5eHhoZkzZ5odxRQzZ85UhQoV1KFDB7OjAAD+hRIFAAAAdsXJyUkBAQGaN2+ekpKSzI6Tp5KSkjRv3jwFBATIycnJ7DgAgH+hRAEAAIDd6du3r5KTkzV79myzo+SpmJgYpaSkqG/fvmZHAQDcBCUKAAAA7E7lypXl7++vt956SwkJCWbHyRMJCQl6++235e/vr0qVKpkdBwBwE+zOAwAAALuUlJQkHx8feXt7a+3atbJYLGZHshnDMNS8eXMdPHhQu3bt4mduAMhD7M4DAACAfM/NzU0xMTFat26doqKizI5jU7NmzdL69esVExNDgQIAdowSBQAAAHarZcuW6tu3r4KDgx12Wk9CQoKGDRumgIAAtWjRwuw4AIDbYDoPAAAA7JojT+thGg8AmI/pPAAAAHAY10/reeutt8yOk6tGjx7NNB4AyEcoUQAAAGD3WrZsqcmTJ2v8+PEKDw83O06umDp1qiZMmKCwsDCm8QBAPlHE7AAAAABAVgwbNkznz5/X0KFDVaJECQUEBJgd6a5FRUUpODhYo0aNUnBwsNlxAABZRIkCAACAfGP8+PH6+++/FRgYqH/++UdDhgwxO1K2TZ06VcHBwRowYIDGjRtndhwAQDZQogAAACDfsFgs+uCDD1SyZEkNHTpUiYmJGjt2bL5YbNYwDI0ePVoTJkzQqFGjNG7cuHyRGwDwP5QoAAAAyFcsFosmTJige+65RyEhIfrvf/+r2bNnq0qVKmZHu6WEhAT16dNH69ev1+TJkzVs2DCzIwEA7gILywIAACBfGjZsmGJjY3XgwAH5+Pho1qxZMgzD7FiZGIahyMhI1a5dW/Hx8YqNjaVAAYB8jBIFAAAA+VaLFi20e/dude/eXf369VOLFi105MgRs2NJujb6pHnz5urfv7+6d++u3bt3swsPAORzlCgAAADI19zc3DRr1qxMo1LCw8OVlJRkSp6kpCSFh4dnGn0ya9Ysubm5mZIHAJB7KFEAAADgEDJGpbz00ksKCQlRpUqVFBQUpF27duXJ/Xft2qX+/furYsWKCgkJ0UsvvcToEwBwMJQoAAAAcBhubm6KjIxUQkKChgwZoqVLl6pOnTpq3LixPv/8c6Wmpubq/VJTU7VgwQI1atRIderU0bJlyxQcHKwjR44oMjKS0ScA4GAsRhZW30pKSlKpUqV04cIF/iEAAABAvpGWlqZly5YpIiJCGzZsUJkyZVSvXj35+vpavzw9PbO01bBhGDp69Kji4uKsX9u3b1diYqKaNGmioKAgdejQQU5OTnnwzgAAuSU7nQclCgAAAAqEPXv26IsvvtCOHTsUFxenU6dOSZJKly6tunXrytvbW66urnJ1dZWzs7NSU1OVnJys5ORkHTx4UHFxcTp79qwkycPDQ76+vqpbt646d+6smjVrmvnWAAA5QIkCAAAA3IZhGDpx4oR+/PFHderUSZJUokQJeXh4KCUlRZcvX1bRokXl4uIiV1dXeXp6Wkeu1K1bVxUrVjT5HQAAckt2Oo8ieZQJAAAAsBsWi0WVKlVSoUKFlPGZ4tNPP60VK1aYnAwAYM9YWBYAAAAF1vHjx63fV6pUycQkAID8gBIFAAAABdb1JUrlypVNTAIAyA8oUQAAAFBgHTt2zPo9I1EAAHdCiQIAAIACi+k8AIDsoEQBAABAgUWJAgDIDkoUAAAAFFjXT+dhTRQAwJ1QogAAAKDAyhiJUrx4cbm5uZmcBgBg7yhRAAAAUCAZhmEdiVKpUiVZLBaTEwEA7B0lCgAAAAqkpKQkXbx4URJTeQAAWUOJAgAAgAKJRWUBANlFiQIAAIACiRIFAJBdlCgAAAAokNiZBwCQXZQoAAAAKJAYiQIAyC5KFAAAABRIlCgAgOyiRAEAAECBxHQeAEB2UaIAAACgQMoYiVK4cGHde++9JqcBAOQHlCgAAAAokDJGolSoUEGFCxc2OQ0AID+gRAEAAECBc/nyZZ05c0YSU3kAAFlHiQIAAIAC5+TJk9bvWVQWAJBVlCgAAAAocK5fVJYSBQCQVZQoAAAAKHCu396Y6TwAgKyiRAEAAECBc32JwkgUAEBWUaIAAACgwGE6DwDgblCiAAAAoMBhOg8A4G5QogAAAKDAub5EqVixoolJAAD5CSUKAAAACpyM6TxlypSRq6uryWkAAPkFJQoAAAAKlPT0dJ04cUISU3kAANlDiQIAAIAC5ezZs0pLS5PEorIAgOyhRAEAAECBws48AIC7RYkCAACAAoWdeQAAd4sSBQAAAAXK9SUKI1EAANlBiQIAAIAChek8AIC7RYkCAACAAoWRKACAu0WJAgAAgAKFNVEAAHeLEgUAAAAFSsZ0HhcXF5UuXdrkNACA/IQSBQAAAAVKxkiUSpUqyWKxmJwGAJCfUKIAAACgwPj777+VlJQkiak8AIDso0QBAABAgcGisgCAnKBEAQAAQIFBiQIAyAlKFAAAABQY7MwDAMgJShQAAAAUGBk780iMRAEAZB8lCgAAAAoMpvMAAHKCEgUAAAAFBtN5AAA5QYkCAACAAiNjOk+hQoXk4eFhchoAQH5DiQIAAIACI2MkSvny5VWkSBGT0wAA8htKFAAAABQIaWlpOn36tCSm8gAA7g4lCgAAAAqEkydPyjAMSSwqCwC4O5QoAAAAKBDYmQcAkFOUKAAAACgQ2JkHAJBTlCgAAAAoEBiJAgDIKUoUAAAAFAgZ2xtLlCgAgLtDiQIAAIACgek8AICcokQBAABAgcB0HgBATlGiAAAAoEDImM5TqlQpFS9e3OQ0AID8iBIFAAAADs8wDOtIFKbyAADuFiUKAAAAHN65c+d0+fJlSUzlAQDcPUoUAAAAODx25gEA5AZKFAAAADg8FpUFAOQGShQAAAA4PLY3BgDkBkoUAAAAODxGogAAcgMlCgAAABwea6IAAHIDJQoAAAAcHtN5AAC5gRIFAAAADi+jRHF2dla5cuVMTgMAyK8oUQAAAODwMqbzVKxYURaLxeQ0AID8ihIFAAAADi05OVmJiYmSmMoDAMgZShQAAAA4NHbmAQDkFkoUAAAAODR25gEA5BZKFAAAADg0duYBAOQWShQAAAA4NKbzAAByCyUKAAAAHBolCgAgt1CiAAAAwKFdvyYK03kAADlBiQIAAACHdv1IlAoVKpiYBACQ31GiAAAAwKFllCj33nuvnJ2dTU4DAMjPKFEAAADgsK5evaqTJ09KYioPACDnKFEAAADgsE6fPq2rV69KYlFZAEDOFTE7AAAAAGAr7MwDwFYMw9Dx48cVFxdn/Tp69KiSk5OVkpKi1NRUOTs7y8XFRa6urvL09JSvr698fX1Vt25dVaxYURaLxey3gWyiRAEAAIDDWbBggb777judO3fOeszJyUnnz5/XPffcY14wAPnanj17tHDhQu3YsUNxcXE6ffq0JMnd3V2+vr5q3LixihUrJldXVzk7Oys1NVXJycm6dOmSDh06pMjISJ05c0aSVL58eWuh0qVLF9WsWdPMt4YsshiGYdzppKSkJJUqVUoXLlyQm5tbXuQCAAAA7kpCQoKqVq16y+dfeeUVffzxx3mYCEB+lpaWpqVLlyoiIkIbN25UmTJlVL9+feuoEl9fX1WuXDlLo0oMw9CxY8cyjV7Zvn27zp07Jz8/PwUFBaljx45ycnLKg3eGDNnpPChRAAAA4FASExNVvnx5paWl3fT5okWL6p9//lGRIgzKBnBrx44dU1RUlKKjo3Xq1Ck1btxYQUFBeu6553J1p6/U1FQtXrxYERER2rJliypUqKC+ffuqb9++LIidR7LTebCwLAAAABxK6dKl1a5du1s+//LLL1OgALilpKQk9evXT15eXnr//ffVqVMn7dq1S5s2bVKXLl1yfat0Z2dnde3aVZs3b9bOnTvVsWNHhYeHy8vLS/369VNSUlKu3g85w0gUAAAAOJxly5apY8eONxyvUKGC9u7dq1KlSuV9KAB2LzY2Vv7+/kpMTNTYsWPVp08fU34HTkpK0uzZs/XWW2+pdOnSiomJUcuWLfM8R0HBdB4AAIAChB0ibpSWlqZKlSpZF3DMsGTJkpuWKwAKtqSkJAUHBys6OlrNmzdXTEyMqlSpYnYsJSQkyN/fX+vWrVPfvn01ZcoUfie3AUoUAAAAB3enHSIeeOCB2+4QERcX5/A7RAwaNEgffPCB9fHzzz+vr776ysREAOzR9aNPpkyZooCAALsqlg3DUFRUlIKDgxmVYiOUKAAAAA6IHSKy58cff1S9evUkSUWKFNEff/yhChUqmJwKgD0JCwtTSEiIXY0+uZXrR6VMnjxZw4YNMzuSw8hO58GKWgAAAHbuZjtEfP755znaIcJiscjT01Oenp7W6S3X7xDRuXPnfL9DxOOPP67HH39cP//8s9555x0KFABWhmFo1KhRevfddxUaGqqxY8fa1eiTm/Hy8tLatWv11ltvKSQkROfPn9f48ePtPrejYSQKAACAnUpKSlJISIhiYmLk6uqqXr16qX///vLx8bH5vXft2qWZM2dq3rx5Sk5Olr+/vyZPnszPggDyPcMwNHDgQH344YcKDw/X4MGDzY6UbeHh4Ro6dKgGDBigadOmUaTkENN5AAAA8jl2iLg1FtIFkBOjRo3SxIkTNWvWLAUEBJgd565FRUUpMDBQo0aN0vjx482Ok69RogAAAORT7BBxcyykCyA3ZKyBMnXqVA0ZMsTsODk2depUBQcHs0ZKDlGiAAAA5EPsEJEZC+kCyE2xsbFq1aqVQkNDNW7cOLPj5JrQ0FBNmDBBsbGxatGihdlx8iVKFAAAgHyGHSL+52YL6QYFBeVoId2buX4h3S1btuT7hXQB3FpSUpJ8fHxUvXp1xcbG2lVBnVOGYah58+aKj4/X7t27+Z39LmSn8yiUR5kAAABwE4ZhaOTIkQoJCVFoaKhiY2PtukCR/rdDRGhoqEJCQjRq1Chl4XO5O0pKSlK/fv3k5eWl999/X506ddKuXbu0adMmdenSJVcLFElydnZW165dtXnzZu3cuVMdO3ZUeHi4vLy81K9fPyUlJeXq/QCYJzg4WImJiYqJiXGoAkW6ttva7NmzlZiYyJSePMBIFAAAAJOwQ8T/sJAuAFvJmMYTGRmpwMBAs+PYTGRkpPr378+0nrvAdB4AAIB8gB0iWEgXgG058jSef2Naz91jOg8AAICdCwsL08SJEzV16tR8XaBIUkBAgKZMmaIJEyYoLCwsy6+LjY2Vj4+PFixYoMjISLuaypQxZSkyMlILFiyQj4+PYmNjzY4FIJtCQkIcdhrPv10/rSckJMTsOA6LEgUAACCPxcbGWtdAcYQtNiVp6NChGjVqlEJCQrR27do7nh8WFqZWrVqpevXq2r17twIDA+3uFxyLxaLAwEDt2rVL3t7eatWqVbZKIgDmOnbsmGJiYjR27Fi7KWhtzcvLS2PGjFFMTIyOHz9udhyHRIkCAACQh5KSkuTv76/mzZtr7NixZsfJVePGjVPTpk3Vp0+fWy7KykK6APJKdHS0XF1d1adPH7Oj5Cl/f3+5uLgoOjra7CgOiRIFAAAgDxXkHSIyFtJ99913FR4ernHjxuWbPwOLxaJx48Zp6tSpmjhxogYNGkSRAtixtLQ0RUVFqWfPngVubRA3Nzf17NlTUVFRSktLMzuOw6FEAQAAyCOxsbGKjo7WlClT7H70xd3y8vJSWFiYoqKibpjWExoaqg8//FCzZs3KlzsRSdKQIUM0a9YsTZ8+XaNHjzY7DoBbWLp0qU6dOqX+/fubHcUU/fv318mTJ7Vs2TKzozgcducBAADIAwV9h4iwsDCFhIRo6tSpDrEOzNSpUxUcHKzJkyffdNQNAHM1adJEV69e1ebNm82OYppGjRrJyclJ69evNzuK3WN3HgAAADtTkHeIYCFdAHlpz5492rhxo4KCgsyOYqqgoCBt2LBBe/fuNTuKQ2EkCgAAgI0dO3bMOs0lv05juRvh4eEaNmyYPDw8VLNmTYcbgXOzETcAzPf2229rxowZOnnypJydnc2OY5rU1FR5eHhowIABeuedd8yOY9cYiQIAAGBHCvIOEYUKFdKFCxcccgTOnRbSBWCOHTt2qH79+vm+QJkzZ44sFot27Nhxx3O9vLzUrl27TMecnZ1Vv379LL0eWUeJAgAAYEMFeYeIbdu26cqVK5o6dWqBXEgXQN7KKB2++eYbrVq1Si4uLvL29tbrr7+u06dPmx3PKj09XXPnzlX9+vVVpkwZlSxZUt7e3urVq5e2bduWq/fy9fVVXFxcrl6zoKNEAQAAsKGCukNEUlKS/P391axZMwUEBJgdx6YCAwPVtGlT9enTR0lJSWbHASBp4MCBmjFjhp588knNnDlTDRo00KVLl8yOJUkaMGCAevfurQoVKuidd97RpEmT1KZNG23btk2rV6/O1Xv5+vrq1KlTOnHiRK5etyArYnYAAAAARxYREaFGjRqpdu3aZkfJUxkL6c6ePdvhpvH8W8a0ntq1ayskJESRkZFmRwIKvKFDh8rT01P+/v4qW7aswsPDtWzZMnXr1u2ur3np0iUVK1YsR7lOnz6tiIgI9e3bV1FRUZmemzZtms6cOZOj6/+br6+vpGtTnNq3b5+r1y6oGIkCAABgIwV1h4hjx44pJiZGY8eOddhpPP/m5eWlMWPGKCYmRsePHzc7DlCg3XPPPapcubL1cdOmTSVJhw8fliR99tln8vX1laurq8qUKaOuXbvq6NGjma7h5+cnHx8fxcXFqXHjxipWrJhGjhyphIQEWSwWTZkyRR999JHuv/9+FStWTC1bttTRo0dlGIbGjRunypUry9XVVR06dNC5c+es1z18+LAMw1DDhg1vyG2xWHTvvffecPzy5csaMmSI3N3dVbx4cT333HNZKls+/fRT3X///XJ1dWVKTy6iRAEAALCRhQsXqkyZMurUqZPZUfJUQV5I18XFRdHR0WZHAQq0GjVqZBoBd+jQIUlS2bJlNWHCBPXq1UvVqlVTeHi4Bg0apHXr1qlx48Y6f/58puv89ddfatOmjR555BFNmzZNTZo0sT43f/58RURE6I033tDQoUO1adMmde7cWaGhoVq9erWGDx+ugIAArVixQsHBwdbXZRTLX375ZZanF73xxhv69ddf9fbbb6t///5asWKFXn/99du+JioqSq+88opGjBihxo0bU6LkIqbzAAAA2Eh+3yHCz89PZ8+e1e7du2973saNG9WkSRN9+eWX6tChQ4FdSNfNzU09e/ZUVFSURo0aJScnJ7MjAQWSu7u7zp49q5SUFG3dulVjx46Vq6urWrdurQceeEDjx4/XyJEjred36tRJjz76qCIiIjIdP3XqlCIjIxUYGGg9lpCQIEk6fvy44uPjVapUKUnS1atX9e677yo5OVk7duxQkSLXftU+c+aM5s+fr5kzZ6po0aKqUKGCevXqpblz56py5cry8/NTw4YN9cwzz+ihhx666fspW7Zspi3i09PTNX36dF24cMF6/+tNnz5dgwYN0tixYxUaGqrXX39dW7ZsydkfKqwYiQIAAGADhmEoLi5Oq1atksViuePXxo0b8yzbmTNnNHDgQD300ENydXXVvffeq3r16mn48OH6559/cnTtgrqQbob+/fvr5MmTWrZsmdlRgAJr+fLlcnd3l6enp7p27aoSJUpoyZIlWrx4sdLT09W5c2edPXvW+uXh4aFq1appw4YNma5TtGhRvfLKKze9x4svvpipwKhfv74kqUePHtYCJeN4ampqpml+n3zyiWbMmKGqVatqyZIlCg4OVo0aNdSsWbObTgcMCAjINLKmUaNGunr1qo4cOXLDuZMnT9bAgQM1adIkhYaGSpJcXV2VnJyclT86ZAEjUQAAAGzgxIkTOn36tAYOHKi6detaj8+dO1dr167VvHnzMp1fo0aNPMl17tw51a1bV0lJSXr11Vf10EMP6a+//tLOnTs1c+ZM9e/fXyVKlLjr6xfUhXQz1KlTR0899ZQiIiL0wgsvmB0HKJDatGmjIUOGqEiRIipfvryqV6+uQoUKadmyZTIMQ9WqVbvp6/49eqxSpUq3HEl43333ZXqcUah4enre9HhiYqL1WKFChfTaa6/ptdde019//aWtW7cqMjJSq1atUteuXW8YNfLve5UuXfqGa0rSpk2btHLlSg0fPlzDhg2zHnd1dVVKSspN3weyjxIFAADABnbs2CHpfztEZNi2bZvWrl2rHj163Pb1ubELxM3Mnj1bf/zxh7Zu3aonn3wy03NJSUk5mnp09OhRbdy4UQsWLMhpzHwtKChI3bt31969e/OsHAPsmWEYSk1N1aVLl6xfycnJmR7f6lh2j0vXFnpu3rz5DTnS09NlsVi0atUqFS5c+Ibn/10gu7q63vI93ez1tztuGMZNj5ctW1bt27dX+/bt5efnp02bNunIkSOZFuXO6jVr1aql8+fPa968eQoMDFTVqlUlSc7Ozrp8+fIt3wuyhxIFAADABuLi4uTu7p5ph4hbyVh75NNPP9XgwYO1Y8cOBQQEaNq0aVq2bJmioqL0888/66+//lLlypX18ssva+TIkZl+sM64xhdffKHXXntN27dvV+nSpTVw4ECFhIRYzzt06JAKFy6sJ5544oYct1rDZM+ePbe9Zobvv//eupDu5cuX9fzzz2vLli1atWrVDYWNI3v++edVunRpLVy4UO+8847ZcYBbMgxDly9fzpVS407npqen59n7SktLu+nxBx54QIZhqGrVqvL29s6zPFlVt25dbdq0SSdPnryrnc3KlSunr776Sk899ZSaNWum7777ThUrVlRqaqqKFi1qg8QFEyUKAACADcTFxcnX1zfTPPbbydgFomvXrurRo4fKly8vSZozZ45KlCihIUOGqESJElq/fr3eeustJSUlKSwsLNM1EhMT1bp1a3Xq1EmdO3fWV199peHDh6t27dpq06aNpGs7Q1y9elXz5s1T796975grK9fMcOjQIdWvX19Xr15Vhw4dtGPHDn377bd6/PHHb3n9d955R2PGjNGZM2dUrly5LP1Z2TtnZ2fVr1/fOhoJyK7ryw1blRoZX7caIWHvChUqpGLFimX6unjxoo4cOXLLURedOnXSm2++qTFjxuizzz7L9PezYRg6d+6cypYta9Pcp06d0rlz51SzZs1Mx1NTU7Vu3ToVKlRIDz744F1fv3Llyvr222/VqFEjtWjRQps3b1ZycrJcXFxyGh3/jxIFAADABo4eParGjRtn+fyb7QIhSf/5z38yDSnv16+f+vXrp4iICI0fPz7Tp4snTpzQ3Llz1bNnT0lSnz59VKVKFc2ePdtaeLz66qt6//339fLLL+u9996Tn5+fGjdurLZt2950l4esXDPD77//rhYtWqhNmzb67bfftH79ej3yyCNZ/jO4HS8vLx05ckSvv/66Pvzww0zPXb87kL2sQ+Lr66vZs2ebHQO5zDAMpaSk2HxKSnJycr4uN4oXL65ixYrJ1dX1hqLjVsezc26xYsXk5OR0Q0k9Z84cvfLKK7dc/yNjZ54333xTCQkJ6tixo0qWLKnDhw9ryZIlCggIyLQdsS0cO3ZM9erVU9OmTdWsWTN5eHjozz//1IIFC/Trr79q0KBBOS6UH3zwQcXGxsrPz0+tWrXSY489dtupScgeShQAAAAbSE5OztaaJrfaBeL6H3z//vtvXb58WY0aNdKsWbO0b98+Pfzww9bnS5QokWmtFWdnZ9WrV0+///679Vj58uX166+/auzYsVqyZIkiIyMVGRkpZ2dnhYaGKjQ0NNMvJlm5ZoYLFy5o2bJlOn/+vDZu3KhatWpl+f1nVXR0tN58801VrFgx16+dm3x9fTVhwgSdOHHC7rM6gn+XG7YcvZFfFS5cOFslxd0WIDcrN/LasWPHbvnciBEj5O3trffff19jxoyRdG0x2JYtW6p9+/Y2z1a9enVNmzZN33zzjSIiInT69Gm5uLjIx8dH0dHR6tOnT67cp3bt2lq1apWaN2+u33//3bp7EHKOEgUAAMAGUlJSsvXJ3612gfjtt98UGhqq9evXKykpKdNzFy5cyPS4cuXKN/zyUrp0ae3cuTPTsQoVKmjmzJmKiIhQfHy81qxZo0mTJumtt95ShQoV5O/vn+1rZjh06JB+/vlnmxQotWrV0v79+/Xee+9p+vTp2X79xYsXVbx48VzPdTO+vr6Sri0wfKtfzDZt2qQVK1aoS5cut53ylJ+lp6ffUG7YYvRGft6+tXDhwtaRG7YoNa4vNxzdyy+/rN9//12RkZEyDOOWZU6nTp3UqVOn217rVtvOe3l53XSUkJ+f302Pv/zyy3r55Zetj0uWLKkBAwZowIABt73/zV57u3slJCTccF69evV04cIF6zb2yB2UKAAAADaQmpqarZ1ubla4nD9/Xk8//bTc3Nw0duxYPfDAA3JxcdFPP/2k4cOH37BQY3Z3hbBYLPL29pa3t7eeeeYZVatWTfPnz89UomTnmkWLFtWVK1f03nvvae7cuSpUqNAt3++/nT17VkFBQVq9erWcnJzUo0cPTZo0KdM8fi8vL9WvX1/R0dEaMWLEbUd4ZKy18ttvv2n8+PFatWqVvLy89PPPP8vLy0s+Pj4KDg5WcHCwfvvtNz344IP68MMP5efnp8WLF+vtt99WfHy8atWqpZiYGD366KNZfi/StU+2y5Urp7i4uBtKlD179mj48OH6+uuvJUnLly/XgQMHsnX9nEpPT1dycrJN1ti4/nh+LjeKFCmi4sWL23RKiqura4EoN/KSr6+vzpw5o2PHjt2w3XBBdPToUZ09e9Za7CLnKFEAAABswNnZWampqTm6xsaNG/XXX39p8eLFmdZXOXz4cE7j3eD+++9X6dKldfLkybu+Ro0aNTR48GC9/PLLKlmypGbOnJnl13bu3FleXl569913tW3bNk2fPl2JiYmaO3dupvNGjRqluXPnZnk0yosvvqhq1app4sSJmYqfgwcPqnv37goMDFSPHj00ZcoUPfvss4qMjNTIkSMVFBQkSXr33XfVuXNn7d+/P1ulkMVika+vr+Li4qzHTp48qbfffluzZ8/OVIBd/wlyRrlhizU2rn98qzUj8gMnJyebT0mh3Mi/6tatK+na4t6UKLL+HZTx54Kco0QBAACwARcXlxx/Cp8xCuT6X/5TU1MVERFx19fcvn27fHx8bpjW8sMPP+ivv/5Sw4YN7/ra5cuXV69evZSUlKQ33nhDbm5umjRpUpZeW7VqVS1btkyS9Nprr8nNzU0REREKDg5WnTp1rOfdf//96tmzp3VtlAoVKtz2ug8//LD+85//3HB8//79+v7779WgQQNJUs2aNdWqVSv17dtX+/bt03333Sfp2tSlwMBAbd68WX5+fll6LxkefPBBbdmyRZLUvXt3ffnll7py5coN56Wlpal06dJKSUnJ1+WGs7Nzro/SuNmxIkX4FQa3VrFiRZUvX15xcXHq2LGj2XFMFxcXJw8PD9ZmykX8DQQAAGADrq6uOV6E8sknn1Tp0qXVu3dvDRgwQBaLRfPmzcvRrh3z5s3T/Pnz9dxzz8nX11fOzs7au3evPv74Y7m4uGjkyJF3fe2MnYJef/11JSUladSoUSpVqlSWrvnaa69levzGG28oIiJC33zzTaYSRZJCQ0M1b948vffee/rggw9ue91+/frd9HjNmjWtBYok66KLTZs2tRYo1x///fffs12iuLq6Kjk5WWvWrNGCBQtue+758+ezde3suL7csMV0FMoN2JObjQIryOLi4pjKk8v4mw4AAMAGPD09dejQoRxdo2zZsvr66681dOhQhYaGqnTp0urRo4eaNWumVq1a3dU1AwMDVaxYMa1bt07Lli1TUlKS3N3d1bJlS7355pvZXvvjetevATNy5EhduHDBWqT8uyT5t2rVqmV6/MADD6hQoUI3XSwxYzRKVFSURowYcdvrVq1a9abHry9KJFm3d/738P+M44mJibe9z824uroqJSVFderUkZOTk9LS0m55rpeXl9zc3HJ9MVFXV9dbrmsDOKq6detqxowZ2V6bytFcvnxZ27dvz9Iitsg6ShQAAAAb8PX1vekOETNmzNCMGTMynXurXSCka6NR/vvf/95w/N+jUW51jTlz5mR6XLt2bU2ePPn24bN5TT8/P91777165JFHMh2fNGlSlqfz/NudtkgdNWqU5s2bp0mTJt12yP6tdki6VbGQ3cV5b8fZ2VmXL19WhQoV9Oeff2rq1Kn65JNPdPz48RvOXbdune6///5s3wPAjbp06aKxY8dq8eLF6tq1q9lxTLN48WIlJiaqS5cuZkdxKFlfHQsAAABZdv0OEQVBThfSjY+Pz/T44MGDSk9Pl5eX103Pf+CBB9SjRw/NmjUrR4vh2lJqaqp1itM999yjcePG6fDhw5o/f/4NI35KlChhRkTAIdWsWVN+fn45Wj/KEURERKhJkyaqUaOG2VEcCiUKAACADVy/Q0RBkNOFdD/66KNMjz/88ENJUps2bW75mtDQUKWlpWV5ZE1eS05OzrRFs3RtZ5nu3bsrLi5O69evV2BgoKKjo3XvvfealBJwTEFBQdqyZYt27dpldhRT7Ny5U9999511pzHkHkoUAAAAG7h+h4iCIKcL6R4+fFjt27dXRESEevbsqYiICHXv3l0PP/zwLV+TMRrll19+uev72lJycvItpxNZLBY1adJEkZGR8vf3z+NkgOPr2LGjPDw8srXVuiOZOXOmKlSooA4dOpgdxeFQogAAANhAQdshIqcL6S5cuFBFixbViBEjtHLlSr3++uuaPXv2HV8XGhpqtwunHjx48IaFagHkDScnJwUEBGjevHlKSkoyO06eSkpK0rx58xQQECAnJyez4zgci5GFVbKSkpJUqlQpXbhwQW5ubnmRCwAAIN97++23NWPGDJ08edLhd4h46623FBkZqdOnT99xUdiCwDAM3XvvvQoKCtKYMWPMjgMUSMeOHZOXl5fCwsI0ePBgs+PkmfDwcIWEhOjIkSOqVKmS2XHyhex0HoxEAQAAsJEuXbro3LlzWrx4sdlRbK6gLaR7J0ePHtXZs2fl6+trdhSgwKpcubL8/f311ltv3XS7dEeUkJCgt99+W/7+/hQoNkKJAgAAYCMFaYeIgraQ7p1k/Dlk/LkAMMfkyZNVunRp+fv739VW5fmJYRjq06ePypQpY7cLbjsCShQAAAAbKig7RBS0hXTvJC4uTh4eHqpYsaLZUYACzc3NTTExMVq3bp2ioqLMjmNTs2bN0vr16xUTE8MyHDZEiQIAAGBDBWWHiIK2kO6dxMXFMZUHsBMtW7ZU3759FRwc7LDTehISEjRs2DAFBASoRYsWZsdxaJQoAAAANlSQdoioW7eutm/frtTUVLOjmOry5cvavn07U3kAOzJlyhSHndZz/TSesLAws+M4PEoUAAAAG+vbt6+Sk5OztGVvflaQFtK9ncWLFysxMVFdunQxOwqA/3f9tJ633nrL7Di5avTo0UzjyUOUKAAAADZWUHaIKEgL6d5ORESEmjRpoho1apgdBcB1WrZsqcmTJ2v8+PEKDw83O06umDp1qiZMmKCwsDCm8eQRShQAAIA8UFB2iCgoC+neys6dO/Xdd98pKCjI7CgAbmLYsGEaOXKkhg4dmu8Xmo2KilJwcLBGjRql4OBgs+MUGJQoAAAAeaCg7BDRsWNH3XPPPQ6/kO6tzJw5UxUqVFCHDh3MjgLgFsaPH6833nhDgYGB+XZEytSpUxUYGKgBAwZo3LhxZscpUChRAAAA8khB2CHi+PHjunjxoj799FOHX0j335KSkjRv3jwFBATIycnJ7DgAbsFiseiDDz6wjkgZPXp0vhkhaBiGQkNDrSNQpk2bJovFYnasAoUSBQAAIA8VhB0i3N3ddfnyZYdfSPffYmJilJKSor59+5odBcAdWCwWTZgwwbpGSosWLXTkyBGzY91WQkKCmjdvnik3BUreo0QBAADIQwVhh4g5c+YUiIV0r5eQkKC3335b/v7+qlSpktlxAGTRsGHDFBsbqwMHDsjHx0ezZs2yu4LbMAxFRkaqdu3aio+PV2xsrIYNG2Z2rAKLEgUAACCPFYQdIgrKQrrS/0bglClTRpMnTzY7DoBsatGihXbv3q3u3burX79+djUqJWP0Sf/+/dW9e3ft3r2bXXhMRokCAABgAkffIaKgLKQrSbNmzdL69esVExMjNzc3s+MAuAtubm6aNWtWplEp4eHhpq3tlJSUpPDw8EyjT2bNmsXfMXbAYmTho4GkpCSVKlVKFy5c4H80AACAXGIYhgYOHKgPP/xQU6dO1ZAhQ8yOlG1Tp05VcHCwBgwYcNMFDgMCArRgwQLt2rVLXl5e5oS0oYSEBNWuXVvdu3fXrFmzzI4DIBckJSUpJCREMTExcnV1Vc+ePdW/f3/Vrl3b5vfetWuXIiIiNG/ePKWkpMjf31+TJ0/m93Aby07nQYkCAABgooydFiZOnKjQ0FCNHTs2XywUaBiGRo8erQkTJmjUqFEaN27cTXMnJSXJx8dH3t7eWrt2bb54b1llGIaaN2+ugwcPateuXfycDDiYY8eOKTo6WtHR0Tp58qQaNWqkoKAgderUSc7Ozrl2n9TUVC1atEgRERH67rvvVKFCBQUEBKhv376ssZRHKFEAAADymbCwMIWEhKhZs2aaPXu2qlSpYnakW0pISFCfPn20fv16TZ48+Y4LHMbGxqpVq1YKDQ3VuHHj8iil7YWGhmrChAmKjY1ljQLAgaWlpWnZsmWKiIjQhg0bVKZMGdWrV0++vr7WL09PzyyVxIZh6OjRo4qLi7N+bd++XYmJiWrSpImCgoLUoUMHtknPY5QoAAAA+dDatWvVp08fJSYmasqUKQoICLCrkRuGYWjWrFkaNmyYSpcurdmzZ2e5PMgoifLrtKV/y5jGFBYWZl0HBoDj27Nnj7744gvt2LFDcXFxOnXqlCSpXLly8vX11YMPPihXV1e5urrK2dlZqampSk5OVnJysg4ePKi4uDidPXtWkuTh4SFfX1/VrVtXnTt3Vs2aNc18awUaJQoAAEA+lZSUpGHDhikqKsquRqVcP/okICBAYWFh2f65cNSoUZo4caJmzZqlgIAAGyW1vaioKAUGBmrUqFEaP3682XEAmMQwDJ04cSLTqJKjR48qOTlZ58+fV2JioiwWi8qUKaPy5cvL09PTOnKlbt26qlixotlvAf+PEgUAACCfu35UypgxY+Tv72/Kz2FJSUmKiYnR22+/ne3RJ/9mGIa6deumhQsX5tsRKXdaSBcAJGnp0qV67rnnJEnvvvuuRowYYXIi3E52Og+2OAYAALBDLVq00O7du1WtWjUFBwfLw8NDQUFB2rVrV57cf9euXerfv78qVqyokJAQvfTSS9q9e3eO1v74/ffftX79eknS0KFDNXr0aGXh8zy7kLEAcMZWzhQoAG6nePHi1u8vXrxoYhLkNkoUAAAAO2UYhg4dOiTDMHT58mUtXrxYderUUePGjfX5558rNTU1V++XmpqqBQsWqFGjRqpTp46WLVum4OBgHTlyRJGRkTkaCfPnn3+qdevWOnPmjCSpatWqGj9+vFq0aKEjR47k1luwiYSEBDVv3lwTJkzQ5MmTNX78eAoUALdFieK4KFEAAADs1MyZM5WUlCRJeuWVV3T06FF9+eWXKlKkiLp166YKFSqoTZs2Cg0N1ZIlS/THH39keWSHYRj6448/tGTJEoWGhqpNmzby8PBQ9+7d5eTkpC+//FJHjhzRO++8k+MtNv/55x+1a9dOBw8elCTVqlVLcXFxio2N1YEDB+Tj46NZs2bZ3agUwzAUGRmp2rVrKz4+XrGxsXfciQgAJEoUR8aaKAAAAHYoOTlZXl5e+vPPP2WxWLRv3z55e3tbn88vO0SkpaWpQ4cOWrVqlSSpUqVK+u9//ytPT09Jjr2QLoCCKz4+3vp3do8ePTRv3jyTE+F2stN5FMmjTAAAAMiGTz75RH/++ack6cUXX8xUoEhSzZo19c4770i6+Q4RW7ZsUXJyslJSUnT58mUVLVpULi4ucnV1laenp4KCgmy+Q4RhGAoMDLQWKPfcc49Wr15tLVAkyc3NTbNmzdILL7ygPn36yMfHx64W0o2Njc3ROjAACiZGojguRqIAAADYmStXrqhatWpKSEiQJP3000969NFHzQ11F0aPHm3dAtjZ2Vlr165V48aNb3l+UlKSQkJCFBMTI1dXV/Xs2VP9+/dX7dq1bZ51165dioiI0Lx585SSkiJ/f39NnjyZn30B3JULFy7onnvukSS1bNlSa9asMTcQbovdeQAAAPKxzz//3FqgtG7dOl8WKJGRkdYCxWKxaP78+bctUKRro1IiIyOVkJCgIUOGaOnSpfl2IV0ABVuxYsWs3zMSxbEwEgUAAMCOpKenq06dOvrtt98kSZs2bbpj+WBvli5dqueff17p6emSpOnTp+uNN97I9nXS0tK0bNkyRUREaMOGDSpTpozq1asnX19f65enp2eWdsoxDENHjx7NNOVp+/btSkxMVJMmTRQUFKQOHTrIyckp2zkB4GacnZ2VlpamRx99VD/99JPZcXAb2ek8KFEAAADsyPLly9WhQwdJ0pNPPqnvvvsuX22nu3XrVjVv3lwpKSmSpOHDh+u9997L8XXzy0K6AJChdOnSOn/+vLy9vbV//36z4+A2KFEAAADyIcMw1KBBA23fvl2StGLFCrVr187kVFm3d+9eNWzYUImJiZKu7Ujx6aefqlCh3J1BfrOFdI8ePXrbhXQzRq7YciFdALhe5cqVdfz4cVWqVEnHjh0zOw5ug915AAAA8qGNGzdaC5TatWvrmWeeMTlR1p04cUKtW7e2FigtW7bU7Nmzc71Aka6tsVKpUiVVqlRJ7du3z/XrA0BuyNihhzVRHAsLywIAANiJd9991/r9iBEj8s00ngsXLqhNmzb6448/JEmPPvqovvrqKzk7O5ucDADMk7G47KVLl0xOgtxEiQIAAGAH4uLitHbtWknS/fffr86dO5ucKGsuX76s5557Tjt37pQkVa1aVd98841KlixpcjIAMFfGSJTU1FRduXLF5DTILZQoAAAAduD6USjDhg1TkSL2P+s6PT1dvXv31oYNGyRdW+R19erV8vDwMDkZAJgvo0SRmNLjSChRAAAATLZv3z4tXrxY0rWdY15++WVzA2XRsGHDtHDhQkmSq6urvv76a3l7e5ucCgDsAyWKY6JEAQAAMNnkyZOVsWHi4MGD5eLiYnKiOwsPD1d4eLgkqXDhwvriiy9Uv359k1MBgP3IWBNFYl0UR0KJAgAAYKKjR49q3rx5kqR77rlH/fr1MznRnS1YsEBDhw61Po6MjMxXWzEDyCw1NVVTp07VI488oqlTpyo1NdXsSA6BkSiOiRIFAADARFOnTrUuOPjaa6/Jzc3N5ES3t379evXu3dv6eMyYMfL39zcxEYC7ZRiGvv76a/n4+Gj48OEqX768hg8fLh8fH61cudI6Qg53hxLFMVGiAAAAmOTs2bOKjo6WdG1NkYEDB5qc6PZ+/fVXdezYUWlpaZKkvn37avTo0SanAnA39u7dqzZt2ujZZ5/Vfffdp19++UVr1qzRL7/8ovvuu0/t2rVT27ZttXfvXrOj5luUKI6JEgUAAMAk06dPt86T9/f3l7u7u8mJbi0hIUFt2rTR33//LUlq3769IiIiZLFYTE4GIDsSExM1aNAg1a5dW/Hx8Vq6dKnWrl0rHx8fSZKPj4/Wrl2rpUuX6sCBA6pdu7YGDRqkxMREk5PnP6yJ4pgoUQAAAEzw999/68MPP5QkFSlSRMHBwSYnurW//vpLrVu31smTJyVJDRo00IIFC/LFNswArrly5YpmzpypatWqafbs2Zo4caL27NmjDh063FCGWiwWdejQQXv27NGECRM0e/ZsVatWTZGRkbp69apJ7yD/YSSKY6JEAQAAMMGsWbN0/vx5SdJLL72k++67z9xAt5CcnKz27dtr//79kqTq1atrxYoVmT5hBWDf1q9fr8cee0xBQUFq37694uPjFRISoqJFi972dUWLFtXw4cN14MABtW/fXv3799djjz2mDRs25FHy/I0SxTFRogAAAOSxy5cvW7cHtlgsGj58uMmJbu7KlSvq1q2bvv/+e0mSh4eHVq9erbJly5qcDEBW/P7773r++efVrFkzlShRQj/88IM+/vhjeXh4ZOs6FSpU0Mcff6wffvhBxYsXV9OmTfX888/r8OHDNkruGChRHBMlCgAAQB779NNPrVNjnnvuOdWoUcPkRDcyDEOvv/66li1bJkkqWbKkVq1aJS8vL3ODAbijf/75R6NGjVLNmjX1ww8/aP78+dq6dasef/zxHF338ccf19atWzV//nxt375dNWrU0KhRo/TPP//kUnLHwpoojokSBQAAIA9duXJFkydPtj5+8803TUxzaxMmTNCsWbMkSU5OTlqyZIkeeeQRc0MBuK309HTNnTtX3t7eCg8P1/Dhw7Vv3z5179491xaBtlgs6t69u/bv36+QkBCFh4fL29tbc+fOVXp6eq7cw1EwEsUxUaIAAADkoa+++kqHDh2SJDVv3lx169Y1OdGNPv7440xbF8+ZM0fNmjUzMRGAO9m2bZsaNGig3r17q1GjRtq3b5/GjBmT6Rf53FS8eHGNHTtW+/btU6NGjdS7d281aNBA27dvt8n98iNKFMdEiQIAAJBHDMPQe++9Z31sj6NQVq5cqYCAAOvjsLAwde/e3cREAG7n+PHj6tWrlxo0aKC0tDRt3rxZCxcuVJUqVfLk/lWqVNHChQu1adMmpaam6oknnlCvXr104sSJPLm/PaNEcUyUKAAAAHlk1apV+vXXXyVJ9erVU5MmTUxOlNkPP/ygzp07W7cwHTRokIYOHWpyKgA3k5ycrAkTJsjb21urV69WdHS0fvzxRzVq1MiUPI0bN9aOHTsUFRWl1atXy9vbWxMnTlRKSoopeezB9WuiUKI4DkoUAACAPPLuu+9av3/zzTdzbY2C3BAfH69nnnnGuvhh586dNXXqVLvKCODaiLZFixapZs2aGjNmjPr376/4+Hj5+/urcOHCpmYrXLiw+vbtq/j4ePXr109vv/22atSooUWLFskwDFOzmeH6kSgsLOs4KFEAAADywJYtW/Tdd99JkmrWrKn27dubnOh/Tp8+rVatWuns2bOSJD8/P82dO1eFCvGjImBPfv31VzVt2lQvvPCCfHx8tHv3bk2ZMkWlSpUyO1ompUqV0pQpU7R7927VqlVLL7zwgpo2baqdO3eaHS1PMZ3HMfEvIwAAQB64fhTK8OHD7aag+Pvvv9W2bVsdPnxYklS7dm0tWbJERYsWNTkZgAxnzpxRv3799Nhjj+nUqVNatWqVVqxYIW9vb7Oj3Vb16tX19ddf65tvvtHJkyf16KOPqn///jpz5ozZ0fIE03kck3386w0AAODAfvnlF61atUrStUUYu3XrZnKia9LS0vTiiy/qp59+kiR5enpq1apVuueee8wNBkDStf9Gp02bpmrVqmnhwoUKDw/Xzp071bp1a7OjZUubNm20a9cuTZ06VQsWLJC3t7c++OADpaWlmR3NpgoXLiwXFxdJlCiOhBIFAADAxq7fkSc4OFhOTk4mprnGMAz5+/trzZo1kqTSpUtr9erVqlSpksnJAEjXFqKuU6eOhg4dqu7duys+Pl4DBw60i78/7oaTk5MGDRqk+Ph4de3aVUOGDFGdOnW0evVqs6PZVMZoFNZEcRyUKAAAADZ08OBBffnll5Ikd3d3vfrqqyYnumbkyJGaO3euJKlo0aJavny5atasaXIqACkpKWrXrp3atm0rDw8P/fzzz4qIiFC5cuXMjpYr3N3dNXPmTP3000/y8PBQmzZt9OyzzzrsLj4Z66IwEsVxUKIAAADY0OTJk5Weni7p2pbB18+RN8uMGTOso2MsFov+85//6KmnnjI5FQBJ2rp1q1auXKlPPvlE69evV506dcyOZBMPP/yw1q9fr48//lhff/21tm7danYkm6BEcTyUKAAAADZy4sQJffrpp5KkkiVLKigoyORE0qJFizRgwADr4xkzZqhTp04mJgJwvYytgP38/Bx+i3GLxaImTZpIksNugXx9ieKo77GgoUQBAACwkfDwcKWmpkqSgoKCTF+wdcuWLXrppZesP8iPHDnSLoodAHBUGaMPr1696vAL6RYUlCgAAAA2cO7cOUVGRkq6tubIoEGDTM3z22+/qX379rp8+bIkqXfv3ho/frypmQDA0WWMRJGY0uMoKFEAAABsYMaMGdYfmF999VV5eHiYluXYsWNq3bq1zp8/L0lq3bq1oqOjHX6qAACYjRLF8RQxOwAAALnBMAwdP35ccXFx1q+jR48qOTlZKSkpSk1NlbOzs1xcXOTq6ipPT0/5+vrK19dXdevWVcWKFfmFErnm4sWLmj59uiSpcOHCGjZsmGlZzp8/rzZt2ujYsWOSJF9fX3355Zf5dptUAMhPKFEcDyUKACDf2rNnjxYuXKgdO3YoLi5Op0+flnRt+0RfX181btxYxYoVk6urq5ydnZWamqrk5GRdunRJhw4dUmRkpM6cOSNJKl++vLVQ6dKlC1u9Ikeio6P1119/SZK6du2qqlWrmpIjJSVFHTt21O7duyVJDzzwgFauXKkSJUqYkgcACprrd2S7dOmSiUmQWyhRAAD5SlpampYuXaqIiAht3LhRZcqUUf369dW3b1/ryJLKlStnaVSJYRg6duxYptErM2bM0NixY+Xn56egoCB17NiRT+yRLampqZo6dar18YgRI0zJkZ6erl69emnTpk2SrpWLq1evVvny5U3JAwAFESNRHA8lCgAgXzh27JiioqIUHR2tU6dOqXHjxvr888/13HPPydnZ+a6uabFY5OnpKU9PT3Xs2FHStV+AFy9erIiICHXu3FkVKlRQ37591bdvX1WuXDkX3xEc1WeffWadOtO+fXv5+PjkeQbDMDR48GB9+eWXkq59Erpy5Uo9+OCDeZ4FQP4yZ84cvfLKK/rxxx9Vt27d257r5eUlHx8fff3113mULv+hRHE8LCwLALBrSUlJ6tevn7y8vPT++++rU6dO2rVrlzZt2qQuXbrcdYFyK87Ozuratas2b96snTt3qmPHjgoPD5eXl5f69eunpKSkXL0fHMvVq1c1adIk6+M333zTlBxhYWGZ1mT56quv9Pjjj5uSBXB0c+bMkcVisX65uLjI29tbr7/+unWaqT1IT0/X3LlzVb9+fZUpU0YlS5aUt7e3evXqpW3btuVJhvPnz8vFxUUWi0V79+7Nk3uajRLF8VCiAADsVmxsrHx8fDR//nyFhYXp+PHj+uijj/Lsk/3atWsrIiJCx48fV1hYmObPny8fHx/Fxsbmyf2R/yxZskQHDhyQJPn5+emJJ57I8wyfffaZhg8fbn0cExOjNm3a5HkOoKAZO3as5s2bpxkzZujJJ5/UzJkz1aBBA7tZB2PAgAHq3bu3KlSooHfeeUeTJk1SmzZttG3bNq1evTpPMnz55ZeyWCzy8PDQ/Pnz8+SeZmNNFMfDdB4AgN1JSkpScHCwoqOj1bx5c8XExKhKlSqm5XFzc9PgwYP13HPPyd/fX61atVLfvn01ZcoUubm5mZYL9sUwDL377rvWx2aMQlm7dq1eeeUV6+Px48fr5ZdfzvMcQEHUpk0b6/QXf39/lS1bVuHh4Vq2bJm6det219e9dOlSpl/E78bp06cVERGhvn37KioqKtNz06ZNsy6ybmufffaZ2rZtqypVqug///mPxo8fnyf3NRMjURwPI1EAAHYlY/TJggULFBkZqdjYWFMLlOt5eXlp7dq1ioyM1IIFCxiVgkzWrl2rn376SZL02GOPqUWLFnl6/59++kmdOnXSlStXJEn9+vXTyJEj8zQDgP9p2rSpJOnw4cOSrhUIvr6+cnV1VZkyZdS1a1cdPXo002v8/PzUt29fSVLnzp1VrFgxjRw5UgkJCbJYLJoyZYo++ugj3X///SpWrJhatmypo0ePyjAMjRs3TpUrV5arq6s6dOigc+fOWa97+PBhGYahhg0b3pDTYrHo3nvvveH45cuXNWTIELm7u6t48eJ67rnnslS2fPrppypSpMgNW7v/8ccf2rJli7p27aquXbvq8OHD+v777296jYz36Orqqnr16mnLli3y8/OTn59fpvOOHDmi9u3bq3jx4rr33ns1ePBgrVmzRhaLRRs3brxj1rxAieJ4KFEAAHYjLCxMrVq1UvXq1bV7924FBgZmaZedvGSxWBQYGKhdu3bJ29tbrVq1UlhYmNmxYAf+PQolL/9/9/Dhw2rbtq3++ecfSVLHjh01Y8YMu/vvByhIDh06JEkqW7asJkyYoF69eqlatWoKDw/XoEGDtG7dOjVu3Fjnz5/P9LqMtbdq1qypadOmqUmTJtbn5s+fr4iICL3xxhsaOnSoNm3apM6dOys0NFSrV6/W8OHDFRAQoBUrVig4ONj6uowPI7788sssTyl544039Ouvv+rtt99W//79tWLFCr3++uu3fU1UVJReeeUVjRgx4oZ/GxcsWKDixYurXbt2qlevnh544IGbTumZOXOmXn/9dVWuXFmTJ09Wo0aN1LFjR+uC3RkuXryopk2b6ttvv9WAAQM0atQoff/995mmM9oDShQHZGTBhQsXDEnGhQsXsnI6AADZkp6ebrz55puGJCM0NNRIT083O1KWpKenG6GhoYYkY+TIkfkmN3Lff//7X0OSIcnw9vY2rly5kmf3PnPmjFGtWjXr/Rs2bGhcunQpz+4PFHSffPKJIcn49ttvjTNnzhhHjx41Pv/8c6Ns2bKGq6urkZCQYBQuXNiYMGFCptft2rXLKFKkSKbjTz/9tPW/5cOHD1uPHz582JBkuLu7G+fPn7cez/i38+GHHzbS0tKsx7t162Y4OzsbKSkp1mO9evUyJBmlS5c2nnvuOWPKlCnG3r17b/l+mjdvnunftcGDBxuFCxfOdP8qVaoYzzzzjGEYhvHBBx8YFovFGDdu3E3/nGrXrm289NJL1scjR440ypUrZ8THxxuSjLVr1xqXL182ypYtazz++OOZ3s+cOXMMScbTTz9tPTZ16lRDkrF06VLrseTkZOOhhx4yJBkbNmy4aY68tn79euv/piNGjDA7Dm4hO50HI1EAAKYyDEMDBw7Uu+++q/DwcI0bNy7ffHpusVg0btw4TZ06VRMnTtSgQYNkGIbZsWCC60ehDB8+XIULF86T+168eFHt2rVTfHy8JOmhhx7S8uXL5erqmif3B/A/zZs3l7u7uzw9PdW1a1eVKFFCS5Ys0eLFi5Wenq7OnTvr7Nmz1i8PDw9Vq1ZNGzZsyHQdJyenW97jxRdfVKlSpayP69evL0nq0aOHihQpkul4amqqjh8/bj32ySefaMaMGapataqWLFmi4OBg1ahRQ82aNct0XoaAgIBM/x43atRIV69e1ZEjR244d/LkyRo4cKAmTZqk0NDQG57fuXOndu3alWltmG7duuns2bPavHmz9diOHTv0119/qW/fvpnez0svvaTSpUtnuubq1atVqVIltW/f3nrMxcXFOh3KXjASxfGwsCwAwFShoaH68MMPNWvWLAUEBJgd564MGTJEJUqUUGBgoEqWLFkgFsrD/+zevVvLly+XJFWuXFk9evTIk/teuXJFXbt21fbt2yVJFStW1OrVq1WmTJk8uT+AzD766CN5e3urSJEiKl++vKpXr65ChQpp2bJlMgxD1apVu+nr/l2alCtXTidPnrzpuffdd1+mxxmFiqen502PJyYmWo8VKlRIr732ml577TX99ddf2rp1qyIjI7Vq1Sp17dpVW7Zsue29MkqM668pSZs2bdLKlSs1fPjwG9ZByfDZZ5+pePHiuv/++3Xw4EFJ1woPLy8vLVu2zHpeRkHz4IMPZnp9kSJF5OXllenYkSNH9MADD9zwwcu/X2s2ShTHQ4kCADBNWFiYJk6cqKlTp+bbAiVDQECA/v77bwUHB6tUqVK3/EESjue9996zfj906FA5Ozvb/J6GYah///76+uuvJV3bQWrVqlV2swgzUBDVq1fPujvP9dLT02WxWLRq1aqbjlIrUaJEpsdFixa95T1uNcrtVsdvNTqybNmyat++vdq3by8/Pz9t2rRJR44cyfR3SFavWatWLZ0/f17z5s1TYGCgqlatesP5CxYs0MWLF1WzZs0brnf69Omb3sdRUKI4HkoUAIApYmNjFRISotDQUA0ZMsTsOLli6NChSkxMVEhIiB555JE8350Fee/w4cP6/PPPJV37pSSvhpGPGTNGMTExkq59ir106VLVqVMnT+4NIHseeOABGYahqlWrytvb2+w4N6hbt642bdqkkydP3lURW65cOX311Vd66qmn1KxZM3333XeqWLGi9flNmzbp2LFjGjt2rGrUqJHptYmJiZk+RMm4/8GDBzMtqHvlyhUlJCRk+nuuSpUq2rNnjwzDyDQaJWOki724fntqShTHwJooAIA8l5SUJH9/fzVv3lxjx441O06uGjdunJo2bao+ffpYd1iA4woLC9PVq1clSQMGDMj0iaOtREdHa8yYMdbHc+fOzfTLBgD70qlTJxUuXFhjxoy5YRSHYRj666+/bJ7h1KlT2rNnzw3HU1NTtW7dOhUqVChH02AqV66sb7/9VsnJyWrRokWm95QxlWfYsGF64YUXMn317ds30zSdunXrqmzZsoqOjrZu1y5d25Xo39OIWrVqpePHj1unU0pSSkqKoqOj7/p92ML1/y5kdWck2DdKFABAngsODlZiYqJiYmLyzSKyWWWxWDR79mwlJiYypcfBnTp1Sh9//LGka8Px77T1Z25YsWKF+vXrZ30cHh6url272vy+AO7eAw88oPHjx+s///mPnnrqKYWFhSkyMlLDhw9X9erV9cknn9g8w7Fjx+Tj46PmzZvr3Xff1SeffKJJkyapXr16+uWXXzRgwACVK1cuR/d48MEHFRsbq1OnTqlVq1ZKSkrS5cuXtWjRIrVo0UIuLi43fV3z5s0lXRuV4uzsrHfeeUc//vijmjZtqhkzZig4OFhDhw69Yf2TwMBAeXl5qVu3bnrzzTc1ffp0Pf3009b72MvPF9cv9M1IFMdAiQIAyFOxsbGKjo7WlClTHHb9Bi8vL4WFhSkqKkpr1641Ow5sZNq0abp8+bKkaz/M23pB123btqlLly5KT0+XdG362ODBg216TwC5Y8SIEVq0aJEKFSqkMWPGKDg4WMuXL1fLli0z7S5jK9WrV9e0adNUpEgRRUREKDAwUBMmTFCxYsUUHR2t8PDwXLlP7dq1tWrVKh04cEDPPvusvvrqK50/f17PPvvsLV/TrFkzSdLGjRslSa+//rqmT5+uP/74Q8HBwdqyZYuWL1+ue+65J1MRU6JECa1fv15NmzbVBx98oPHjx6tRo0YaPXq0JN2ytMlrhQoVsk7poURxDBYjC3sxJiUlqVSpUrpw4YLc3NzyIhcAwAElJSXJx8dH1atXV2xsrN18SmQLhmGoefPmio+P1+7du/n308GcP39e9913n/7++285Ozvr8OHDmdYAyG379+9Xw4YNrUPku3Xrps8++0yFCvF5GOBovv32W7Vo0UKHDx++YUcaR5SQkKCqVatq7dq11lEp/5aeni53d3d16tTpjtN1pk2bpsGDB+vYsWOqVKmSLSJnm7u7u86ePauqVavq999/NzsObiI7nQf/8gIA8kxISIjDTuP5t+un9YSEhJgdB7ksIiJCf//9tySpd+/eNi1QTp48qdatW1sLlKZNm+qTTz6hQAHgkFJSUm5YO2bu3Lk6d+6c/Pz8Mh1PTk6+4bWzZs1StWrV7KZAkf63LgprojgGducBAOSJY8eOKSYmRmFhYQ47jeffvLy8NGbMGIWEhGj06NF29QMd7t6lS5c0bdo0SdeGaduyJEtKSlLbtm2VkJAgSXr44Ye1ZMmS226BCgD52bZt2zR48GC9+OKLKlu2rH766SfNnj1bPj4+evHFFzOd26lTJ91333165JFHdOHCBX322Wfat2+f5s+fb1L6m8soUZjO4xj4CAMAkCeio6Pl6uqqPn36mB0lT/n7+8vFxcXudgvA3fv444915swZSdKLL76Yox0tbic1NVWdOnXSL7/8Iunadp7ffPMNU8MAODQvLy95enpq+vTpeuONN7Rs2TL16tVL69atk7Ozc6ZzW7Vqpa1bt2rYsGEaM2aMihYtqs8//1zdu3c3Kf3NXV+iZGE1Ddg5RqIAAGwuLS1NUVFR6tmzZ4H7BdDNzU09e/ZUVFSURo0aJScnJ7MjIQfS0tIUFhZmfTxixAib3Cc9PV2vvvqq1q1bJ0kqU6aMVq9ebdNpQwBgD7y8vDJtW3w7gwYN0qBBg2wbKBdkLCxrGIZSUlIy7diD/IeRKAAAm1u6dKlOnTql/v37mx3FFP3799fJkye1bNkys6MghxYsWKA//vhDktSmTRs98sgjNrnPiBEjrMPRXVxctGLFCj300EM2uRcAwLYyRqJIrIviCChRAAA2FxERoUaNGql27dpmRzFFnTp19NRTTykiIsLsKMiB9PR0vffee9bHb775pk3u88EHH1hHuxQqVEiff/65nnzySZvcC4B9+OOPPxQREaFvv/3W7CiwgetLFNZFyf8oUQAANrVnzx5t3LhRQUFBZkcxVVBQkDZs2KC9e/eaHQV3afny5db//Ro2bKhGjRrl+j2++OILDR482Po4IiJCHTp0yPX7ADDf5cuX9eWXX6p169by8vLSa6+9platWunPP/80OxpyGSWKY6FEAQDY1MKFC1WmTBl16tTJ7Cimev7551W6dGktXLjQ7Ci4C4Zh6N1337U+tsUolI0bN6pnz57WRQdHjx6twMDAXL8PAHP99ttvGjJkiCpXrqzOnTtrzZo11v/uPTw85OLiYnJC5LaMNVEkShRHQIkCALCpHTt2qH79+jesqJ+b5syZI4vFYt0GVpL8/Pzk5+dns3tml7Ozs+rXr68dO3aYHQV3YcOGDfrhhx8kXZue1bZt21y9/q5du9SxY0elpqZKkl599VWNGTMmV+8BwDz//POPZs+erQYNGsjHx0fvv/++zp49a33ey8tLY8eO1Y4dOwrcAuwFASNRHAslCgDAZgzDUFxcnHx9fbP8moiICFksFtWvX9+GyXJu4sSJWrp0abZe4+vrq7i4ONsEgk1dPwplxIgRslgsuXbtP/74Q61bt9aFCxckSW3btlVkZGSu3gNA3jMMQ9u2bZO/v788PDzk7++vbdu2WZ93dnZW165dtXbtWh06dEijR49WhQoVTEwMW2FhWcdCiQIAsJkTJ07o9OnT2SpR5s+fLy8vL/3www86ePDgXd87NjZWsbGxd/36O7nbEuXUqVM6ceKEbULBJnbs2GFd7PH+++/Xiy++mGvXPnfunNq0aWP9/4l69erpiy++YCtsIB87e/as3n//ffn4+KhBgwaaPXt2ptEHtWvX1gcffKATJ05owYIFat68uQoV4tcyR8ZIFMfCf60AAJvJmLqS1RLl8OHD+v777xUeHi53d3frFq93w9nZ2aZTiO5Gxp8DU3ryl+tHoYSEhKhIkSK5ct3k5GR16NBBe/bskSQ9+OCD+vrrrzP9sA0gf7h69arWrFmjzp07q2LFihoyZIj1v21JKlmypAICAvTDDz/o119/1YABA1S2bNmbXitjFNqGDRusa6U4KsMwtGHDBkly6NF3rIniWChRAAA2ExcXJ3d3d1WuXDlL58+fP1+lS5fWM888oxdeeOGmJcpvv/2mpk2bytXVVZUrV9b48eOVnp5+w3n/XhPlZuumSNcW87RYLNq4caP1WHx8vJ5//nnrAn+VK1dW165drdMtLBaLLl68qE8//VQWi0UWi0Uvv/zyHd+fp6enypUrx5SefGTfvn1asmSJpGsLPvbu3TtXrnv16lX16NFD3333nSTp3nvv1Zo1a+Tu7p4r1weQN44cOaJ33nlH999/v1q3bq0vv/xSaWlp1uefeuopffLJJzp58qRmzZqlxx9//I5lQcOGDdWuXTu9+uqratq0qX799Vdbvw1T/Prrr2rSpIleffVVtWvXTg0bNjQ7ks0wEsWx5M5HKQAA3ETGeihZ/XRp/vz56tSpk5ydndWtWzfNnDlTP/74ox5//HFJ0qlTp9SkSRNduXJFI0aMUPHixRUVFSVXV9dcy5yamqpWrVrp8uXLeuONN+Th4aHjx4/r66+/1vnz51WqVCnNmzdP/v7+qlevngICAiRJDzzwwB2vbbFYWBcln5k0aZL1k+ChQ4fmyq4ZhmFo4MCBWrx4sSSpRIkS+uabb3T//ffn+NoAbO/y5ctavny5YmJitHbt2htGi9x7773q3bu3Xn31VT300EPZvr6Li4tWrFih1atXa/DgwXrssccUEBCgsWPHOkTReubMGY0ePVrR0dHy9vbWqlWr1Lp1a7Nj2RRrojgWShQAgM0cPXpUjRs3ztK5cXFx2rdvnz788ENJ1z69q1y5subPn28tUSZNmqQzZ85o+/btqlevniSpd+/eqlatWq5l3rNnjw4fPqwvv/xSL7zwgvX4W2+9Zf2+R48e6tevn+6//3716NEjW9d/8MEHtWXLllzLC9v5448/9Nlnn0mSSpcunWvbDb/33nv66KOPJElFihTRokWLsrVuEABz/Pbbb5o9e7bmzp2rv/76K9NzhQoVUuvWreXv76927drlyrpGrVu3VrNmzRQREaG3335bCxYs0DvvvKPXXnstX66blJqaqo8++khjxoyRxWLR+++/r/79++fL95JdjERxLEznAQDYTHJycqZ5wLczf/58lS9fXk2aNJF0bdRGly5d9Pnnn+vq1auSpG+++UZPPPGEtUCRJHd3d7300ku5lrlUqVKSpDVr1tjk0yJXV1clJyfn+nWR+6ZOnaorV65Ikl5//XWVLFkyx9f89NNPNXLkSOvj2bNnq2XLljm+LgDb+PvvvxUTE5Npa+LrCxQvLy+NGzdOR44c0cqVK/Xcc8/laing5OSkgQMHKj4+Xt26ddPQoUNVp04drV69OtfukRdWrVqlOnXqKDg4WN27d1d8fLwGDBhQIAoUiTVRHA0lCgDAZlJSUrI01ebq1av6/PPP1aRJEx0+fFgHDx7UwYMHVb9+fZ0+fVrr1q2TdG3u+c1GnVSvXj3XMletWlVDhgxRTEyMypUrp1atWumjjz6yroeSU66urkpJScmVa8F2zpw5o+joaEnXfvgdMGBAjq+5evVq+fv7Wx+/++676tWrV46vCyB3GYah//73v+rTp48qVKigvn373nRr4m+//VaHDh1SaGholtf+ulvu7u6aOXOmfv75Z3l4eKhNmzZq166dDhw4YNP75tT+/fv1zDPPqG3btqpYsaJ+/vlnRUREqFy5cmZHy1OMRHEslCgAAJtJTU3N0g4569ev18mTJ/X555+rWrVq1q/OnTtLUo526clwq3VZMka5XG/q1KnauXOnRo4cqeTkZA0YMEC1atXSsWPHcpzD2dlZly9fzvF1YFvTp0+3jhjq27dvjn/g37Fjh1544YVMI1uGDx+e45wAcs+ZM2cUHh6uWrVq6cknn9THH398262JmzVrludbE9epU0fr16/XokWL9Ntvv6lWrVoaOnSozp8/n6c57uT8+fMaOnSofHx8tGfPHi1atEjr1q1TnTp1zI5mCtZEcSysiQIAsBlnZ2elpqbe8bz58+fr3nvvta4Tcb3FixdryZIlioyMVJUqVRQfH3/DOfv377/jPUqXLi1JN/ygeeTIkZueX7t2bdWuXVuhoaH6/vvv1bDh/7F353Ex7f8fwF9TWqXsWilL9jX7dsuWnYgIV7SRS5bkUkJkayFLC2VLktzsW5ayr1kq3CtLqeyk0N58fn/063yNRDF1Zur9fDx6PHTOzJzXTJnOvM/n8/70gJ+fH1asWAHg15dizMnJgYKCwi/dl5SP9PR0bNq0CUDBUPp58+b91uM9efIEQ4YM4T6MjR49GuvXr6/Qy3kSIi3y8/Nx5swZBAQE4NChQyIr6wAFSxObm5vD0tISHTt2lIj/twKBAKNGjcLgwYPh5eWFlStXIigoCG5ubpg6dSpkZWV5y5afn4/AwEA4OTkhMzMTrq6umDNnjliackszGolSsVARhRBCSJlRVFT8af+PzMxMhIeHY8yYMSKNXAtpamoiJCQEhw8fxuDBg7F+/XrcuHGD64vy9u3bEo1UKVw958KFC2jXrh2AgpO9LVu2iNwuPT0dysrKqFLlf38iW7duDRkZGZERJFWrVv2lK3+ZmZmV/mRS0vn7+3M/24kTJ0JHR+eXH+vNmzcwNjbGmzdvAAC9evXC7t27ef2QQwgpKKBv374d27ZtQ1JSUpH9PXv2hJWVFUxNTUU+AEsSRUVFLFq0CBYWFli4cCFsbGzg4+MDb2/vEjd1F6fz58/D3t4e9+7dw59//olVq1ZBU1Oz3HNIIuqJUrFQEYUQQkiZUVJS+umw1cOHD+PTp08YPnz4d/d37doVderUQXBwMPz9/REUFISBAwfC3t6eW+K4QYMGiImJ+eFxWrZsia5du2LhwoX48OEDatasib1793LTKwqdO3cOf/31F8aMGQN9fX3k5eUhKCgIsrKyGD16NHc7AwMDnDlzBl5eXtDU1ISenh66dOny09ckMzNTrEsyE/HKysqCl5cXgIKrvb8z5ebz588YOnQonjx5AgBo0aIFDh06REU0QniSnZ2NQ4cOITAwsEyWJuaLpqYmdu7cCTs7O8yaNQt//PEHxowZA3d3dzRo0KDMj5+QkABHR0eEhYWhS5cuuHbtWon+HlYmNBKlYqEiCiGEkDKjo6PDfYAsTnBwMBQVFdG/f//v7peRkcGQIUMQHBwMeXl5REZGYubMmVi9ejVq1aqFadOmQVNTE5aWlj/NExwcDFtbW6xevRrVq1eHpaUljIyMRI7dtm1bGBsb48iRI0hJSYGysjLatm2LEydOoGvXrtztvLy8YGNjA2dnZ2RmZmLy5MklOml8/Pjxb41sIGVr586dePXqFQBg1KhRv9y0ODc3F2PHjsXNmzcBAFpaWjh58iQ3rYwQUn7i4uIQGBiIoKCg7y5NPGjQIFhaWoptaWK+dOnSBVevXkVwcDAWLFiAZs2aYf78+ViwYEGZjKb58uULVq9eDQ8PD9SsWRO7du3ChAkTyr1PjDRQVFSEQCAAY4yKKBWAgH1bgv2O9PR0qKmpIS0tDaqqquWRixBCSAXg4uICPz8/vH79utznkffq1QsKCgo4c+ZMuR73RxhjqFu3Luzs7LBs2TK+45Bv5OXlQV9fH8+ePQNQ0AzWwMCg1I/DGIOlpSW2b98OoGDZ7EuXLqFVq1ZizUsIKd6nT58QGhqKgIAAXL9+vch+PT09WFpaYvLkyWW+sg4fPn/+zBU4ateujTVr1sDc3Fwsf4sZY9izZw8WLFiAd+/ewcHBAX///TdUVFTEkLziqlatGj5//owWLVrg/v37fMch3yhNzYPKhIQQQsqMgYEB3r59K5ZVbUrr5cuXEreEYlJSEt69e/dLH8xJ2du3bx9XQOnfv/8v/5xcXFy4Aoq8vDwOHTpEBRRCygFjDFeuXBFZmvjrAoqCggLGjx+PM2fO4PHjx3BycqqQBRQAUFFRwYoVK/Dw4UN07doVEydORI8ePbjRcb/q5s2b6NGjByZOnIiuXbvi4cOHWLFiBRVQSqCwLwqNRJF+VEQhhBBSZjp27AgAiI6OLrdjXrlyBQ4ODnjy5An69u1bbscticLXofB1IfzLyckBYwyMMaxevZrbvnDhwl96vG9XcNq9ezf++OMPsWQlhHzf27dv4enpiZYtW6JHjx5FliZu06YNNmzYgBcvXmDPnj28LE3MFz09Pezfvx/nzp3Dly9f0LlzZ0yZMgUvX74s1eO8fPkSU6ZMQefOnfHlyxdERkZi//790NPTK6PkFU/hlCoqoki/yvHuQQghhBeampqoV69euRZRtm7dit27d2P27NmYMmVKuR23JKKjo6Gurk6rFUiIyMhI1KhRA/Xr14e1tTViY2MBFPQVMDQ0LPXjHTx4EDNmzOC+X79+PcaMGSOuuISQr+Tn5+PkyZMYM2YMtLS04ODggIcPH3L7VVVVYWtri5s3b+Lu3buYOXMmatasyWNifhkZGSE6Ohq+vr44cuQI9PX1sWbNGpFV574nKysLq1evhr6+Po4cOQI/Pz/cvn37l94jKzsqolQc1FiWEEJImREIBDAwMCjXIkrhNApJFB0dTVN5JMiBAweQkZGBjIwMBAYGctv/+uuvUvcNuHz5MsaPHw+hUAgAcHR0xKxZs8SalxBSsBLM9u3bsX379u8uTdyrVy9YWlpK9NLEfKlSpQqmTZsGMzMzuLq6wtnZGVu2bIGnpydGjBgh8r7HGMOhQ4cwb948PH/+HH/99RdcXFyoOfZvKPx9zMzMhFAorDSjoSoi+skRQggpUx07dsT169eRk5PDdxReZWdn4/r16zSVR4IUVyiZNm0a1q5dW2T50+I8fPgQw4YNQ1ZWFgBg4sSJWLVqldhyElLZZWdnY9++fRgwYAAaNmwIV1dXkQJK3bp14ejoiH///RcXLlzA5MmTqYDyAzVq1MC6desQExODJk2awMTEBP3790dcXByAgtWM+vfvDxMTE+jr6yM2Nhbr1q2jAspvKuyJAhQUUoj0oiIKIYSQMmVmZoYPHz4gPDyc7yi8Cg8PR2pqKszMzPiOQv6fvLz8d7d/+fIFCxYs+O5V7m+9ePECAwcORGpqKoCChrSBgYF0hZEQMYiLi8OcOXOgpaUFMzMznD59mituysjIYMiQIThw4ACSk5OxZs2aX16SvLJq3rw5Tpw4gaNHj+L58+do27YtjI2N0bZtWyQlJeHYsWM4ceIEmjVrxnfUCuHrwh5N6ZFuNJ2HEEJImcrNzYWOjg42bdqEcePG8R2HNz4+PjAyMkLz5s35jkL+n5ycXLH72rdvDw0NjR/ePy0tDYMGDcLz58+5+/zzzz/FFmcIIT/36dMn7N27F4GBgd9dmrhhw4aYOnUqLCwsoKWlxUPCikUgEGDIkCHo378/Nm3ahF27dsHd3R1//fUXvZeJGRVRKg4qohBCCBG7/Px8HD58GN7e3jh//jyAguV9Y2Nj0bp1a57Tlb+YmBhcunQJYWFhfEchXynuA4KJiQl27NjxwyJLdnY2TExMEBMTAwDQ1dXF8ePHUa1atTLJSkhFxhjD1atXERAQgH379hX5gKmgoIDRo0fD0tIShoaGNNKrDMjLy2Pu3LmYO3cu31EqnPPnz+Py5csijY9nzJgBNTU1TJ06Ff379+cxHfkVVEQhhBAiNh8/fkRgYCA2bdqEhIQEkX3y8vLw9fWFj48PP+F45OvrCw0NDYwYMYLvKOQrnz59EvleRkYGK1euhKOjY5F+KSdOnICTkxNGjBgBJycnWFhYIDIyEgBQq1YtnDp1Curq6uWWnZCK4M2bNwgKCkJAQAD+/fffIvvbtm0LS0tLTJgwoVKvrEOkV1xc3HdXMjpx4gQA4MKFC0hJSSnnVOR3URGFEELIb/vvv/+wceNG7Nixo8gVxGbNmmHWrFl4/vw5Nm3ahNWrV0NVVZWnpOUvPT0dQUFBcHBw+OHIBlI8xhhSUlIQHR3NfSUlJSEzMxNZWVnIycmBvLw8FBUVoaSkBB0dHRgYGMDAwAAdO3aEpqbmd5vIvn//nvu3srIyDh06hH79+n03w+zZs/Ho0SPcuXMHe/bswaNHjwAASkpKOHbsGPT19cvmyRNSweTn5yMiIgKBgYE4dOgQ8vLyRParqqrC3NwcVlZW6NChQ6lXyiJEkvxsSlTDhg3LKQkRJwErQev59PR0qKmpIS0trVKd+BJCCCkeYwwRERHw9vbmrqh8beDAgbC3t8eAAQMgIyOD5ORk6Orqwt3dHXPmzOEhMT+8vLzg6OiIxMREmr9fCg8ePEBoaChu3bqF6OhovH79GgBQp04dGBgYoFGjRlBWVoaSkhLk5eWRk5ODzMxMZGRk4MmTJ4iOjsbbt28BAPXq1eMKKmZmZmjRogUAID4+Ht27d4eSkhIiIiKKbZ6YkJAAPT29ItsFAgEOHz6MoUOHltGrQEjFUbg08bZt25CcnFxkf69evWBlZQVTU1ORVUwIkXZjx44tdjpvWFgYTE1NyzkR+Z7S1DyoiEIIIaRUvnz5gl27dmHDhg1Fhl9XrVoVkydPxsyZM7/7gXTatGkIDg5GbGwsdHV1yykxfxISEtC6dWtMmDABfn5+fMeReLm5uTh48CB8fHwQFRWFmjVrokuXLtyoEgMDA2hra5foyjRjDMnJySKjV65fv44PHz7A0NAQdnZ2GDlyZIlGB23duhU2NjZFtmtpaeH69etUHCOkGNnZ2Th48CACAwNx5syZIsuG16tXD5MnT8bUqVNpZR1SYT158gTNmzdHbm6uyHY9PT3Ex8dDVlaWp2Tka1REIYQQInaJiYnYtGkTAgIC8PHjR5F9DRo0wMyZM2FpaYnq1asX+xjp6elo1aoV9PX1cfr06Qo9TJsxhn79+uHx48eIjY2lv58/kJycjC1btmDr1q149eoVevfuDTs7O5iYmIh1dYicnByEh4fDx8cHFy9ehIaGBqytrWFtbQ1tbe1i7/ejq4gtWrTAvXv3UKUKzZAmpFBsbCwCAwMRFBSEDx8+iOyTkZHB4MGDYWlpiSFDhtA0R1IpzJkzB+vXrxfZ5u3tjVmzZvETiBRBRRRCCCFiwRjDxYsX4e3tjYMHD0IoFIrs7927N+zt7TF8+PASf4iMiIiAsbEx/Pz8YGtrWxaxJYKfnx+mT5+OiIgI6rxfjPT0dDg6OiIgIABKSkr4888/MX36dLRq1arMjx0bGwtfX18EBQUhMzMTVlZWWLt2bZHznPz8fNSsWRPp6enffRw5OTmkp6dDUVGxzDMTIsnS09MRGhqKgIAA3Lhxo8j+hg0bwtLSEpMnT6bRW6TSef/+PerXr4+MjAwABf203rx5AxUVFZ6TkUKlqnmwEkhLS2MAWFpaWkluTgghRMplZmay7du3s/bt2zMAIl/y8vLMwsKC3blz55cf39ramqmoqLBnz56JLbMkefbsGVNRUWE2NjZ8R5FYp06dYjo6OkxFRYV5eXnxdo6RlpbGvLy8mIqKCtPR0WGnTp0S2X/69Oki/wcKvzp37lzk9oRUJkKhkF26dIlNmTKFKSsrF/k/oqCgwMzNzdm5c+dYfn4+33EJ4dW0adO4/xuDBw/mOw75RmlqHjQShRBCCOfVq1fw9fWFn58f3rx5I7JPXV0ddnZ2sLW1Rd26dX/rOBV5Wg+jaTw/lJ6eDgcHB2zduhX9+vVDQEAAGjRowHcsJCQkwMrKCmfPnoW1tTU8PDygqqqKefPmwcvLi7udmpoaJk6cCGtra7Rt25bHxITw582bN9i1axcCAwOLXZrYysoKEyZMQI0aNXhISIjkycnJgZGRET59+oTTp0+jXr16fEciX6HpPIQQQkrl1q1b8Pb2RmhoaJHGZ506dYK9vT3GjBkj1v4UhdN6nJ2dsXz5crE9Lt+cnZ3h5uZG03i+IyIiAlZWVkhNTYWHhwdsbGwkqoDGGMOWLVvg4OCAGjVqICAgAM2aNUOXLl3AGIOzszOmTp1KK4eQSqlwaeKAgAAcPnyYliYmhFQopal5UBc0QgippPLy8hAeHg5vb29cuXJFZJ+srCxMTU1hb2+Prl27lsnJ8IABA7B27Vo4OjqiRo0amDt3rtiPUd48PT3h5uYGd3d3KqB8w93dHY6OjhI1+uRbAoEAtra2MDY2hpWVFYyNjbF27Vq8fPmS72iE8ObZs2fYvn07tm/f/t2liXv37g0rKyuMHj2aCoyEfIUxhpSUFJFV4pKSkpCZmYmsrCzk5ORAXl4eioqKUFJSgo6ODrcSXceOHaGpqUnFSAlFRRRCCKlkPnz4gK1bt2Lz5s1ISkoS2VezZk3Y2trCzs7uh6uViMv8+fPx8eNHzJs3DyoqKt9dRlZaFI5gcHJygoODA99xJAZjDE5OTli1ahWcnZ3h6uoq8SeFurq6OH36NFxcXODo6IiPHz9ixYoVEp+bEHEpXJo4ICAAZ86cKbK/Xr16sLCwwNSpU6Gvr89DQkIk04MHDxAaGopbt24hOjoar1+/BgDUqVMHBgYG6N27N5SVlaGkpAR5eXnk5OQgMzMTGRkZePLkCfz8/PD27VsABf/PCgsqZmZmaNGiBZ9PjXyFiiiEEFJJ3L9/Hxs2bOBWI/lay5YtYW9vjwkTJpT7lcQVK1bg06dPsLW1xefPn6VyRIqnpyccHBwwa9asCjU16XcxxmBvb4+NGzfCy8sLc+bM4TtSiQkEAixfvhw1atTAvHnz8PnzZ6xfv54KKaRCi42NRUBAAHbv3l3s0sRWVlYYPHgwLU1MyP/Lzc3FwYMH4ePjg6ioKNSsWRNdunSBtbU1N7JEW1u7RH8/GGNITk4WGb2yadMmuLq6wtDQEHZ2dhg5ciT9/+ObuDvVEkIIkRz5+fnsyJEjrF+/fkVWTRAIBGzYsGHszJkzTCgU8ppTKBSyRYsWMQDM2dmZ9zwlJRQKmZOTEwPAnJycpCZ3eSn8mfr7+/Md5bf4+/tzP2NCKpq0tDTm7+/POnfu/N1VqBo1asTc3NxYcnIy31EJkShJSUls8eLFTF1dnQFgvXv3Znv37mXZ2dliPU52djYLCQlhvXr1YgCYhoYGc3FxYUlJSWI9TmVXmpoHFVEIIaQCSk9PZ97e3qxx48ZFToirVavG7O3tWXx8PN8xi1i7di0DwPr27csSEhL4jvNDz549Y3369GEA2Nq1a/mOI3EKf5aenp58RxELDw8P+lmTCqNwaWILC4tilyaeMGECLU1MyHekpaUxW1tbJisry1RUVJidnR2LjY0tl2PHxMSw6dOnMxUVFSYrK8tsbW3pM7qYUBGFEEIqqcePHzN7e3tWrVq1715N9Pb2lvj38oiICKajo8NUVFSYn5+fxI3uEAqFzNfXl6moqDAdHR0WERHBdySJc+rUKW5UUUVSOOqIfublJzs7m3l4eLC2bdsyDw8PsV/hrWxev37N3N3dWdOmTb876qRdu3Zs06ZN7MOHD3xHJUQinTp1ijtH8fLy4u2cKi0tjXl5eXHnIqdOneIlR0VCRRRCCKlEhEIhO3v2LBs2bBgTCARFTor79u3Ljhw5IlVXE9PS0piNjY3EjUr5evSJjY0N/V38jrS0NKajo8P69esncQWw3yUUClmfPn2Yjo4O/ezLmFAoZEeOHGFNmjRhsrKybMCAAUxWVpY1adKEHT16tML9bpWlvLw8duzYMTZq1ChWpUqVIn8j1NTU2PTp01l0dDTfUQmRWGlpacza2poBYP369ZOo85K+ffsyAMza2pr+Nv0GKqIQQkglkJGRwbZu3cpatWpV5KRYUVGRWVtbl9vw0rLy9agUT09PXq/4eHp60uiTErC2tmYqKioSc4Ipbs+ePWMqKirMxsaG7ygV1oMHD5ixsTFXRC18H4uNjeU+LAwcOJA9ePCA56SS7enTp8zZ2Zlpa2t/d9TJH3/8wXbt2sW+fPnCd1RCJNrXo08kdYSsn58fjUr5TVREIYSQCiwpKYktXLiQ1apVq8hJsba2Nlu1ahV79+4d3zHF5tu5x9OnT2cxMTHlcuyYmBg2bdo0VrVqVZp7XAKF03j8/Pz4jlKmfH19aVpPGfjw4QOzt7dnsrKyrGHDhuzgwYNFPqwIhUJ28OBB1rBhQyYrK8vs7e1p6slXMjMzWUhICFds+vZLXV2d/f333+zRo0d8RyVEKhT295Kk0SfF+XpUCvXvKj0qohBCSAUjFArZlStXmJmZGZOVlS1yYty9e3cWGhrKcnJy+I5aZpKSkpiLiwvT0NBgAFivXr1YSEhImXTB37NnD+vZsyfXBX/JkiW0MsVPVORpPN+iaT3ilZuby3x8fFitWrWYiooKW7NmDcvKyvrhfbKystjq1auZiooKq1WrFvP19WV5eXnllFjy3Lt3j82aNYvVqFGjyN8HGRkZNmzYMHbw4MEK/TeCEHESCoVs4cKFUrlqoLOzMwPAFi1aJDW5JQEVUQghpILIzs5mwcHBrFOnTkVOjOXk5NiECRPYjRs3+I5ZrnJyclhYWBgzMjJiAFjNmjXZwIEDmZOTEwsPD2eJiYklPmkQCoUsMTGRhYeHMycnJzZw4EDuQ4iRkRELCwujDx0lZGtrW6Gn8XyrcFqPra0t31Gk2tmzZ1nr1q0ZADZlyhT28uXLUt3/xYsXbMqUKQwAa9OmDTt37lwZJZU8aWlpzM/P77t/Hwqbia9cuZKlpKTwHZUQqSIUCtnMmTMZAObl5cV3nF/i6enJALBZs2ZRIaWESlPzEDDGGH4iPT0dampqSEtLg6qq6s9uTggh5De9ffsW/v7+8PHxwcuXL0X21alTB9OmTcP06dOhoaHBU0LJ8ODBA+zbtw+3bt1CdHQ0Xr16BQCoXbs2DAwM0LhxYygpKUFJSQny8vLIyclBZmYmMjMz8fjxY0RHR+Pdu3cAAHV1dRgYGKBjx44YO3YsWrRowedTkyrJycnQ1dWFu7s75syZw3eccuPl5QVHR0ckJiZCS0uL7zhS5enTp5g/fz7Cw8PRrVs3eHt7o1OnTr/8eDdv3oS9vT2uXr2KUaNGwcPDA3p6emJMLBkYY7h8+TICAwOxb98+ZGRkiOxXVFTE6NGjYWVlhd69e0NGRoanpIRILycnJ6xcuRL+/v6wsbHhO84v27JlC2xtbeHk5IQVK1bwHUfilabmQUUUQgiRIPfu3YO3tzf27NmD7OxskX3t2rWDvb09xo0bB0VFRZ4SSi7GGF68eIHo6GjuKykpCZmZmfjy5QvevHkDgUCAqlWron79+tDR0YGBgQFXONHU1OT7KUitJUuWwMvLCykpKZXqPCE9PR2amppwcHDA0qVL+Y4jFT5//oxVq1bB09MTderUwZo1azB+/HgIBILffmzGGEJCQuDo6Ih3795h3rx5WLhwIVRUVMSQnF+vX7/Grl27EBgYiP/++6/I/nbt2sHKygrm5uaoUaMGDwkJqRjc3d3h6OgIT09PzJ07l+84v83T0xMODg5Yu3Yt5s+fz3cciVaqmoe4h7YQQggpnby8PBYeHs7++OOP785lHzVqFDt//jwNx/wNb9++5V7TIUOG8B2nQsnJyWHq6ups+vTpfEfhxbRp05iGhgZN+/qJ/Px8tnPnTqahocEUFRWZi4sL+/z5c5kc6/Pnz2zx4sVMUVGRaWhosJ07d0rVEu+FCpcmNjExKXZpYjs7O1qamBAxKWyO7uzszHcUsXJycqJm6CVA03kIIUQKfPz4EYGBgdi0aRMSEhJE9lWvXh1WVlaYMWMGdHV1eclXkWRkZKBq1aoAACMjI5w7d47nRBVHWFgYxo4di5iYGLRu3ZrvOOUuJiYGbdu2RVhYGExNTfmOI5GuXbsGe3t73LhxA2PHjsXatWvRoEGDMj9uYmIiHB0dsW/fPnTu3BkbNmxAly5dyvy4v+vZs2fYtm0btm/fjpSUlCL7//jjD1hZWWHUqFFQVlbmISEhFU96ejpatWqFpk2bIiIiQiyj4yQFYwz9+vVDfHw84uLi6PN8MWg6DyGESLD//vsPGzduxI4dO/DlyxeRfc2aNcOsWbMwadKkCjEEXVIIhULIysoCALp27YqrV6/ynKjiMDIyQn5+Pi5cuMB3FN706tULcnJyVJz7RkpKChYuXIigoCC0b98e3t7e6NWrV7nnuHDhAuzt7XH37l1MmjQJq1evlrjpe1lZWThw4AACAwNx9uzZIvvV1dVhYWGBqVOnokmTJjwkJKRis7GxQUhICOLi4sqlyFveEhIS0Lp1a5ibm8Pf35/vOBKpNDUP6jZFCCHlgDGGU6dOYfDgwWjWrBk2b94sUkAZOHAgTpw4gfv372P69OlUQBEzGRkZro/Mt40Yya978OABoqKiYGdnx3cUXtnZ2SEyMhIPHz7kO4pEyMzMhJubG/T19XHy5Els3boVN2/e5KWAAgC9e/fGrVu3sGXLFpw8eRL6+vpYuXIlsrKyeMnztZiYGMyaNQuampowNzcXKaDIyspi2LBhOHToEJKSkrBq1SoqoBBSBiIiIrB161Z4eHhUyAIKAK75+5YtW3D69Gm+40g9GolCCCFl6MuXL9i1axc2bNiAf//9V2SfsrIyLCwsMHPmTDRr1oynhJVHzZo1kZqaisaNGyM+Pp7vOBXCkiVLsGnTJrx8+RLy8vJ8x+FNTk4O1NXVMWvWrErdYJYxhvDwcDg4OCAlJQWzZs3C4sWLoaamxnc0TlpaGpYvXw5vb29oa2vDw8MDo0aNKteh++np6QgJCUFAQABu3bpVZH+jRo1gaWmJyZMnS9yIGUIqmoo8jedbNK3nx2gkCiGE8CwxMRHz58+HtrY27OzsRAooDRo0gIeHB1JSUrB582YqoJSTwt4BmZmZPCepOG7duoUuXbpU6gIKAMjLy6NLly7f/UBcWdy7dw99+vSBqakpWrVqhbi4OHh4eEhUAQUA1NTU4OHhgbi4OLRs2RKmpqbo06cPYmJiyvS4jDFcvHgRFhYW0NDQwLRp00R+XxQVFTFx4kRERkYiPj4eCxcupAIKIeXA0dERqampCAgIqNAFFAAQCAQIDAxEamoqHB0d+Y4j1aiIQgghYlJ4kjx69Gg0bNgQHh4e+PjxI7e/d+/e+Oeff/D48WPMmzcP1atX5y1rZVRYRKHpPOLBGEN0dDQMDAzK7BgJCQkQCAQQCAT4559/iuxfunQpBAIB3r17V2YZSsrAwADR0dF8xyh3b9++xbRp09ChQwe8evUKJ06cwJEjR6Cvr893tB9q2rQpjh49iuPHj+Ply5do3749pk+fjrdv35bqcfLz85Gbm1vs/tevX8Pd3R3NmjVD7969sXPnTpH3oPbt22Pz5s14+fIlgoKCYGhoWOE/yBEiKZKTkxEQEABXV9cKO43nW7q6uli2bBkCAgK+27ialAwVUQgh5DdlZ2dj586dMDAwQO/evREeHg6hUAig4Aq1hYUF7ty5g/Pnz2PUqFGoUqUKz4krJyUlJQBURBGXFy9e4PXr12VaRPmaq6srSjADmTcGBgZ49eoVXrx4wXeUcpGbm4v169ejSZMmCA0NhZeXF2JiYjBw4EC+o5XKoEGDEBsbC09PT4SEhEBfXx/e3t4/LIwUSk5ORvv27aGmpibSWDkvLw/Hjh3DqFGjoK2tDUdHRzx69Ijbr6amBjs7O0RHR+P27duws7OjojohPNi6dSuUlJRgaWnJd5RyZWVlBUVFRWzdupXvKFKLiiiEEPKLXr16hSVLlqB+/fpcoaSQuro6XF1dkZSUhO3bt6Ndu3b8BSUA/jcSJTs7mytykV9XOBWhPIoo7dq1Q0xMDA4cOPBL9y+Pwlnh61AZpvScOHECbdq0wbx582Bubo74+HjY29tDTk6O72i/RE5ODrNnz0Z8fDzGjRuHuXPnok2bNjh58mSx90lNTcXAgQMRGxuLzMxMuLi44OnTp3B2doauri6GDh2KAwcOIC8vj7uPoaEhgoKC8PLlS2zevBkdOnQoj6dHCPmO3NxcbNmyBZMmTap0vUFUVVUxadIkbNmypUQFY1IUFVEIIaSUbt26hUmTJqF+/fpwdXXFmzdvuH2dOnXC7t27kZiYiMWLF6Nu3bo8JiVfKyyiANQXRRyio6NRp04daGtr//B2hVNuHj16hIkTJ0JNTQ116tTB4sWLwRhDUlISRowYAVVVVairq8PT07PIY4wbNw76+volGo1iaGiIVq1aITo6Gr1794aysjIWLVrETQ3y8PDA5s2b0bBhQygrK2PAgAFISkoCYwzLly+HtrY2lJSUMGLECHz48KHEr4eOjg5q165doaf0ZGVlYejQoRg8eDDU1dVx584d+Pj4oHbt2nxHE4s6derA19cXt2/fhrq6OgYNGoRhw4YVWcUnMzMTw4YNw/3797lt58+fR6NGjeDm5iYyRF5dXR0LFy5EfHw8IiMjMXHiRG5UHCGEPwcPHsSrV68wffp0vqPwYvr06Xj58iUOHTrEdxSpREUUQggpgby8POzbtw89evTgCiWF1XtZWVmYmZnhypUruH79OiZMmFDpG21Koq8/uFAR5fcV9kMpaf8GMzMzCIVCrF69Gl26dMGKFSuwfv169O/fH1paWlizZg0aN24MBwcHkakRQMH/MWdnZ9y7d69Eo1Hev3+PQYMGoV27dli/fj2MjIy4fcHBwfDx8cHMmTMxb948nD9/HmPHjoWzszNOnjyJBQsWwMbGBkeOHIGDg0OJXw+BQFDh+6JcvnwZx44dw/bt23Hu3Dm0adOG70hlom3btjh37hy2bduGo0eP4vLly9y+vLw8jBs3TmTbt2RlZTF8+HAcPnwYSUlJWLlyJRo3blwe0QkhJeTj44NevXqhdevWfEfhRZs2bdCzZ0/4+PjwHUUq0cR8Qgj5gQ8fPmDr1q3YvHkzkpKSRPbVrFkTNjY2sLOzg46ODk8JSUl9PRKF+qL8vqSkJPTu3bvEt+/cuTP8/f0BADY2NtDV1cW8efOwatUqLFiwAAAwfvx4aGpqYtu2bUUe29zcHMuXL4erqytMTEx+WLx59eoV/Pz8YGtry21LSEgAAKSkpCA+Pp5bNSY/Px+rVq1CZmYmbt26xfUsevv2LYKDg+Hr6wsFBYUSPcfGjRvj4sWLJXtBpFDhKKDK0PxUIBBwxbfC580Yw4ABAxAZGfnd+8jKymLZsmWYOnUqNDQ0yi0rIaR0Hjx4gKioKISEhPAdhVd2dnYwNzfHw4cP0bx5c77jSBUqohBSRuLj4/Hp0ye+Y0icatWqoUmTJnzH+Kn79+9jw4YNCAoKKjJqoWXLlrC3t8eECRNEPpgTyUZFFPHKzMws1e+/lZUV929ZWVl07NgRycnJIg39qlevjqZNm+Lp06dF7l84GmXy5Mk4ePAgTExMij2WgoICpkyZ8t19Y8aMEVl2t0uXLgCAiRMnijR97tKlC0JCQpCSkoKGDRuW6DkqKSnRKKcKbOvWrcUWUICCglyrVq2ogEKIhAsNDUXNmjUxatQovqPwavTo0ahRowZCQ0OxdOlSvuNIFSqiEFIG4uPjJX55Rz49evRIIgspQqEQx48fh7e3N86cOSOyTyAQYOjQobC3t0efPn0q/FXYioim84hXVlZWqXo71K9fX+R7NTU1KCoqFumnoaamhvfv33/3MSZMmMCNRhk5cmSxx9LS0ip2St33cgAoMpqscHtqamqxx/mWkpJSkf4ZpOIoyYjDO3fuYMSIEeWQhhDyq27duoUuXbpI5dRrQ0NDAEBUVNRvP5a8vDy6dOlSKRqiixsVUQgpA4UjUHbv3k3D477y8OFDTJw4UeJG6Hz69Anbt2/Hxo0b8fjxY5F91apVw9SpU/HXX3/RnHYpRyNRxCsnJ6dUJ6CysrIl2gag2OaxhaNRLCwsftgM70fFneKOWdos3yMvL4/s7OwS355Il0GDBuH69eu4fv06BAIBXr16JfKlqqoKCwsLvmMSQn6AMYbo6GhYW1uX2zF1dXXRqlUrHD16tNyOWVIGBgYIDAzkO4bUoSIKIWWoefPmtIShBHv69Ck2btyIbdu2IT09XWRfo0aNMHPmTEyZMqXSLX1XUdFIFPGSl5dHTk5OuR934sSJWLFiBZYtW4bhw4eX+/F/JCcnp8T9U4h06ty5Mzp37sx3DELIL3rx4gVev37NLUtf2RkYGMDNzQ0vXryApqYm33GkBhVRCCGVCmMMkZGR8Pb2xpEjR4pcZe7bty/s7e0xePDgYq9ME+lEI1FKTigU4t27d0hOTi72KzU1lZdi1NejUSRNZmYmFBUV+Y5BCCGkGIVTV6iIUqDwdbh165bEXZiQZFREIYRUCpmZmQgODsaGDRsQGxsrsk9RURGTJk3CrFmz0KpVK54SkrJGRZQC+fn5ePXqFVcMSUlJKVIgSUlJ+ekoEzk5Od5ex8LeKHfv3uXl+MXJzMwsVZ8YQggh5Ss6Ohp16tSBtrb2bz/W0qVLsWzZMjx8+BAuLi44efIk5OTkMHHiRKxZs6bERfW//voLO3bswJs3b4o0bB8/fjwiIyORkpJSJhf3dHR0ULt2bURHR1MRpRSoiEIIqdCSk5Ph4+ODLVu2FGlWqa2tjRkzZsDa2hq1atXiKSEpL5VhOk9OTg5evnz5wxEkL1++RH5+/m8dp1q1apCTkyvSQ6i8VKlSBc7OzsWuwMOXx48f03Ln/y8qKgpGRkaIjIzkGiGWlDgbJxJCyNeio6NhYGAg1gUCxo4dC11dXaxatQrXrl3Dhg0bkJqail27dpXo/mZmZti8eTOOHTuGMWPGcNszMjJw5MgRWFhYlNnoaIFAAAMDA0RHR5fJ41dUVEQhhFRI165dw/r16/HPP/8gLy9PZF+3bt0we/ZsmJiYQE5OjqeEpLxJ+0iUzMxMbtTI90aPJCcn4/Xr16VqhPo9NWvWhLa2drFfWlpaUFVVhYuLC/z8/MAY++HJ6NKlS7+7dOKOHTuwY8eOItu//uCsq6tb7POxsLD47pSe4j54F/dYhoaG391e3OMXp7BZoZ2dXYnvI63279+P+fPnc98rKCigfv36GDBgABYvXox69eqV2bEfPnyIFi1aQEFBAa9evUL16tXL7FiEkIonKSkJvXv3Futj6unpcc3OZ8yYAVVVVfj4+MDBwQFt2rT56f179uwJLS0thIaGihRRjh07hi9fvsDMzEyseb/VuHFjXLx4sUyPUdFQEYUQUmHk5ORg//798Pb2xo0bN0T2ycnJYezYsbC3t0enTp14Skj4JMlFlM+fP/9w9EhycnKxy/6WRt26dX9aIPl2KHFxDAwM8PbtWyQnJ9PoCxScmL97965SzbN3dXWFnp4esrKycOnSJfj6+uL48eOIi4srs2Pu3r0b6urqSE1Nxf79+2FlZVVmxyKEVDyZmZkl/jtXUjNmzBD5fubMmfDx8cHx48dLVEQRCAQYM2YM/P398fnzZ6ioqAAAQkNDoaWlhZ49e4o177eUlJQq7AjdskJFFEKI1Hv79i38/f3h4+ODly9fiuyrU6cOpk2bhunTp0NDQ4OnhEQS8DGdhzGGtLS0nxZI0tLSfus4MjIy0NDQKLYwoq2tDU1NTbGuHNOxY0cABUOjqYgCbih04etSGQwaNIh7vlZWVqhVqxa8vLxw6NChMnm/ZYxhz549MDc3x7NnzxAcHExFFEJIqWRlZYm9d1WTJk1Evm/UqBFkZGSQkJBQ4scwMzPD+vXrcfjwYZibm+Pz5884fvw4bG1txTr16HuUlJSQlZVVpseoaKiIQgiRWvfu3YO3tzf27NmD7OxskX3t2rWDvb09xo0bR6tlEADiH4nCGPvpCjbJycm/fawqVapwhZDivtTV1VGlSvn+SdfU1ES9evUQHR2NkSNHluuxJVF0dDTU1dUr9RKRffr0gZeXF549e1akiCKOxomXL19GQkICxo0bh2fPnmH8+PFITk4u0iBSKBTC1dUVW7ZswcePH9GlSxds3rwZgwcPhqGhocg0spiYGMycORM3btxArVq1MG3aNGhpaWHq1Kk0vJ2QCignJwfy8vJleoxfKXp07doVurq62LdvH8zNzXHkyBFkZmaW+VQeAJCXly9yHk1+jIoohBCpkp+fjyNHjsDb27tI7wMZGRmMGDECs2fPRq9evcq8ck+kS2lGouTn5+PNmzc/LI6kpKT89kmHoqLid0eNfP1Vt25dyMjI/NZxygI1oxNV2KywMnvy5AkAfLdRtzgaJwYHB6NRo0bo1KkTWrVqBWVlZYSEhIj0ZwGAhQsXYu3atRg2bBiMjY1x7949GBsbF7nSmpKSAiMjIwgEAixcuBBVq1ZFQECAWEdsEUIki7y8/E9Xnyut+Ph46Onpcd8/fvwYQqEQurq6pXqcsWPHwtvbG+np6QgNDYWuri66du0q1qzfk5OTQ+97pURFFEKIVPj48SO2bduGTZs24dmzZyL71NTUYGVlhb/++qvUf7BI5fH11e83b97gypUr3y2MJCcn48WLF0UaEpdW1apVoaOj88MRJDVr1pTqYl/Hjh2xadOmcrmyJ8mys7Nx/fp1zJo1i+8o5SotLQ3v3r1DVlYWLl++DFdXVygpKWHo0KGIj48Xue3vNk7Mzc1FWFgYpk2bBqCgKDp8+HAEBweLFFFev34NLy8vjBw5EgcOHOC2L1u2rEiD4zVr1iA1NRW3b99Gu3btAABTpkwpMjSfEFJxKCoqin1K7+bNmzFgwADu+40bNwIomPJYGmZmZli7di127tyJkydPwt7eXqw5i5OZmUmjtkuJiiiEEIn26NEjbNiwATt27MCXL19E9jVt2hSzZs3Cn3/+yTXhIpVbVlYWXrx48d2RI4VXyQFg79692Lt37y8fp0aNGj+dYqOqqirVBZKSMDMzg6urK8LDwzFu3Di+4/AmPDwcqamp5TLsWpL069dP5PsGDRogODgYWlpaRYoov9s48cSJE3j//j3Gjx/PbRs/fjyGDRuG+/fvo2XLlgCAs2fPIi8vr8gqSTNnzixSRDl58iS6devGFVCAgtWpJkyYwH0IIoRULEpKSmJvLv/s2TMMHz4cAwcOxNWrV7F7926Ym5ujbdu23G0eP36MFStWFLlv+/btMWTIEABAhw4d0LhxYzg5OSE7O7vc/qZkZmaKvU9MRUdFFEIIb2JiYvD69Wv069dP5MMmYwwRERHw9vbGiRMnitxv4MCBsLe3x4ABAyRymgMpG1++fCl2Wk3hv9++ffvbx6lTp85PV7CpWrWqGJ6R9GvRogUMDQ3h4+NTqYsoPj4+MDIyQvPmzfmOUq42b94MfX19VKlSBfXq1UPTpk1/+J78O40Td+/eDT09PSgoKODx48cACpo3KisrIzg4GCtXrgQAJCYmAihYsvNrNWvWRI0aNUS2JSYmolu3bkWO9e19CSEVh46OjshFFXEIDQ2Fi4sL/v77b1SpUgV//fUX3N3dRW7z33//YfHixUXua2lpyRVRgIL3STc3NzRu3BgdOnQQa87iPH78mBrElxIVUQghvDh69ChGjBgBoVCIrVu3wsrKCl++fMGuXbuwYcMG/PvvvyK3V1ZWhoWFBWbOnIlmzZrxlJqUBcYY0tPTf9qg9ePHj791HIFAAMYYgIKlfs3MzIoUSDQ1NWlIaynZ2dlh7NixiI2NRevWrfmOU+5iYmJw6dIlhIWF8R2l3HXu3LlUqxH9auPE9PR0HDlyBFlZWd+darNnzx64ublV+JFfhJDfZ2BgAD8/PzDGxPaeUadOnR/+DSjNKj0rVqz47oiVQt/2A/xdjDFER0cXGb1HfoyKKISQchcfHw8rKysIhUIABX8wHj58iG3bthX5oNygQQP89ddfsLS0LHIVkUg+xhjev3//3VEjX399/vz5t44jKyv70+k1NWvW5KYQNGvWDBs2bBDHU6z0Ro4cCXV1dfj6+sLHx4fvOOXO19cXGhoaGDFiBN9RpMKvNE4MDw9HVlYWfH19Ubt2bZF9//33H5ydnXH58mX07NkTDRo0AFBwZfXrRo/v379HamqqyH0bNGjAjWr52ve2EUIqBgMDA7x9+xbJyck0+gJAUlIS3r17V+kbo5cWFVEIIeVu9uzZIh+aExMT4eXlJXKb3r17w97eHsOHDy/3pVtJyQiFwp+uYJOcnPzbK9jIy8v/sDhSuILNz1b2YIxBRkYGQqFQ7POhKzM5OTnY2NjAy8sLq1evhqqqKt+Ryk16ejqCgoLg4OAAOTk5vuNIhV9pnLh79240bNiQayr7tezsbKxevRrBwcHo2bMn+vbtiypVqsDX1xf9+/fnbrdp06Yi9zU2NsbmzZtx9+5dri/Khw8fEBwc/OtPkBAi0QpHz0VHR1MRBeBW2CvNqEJCRRRCCA9evXr13e3y8vIwNzfHrFmz0L59+3JORb6Wl5eHV69e/XSJ399dwUZZWfm7K9h8Paqkdu3aYhlyKxAIoKysjM+fP1MRRcysra3h5uaGwMBAzJkzh+845SYgIABZWVmwtrbmO4rUKG3jxBcvXiAyMrLYlY8UFBRgbGyMsLAwbNiwAfXq1YO9vT08PT25Ro/37t3DiRMniryXODo6Yvfu3ejfvz9mzpzJLXFcv359fPjwQazPmxAiGTQ1NVGvXj1ER0dj5MiRfMfhXXR0NNTV1aGpqcl3FKlCRRRCiMSIiIjAH3/8wXeMCi87O7vYFWwKv169esVNt/pVampqPx1BoqamVq59DAqLKOJe3rCy09bWhpWVFVxcXGBiYlIplhpPSEjAkiVLYGVlBS0tLb7jSJXSNE7cu3cvhEIhhg0bVuxthg0bhn/++QcnTpzA8OHDsWbNGigrK2Pr1q04c+YMunXrhoiICPTs2VOk55GOjg5XoFm5ciXq1KmDGTNmoGrVqpg1axYUFBTE9pwJIZJBIBDAwMCAG4HxO5YuXVpk1S9pEx0dTVN5foGAFXbZ+4H09HSoqakhLS2tUg3TJeRX3b59m3uDLq/O2tKg8HUpjr29PdavX19+gSqgjIyMYvuOFH69efPmt49Tu3btYkeOFH5frVo1MTwj8dLV1UViYiLq1atX7Igo8mvS09PRqlUr6Ovr4/Tp0xW6ySdjDP369cPjx48RGxtbac6Nzpw5g/79++PZs2dSVyj7+PEjatSogRUrVsDJyemHt509ezb8/f0RFxeHxo0b4/Tp00WWcyaESK8lS5Zg06ZNePnyJeTl5fmOw5vs7GxoaGhg1qxZUl8MEofS1DxoJAohRGKUoKZbqZVkBZtvGyeWlkAgQL169X44ekRTUxNKSkpielblS1lZGQBoOk8ZUFVVRUBAAIyNjbFlyxbY2tryHanM+Pv749y5c4iIiKg0BRRpkpmZWeQ9qrBAb2ho+MPbvn//HkFBQejZs+dP+ywRQqSTmZkZXF1dER4ejnHjxvEdhzfh4eFITU396bRKUhQVUQgh5W737t3Q1NREeno696WkpIQxY8bwHY0XjDGkpqb+tEDy6dOn3zqOrKwsNDU1f7iKjYaGRoW+KlP4YYmm85SNAQMGwNraGg4ODjA2Npa60QolkZCQgPnz58PGxkakcSmRHKGhodixYwcGDx4MFRUVXLp0CSEhIRgwYAB69Oghcttu3brB0NAQzZs3x+vXrxEYGIj09HQsXryYp/SEkLLWokULGBoawsfHp1IXUXx8fGBkZITmzZvzHUXqUBGFEFLumjdvXmmmOQmFQm4pve81Zi389+9+qJeTk/tp/5F69epV+iurhSNR8vLykJubSyuqlAEPDw+cPHkSVlZWFW5aD2MMlpaWqFmzJtzd3fmOQ4rRpk0bVKlSBWvXrkV6ejrXbHbFihVFbjt48GDs378fW7ZsgUAgQIcOHRAYGIjevXsjISGh/MMTQsqFnZ0dxo4di9jYWLRu3ZrvOOUuJiYGly5dQlhYGN9RpBIVUQgh5Bfl5+eXaAWb3Nzc3zqOkpLSTwsktWvXhoyMjJieWcVVWEQBCkajUBFF/L6e1uPi4oLly5fzHUlsFi9eTNN4pECHDh1w5syZEt125cqVWLlyZRknIoRImpEjR0JdXR2+vr7w8fHhO0658/X1hYaGBkaMGMF3FKlERRRCCPmOnJwckRVsvtes9eXLl8jPz/+t46iqqv6wOKKlpYUaNWpUqKv5fPq690FGRgZ9EC4jAwYMwNq1a+Ho6IgaNWpg7ty5fEf6bZ6ennBzc4O7uztN4yGEECknJycHGxsbeHl5YfXq1ZXqfCA9PR1BQUFwcHCgi0m/iIoohBCJkp+fX+ZTTjIzM3+6gs3r169/+zg1a9b8aYGkMv3RlgRfj0Sh5rJla/78+fj48SPmzZsHFRUV2NjY8B3pl23ZsgUODg4YNGgQHBwc+I5DCCFEDKytreHm5obAwEDMmTOH7zjlJiAgAFlZWbC2tuY7itSiIgohUkggEGDGjBnYtGkT31HE5tatW5gxYwb+/fdfhIaGYuDAgb/0OJ8+ffppgeT9+/e/nbe4FWwKm7ZqaWmJfGAnkuHb6TykbNWrVw8AYGtri8+fP0vliBRPT0+ucHLixAls2bJFqgtChBBCCmhra8PKygouLi4wMTGpkM3Qv5WQkIAlS5bAysoKWlpafMeRWlREIUTCxMbGYtmyZbh58yZev36NWrVqoUWLFhg+fDhmzpzJdzyx+/LlC5YsWYJ169ZBKBQCALZu3VqkiMIYw8ePH3+6gk16evpv5ZGRkYGGhsYPR5BoaGhAQUHht45D+PHtdB5SdkJDQzF79mzu+3nz5iE1NRWurq5SMT2NMYbFixfDzc0N3bp1w9WrVwEUFIQEAgFdwSOEkApg7dq1OH78eIVshv6tr5ujr127lu84Uo2KKIRIkCtXrsDIyAj169eHtbU11NXVkZSUhGvXrsHb27vCFVHOnj0La2trPHv2TGT77du34eTkVKRA8rsfeuXk5Ios7/vt9+rq6qhShd4aKyoaiVI+zp49i0mTJoExBgBwdnaGqqoqHB0dcfXqVQQGBqJBgwY8pyxeQkICLC0tce7cOaxduxYODg5wdHSEh4cHAMDGxgYyMjKwtLTkOWn5ePbsGfz9/fHmzRu+oxBCiFh93Qx9y5YtsLW15TtSmfH396fm6GJCnxQIkSBubm5QU1PDzZs3Ub16dZF95X3y+uXLF1StWrVMHjsvLw9du3bF9evXv7s/ISGh1KslKCoq/nQFmzp16tAKNpUc9UQpe3fu3IGJiQm3KpWVlRU3+qRdu3awtLREq1at4OHhARsbG4m66scYg7+/P+bPn48aNWogIiKCayK7du1aMMbg6ekJoGAuvUAgwNSpU/mMXKZevnyJFStWYOvWrb+9yhghhEgqQ0NDtG/fHnPnzoWxsXGFnNaTkJCA+fPnw8bGhpqjiwF9miBEgjx58gQtW7YsUkABgLp16xbZdvDgQbRq1QoKCgpo2bIlTp48KbI/MTERdnZ2aNq0KZSUlFCrVi2MGTMGCQkJIrfbsWMHBAIBzp8/Dzs7O9StWxfa2trc/hMnTqBXr16oWrUqqlWrhiFDhuD+/fu//DzDw8OLLaB8j4qKCpo3b45+/frBwsICzs7O8PPzw9GjR3H37l28e/cOGRkZiI+PR2RkJIKCgrBq1SrMmDEDI0aMgIGBAerVq0cFFELTecrYkydPMGjQIHz69AkAMHz4cPj6+nKFkv79+yMuLg7m5uaYNm0a+vfvj8TERD4jcxISEtCvXz9Mnz4d5ubmiIuLEznRFAgEcHd35/q6MMZgZWWF7du38xW5zLx//x4LFixAo0aN4OPjwxVQvvd3iBBCpFlycjL++OMP3LlzB9nZ2Zg6dSo3irKi+Hoaj7u7O99xKgQaiUKIBGnQoAGuXr2KuLg4tGrV6oe3vXTpEsLDw2FnZ4dq1aphw4YNGD16NJ4/f45atWoBAG7evIkrV65g3Lhx0NbWRkJCAnx9fWFoaIgHDx4UaXxqZ2eHOnXqwMXFBV++fAEABAUFYfLkyTA2NsaaNWuQkZEBX19f9OzZE3fu3Pmlan3Xrl0hJyf3wyubQUFB6NChA7S1tWnIIREbms5Tdl6/fg1jY2NuZasePXpg7969RabHqaqqwt/fH6amptyolGXLlsHKyoqX/+vp6ekICAjAkiVLiow++ZZAIICHhweEQiHWr1/PnZgKBAJYWFiUb/Ay8OnTJ6xfvx4eHh4i/aVUVFQwd+5cGBgYYMSIEYiMjISFhYVEjSISN8YYIiMjAaBCP09CKrOoqCiYmZlxo71lZGQQGRkJFxcXLF++nOd04rN48WKaxiNurATS0tIYAJaWllaSmxNS6UVHRzMALDo6ulT3i4iIYLKyskxWVpZ169aNOTo6slOnTrGcnByR2wFg8vLy7PHjx9y2e/fuMQBs48aN3LaMjIwix7h69SoDwHbt2sVt2759OwPAevbsyfLy8rjtnz59YtWrV2fW1tYij/Hq1SumpqZWZPvPfP26fPnyhe3cuZMNHDiQycjIMAAiX9evXy/VYxNSEgEBAdzv2JYtW/iOU2Gkp6ezDh06cK9tixYt2Pv37396v7S0NGZra8tkZWWZiooKmz59OouJiSmHxIzFxMSwadOmsapVqzJZWVlma2tb4vMcoVDI7O3tuecrEAjYjh07yjhx2cnIyGCenp6sdu3aIu/DCgoKbO7cuezNmzeMMcYyMzPZ0KFDGQBmaGjI7t69y3PysnH37l32xx9/MABs6NChLDMzk+9IhBAxEgqFzN3dncnKynLvdw0aNGDR0dFs7dq1DADz9PTkO6ZYeHh4MADM3d2d7ygSrzQ1DyqiEFIGfrWIwhhjN27cYCYmJkxZWZl7Y69Tpw47dOgQdxsAbPDgwUXuq6qqyubMmfPdx83JyWHv3r1jb9++ZdWrV2ezZ8/m9hUWUXbu3Clyn/DwcAaAnTt3jr19+1bka8CAAaxx48alem7FvS4pKSls7dq1rGXLltzz/fDhQ6kem5CS2LNnD/f/av369XzHqRCys7NZv379uNdVR0eHJSUlleoxkpKSmIuLC9PQ0GAAWK9evVhISAjLzs4We9Y9e/awnj17MgBMQ0ODLVmyhCUnJ5f6sYRCIZs1a5ZIIeXb91BJl5OTw/z9/ZmWlpZI8URWVpbZ2NgU+3M8ceIEa9asGZORkWHTpk3jiizS7s2bN8zW1pbJyMiwZs2asRMnTvAdiRAiZunp6Wz06NEi73nGxsbs3bt33G0WLVrEADB/f38ek/4+f39/BoA5OTnxHUUqUBGFEJ79ThGlUHZ2Nrtx4wZbuHAhU1RUZHJycuz+/fuMsYIiyrRp04rcp0GDBszCwoL7PiMjgy1evJhpa2szgUAg8gdjypQp3O0KiygXLlwQebw1a9YUGSHy9ZeqqmqpntPPXhehUMiePn1aoivYhPyKgwcPcr+/q1at4juO1MvPz2fjx4/nXtMaNWqwBw8e/PLj5eTksLCwMGZkZMQAsJo1a7KBAwcyJycnFh4ezhITE5lQKCzRYwmFQpaYmMjCw8OZk5MTGzhwIKtRowYDwIyMjFhYWFiRUX6lJRQK2cyZM0UKKUFBQb/1mOUhPz+fBQcHs0aNGom8pwsEAmZubs7i4+N/+hg5OTls/fr1TE1NjampqbF169b99uvJl+zsbObl5cXU1NRY9erVmbe3t9Q+F0JI8R48eMCaNWsm8r63ePFikVHYjIm+t0vriJTCESizZs0q8d/Nyq40NQ/qiUKIhJKXl0enTp3QqVMn6OvrY8qUKQgLC8OSJUsAALKyst+9H/uqGdbMmTOxfft2zJ49G926dYOamhoEAgHGjRsHoVBY5L5fN90EwN0mKCgI6urqRW4v7qWABQIB9PT0xPqYhHyNGsuKD2MM8+bNQ0hICICC1/bo0aNo3rz5Lz+mnJwcTE1NYWpqigcPHmDfvn24desWAgMD4ebmBgCoXbs2DAwM0LhxYygpKUFJSQny8vLIyclBZmYmMjMz8fjxY0RHR+Pdu3cAAHV1dRgYGGDWrFkYO3YsWrRo8fsvAAres7y9vcEYw6ZNm8AYw+TJkyEQCDBhwgSxHEOcGGM4cuQInJ2dERsbK7JvxIgRWL58OVq3bl2ix5KTk4O9vT3Mzc3h4uKCefPmwd/fH+vWrcPAgQPLIn6ZOHHiBObMmYP4+HjY2trC1dUVtWvX5jsWIUTM9u/fjylTpuDz588AADU1NQQFBWHYsGFFblv43l6tWjXMmzcPqamp3Cpzko4xhsWLF8PNzQ1OTk5Yvny5VOSWNlREIUQKdOzYEUDBcpOlsX//fkyePJlbkhMAsrKy8PHjxxLdv1GjRgAKVmTo169fqY5NiCSixrLi4+7ujvXr1wMoKOqGhoaie/fuYnv8Fi1aYOnSpQAKTgpfvHiB6Oho7uvixYvIzMxEVlYWsrOzoaCgAEVFRSgpKUFHRwd2dnYwMDBAx44doampKbZc3xIIBNiwYQOEQiF8fHwgFArx559/QiAQwNzcvMyOW1rnzp3DokWLiqyM1rdvX6xYsQJdu3b9pcetU6cOfH19MX36dNjb22PQoEEYMmQIvLy8oK+vL47oZeK///7D3Llzcfz4cRgZGWHfvn1o06YN37EIIWKWl5eHhQsXwsPDg9vWunVrhIeHo3HjxsXeTyAQwM3NDdWrV4ejoyOuXr2KwMBANGjQoDxi/5KEhARYWlri3LlzWLt2LebPn893pAqLiiiESJDIyEgYGhoWqRgfP34cANC0adNSPZ6srGyRZdo2btyI/Pz8Et3f2NgYqqqqWLlyJYyMjCAnJyey/+3bt6hTp06pMhHCp6+LKIUrUJHS27lzJxYsWMB9v3Xr1u9ezRMXgUAALS0taGlpYfjw4WV2nF8lEAi4kSi+vr4QCoWYNGkSBAIBxo8fz2u2a9euwcnJCefOnRPZ3qVLF7i5uaFv375iOU6bNm1w7tw5HDhwAPPmzUPLli0xa9YsLF68GNWrVxfLMcTh48ePWL58OTZs2ABtbW38888/MDExoSu1hFRAr1+/xrhx4xAVFcVtmzBhArZs2VJkhcrizJ8/H+3ateNWk/Pw8ICNjY1EvWcwxuDv74/58+f/dJU5Ih5URCFEgsycORMZGRkwMTFBs2bNkJOTgytXriA0NBS6urqYMmVKqR5v6NChCAoKgpqaGlq0aIGrV6/izJkz3BLIP6OqqgpfX19MmjQJHTp0wLhx41CnTh08f/4cx44dQ48ePbBp06ZfeaqE8OLr6Tw0EuXXHD9+HJaWltz3bm5upX5vqoi+LqT4+flBKBRi4sSJ3BTK8hYbGwtnZ2ccPnxYZHurVq3g5uaGYcOGif1DgEAgwKhRozB48GB4eXlh5cqVCAoKgpubG6ZOnVrsNNTykJ+fj8DAQDg5OSEzMxOurq6YM2cOFBUVectECCk7165dg6mpKVJSUgAUTEFft24dZsyYUer3vv79+yMuLg7z58/HtGnTEBYWJjGjUr4efWJjYwN3d3daxrg8iLvJCiHk1xvLnjhxgk2dOpU1a9aMqaioMHl5eda4cWM2c+ZM9vr1a+52ANiMGTOK3L9BgwZs8uTJ3PepqalsypQprHbt2kxFRYUZGxuzf//9t8jtChvL3rx587u5IiMjmbGxMVNTU2OKioqsUaNGzMLCgt26datUz08cDXcJ+R0JCQlcMzkzMzO+40idq1eviqwcNnPmTGpY9438/Hxma2vLvUYyMjJs79695Xb8+Ph4Zm5uXqSZeKNGjVhwcDDLz88vtywpKSnszz//ZABYu3bt2Pnz58vt2F+Liopibdu2ZQDYn3/+yVJSUnjJQQgpe0KhkG3evJnJyclx738aGhrs8uXLYnn8iIgIpqOjw1RUVJinpydvn4/T0tKYp6cnU1FRYTo6OiwiIoKXHBUJrc5DCM+oWPB99LoQvr1+/Zo7qRo2bBjfcaTKw4cPWc2aNbnXb+zYseX6gVya5OfnM2tra5Elg/ft21emx0xKSmI2NjZMVlZWpHiipaXF/P39eV1t5tq1a6xz584MABszZgxLSEgol+M+e/aMjRkzhgFgXbp0YdeuXSuX4xJC+PHlyxeucFv41bt3b/by5UuxHictLY3Z2toyWVlZpqKiwqZPn85iYmLEeozixMTEsGnTprGqVasyWVlZZmtrS5/RxaQ0NQ+ZMh3mQgghhEgQaiz7a1JSUmBsbIwPHz4AAPr06YNdu3ZBRoZOI75HRkYGfn5+sLKyAlAwlWT8+PEICwsT+7Hevn2LuXPnonHjxtiyZQvX86p27drw8vLC48ePYWNjU6SnVXnq0qULrl69il27duHSpUto1qwZXFxcyqwv0ZcvX7B48WI0b94cly9fxq5du3DlyhV06dKlTI5HCOHfkydP0L17d+zatYvbNnfuXJw5c+a7K0z+DlVVVfj5+SEhIQFz587FwYMH0aZNG/Tu3Rt79+5FTk6OWI+Xk5ODkJAQ9OrVC23atMGhQ4fg4OCAxMRE+Pn50fQdHtDZDyGEkEqDljguvdTUVAwcOBDPnz8HALRr1w4HDhyAgoICz8kkm4yMDPz9/bn+MYWFlH/++Ucsj5+WlgYXFxc0bNgQ69atQ3Z2NoCCk3tXV1c8ffpUonp+yMjIYNKkSXj06BHmzZuHtWvXomnTpggODi7SAP1XMcYQHByMpk2bwt3dHfPmzcN///2HSZMmUcGPkArs2LFj6NixI+7duwcAqFq1KkJDQ+Hp6VmmBWRtbW0sW7YMiYmJCAsLQ5UqVTB+/HhoaGhg0KBBcHZ2xoEDB/D8+fMSv88xxvD8+XMcOHAAzs7OGDRoENTV1WFubg45OTmEhYUhMTERS5cuhZaWVpk9N/JjAlaCn2h6ejrU1NSQlpZGlS5CSuD27dswMDBAdHQ0OnTowHcciUGvC5EECgoKyMnJQbt27XDnzh2+40i0zMxMGBsb4+LFiwAAPT09XLlyRexX9SoyoVAIa2trbNu2DUBBc8PQ0FCMGjXqlx4vIyMDmzZtwurVq5GamsptV1JSwsyZM+Ho6Fji5uF8evbsGebPn49//vkH3bp1g7e3Nzp16vTLj3fz5k3Y29vj6tWrGD16NNzd3aGnpyfGxIQQSSMUCuHq6oply5Zx2/T19XHgwAG0aNGCl0wPHjzAvn37cOvWLURHR+PVq1cACkYHGhgYoHHjxlBSUoKSkhLk5eWRk5ODzMxMZGZm4vHjx4iOjsa7d+8AAOrq6jAwMEDHjh0xduxY3p5TZVGamgetzkMIIaRSUVZW5k5aSPHy8/Nhbm7OFVDq1KmDiIgIKqCUkoyMDLZu3QrGGLZv3468vDyYmZlh3759MDExKfHj5OTkICAgAMuXL+dOygFATk4O1tbWcHJygqamZlk8hTKhp6eH/fv3IzIyErNnz0bnzp1hYWGBlStXQkNDo8SP8/LlSyxatAg7duxAmzZtEBkZCUNDw7ILTgiRCB8+fMDEiRNx4sQJbpuJiQl27NjB60X/Fi1aYOnSpQAKRpW8ePEC0dHR3NfFixeRmZmJ9PR0vH//HgKBAKqqqtDS0oKOjg7s7Oy4wok0vadXOuJuskIIoQaqxaHXhUgCDQ0NBoDp6OjwHUViCYVCZmNjwzXmU1FRKfVqXERUfn4+s7Cw4F7TKlWqsAMHDvz0fnl5eWzHjh1MV1dXpFmijIwMmzx5Mnv69GnZhy9jubm5zNfXl9WqVYupqKiw1atXs6ysrB/eJzMzk61atYqpqKiwWrVqMT8/P5aXl1dOiQkhfLp9+7bIe6KMjAxbs2aNVK0WV3hODIDZ2tryHYcwaixLCCGEFKuwuSyNRCnesmXLsGXLFgAFIx3Cw8NhYGDAcyrpJiMjg4CAAPz5558AgLy8PIwZMwaHDh367u0ZY/jnn3/QunVrWFhYICEhgds3evRoxMbGYseOHRViykqVKlUwbdo0xMfHw8rKCs7OzmjRogUOHjxYpI8AYwwHDx5Ey5YtsXjxYlhZWSE+Ph62traQlZXl6RkQQsrLzp070b17d+49sXbt2jh9+jQcHR0hEAj4DVcKVatW5f5NPdqkDxVRCCGEVCqFRRQ6afk+Pz8/kfnlO3fuRP/+/XlMVHHIyspi27ZtmDRpEoD/FVIOHz7M3YYxhlOnTqFTp04wNTXFw4cPuX3Gxsa4efMm9u/fXyHnxteoUQPr1q1DTEwMmjRpAhMTE/Tv3x9xcXEAgLi4OPTv3x8mJibQ19dHbGws1q1bhxo1avCcnBBS1rKzszF9+nRYWFggKysLANC5c2fcvn0bffr04Tld6X1dRCmrlcpI2aEiCiGEkEqlcIWejIwMsa0KUlGEh4fDzs6O+37dunUYP348j4kqHllZWWzfvh0TJ04EAOTm5sLU1BRHjhzBpUuXYGhoiIEDByI6Opq7T48ePRAVFYWTJ0+iY8eOfEUvN82bN8eJEydw9OhRPH/+HG3btoWxsTHatm2LpKQkHDt2DCdOnECzZs34jkoIKQdJSUno3bs3/Pz8uG22tra4cOECdHR0eEz266iIIt2osSwhpNwFBgZCV1cXNWvW5DsKqYQKR6IABVe2JGUJWL6dP38e5ubmXGHJ0dERs2fP5jdUBSUrK4sdO3ZwS/Lm5uZixIgRRYp67dq1w8qVKzFw4ECpGqYuDgKBAEOGDEH//v2xadMm7Nq1C+7u7vjrr78gLy/PdzxCSDk5d+4czMzMuBVrFBUV4evrCwsLC36D/SYqokg3GolCCCl3Pj4+0NHRwcyZM/HkyRO+45BK5usiCk3pKRATE4MRI0YgOzsbADB58mSsXr2a51QVm6ysLBYuXIj69esDgEgBpWnTpti3bx+io6MxaNCgSldA+Zq8vDzmzp2Lu3fvYu7cuVRAIaSSYIxh7dq16N+/P1dA0dXVxZUrV6S+gAIUvLdVqVIwnoGKKNKHiiiEEF5kZGRg06ZNaNKkCUaPHo2rV6/yHYlUEoXTeQAqogBAQkICBg4ciLS0NADA4MGDsXXr1kr9wb2sJSYmYurUqWjTpg2eP38usq9KlSpwd3fHmDFjICNDp2mEkMonPT0dpqamWLBgAYRCIQBw0xzbt2/PczrxKRyNQkUU6UN/nQkh5W7s2LHcaADGGMLDw9G9e3d0794d4eHhyM/P5zkhqci+HolS2VfoeffuHYyNjfHy5UsAQJcuXbBv3z7IycnxnKxievXqFWbNmoUmTZpg+/bt3IeDOnXqoEOHDgAKms2amprixIkTfEYlhBBePHjwAJ07d0Z4eDi3zcXFBUePHq1w08CpiCK9qIhCCCl3CxYsQFJSEtzc3KCurs5tv3r1KkaPHo2mTZti06ZN9EeFlAkaiVLgy5cvGDJkCB49egSgYArJ0aNHReZpE/FITU3FokWL0KhRI2zcuBG5ubkAgOrVq2PVqlV49uwZrl+/DjMzMwBATk4OTExMcPLkST5jE0JIudq3bx86d+6M//77D0DBe+SRI0ewbNmyCrmEORVRpBcVUQghvKhZsyYWLVqEhIQEbNu2DS1btuT2PXnyBDNnzoSOjg6cnJy4q+SEiAONRClYEWbMmDG4ceMGAEBTUxOnTp1C7dq1eU5WsXz+/Blubm7Q09PDqlWruKJd1apV4eTkhGfPnuHvv/9G1apVUaVKFezevRtjxowBUND0eOTIkTh16hSfT4EQQspcXl4e5s2bBzMzM66g0LZtW9y6dQtDhw7lOV3ZoSKK9KIiCiGEVwoKCpgyZQpiY2Nx8uRJ9OvXj9uXmpqKlStXQldXF1OnTkVcXByPSUlFUdkbywqFQlhaWnLTRdTU1HDy5Ek0aNCA52QVR1ZWFry9vdGwYUM4Oztz/Wbk5eVhb2+PJ0+eYMWKFahevbrI/apUqYLg4GCYmpoCKCikjBgxAhEREeX9FAghpFy8fv0a/fr1g5eXF7dt0qRJuHLlCho1asRjsrJXeD6Sm5vLjVAk0oGKKIQQiSAQCGBsbIzTp0/j7t27mDRpEte1PCcnB9u3b0fr1q0xaNAgnDlzpshSoISUVGWfzvP3338jKCgIQEER8/Dhw2jdujXPqSqGvLw8BAYGQl9fH7Nnz8bbt28BADIyMrC0tER8fDzWr1+PevXqFfsYcnJy2LNnD0aPHg3gf4WU06dPl8tzIISQ8nLlyhV06NAB58+fB1Dw/rd582bs3LlT5IJHRfX19NnKeD4izaiIQgiROG3btsWuXbuQkJCABQsWQE1Njdt38uRJ9O/fH+3bt0dQUBBycnJ4TEqkUWWezrNu3Tq4u7sDKPhgHxISgt69e/OcSvoJhUKEhoaiRYsWsLKyQlJSErfPzMwMDx48QEBAALec8c/IyckhJCSEK6RkZWVh+PDhOHPmTJnkJ4SQ8sQYw6ZNm/DHH3/gxYsXAAqmlZ4/fx52dnaVZnW4r4soNKVHulARhRAisbS0tLB69WokJSVh/fr10NXV5fbdu3cPf/75J/T09LB27Vp8/PiRt5xEulTWkSjBwcGYO3cu972Pjw9MTEx4TCT9GGM4evQoOnTogHHjxiE+Pp7bN2TIENy5cwd79+5F06ZNS/3YhYWUwp9RVlYWhg0bhrNnz4otPyGElLeMjAz8+eefmDlzJvLy8gAAf/zxB27fvo1u3brxnK58URFFelERhRAi8apVqwZ7e3vEx8dzndsLvXjxAgsWLICOjg5mz56NhIQE/oISqVAZR6JERETAwsKC+37p0qWwtbXlL1AFEBUVhR49emDYsGG4d+8et/2PP/7A5cuXcfToUbRr1+63jiEnJ4e9e/di5MiRAP5XSDl37txvPS4hhPDh8ePH6NatG3bv3s1tc3BwwJkzZ344zbGioiKK9KIiCiFEalSpUgVjxozBtWvXcPHiRYwYMYIb8vn582d4e3ujUaNGMDMz41YdIeRbla2x7K1btzBq1Cjuip+trS1cXFx4TiW9bt68iQEDBsDIyAhXr17ltnfs2BERERGIjIxE9+7dxXY8eXl5hIaGYsSIEQAKCn9Dhw5FZGSk2I5BCCFl7ciRI+jYsSNiYmIAACoqKggLC4O7uzvXA6+yoSKK9KIiCiFE6ggEAvTs2RMHDx7Ev//+i+nTp0NRURFAQW+Cffv2oUuXLujduzcOHToEoVDIc2IiSSrTdJ74+HgMHjyYOzkzMTHB5s2bK818c3G6f/8+Ro0ahc6dO4s0eW3RogXCw8Nx48YN9O/fv0xeW3l5eezbtw/Dhw8HUFBIGTJkCKKiosR+LEIIEaf8/HwsXrwYw4cP51Yqa9q0KW7cuMGtRFZZURFFelERhRAi1fT19eHj44OkpCS4urqibt263L6LFy9i5MiRaN68Ofz8/Cr8B2ZSMpVlOs+rV69gbGzMrRDTu3dv7NmzB7Kysjwnky5PnjzBpEmT0Lp1axw4cIDbrqenh127diEmJgYmJiZlXpiSl5dHWFgYhg0bBuB/hZTCVS0IIUTSvH//HkOGDMGKFSu4baNHj8aNGzfQvHlzHpNJBiqiSC8qohBCKoTatWtj8eLFSExMxNatW0X+OD969AjTp09H/fr1sWTJErx584bHpIRvlWE6T3p6OgYNGoRnz54BAFq3bo1Dhw5xI7bIz6WkpGD69Olo1qwZdu/ezS2rrqGhAR8fH/z777+YNGlSuRalCgspQ4cOBVDw+zt48GBcuHCh3DIQQkhJ3L59Gx07dsSpU6cAFKwIt3btWoSFhUFVVZXndJKBiijSi4oohJQBmj7CH0VFRVhZWSEuLg5Hjx6FkZERt+/9+/dwdXVF/fr1YWNjg3///ZfHpIQvFX06T3Z2NkaOHIm7d+8CABo0aICTJ0+ievXqvOaSFu/evcP8+fPRuHFj+Pn5cb1katasCXd3dzx+/BjTp0+HvLw8L/kUFBSwf/9+DBkyBMD/CikXL17kJQ8hhHxr+/bt6N69O9fsv06dOjhz5gzmz59P00m/8nURpSKej1RkVEQhRMzy8vIwYcIEvmNUejIyMhgyZAjOnTuH6OhomJubc1eMs7OzudEqQ4cORVRUFHeVmVR8FXk6T35+PiZNmsQ1Ha1VqxZOnToFTU1NnpNJvvT0dCxbtgwNGzaEh4cHsrKyABQ0P1yyZAmePn0KBwcHkd8fvigoKOCff/7B4MGDARRcwRw0aBAVUgghvMrOzoatrS2mTp2K7OxsAECXLl1w+/ZtkYtapACNRJFeVEQhRIw+ffqERo0a4dGjR3xHIV/p0KEDgoOD8fTpU8ybNw/VqlXj9h07dgxGRkbo2LEj9uzZg9zcXB6TkvJQUUeiMMZgb2+PsLAwAAXFomPHjqFp06Y8J5NsmZmZ8PDwQMOGDbF06VJ8+vQJQEGhYt68eXj27BmWLl0KNTU1npOKKiykDBo0CMD/CimXLl3iORkhpDJ6/vw5evXqhS1btnDbpk+fjvPnz0NbW5vHZJLr66I8FVGkCxVRCBGTlJQU6Orq4vnz53xHIcWoX78+PDw8kJycDE9PT+jo6HD7bt++jQkTJqBRo0bw9PREeno6j0lJWaqoI1FWrlyJzZs3AwBkZWWxf/9+dOnShedUkis3Nxd+fn5o3Lgx5s+fj/fv3wMoWErd1tYWjx8/hoeHB2rXrs1z0uIpKioiPDwcAwcOBPC/Qsrly5d5TkYIqUzOnj0LAwMD3Lx5E0DBe9OOHTvg4+MDBQUFntNJLhqJIr2oiEKIGMTFxaFJkyb48OED31FICaiqqmLu3Ll48uQJ9uzZAwMDA25fUlISHBwcoKOjAwcHByQlJfGYlJSFithYNjAwEM7Oztz327Zt40YoEFH5+fnYvXs3mjVrhunTp+PFixcACpZOnzhxIv7991/4+flJzZVTRUVFHDhwAMbGxgCAz58/Y+DAgbhy5QrPyQghFR1jDKtXr8aAAQPw7t07AAUrl129ehWTJ0/mOZ3koyKK9KrCdwBCpF1kZCSMjY25aSACgQCLFi2Cm5sbHj58yHM6ySJpr4ecnBzGjx+PcePG4cKFC/Dw8MDRo0cBFPRH8PT0xPr162FmZoZ58+ahQ4cOPCcm4qCgoACBQADGWIUoohw+fBg2Njbc92vWrMGff/7JYyLJxBjDoUOH4OzsjPv374vsGzlyJJYvX45WrVrxlO73KCoq4uDBgxgxYgQiIiK4QsqpU6fQrVs3vuMRQiqgtLQ0WFhY4ODBg9y2wYMHY/fu3ahRowZ/waQIFVGkGCuBtLQ0BoClpaWV5OaEVBrBwcFMRkaGAWAAmKysLDt06BB79OgRt42+in49evSI7x9dsR4+fMisra2ZgoJCkdyGhobs6NGjLD8/n++Y5DcpKyszAKx169Z8R/ktly5dYoqKitzv6Jw5c5hQKOQ7lkQRCoUsIiKCderUqcj/6X79+rHr16/zHVFsMjIyWP/+/bnnV61aNXb16lW+YxFCKpi4uDimr6/PvdcIBAK2dOlSOj8qpadPn3KvoZmZGd9xKr3S1DwEjP18SYr09HSoqakhLS2N1vUm5P95eHhg/vz53PcKCgq4cOECOnfuDACIj4/nGhSS/6lWrRqaNGnCd4yfevPmDXx8fLB582ZuiGqhZs2aYd68eZg4cSIUFRV5Skh+R+3atfH+/Xs0atQIjx8/5jvOL7l//z569eqF1NRUAIC5uTmCgoIgI0MzdQtdvXoVixYtQlRUlMj2rl27ws3NDX369OEnWBnKzMzE8OHDcebMGQAF0xcjIiKoPw4hRCxCQ0MxdepUbiRn9erVsXv3bm7ZdVJyb968Qb169QAAQ4cOxZEjR3hOVLmVpuZBRRRCfsGcOXOwfv167vtq1arh7t27aNiwIX+hSJnIzMzErl274OXlVWTVpbp162LGjBmws7OT6OaTpKj69esjKSkJmpqaSElJ4TtOqSUlJaF79+5ITk4GAPTv3x9Hjx6FvLw8z8kkw7179+Ds7MxNzyvUpk0buLm5YciQIRAIBDylK3sZGRkYPnw4zp49C6CgkHL69GmuyE8IIaWVm5sLR0dHkfPftm3bIjw8nM5/f9GXL1+goqICAOjTpw/3nk34UZqaB12uIqSUxowZI/IHpF69enj27Bn9AamglJSUYGtri4cPH+LQoUPo3bs3t+/NmzdYsmQJ6tevj+nTp9PS1lKksLmsNPZE+fDhA4yNjbkCioGBAf755x8qoAB49OgRxo8fj3bt2okUUBo3boyQkBDcuXMHQ4cOrdAFFKDg9/vw4cPcSJv09HQMGDCAWzmDEEJK49WrV+jbt6/I+e+ff/6JK1eu0Pnvb1BSUuL+TT1RpAsVUQgpIaFQiB49emD//v3cNn19fSQkJKBWrVo8JiPlQUZGBsOHD8f58+dx48YNmJmZQVZWFkDBaBU/Pz80a9YMI0eOxMWLF1GCQX6ER4UnLtJWRMnIyMCwYcO4Js2NGzfG8ePHUa1aNZ6T8SspKQnW1tZo0aIF9u7dy23X1tbG1q1b8eDBA4wbN65STXVSVlbGkSNHYGRkBKCgCWT//v1x69YtnpMRQqTJ5cuX0aFDB1y8eBFAQVN+Hx8f7NixQ2S1O1J6MjIy3GtIRRTpUnnOJgj5DVlZWWjevLnIkpHdu3fHw4cPqSdGJdSpUyfs3bsXjx8/xuzZs7mhmOz/V//o3bs3unbtin379iEvL4/ntOR7Ck9acnJykJ+fz3OaksnLy8O4ceO496F69erh1KlTqFu3Ls/J+PPmzRvMmTMHjRs3RkBAAPezrFOnDtatW4f4+HhYWVlBTk6O56T8KCykGBoaAvhfISU6OprfYIQQiccYw4YNG2BoaIiXL18CALS0tHDhwgVMnz69wo/oKy+FK/RQEUW6UBGFkJ94//49dHV1RaZqmJqa4vLly5XqqiYpSldXF+vWrUNSUhLWrl0LLS0tbl/haJUmTZrA29ubmgxLmK+H0GZmZvKYpGQYY7C1teWazlWrVg0nTpyotMOoP378CGdnZzRs2BDr169HTk4OgILeH8uXL8eTJ08we/ZsKnKj4AT96NGj+OOPPwAUvHb9+vWjQgohpFhfvnzBxIkTYW9vz10MMjIywu3bt9G1a1ee01UsVESRTvQJkJAfePr0KfT09PD69Wtu2+zZsxEWFsZjKiJpqlevjvnz5+Pp06cICgpC27ZtuX0JCQmYPXs2dHR08Pfff0tlE9OK6OshyNJQRFm8eDG2bdsGAJCXl8fBgwfRvn17nlOVvy9fvmD16tXQ09ODm5sbd9KppKSEv//+G8+ePYOzs3Oln970rapVq+LYsWNcT6ePHz+if//+uH37Ns/JCCGSJj4+Hl27dsWePXu4bY6OjoiIiKjUIx/LCk3nkU5URCGkGDdu3ECLFi1ERhCsXbsW69at4zEVkWTy8vKYOHEi7ty5gzNnzmDQoEHcvrS0NKxZswa6urr4888/ce/ePR6Tkq+LKJLeF2Xjxo1wc3MDAAgEAgQFBVXIpXl/JDs7G5s2bUKjRo2wcOFCfPz4EUDB3Py//voLT548wapVq1CzZk1+g0qwwkJKr169AACpqano168f7ty5w3MyQoikOHz4MDp27Ii4uDgAgIqKCvbv3481a9agSpUqPKermApHomRkZFA/PSlCRRRCvuPIkSPo3r07srOzARQ0fgoODsb8+fN5TkakgUAgQN++fXH8+HHExcVh6tSp3MopeXl5CAoKQrt27dC/f3+cPHmS/mjy4OvpPJJcRNm3bx/s7e257729vTF27FgeE5WvvLw87NixA02bNsXMmTO5UYEyMjKwsLDAo0ePsHHjRmhoaPCcVDqoqKjg+PHj6NmzJ4D/FVLu3r3LbzBCCK/y8/Ph7OyMESNGID09HQDQvHlz3Lx5E6NHj+Y5XcVWWERhjEnFyFhSgIoohHxjy5YtGDFiBNegsEqVKjhz5gzMzc15TkakUcuWLREYGIjExEQ4OTmJXCkvHK3Spk0bbN++nSvakbLBGMPq1asxePBgREREcNsHDBiAhg0bwsPDg8d0RZ07dw6TJk3iimyLFi3CzJkzeU5VPoRCIcLCwtC6dWtMmTIFiYmJ3D5TU1PExcVh+/bt0NXV5S+klCospPTo0QNAwZLZffv2pdFxhFRS7969w6BBg7gRjwAwZswYXL9+Hc2aNeMxWeVQWEQBaEqPNBGwElwCTU9Ph5qaGtLS0qCqqloeuQjhhYuLC5YvX859r6SkhBs3bqBVq1Y8piIVyZcvX7Bz5054eXnhyZMnIvvU1dUxc+ZMTJs2jaYllIHr16//sCFe9erVkZqaWo6Jvi8nJwd///03Nm3ahNzcXADA1KlTERAQUOFXQ2CM4eTJk3BycioyzWTQoEFYsWIFOnTowFO6iuXTp08YNGgQLl++DACoVasWzp49K9LTiRBSsd26dQujR4/G8+fPAQCysrJYs2YN5s6dW+H/3kgKMzMz7Nu3D0BBH70GDRrwnKjyKk3Ng0aiEPL/LC0tRQooNWvWRHx8PBVQiFhVrVoVdnZ2+O+//xAeHs5dDQaAV69ewcnJCTo6OlyfByI+enp6P1ytpbDpJl8YYzh69CiaNWsGb29vGBoaQkZGBqqqqhgxYgSv2crDxYsX0bt3bwwePFikgNKzZ09cuHABx48fpwKKGBWu8NS9e3cABSvR9e3bFzExMTwnI4SUh8DAQPTs2ZMroNStWxdnzpzBvHnzqIBSjmgkinSiIgqp9IRCIQYOHMitfAEAOjo6SEhIEFmylhBxkpWVhYmJCS5duoSrV6/C1NSUWzI7IyMDmzdvRpMmTTB69GhcuXKF57QVQ926dTFnzpxi9zs4OJRjGlEPHz7EoEGDMGzYMDRo0AD37t1DREQE7t27h06dOmHEiBEYPHgwHj58yFvGshIdHY1Bgwahd+/euHTpEre9ffv2OHHiBC5cuMA1QyXiVVhI6datG4D/FVJiY2N5TkYIKStZWVmwtraGlZUVN424W7duuH37NgwNDfkNVwlREUU6URGFVGp5eXkwMDDAqVOnuG1t27bF06dPaYlMUm66du2KsLAwxMfHY+bMmSJNxgpHq3Tv3h3//PMP16uH/JoFCxagVq1aRbZ36dKFa7ZZnlJTUzF79my0bt0a8fHxOHjwIM6dO8eNgGvVqhVOnz6NgwcP4tGjR2jdujVmz54tEdOOftfDhw8xZswYdOzYESdPnuS2N2vWDGFhYbh16xYGDhxIV0TLmKqqKk6ePMlNdXv37h369OnDrc5BCKk4EhMT0bNnTwQEBHDbZsyYgaioKLpwyBMqokgnKqKQSuvTp09o1KiRyKoExsbGuH37Ni3jRnjRsGFDbNiwAc+fP8fKlStFVhwpHK2ir6+PTZs20R/aX6SmpgYXF5ci2x0cHMr1w3peXh58fX3RpEkTBAYGYuXKlXjw4AFGjBhRJIdAIMCIESPw4MEDuLm5ITAwEE2aNIGfn59UFtUSEhJgYWGBVq1aYf/+/dz2Bg0aYPv27YiNjRUZmUXKXmEhpUuXLgCokEJIRXT69GkYGBggOjoaQEHfv127dmHTpk3cCoKk/FERRUqxEkhLS2MAWFpaWkluTojES05OZjVr1mQAuK8pU6bwHYsQEVlZWWzHjh2sVatWIr+rAFiNGjXYokWL2IsXL/iOKXWys7NZ3bp1udeyVq1aLC8vr9yOf/bsWda6dWvufefly5eluv+LFy/YlClTGADWpk0bdu7cuTJKKl4vXrxgM2bMYHJyciK/y/Xq1WObNm1iWVlZfEes9D5+/Mg6d+7M/Wzq1KnD4uLi+I5FCPkN+fn5zM3NjQkEAu7/dsOGDdndu3f5jkYYY56entzPJTQ0lO84lVppah50mYdUOnFxcWjSpAk+fPjAbVu8eLFITxRCJIGCggImT56MmJgYnDp1Cv379+f2paamYuXKldDV1cWUKVPoinEpyMvLY/78+dz348aNg6ysbJkf9+nTpxg9ejT69u0LFRUV3LhxA9u2bYO6unqpHkdDQwPbtm3DjRs3ULVqVfTp0wejR4/Gs2fPyij57/nw4QP+/vtvNGrUCJs3b+ZWHKpRowZWr16NJ0+eYMaMGVBQUOA5KVFTU8OpU6fQqVMnAMDbt2/Rp08fPHjwgOdkhJBf8fHjR5iYmMDJyQns/xdkHTp0KG7dukUrcUkIZWVl7t80EkV6UBGFVCqRkZHo0KEDMjMzARQMk/fz84OrqyvPyQgpnkAgwIABA7hGo5MnT4acnByAguVwd+zYgdatW2PgwIE4c+YMd6JEiufg4ABnZ2fY2dlh/fr1ZXqsz58/w8nJCS1atMCNGzcQHByMy5cvcx9Uf1WnTp1w+fJlBAcH4/r162jevDmcnJzw+fNnMSX/PZ8+fcKKFSugp6eHNWvWcO+7VatWhbOzM54+fYoFCxaIDGUm/KtevToiIiLQsWNHAMCbN2/Qp0+fCtnUmJCKLDY2Fp06dcLhw4cBFJxLuLq64tChQ6hRowbP6Ughms4jnQSsBGfbpVkzmRBJFRISgokTJ0IoFAIoWB0lPDwcw4cP5zkZIaX34sULbNy4EX5+fvj48aPIvjZt2mDevHkYN26cxM5zjo+Px6dPn/iOUaaEQiGOHz+OTZs24dOnT3B0dISjo2OZFA2+fPmCNWvWwN3dnRvhMXHiRF76imRlZcHX1xcrV67Eu3fvuO3y8vKws7PDwoULUbdu3XLPRUonNTUV/fv35/on1KtXD1FRUWjWrBnPyQghPxMSEgIrKytkZGQAKBj5t2fPHgwcOJDnZORb4eHhGD16NABg9erVWLBgAc+JKq9S1TzEPT+IEEnk4eEhMgdfQUGBXb9+ne9YhPy2T58+MW9vb6anp1ekb4qmpiZbvXo1S01N5TumiEePHhXJWhG/ZGVlGQBmamrKEhISyuW1TUhIYGPHjmUAWOfOndm1a9fK5biMMZaTk8O2bNnCtLW1i7wO1tbW7Pnz5+WWhYjHhw8fWIcOHbifpbq6Onv48CHfsQghxcjJyWGzZs0SeQ9u3749e/r0Kd/RSDFOnjzJ/axcXFz4jlOplabmQSNRSIU3Z84ckeH61apVw927d9GwYUP+QhEiZnl5eThw4AA8PT1x/fp1kX1Vq1aFlZUVZs+eDV1dXX4CfuX27dswMDDA7t270bx5c77jiNWbN2+wadMmHDt2DO3atcOGDRvQq1evcs9x4cIF2Nvb4+7du5g0aRJWr14NTU3NMjmWUChEaGgoXFxc8PjxY5F948ePx7Jly9CkSZMyOTYpex8+fEC/fv1w584dAIC6ujqioqLQtGlTnpMRQr728uVLjBkzBpcvX+a2TZkyBZs3b4aSkhKPyciPXLp0iTtPmDdvHjw8PHhOVHnRSBRC/p+pqWmRVSDevXvHdyxCyoxQKGSXLl1iJiYmIp34ATAZGRk2duxY3kdhRUdHMwAsOjqa1xzilJGRwVasWMGUlZVZnTp12NatW8t1xZ/vycvLY1u2bGF16tRhVatWZW5ubiwzM/OXHuvFixdsyJAhbNy4cezz58+MsYLftcOHD7M2bdoUGYUzbNgwWvmhAnn//j1r37499/PV0NBg//33H9+xCCH/78KFC0xdXZ37PyovL8/8/f2ZUCjkOxr5idu3b3M/t2nTpvEdp1Kj1XlIpScUCtGjRw/s37+f26avr4+EhATUqlWLx2SElC2BQIAePXogPDwc//33H+zs7LgrUEKhEPv27UOXLl3Qq1cvHDx4EPn5+Twnlm6MMfzzzz9o0aIFli1bhunTpyM+Ph5WVlblsuLPj8jKysLa2hrx8fGYNm0alixZgubNm+Off/4pVfPh/Px8jB8/HseOHcPevXuxZs0aREZGonv37hg+fDhiYmK42xoaGuLKlSs4fPgwrfxQgdSsWRNnzpxBu3btABRc8TYyMkJ8fDy/wQip5BhjWL9+PYyMjPDq1SsAgI6ODi5evAgbGxsIBAKeE5Kfocay0omKKKTCycrKQvPmzXHlyhVuW/fu3fHw4UMoKirymIyQ8tWkSRNs3rwZSUlJWL58OerVq8ftu3TpEkxMTNC8eXP4+vpyzedIyd27dw99+vSBqakpWrVqhbi4OHh4eEBNTY3vaCLU1NTg4eGBuLg4tGzZEqampujTp49I8eNHVq9ejfPnz3Pfr1y5En369MG1a9e4bZ06dcLp06dx7tw5dOvWTezPgfCvsJBSWBx78eIFDA0NqZBCCE8+f/4Mc3NzzJkzh7sg0rdvX0RHR6Nz5848pyMlRUUU6URFFFKhvH//Hrq6unj06BG3zdTUFJcvX+ZllQpCJEGtWrXg7OyMhIQEBAQEoEWLFty++Ph42NnZoX79+nBxccHr1695TCod3r59i2nTpqFDhw549eoVTpw4gSNHjkBfX5/vaD/UtGlTHD16FMePH8fLly/Rvn17TJ8+HW/fvi32PteuXcOSJUtEtn09eqlly5Y4cOAArl+/jn79+tFVzwquVq1aOHPmDNq0aQOgoJBiZGRUpBcOIaRsPXr0CF27dsXevXu5bX///TdOnjyJOnXq8JiMlBYVUaQTfaokFcbTp0+hp6cn8iFw9uzZCAsL4zEVIZJDUVERlpaWiI2NxfHjx9GnTx9u3/v377F8+XI0aNAA1tbWePjwIY9JJVNubi7Wr1+PJk2aIDQ0FF5eXoiJiZG6JSMHDRqE2NhYeHp6IiQkBPr6+vD29kZubq7I7dLS0jBmzJjvTvkSCATw9vbGvXv3MHLkSCqeVCK1a9fG2bNn0bp1awBASkoKjIyM8OTJE56TEVI5HDx4EB07dsT9+/cBFCyYEB4ejlWrVqFKlSo8pyOlRUUU6URFFFIh3Lx5Ey1atMCnT5+4be7u7li3bh2PqQiRTDIyMhg0aBDOnj2L27dvY+LEidyJV3Z2NjdaZciQIYiMjCxV/4yK6sSJE2jTpg3mzZsHc3NzxMfHw97eHnJycnxH+yVycnKYPXs24uPjMW7cOMydOxdt2rTByZMnudv07dsXycnJ370/YwwPHjzgve8L4ce3hZTk5GQYGhpSIYVINMYYkpOTcejQIbi4uGDIkCFo06YNmjRpAh0dHdSrVw86Ojpo0qQJ2rRpgyFDhsDFxQWHDh1CSkoK738L8/PzsXDhQpiYmHDnuy1atMCtW7dgYmLCazby6+Tk5LhzMCqiSA9a4phIvSNHjsDExIS7WiojI4OgoCCYm5vznIwQ6ZGcnIwNGzbA398f6enpIvvat28PBwcHjBkzRixFg8IljqOjo9GhQ4fffryylJWVBVNTUxw7dgyGhobw9vbmpjJUJPfu3cPs2bMRFRWFoUOHYs+ePT/9e9+qVSvExsaWU0Iiid6+fYs+ffogLi4OQEFDy6ioKDRs2JDnZIQUePDgAUJDQ3Hr1i1ER0dzo5Xr1KkDAwMDNGrUCMrKylBSUoK8vDxycnKQmZmJjIwMPHnyBNHR0dyUx3r16sHAwAAdO3aEmZmZyNTYsvb27VuYm5vjzJkz3DYzMzMEBARARUWl3HKQslG9enWkpaVBX18f//33H99xKq3S1DyoiEKk2pYtWzBt2jTu6kCVKlUQEREBIyMjnpMRIp3S09MRGBiI9evX4/nz5yL7tLW1YW9vD2tr699qnipNRZSzZ8+iX79+2L59OyZPnlyhp60wxrBjxw5MnToVZ86cgbOzM27evAkFBQVUq1YN8vLy3BUzVVVVLFq0iK5+Erx58wZ9+vThphbUr18fUVFR0NPT4zkZqaxyc3Nx8OBB+Pj4ICoqCjVr1kSXLl1gYGDAfWlra5fo/bxw9Ep0dDT3df36dXz48AGGhoaws7PDyJEjy3RU4o0bN2BqaoqkpCQABSuveXh4wN7evkL/TapMtLS08OLFC2hra3M/Z1L+SlXzEPeayYSUFxcXF25ddQBMSUmJxcbG8h2LkAohNzeXhYSEsI4dO4r8PwPAqlWrxubOncsSExN/6bGjo6MZABYdHS3m1OJ3+vRpBoA9e/aM7yjl4tmzZwwAO336NN9RiBR5/fo1a9GiBfceUb9+ffb06VO+Y5FKJikpiS1evJipq6szAKx3795s7969LDs7W6zHyc7OZiEhIaxXr14MANPQ0GAuLi4sKSlJrMcRCoXM39+fycvLc/+36tWrx86fPy/W4xD+NWnShAFgNWrU4DtKpVaamgf1RCFSydLSEq6urtz3NWrUQHx8PFq1asVjKkIqjipVqmDcuHG4ceMGzp8/j2HDhnH7Pn36BC8vLzRs2BDm5uaIjo7mMSkhhG9169bFuXPnuOkNz58/h5GRERISEvgNRiqF9PR0TJs2Dbq6uli3bh1GjRqF2NhYnD9/HmZmZpCXlxfr8eTl5TFu3DhcuHABMTExGDlyJLy8vKCrq4tp06YVmRJbErGxsVizZg033SgzMxNWVlawtbVFTk4OAKBHjx64ffs2evfuLdbnQ/hX2FyWeqJIDyqiEKkiFAoxcOBAbNu2jdtWv359JCYmQktLi8dkhFRMAoEAvXv3xuHDh/Hw4UPY2NhAUVERQEGTu5CQEHTs2BFGRkY4evQohEIhz4kJIXyoV68ezp07h+bNmwMAEhMTYWRkhMTERJ6TkYosIiICrVq1QnBwMNzd3ZGSkoLNmzeX20W11q1bw8fHBykpKXB3d0dwcDBatWqFiIiIEj/Gp0+f0KdPH/z999/o3bs3YmNj0bNnT5Fz3VmzZuHcuXPQ1NQsi6dBeFZYRMnJyUFeXh7PaUhJUBGFSI28vDwYGBjg1KlT3La2bdviyZMnqFatGo/JCKkcmjVrBn9/fzx//hxLly5F7dq1uX1RUVEYNmwYWrZsia1btyIrK4vbl5ubi1mzZmHSpEl48+YNH9EJIeWgsJDSrFkzAEBCQgIMDQ2pkELELj09HTY2NjA2NkbTpk0RFxeHOXPm8Na7UVVVFXPmzEFsbCz09fVhbGwMGxubEo1K8fPzw7t37wAAjx49goGBAW7fvg0AUFZWRnBwMLy9vcU+ooZIDlrmWPpQEYVIhU+fPqFRo0a4e/cut83Y2Bi3b9/mlgUjhJSPOnXqYMmSJXj+/Dn8/f2hr6/P7fv3339hY2OD+vXrY9myZXj79i22bNmCjRs3Yvfu3Rg1ahRyc3N5TE8IKUvq6uo4d+4cmjZtCqCgkGJkZFSkUTUhv6pw9ElISAj8/PwQERGBBg0a8B0LAKCrq4vTp0/Dz88PISEhPx2VkpWVBS8vL5FthX8jGzdujGvXrtFqk5UAFVGkDxVRiMRLSUmBrq6uyAnYlClTcPLkScjI0K8wIXxRUlKCjY0NHj58iMOHD+OPP/7g9r19+xZLly6Fjo4OFi1axG2/fPky1qxZw0dcQkg50dDQQGRkJFdgffbsGYyMjGjVCfLb3N3dRUaf2NraStwKNQKBALa2tiKjUtzd3b972x07duDVq1ff3efp6YnWrVuXZVQiIaiIIn3oEyiRaHFxcWjSpAk+fPjAbVu8eLHIPFFCCL9kZGQwbNgwREVF4ebNmxg3bhxkZWUBANnZ2UWGMx84cICPmISQcvRtIeXp06cwNDSkQgr5JYwxLFq0CI6OjnB2dpao0SfFKRyV4uzsDEdHRzg5OYExxu3Py8vDihUrir2/tbU1srOzyyMq4ZmysjL3byqiSAcqohCJde7cObRv3x6ZmZkACir7fn5+IqvyEEIkS8eOHRESEoInT55g7ty5FX60WFRUFAQCAaKiokp9X0NDQxgaGoo9EyGSQlNTE5GRkWjSpAmAgkKKkZERkpOTeU5GpAljDPb29li1ahW8vLywfPlyiRt9UhyBQIDly5fD09MTK1euxOzZs7lCyqpVq5CSklLsfd+8eYP379+XV1TCo69HomRkZPCYhJRUxT67JVIrJCQE/fv35zpUy8rK4uDBg7C1teU5GSGkJBo0aABTU1OpXq1nx44d6N+/PwBAT08PioqK0NfXx19//cUtQ1lWHj58CIFAAEVFRXz8+LFMj/W1cePGlduxSOVQWEhp3LgxAODJkycwMjL64YdHQr7m7OyMjRs3wt/fH3PmzOE7zi+ZO3cu/P39sWHDBixevBhA8aMyNTU1MWzYMISFhdFqPJUETeeRPtSRk0gcDw8PzJ8/n/teQUEBFy5cQOfOnXlMRQgprWPHjvEdQWy8vLxQrVo1XLp0Cb6+vjh+/Dji4uLK7Hi7d++Guro6UlNTsX//flhZWZXZsQgpa1paWoiMjIShoSGePHmCx48fw9DQEFFRUdDS0uI7HpFg7u7uWLlyJTw9PWFjY8N3nN9iY2ODT58+wcHBAWpqanBzc8Off/4JVVVVjBs3Dl27doWBgQEVTiohKqJIHyqiEIkyZ84crF+/nvu+WrVquHv3Lho2bMhfKELILxk4cCB8fX3x4cMHyMnJoWrVqlBWVkZubi7evn3Ld7xSMTExga6uLqysrFCrVi14eXnh0KFD0NDQEPuxGGPYs2cPzM3N8ezZMwQHB1MRhUg9bW1tREVFiRRSjIyMEBUVRR8ayXdFRERwPVDmzp3LdxyxmDdvHlJTU+Ho6IiIiAip+1tIygYVUaQPTechEmPMmDEiBZR69erh2bNnVEAhREr17NkTb968QU5ODnJycpCamoqUlBScPHmS72i/pU+fPgAKVhz51l9//QUVFZXvzmkeP3481NXVkZ+f/8PHv3z5MhISEjBu3DiMGzcOFy5c+G4PCaFQiKVLl0JTUxPKysowMjLCgwcPoKurCwsLC5HbxsTE4I8//oCSkhK0tbWxYsUKbN++HQKBAAkJCSV/8oT8Bm1tbURGRnJ/1+Pj42FkZIQXL17wnIxImvT0dFhZWaFfv34Vrhfe8uXL0adPH1haWhZpvE4qJyqiSB8qohDeCYVC9OjRA/v37+e26evrIyEhAbVq1eIxGSHkd8nKykJOTo7vtGqS8AAAZ9NJREFUGGL15MkTAPju+5OZmRm+fPlSZCpTRkYGjhw5AlNTU27louIEBwejUaNG6NSpE4YNGwZlZWWEhIQUud3ChQuxbNkydOzYEe7u7mjSpAmMjY2LnIClpKTAyMgI9+/fx8KFCzFnzhwEBwfD29u7tE+dkN+mo6ODyMhI6OnpAQAePXoEIyMjvHz5kudkRJI4ODggNTUVAQEBUtNEtqQEAgECAwORmpoqMn2dVF5URJE+VEQhvMrKykLz5s1x5coVblv37t3x8OFDKCoq8piMEEL+58OHD0hOTkZoaChcXV2hpKSEoUOHFrldz549oaWlhdDQUJHtx44dw5cvX2BmZvbD4+Tm5iIsLIxr8KqkpIThw4cjODhY5HavX7+Gl5cXRo4cicOHD2PGjBnYsmULrKys8O7dO5HbrlmzBqmpqThz5gxcXFwwb948XL58+btLze7du7dErwchv6N+/fqIiooqUkh59eoVz8mIJIiIiMDWrVvh4eEh8csY/ypdXV24u7tjy5YtOH36NN9xCM+oiCJ9qIhCePP+/Xvo6uri0aNH3DZTU1Ncvny5wi+LSgiRLgYGBtDR0cG4ceOgoqKCAwcOfLchpkAgwJgxY3D8+HF8/vyZ2x4aGgotLS307Nnzh8c5ceIE3r9/j/Hjx3Pbxo8fj3v37uH+/fvctrNnzyIvLw92dnYi9585c2aRxzx58iS6deuGdu3acdtq1qyJCRMm/PR5E1JW6tevj8jISOjq6gIA/vvvPyqkEJFpPNLeSPZnbG1taVoPAQAoKytz/6YiinSgT6qEF0+ePIGenp7IMqGzZ89GWFgYj6kIIeT7goKCEBkZiQcPHuDp06cwNjYu9rZmZmbIzMzE4cOHAQCfP3/G8ePHMWbMmJ8OS9+9ezf09PSgoKCAx48f4/Hjx2jUqBGUlZVFRqMkJiYCALdsbKGaNWuiRo0aItsSExOL3O579yWkvDVo0ACRkZHcaIN///0Xffr0KfMlxInkcnR0rLDTeL719bQeR0dHvuMQHtFIFOlDRRRS7m7evImWLVvi06dP3DZ3d3esW7eOx1SEEFK8nj17wtDQEM2bN//pSLmuXbtCV1cX+/btAwAcOXIEmZmZP53Kk56ejiNHjuDZs2do0qQJ99WiRQtkZGRgz549YIyJ7TkRIgl0dXURFRWF+vXrAwAePnxIhZRKKjk5GQEBAXB1da2w03i+pauri2XLliEgIAApKSl8xyE8+bqI8r3G9ETyUBGFlKsjR46gW7duyM7OBgDIyMggODgYDg4OPCcjhFQUUVFREAgEEAgEiI6OLrLfwsICKioqZZph7NixOHnyJNLT0xEaGgpdXV107dr1h/cJDw9HVlYWfH19ERYWJvK1YsUKJCYm4vLlywDAfcB4/PixyGO8f/8eqampItsaNGhQ5Hbfuy8hfPm2kPLgwQP06dMHb9684TkZKU9bt26FkpISLC0t+Y5SrqysrKCoqIitW7fyHYXwhEaiSB8qopBy4+/vjxEjRnDLe1apUgWnT5+Gubk5z8kIIRXV0qVLeTmumZkZsrOzsXPnTpw8eRJjx4796X12796Nhg0bYtq0aTA1NRX5cnBwgIqKCjelp2/fvqhSpQp8fX1FHmPTpk1FHtfY2BhXr17F3bt3uW0fPnwo0qyWED7p6ekhMjISOjo6AKiQUtnk5uZiy5YtmDRpElRVVfmOU65UVVUxadIkbNmyBbm5uXzHITygIor0oSIKKRdLlizBtGnTuKHoSkpKuHPnDvr06cNzMkJIRdWuXTscPXoUt2/fLvV9GWPIycn55WN36NABjRs3hpOTE7Kzs386lefFixeIjIzE8OHDv7tfQUEBxsbGCAsLQ25uLurVqwd7e3scOHAAw4cPh4+PD2xtbREYGIjatWuL9BJwdHSEmpoa+vfvD1dXV3h6eqJHjx7cVf+K3neASI+GDRsiKioK2traAID79++jb9++ePv2Lc/JSFk7ePAgXr16henTp/MdhRfTp0/Hy5cvcejQIb6jEB5QEUX6UBGFlDlLS0u4urpy39eoUQPx8fFo1aoVj6kIIdIsJSUFlpaW0NTUhIKCAvT09DB9+nSRwsfMmTNRo0aNEo1G0dXVxdChQ3Hq1Cl07NgRSkpKiIqK4vYfPXoUy5Ytg5aWFqpVqwZTU1OkpaVxxxs5ciRUVFQwZcoUbrqimZkZPn36hMaNG6NDhw4/PP7evXshFAoxbNiwYm8zbNgwvH//HidOnABQsHTx4sWLcfPmTTg4OODx48eIiIgAY0xkiXgdHR1ERkaiefPmWLlyJdavX4/Jkydj6tSpAEDLyROJ8m0hJS4ujgoplYCPjw969eqF1q1b8x2FF23atEHPnj3h4+PDdxTCAyUlJe7fVESRDgJWgi516enpUFNTQ1paWqUbYkd+nVAoxODBg3Hq1CluW/369REXF4dq1arxmIwQwqfbt2/DwMAA0dHRPy0ufM+LFy/QqVMnfPz4ETY2NmjWrBlSUlKwf/9+XLlyBXfv3oWRkRHCwsLw8OFDuLi4iBzLwsIC+/fvF1mCWFdXF3Jycnj//j1sbW2hq6uLpk2bIjo6Gg4ODmjRogXU1NQwfvx4PH78GBs3boSZmRlkZGSQmpqKoUOH4tq1awgKCsKyZcvg4uIitterND5+/IgaNWpgxYoVcHJy+uFtZ8+eDX9/f3z+/BmysrIAgISEBOjp6eH06dPo169feUQm5LseP34MQ0NDrtlm69atce7cOdSuXZvnZETcHjx4gJYtWyIkJATjxo3jOw5vQkJCYG5ujgcPHqB58+Z8xyHlrGrVqsjIyECrVq0QGxvLd5xKqTQ1jyrllIlUMnl5eejUqZPIHPy2bdvi1q1bqFKFfu0IIb9u4cKFePXqFa5fv46OHTty211dXYusXjNr1qz/a+/Ow6Ks1/+Bv0cFGZVhcWM1TKXyuOVQZqWhoWabmgpKaZosgrvC1ElFFrFic0dAaDNDREkrrYO5pB49fnPc8MJUTBAlSRMclIFBmd8f/phAAQcYeGZ5v67LS5mZ53lupsSZ99yf+4OVK1ciLCzssW3SOTk5+Pnnn2tsX1w1mPb+/fv49ddfYWZmBgC4ceMGtmzZgtdeew27d+8GAAQGBiInJweff/55i4QoSqWyxqdXALBq1SoAgLu7e72P/fvvv7Fp0ya8/PLLmgCFSJ/07NkTBw4cwCuvvIKCggJkZWXh1Vdfxb59+9CxY0cUFhbit99+g4eHh067qdRqNa5duwa5XK75lZ+fD6VSibKyMqhUKpibm8PCwgJisRjOzs6QSqWQSqVwc3ODg4MDl8g1UFpaGmxtbfHOO+8IXYqgxo8fDxsbG6SlpQk2z4uEUxWisBPFMPDdLOlcSUkJ+vTpgytXrmhuGzVqFHbv3v3YrUGJiOpTWVmJHTt24K233qoRoFR5+M2LlZUV5s+fj2XLluHkyZN49tln6zx39+7dawQo1Y0bN04ToADAoEGDkJqaqlkSU/32NWvW4N69e80eGKelpeHLL7/E66+/jg4dOuDw4cNITU3FyJEj8dJLL9V47ODBgzVbNBcWFiIlJQUKhQJLly5t1hqJmqIqSHF3d0dBQQHOnDmDV199FbGxsZgwYQKKi4sxZ84crFmzpknXyc7ORlpaGo4fPw65XK7ZXrlz586QSqUYOnQo2rVrB7FYDHNzc6hUKiiVSpSWluLSpUtISEjQLDfq2rWrJlDx8vJC7969m/w8GLvjx49j0KBBMDc3F7oUrVUF1dWXfTaVubk5Bg0ahOPHj+vsnGQ42rVrB4DLeQwFQxTSqWvXrqFfv364deuW5rbp06fj888/F7AqIjIWN27cgEKhaNBMpXnz5mHlypUIDQ2ttxule/fudd7n6OhY42srKysA0OwkUv32yspK3L59Gx07dtS6xsbo168f2rRpg6ioKCgUCs2w2eXLlz/y2Ndffx3btm1DUlISRCIRBg4ciJSUFAwdOrRZayRqql69emH//v1wd3fHn3/+idOnT2PUqFGanf6++uorREdHo23btg06b0VFBXbs2IH4+HgcOHAAtra2GDRoEHx9fTWdJU5OTlp1lajValy9erVG98q6desQHh4Od3d3BAYGYuzYsTWCWHpArVZDLpfD19e32a/l4uKCPn364Mcff9T5uauWQlb9v9pYUqkUKSkpuiuMDEbVcNnS0lKBKyFtMEQhnTl79iyef/55KJVKzW1Lly6tMVSWiKilVXWjhIaG4uTJk3U+7uGlMdXV1UVX11IYLcaNNdnAgQPxyy+/aPXYFStWYMWKFc1cEVHzcHV1xf79+/HSSy/h77//1gQowIM17JmZmfUOZa7u6tWrSEpKwsaNG3H9+nUMHToUW7Zswbhx4xrdCSESieDs7AxnZ2eMHTsWAKBSqZCRkYH4+Hh4enrC3t4evr6+8PX11QzNpQczrgoLCyGVSoUuRS9IpVJERkaioKAADg4OQpdDLagqRLl79y7UajWXBeo5rq0gndi/fz+effZZTYAiEomQkJDAAIWIdKpz586QSCQ4e/Zsg46bP38+rK2tERYW1kyVEVFzUigUdW47vm3bNq2OnzlzJlxcXLBy5Uq88847yMrKwq+//govLy+dLyUxNzfHpEmTcPDgQZw5cwZjx45FXFwcXFxcMHPmTCgUCp1ez1BVLV1hiPJA1fPAJT2mpypEUavVKCsrE7gaehyGKNRkqamp8PDwwL179wA8+GR2x44d8Pf3F7gyIjI2rVq1wtixY/HDDz/U+iKzrg6Qqm6UnTt31hh4TUSGYdq0aSgpKan1vh07dmi2Fq9NZmYm+vTpg82bNyM6OhrXrl3D+vXrG7QssCn69u2L+Ph4XLt2DdHR0di8eTP69OmDzMzMFrm+PpPL5ejcuXOTunNCQ0MhEonw+++/w9PTExKJBB07dsS8efMa9GZ09uzZ6NChQ63LKSZPngw7O7saXVDNwdnZGZ06ddIMNSfTURWiAJyLYggYolCTxMbGwtvbG5WVlQCAtm3b4siRI3j77bcFroyIjNWKFSvQpUsXvPLKK1iwYAGSkpIQFhaGPn364Pbt23UeN2/ePFhZWeH06dMtWC0R6UJ9WxsrFIpa5x0pFAr4+flh1KhReOqpp3D27FksWLDgsVtXNheJRIIFCxYgKysLrq6uGDVqFPz8/Ey6K0Uul0Mqlepk6YKnpyfKysrwySef4PXXX8eaNWvg5+en9fFeXl64e/cudu3aVeP20tJS/PDDD5gwYUKz72YmEokglUoZopgghiiGhSEKNdqCBQsQFBSk+drS0hLZ2dl4/vnnBayKiIydo6Mjjh07hgkTJmDz5s2YO3cuvv76a7i7u2um29fG2toa8+fPb7lCiUhndu3ahfXr1+OVV16p9Q13TExMja+ruk9SU1ORkJCAzMxMPPHEEy1Vbr1cXFywZ88eJCQkIDU11aS7UvLz89GjRw+dnKt79+74/vvvMWvWLGzatAmBgYHYtGkTzpw5o9XxL7/8MhwdHZGWllbj9l27duHu3bvw8vKq81gXFxeo1eomDZWt0rNnT+Tn5zf5PGRYGKIYFoYo1CgTJ07EqlWrNF937doVly9fxpNPPilcUURkMrp164avvvoKf/31F8rKynDp0iWsW7cO5ubmcHd3h1qtxoQJEx45LjQ0FGq1Gnfu3Klxe25ubq07NvTv3x/Ag91tqps2bRrUavUj2yxXnb++T82JqOE6dOiAwMBAHDhwANeuXcOaNWswcOBAzf0uLi6aP0dHR9foPvH399e7IY0ikQj+/v41ulKio6OFLqvFKZXKesPvhpg1a1aNr+fMmQMA2L17t1bHi0QiTJw4Ebt3767xb0RaWhocHR3x8ssv66TOxxGLxTU2aSDTwBDFsHB3nlpcvHixznW3pszS0hI9evTAkCFDcOTIEc3trq6uOH36NCwsLASsjoiIdOXkyZPo3r07nJycGrx1LFFzs7e3x5w5czBnzhxcunQJWVlZGDNmDNRqNRYvXoxPPvkES5YsQXh4uN6FJw+r6koJCQmBTCZDcXExli9frvd160pZWVm9O6M1RK9evWp83aNHD7Rq1Qq5ublan8PLywurVq3C999/D29vb9y5cwe7d+9u0SBOLBZzsKgJqh4mMkTRfwxRHnLx4kW4uroKXYbecnFxqfGP0YsvvohDhw7Vuf0nEREZHplMBplMBuDBG9Zu3bqhW7dueOKJJ2r83q1bN9jY2JjMGz7SPz169ECPHj2gVqsxb948rF27FnFxcViwYIHQpWlNJBIhIiICNjY2WLRoEe7cuYNVq1aZxN8rlUql852RqjTm+XvhhRfg4uKCrVu3wtvbGz/88AOUSmW9S3l0zdzcvN5ByWSc2IliWBiiPKSqA+Wbb77BM888I3A1+uPcuXN47733agQoEyZMQHp6unBFERE1s6oX4fv378e0adOM+k2NWq3G/v37H7n9zz//xJ9//oljx47VelyHDh0eCVaq/9nR0RFt2vDlBjWvJUuWYO3atUhMTGzQMFF9snDhQnTo0AH+/v6wtLTE8uXLhS6p2Zmbm9e5dXVDXbx4Ed27d9d8nZOTg8rKyhpLvbTh6emJ1atXQ6FQIC0tDS4uLnjhhRd0UqM2VCoVOwBNyIULF/Cf//wH//vf/zS3xcXFIS0tDW+88UaLBnikPb6qqcMzzzxTY60t1TR//nysXLlS6DKIiJrVSy+9hDfffBMffPABvv76a6xatUozJ8WYnD59GnPnzsXBgwfRp08feHh4oKCgAHl5ebhy5Qr+/PPPOo+9c+cOsrOzkZ2dXev9rVq1gqOjY60hS9XvlpaWzfWtkQmIjo7GihUrEBsba7ABShU/Pz+UlJQgKCgIVlZWCA4OFrqkZmVhYaGz+R/r16/HyJEjNV+vXbsWADB69OgGncfLywtRUVH46quv8PPPP2PevHk6qU9bSqWSS+RNRElJCZ5//vlHdhbct28fAGDz5s0YMWIEbG1thSiP6sEQhRosOjq6xq48RETGysLCAj/88AN+/vlnLFiwAAMHDoSfnx/Cw8PRuXNnoctrshs3bmDp0qXYuHEjXF1d8dNPP+G111575HHl5eW4evUqrly5oglWHv5zXWv4KysrkZ+fX+9uE9bW1rUuFar6s52dHZeNUq0yMzMhk8mwZMkSLFy4UOhydGLRokUoKiqCTCbDgAEDMGLECKFLajZisRilpaU6Odfly5fx9ttv47XXXsPRo0fxzTffwNvbu0bwnZOTU2uHz7PPPos33ngDADBw4ED07NkTixcvRnl5eYt3AiiVSp3NiSH9ZmZmVm8nlo2NDTp06NCCFZG2GKJQg0RERDBAISKT89prr+HVV19FfHw8li1bhtTUVISGhmLWrFkwMzMTurwGU6lUWL9+PcLCwiASibBy5UoEBATU+b20bdtWM3uiNmq1Gjdu3KgzZMnLy8PNmzfrrKe4uBjFxcU4ffp0rfebmZnB2dm5zrks3bp145sOE6RQKODj4wMPDw+Eh4cLXY5ORURE4OjRo5gxYwbOnj0LiUQidEnNwtnZGZcuXdLJudLS0hASEoKPPvoIbdq0wezZsx/Z8ej8+fNYunTpI8fOmDFDE6IAD7pRIiMj0bNnzxbvTM/JyYGzs3OLXpOEYWFhgYULFyIyMrLW+wMCApptZhA1jUitVqsf9yCFQgErKyvcvn3baH+IVzlx4gSkUinkcjmX81TD54WIdMXQf57cuHEDISEhSEpKgqurK1auXFlr94a++umnn7BgwQJcvHgR/v7+CA8Pb5EtmUtLS5Gfn18jWKketuTn5+PevXuNPn/nzp3rXTLUqVMno55pY4r8/PyQmpqKs2fP4oknnhC6HJ3Lzc1F37594e3tjcTERKHLaRYhISFISEhAYWFho/9+hoaGIiwsDDdu3DD47eXVajW6dOmCwMBAhIWFCV0OtYCSkhL07NkTf/31V43bzc3NkZeXBzs7O4EqMz0NyTzYiUJERNQAnTt3xoYNGxAQEIB58+Zh9OjReOONNxAXF6fXu7udP38eCxcuxO7duzFs2DBs3boV/fr1a7Hrt2vXDk899RSeeuqpWu+/f/8+rl+/XmsXS9VtxcXFdZ7/xo0buHHjBo4fP17r/WKxuNbBt1V/dnJy4id+BiQzMxMbN25EQkKCUQYowIMdEaOjoxEQEIAJEyYY5bIeqVSKGzdu4OrVq+y+AJCfn4+bN29CKpUKXQq1EEtLS4SFhSEgIKDG7e+99x4DFD3GEIWIiKgR+vXrh3379uG7777DokWL8K9//Qtz587F0qVLYW1tLXR5GsXFxYiIiMCaNWvg5OSE7du3Y9y4cXrXldG6dWs4OjrC0dERgwcPrvUxCoWi3iVDBQUFqKysrPVYpVKJ8+fP4/z587XeLxKJNNs51zWfxcrKSu+eN1NUfRmPoQ+SfRx/f3+kp6cb7bIeNzc3AIBcLmeIggfPA/DP80KmwcfHB5999lmNXVANaZt2U8QQhYiIqJFEIhHeeecdvP7664iLi8OKFSuwadMmREZG4oMPPkDr1q0Fq+3+/ftISUnB4sWLoVQqER4ejgULFhj0rg8SiQR9+vRBnz59ar2/oqKixq5CD4cteXl5dQ6xVKvVKCgoQEFBQY2tJquztLSsd8mQvb09t3NuATKZDEVFRUhOTjb6UEskEiElJQV9+/aFTCZDQkKC0CXplIODA7p27Qq5XI6xY8cKXY7g5HI57Ozs4ODgIHQp1ILatGmDZcuWYfr06QAedKHV9e8c6QfORHmIoa/Vby58XohIV4z550lBQQH+/e9/4+uvv8aAAQOwevVqDB06tMXr+PXXXzFv3jycPn0aU6dOxSeffMIX5XgQlNy6daveJUPXr19v9Plbt24NJyenOpcMdevWjTstNNHVq1c1y1xM6ZPauLg4yGQy5OXlwdHRUehydOqNN96AWq3G7t27hS5FcKNHj0br1q3x448/Cl0KtTC1Wo2xY8fixIkT2LJlC1566SWhSzI5nIlCREQkAAcHB3z11VcIDAzE3Llz8corr2DixImIjo5ukbkNubm5kMlkSE9Px6BBg/C///0PgwYNavbrGgqRSISOHTuiY8eOePbZZ2t9TFlZGfLz8zWhSm1hS11bUt6/f1/T8XLo0KFaH2Nra1tvN0uXLl24nXM9Nm7cCLFYjBkzZghdSovy8fFBSEgINm7ciNDQUKHL0Sk3NzesW7cOKpXKpOcSlZeX49ixY5g7d67QpZAARCIRdu7cKXQZpCWGKERERDo2aNAgHD16FJs3b8aHH36Ip59+GsHBwfjwww/Rvn17nV/v7t27+PTTTxETEwNbW1t8/fXXePfdd/lmvBEsLCzQq1cv9OrVq9b7KysrcePGjTqXDF25cgV///13nee/desWbt26hZMnT9Z6f9u2bR/Zzrn6n52dnQ16SVZTVFRUICkpCVOmTDH6zuiHSSQSTJkyBUlJSVi8eLFBbq1eFy8vL4SHhyMjIwOTJk0SuhzBZGRkoKioCF5eXkKXQi1ArVbj2rVrkMvlml/5+flQKpUoKyvThIoWFhYQi8VwdnaGVCqFVCqFm5sbHBwcjH45oz7jcp6HGHObeVPweSEiXTG1nyd37tzRBBydOnXCZ599Bm9vb528+FGr1fj222/x4Ycf4ubNmwgKCsJHH33EJSMCu3Pnjqab5eGwJS8vD1evXsX9+/cbff6uXbvWOwDX1tbWKF9cp6enw9PTE2fOnEHfvn2FLqfFnTlzBv3790d6ejomTJggdDk6NWzYMNy/fx8HDx4UuhTBDBkyBGZmZti3b5/QpVAzyc7ORlpaGo4fPw65XI7CwkIAD3b9k0ql6NGjB9q1awexWAxzc3OoVCoolUqUlpbi0qVLkMvluHHjBoAH/w5UBSpeXl7o3bu3kN+aUWhI5sEQ5SGm9uJeW3xeiEhXTPXnyeXLlxEcHIzt27dj8ODBWL16NZ577rlGn++3337DvHnzcPToUYwfPx7R0dHo3r27Dium5nL//n38+eef9Q7ALSkpafT527dvX+92zo6OjgbZycA32sb7RpsBmfEGZKauoqICO3bsQHx8PA4cOABbW1sMGjRI01UilUrh5OSkVfCtVqtx9erVGt0rx44dw61bt+Du7o7AwECMHTvWIH++6wPORCEiItIz3bt3x7Zt27B//37Mnz8fzz//PKZNm4YVK1bA3t5e6/P8+eef+Pjjj/Hll1+iX79+2L9/P9zd3ZuvcNK5qgG0Tk5OdQ4PLC4urncAbkFBAer6HOzu3bs4d+4czp07V+v9rVq1goODQ73dLPr2oVl2djYOHDiA1NRUoUsRVGBgILy9vXHu3Dk888wzQpejM2PHjoWdnR02bNiA+Ph4octpcRs2bIC9vT3GjBkjdCmkI1evXkVSUhI2btyI69evY+jQodiyZQvGjRvX6Nk/IpEIzs7OcHZ21uxmpVKpkJGRgfj4eHh6esLe3h6+vr7w9fWFk5OTDr8jqo4hChERUQsaNmwY5HI5kpOTsWTJEmzbtg1LlizB/Pnz0bZt2zqPKysrw6pVqxAZGYm2bdsiISEBPj4+gm6jTM3H2toa1tbW6NevX633q1QqXLt2rdaZLFW/K5XKWo+trKzE1atXcfXqVRw5cqTWx1hZWdU7ANfOzk4n/+/t27cPZ86cwZQpU9CxY8c6H5eWlgZbW1u88847Tb6mIRs/fjxsbGyQlpZmVANmzczM4Ofnh7i4OHz66ad6F+I1J4VCgU2bNiEoKIgdBEZAoVBAJpMhOTkZYrEYU6dORUBAQLNtWWxubo5JkyZh0qRJyMrKwoYNGxAXF4fIyEj4+PggKirKpP4+tRQu53mIqbaZPw6fFyLSFf48+UdRURHCw8Oxbt06ODs7Iy4uDmPGjKnR1qtWq7Fz504sWrQIV65cwezZsxESEgIbGxsBKyd9p1ar8ffff9c6k6UqdPnrr78afX4zM7NHtnOuHrp069YN7dq1q/cchYWF6NatG1QqFbp27Yr4+Pg6QxJug/sPY90Gl9tXG9/21aYmMzMTPj4+mn/bZ8yYIch7Z4VCgZSUFM1rheTkZIwcObLF6zA0XM5DRERkAGxsbLBy5Ur4+flhxowZGDduHIYPH47Vq1ejT58+OHv2LObPn4+9e/fitddew65du/D0008LXTYZAJFIhE6dOqFTp06QSqW1PkapVCI/P7/Obpb8/HxUVFTUemxFRQUuX76My5cv11lDp06d6u1mOXPmjGa76MLCQowfPx4TJ07EunXr0KVLF8151Go15HI5fH19m/CM1O7AgQMYNmwYAOD48eOPPFfTpk3Dtm3bcOfOHZ1fu7GkUilSUlKELkPnnJycNFs5jxs3Di4uLkKX1Oxyc3OxbNky+Pj4MEAxYAqFAkFBQdi4cSM8PDyQnJyMJ554QrB6JBIJFixYgHHjxsHHxwejRo2Cr68vYmJijL4hoqUwRCEiIhLYM888g7Vr18LNzQ2XLl1C//794eHhgV9++QU9e/bErl278PrrrwtdJhkZsVgMV1dXuLq61np/ZWUlCgsL693OuaioqM7z37x5Ezdv3oRcLq/1/jZtHn0Zmp6ejv/85z9YsWIFAgMDIRKJUFBQgMLCwjrDIF0JDQ3FDz/80KzX0AWpVIrIyEgUFBTAwcFB6HJ0KioqCrt374aPjw/27NljlLtMVVGr1ZgxYwZsbW0RFRUldDnUSNW7TxISEuDn56c3/9+6uLhgz549SEpKQlBQEH7++Wd2pegIQxQiIiI9UPWiKy0tDf/973/x9ddfIzo6GrNnz270EDqipmjVqhXs7e1hb2+PF154odbHlJSU1DmTJS8vD9euXUNlZWWtx967d6/W2xUKBWbPno1ffvkF3333HY4fPw4AzRqiDBgwAD/++CNOnDjR4GWGarUaZWVlEIvFzVRdTVXPw/Hjx/H222+3yDVbikQiQXJyMkaNGoWkpCT4+/sLXVKzSUxMxL59+5CZmcnuAAMVHR0NmUymF90ndRGJRPD398eoUaM0XSlRUVEIDg4WujSD1kroAoiIiOgfZmZmWLhwIU6dOoWFCxcyQCG9ZmlpiX/9618YPXo0Zs6ciRUrVmDz5s04dOgQrly5gvLycuTl5eHgwYP45ptvEBkZCX9/f4wePRpWVlb1nvu3334DAMjlcnTu3LlBO03k5eUhMDAQTz31FMRiMTp27IiJEyciNze31sfPmTMHNjY2Wg1rdXFxwZtvvon//Oc/cHNzg1gsRmJiIg4cOACRSIStW7ciLCwMjo6OsLS0xIQJE3D79m2Ul5dj/vz56NKlCzp06IDp06ejvLxc6++pirOzMzp16lRnh4+hGzlyJHx9fREUFFTnfy9Dl5ubi+DgYPj5+WHEiBFCl0MNpFar8fHHH0Mmk2HJkiXIzMzUywCluqqulCVLlkAmk2Hx4sV17vBGj8dOFCIiIiJqFm3atNHMRHnY8OHDsX///kdub9WqFVxcXPDFF18AeBCiSKXSBrXI//bbbzhy5AgmTZoEJycn5ObmYsOGDXB3d0d2dvYjQ2+rZgiEhIRo1Y1y/vx5TJ48Gf7+/vD19cVTTz2lue+TTz6BWCzGRx99hJycHKxduxZmZmZo1aoVioqKEBoaiv/973/48ssv0b17d4SEhGj9fQEPPlmuGs5trGJiYvDzzz8b5bKe6st4oqOjhS6HGkitVmPevHlYu3Yt4uLiDGoIskgkQkREBGxsbLBo0SLcuXMHq1atMqq/Xy2FIQoRERERtbiHl/kMHjwY7733Hjw9PdGpUyfN7fn5+Rg6dGiDzv3GG29gwoQJNW576623MHjwYGzfvh1Tpkx55Ji5c+di5cqVCAsLw86dO+s9f05ODn7++WeMGjVKc9uBAwcAPFim9Ouvv2q2q71x4wa2bNmC1157TbO7UGBgIHJycvD55583OEQBgJ49e+LQoUMNPs5QVF/WExISgoiICKFL0pmlS5dyGY8BW7JkCdauXYvExET4+fkJXU6jLFy4EB06dIC/vz8sLS2xfPlyoUsyOFzOQ0REREQtLioqChMnTkRoaChycnJw5MgRBAYG1ghQgAe7CD1uu+SHVZ9PUlFRgb///hs9e/aEtbU1Tpw4UesxVlZWmD9/Pr7//nucPHmy3vN37969RoBS3dSpUzUBCgAMGjQIarUaH3zwQY3HDRo0CPn5+XXOhqmPWCyGUqls8HGGZOTIkYiKisLy5csRFxcndDk6ERsbi8jISERHR3MZjwGKjo7GihUrEBsba7ABShU/Pz/ExMRo/n+khmEnChERERG1uOeffx5bt2597OMaM7RVqVTik08+wRdffIFr167VWPt/+/btOo+bN28eVq5cidDQ0Hq7Ubp3717nfQ8vXaqa/eLs7PzI7ZWVlbh9+zY6duxY7/fzMLFYjLKysgYdY4iCg4NRXFyMRYsWoUOHDgb9xrVqh5TFixcjKChI6HKogTIzMzUzUBYuXCh0OTqxaNEiFBUVQSaTYcCAAQz2GoAhChERERHpLZVK1eABy3PmzMEXX3yB+fPnY/DgwbCysoJIJMKkSZPq3C0I+KcbJTQ0tN5ulPpCndatWzfo9sYMdzQ3N2/UUFpDtHz5cpSUlMDf3x937twxyDewsbGxCAoKwty5c41qaZKpUCgU8PHxgYeHB8LDw4UuR6ciIiJw9OhRzJgxA2fPnuUSMy0xRGkBIpEIs2bNwrp164QuhYiIiMigmJubQ6VSNeiYbdu24f3330dsbKzmtrKyMhQXFz/22Pnz52PVqlUICwuDtbV1A6ttGSqVCkVFRbCzs0OnTp3QsWPHR36v7TZra2u0amVYq/lFIhFWr14NS0tLzSfn4eHhBjEMU61WY+nSpYiMjMTixYsRERFhEHVTTUFBQSgqKkJycrLR/fcTiURISUlB3759ERwcjMTERKFLMggMUZooKysLH3zwAY4fP17jdolEgnHjxiEyMlKgyoDs7Gxs3boV06ZNg4uLS437XFxccPPmTdy5c0eY4ojI5J07d07oEvQKnw+i2llYWDR4/kfr1q0f6fBYu3Yt7t+//9hjq3ej9O/fv0HXbSlVz0dhYSEKCwu1Pq5Vq1awtbWtNWCpK3yxsbFBmzbCvmUQiUSIjIyEtbU1ZDIZjh49ipSUFL3eVjY3NxczZszAvn37EBUVheDgYKFLokbIzMzExo0bkZCQoNf/vzWFi4sLoqOjERAQgAkTJnBZjxYYojTBkSNHMGzYMM2nFGPGjIFIJMKFCxeQn5+Pb775BocPHxasvuzsbISFhcHd3f2REIWISCiWlpYAgPfee0/gSvRT1fNDRA+IxWKUlpY26Jg333wTmzZtgpWVFXr37o2jR4/il19+0Xr2SNVslNOnT6N9+/aNKbtZKZVKWFhYwM7ODn///bfWz09lZSVu3ryJmzdv4vz581pfz8bG5rFdLtXv69ixY4OXYGkjODgYAwYMwIwZM9CnTx/ExMTAz89Pr7oD1Go1EhMTERwcDBsbG2RmZvJNqYGqvozHkOfxaMPf3x/p6elc1qMlhihNEBkZCSsrKyxbtgyzZs3CkiVL4ObmBgD466+/EBcXh88++6xFarl7967mH/mysrJm+YeLiEgXevXqhQsXLqCkpETQOmbPno2jR48CAPbv368XLxgsLS3Rq1cvocsg0ivOzs64dOlSg45ZvXo1Wrdujc2bN6OsrAwvvfQSfvnllzp31HmYtbU15s+fj7CwsMaU3OxycnIwdOhQ/PjjjwAehCp///03bt68Wevvtd3WkJ/BRUVFKCoqQk5OjtbHWFpaNmipUceOHbUaIDxixAicPXsWwcHBmDlzJtLT0/WmK6V694mfnx+io6P14t8WahyZTGa0y3geVn1Zj0wmQ0JCgtAl6TWRWotpVgqFAlZWVrh9+7bR/yA4ceIEpFIp5HI5Bg4cWO9jn376adjb2+P999/H9OnT8dtvv2lCFADYtWsX3nzzTQDArFmz4OHhAU9PT9y/fx9OTk5o3bo1CgoK8OSTT2L58uWQSqX47LPPsHfvXly5cgUWFhZo3749SkpKUFFRgX79+mHp0qW4ceMGpk+fjgMHDiAuLg7ff/892rdvj/nz5+OLL75AQUEBunfvjsuXLz9S8/79+zWdKQ1ZztOQ54WIyBC8+uqr2LdvHwDgzp07evlpMxEBISEhSEhIQGFhodG/kdGGWq1Gly5dEBgY2KSQR6VS1Rmw1BW+aDNTpinatWvXoKVGp0+fxuzZs1FUVISwsDD4+PgI8l5FoVAgOTkZy5Ytg42NDVJSUth9YuCuXr2qWeayYMECoctpMXFxcZDJZMjLy4Ojo6PQ5bSohmQe7ERpgieeeAJHjx7Fq6++Wuv9ubm5mj8fPnwYGRkZaNeuHczNzXH16lW0bt0aISEh2Lp1KyZOnIiPP/4YR44cwaRJkyCRSLBs2TJcu3ZN0+2SmpqKt99+G4GBgQCAwMBAmJmZAQDat2+PXbt2wd3dHampqXB0dES3bt3w66+/wsrKChUVFVi+fDmeeeaZZn9eiIgMQUVFhebP7N4j0l9SqRQ3btzA1atXH9km2BTl5+fj5s2bkEqlTTqPubk57O3tYW9vr/Ux9+7dw61btx7b5VL9vlu3btW7I1J1paWlKC0tRX5+foO+jzZt2iAoKAhLly7F+++/j4CAAPTt21frczRWVlYW4uPjsWnTJpSVlcHHxwdRUVFG/6GzKdi4cSPEYjFmzJghdCktysfHByEhIdi4cSNCQ0OFLkdvMURpgqCgIIwePRrLli0DAMTExGD8+PFwc3PDiRMnEBYWhrZt26K8vBznzp1DdnY2Xn31VeTl5SE2NhaLFi2CtbU1Dh8+jKeffho//PADTp06BQBYsGAB7t69i4SEBMycORMODg44fPgw+vXrh9TUVACAra0tQkND4eHhgQ4dOiAzMxOurq7w8fFBUlIStm3bhl9//RWff/45PvjgA5w7dw5du3YFUDPgISIyRdV3+xB6aCIR1a2qy1culzNEwYPnAUCN7ueW0qZNG3Tp0gVdunTR+pjKykoUFxdrtcSo+n337t3T6vwqlUrz87y0tBQbN27Ehg0bMHjwYMydOxfvvPOOToNylUqF7du3Iz4+HocPH4a9vT2CgoLg6+trcp/cG6uKigokJSVhypQpJheISSQSTJkyBUlJSVi8eLHmA3uqia8am2DEiBE4evQoZs6ciRMnTiAtLQ1paWma+11cXPDNN99g1KhR8PDwQI8ePQAADg4OWLBgAcLCwvDHH39AIpFg6tSp+Oyzz3D9+nXY2dlh165dePbZZzF+/Hh89NFHOHHiBKZMmQI/Pz/8+9//BgD4+vqidevWAID3338fhw8fRnFxMSZPnoybN29CoVAAeDChftCgQdi/f38LP0NERPqr6kW3mZkZlwgQ6TEHBwd07doVcrkcY8eOFbocwcnlctjZ2cHBwUHoUrRStSOQra2t1seo1WooFIoGz3kpLy/XhC/Hjh3D5MmTIZFI8MILL+C5556DVCqFVCqFs7OzVj/31Wo18vPzIZfLIZfL8dtvv+F///sfFAoFunTpgmHDhuHZZ5+FWCzGTz/99MjyI1tbW4b0BmjHjh24fv06AgIChC5FEAEBAUhISMDOnTsxYcIEocvRS/xb3UTPPfcc5syZg+nTp0Mmk+HKlSvIyMhARUUF/vrrL7Rt2xYA0K1bN80xPXv2hEgkgo2NDYqKigAArq6uAICPP/4Ye/bswdWrVwEAnTt3BgDcvn0bAGosx+nevbtmq77u3bvj4sWLAIDhw4fXqLHqBYepJalERPWpWs7DT1mI9JtIJNLMZaMHIUpTl/LoO5FIBCsrK1hZWeHJJ5/U6hi1Wo27d+/WCFhOnz6Nffv24Y8//sDRo0c1w3RtbGzg5uYGV1dXiMViiMVimJubQ6VSQalUQqlU4sKFC/jtt980c2DatGmD+/fva7bO/uuvv/DXX3899kNKa2vreue81Db3hUtMhRUfH48hQ4a0yJIwfdSvXz+8/PLLiI+PZ4hSB4YoOjRx4kS4ubnhyy+/xPTp02Frawtvb28A0HSMPOzhub5fffUV5s+fjzVr1uCVV17BRx99hEmTJtW6llQsFmsGw4rFYs1jNm3aBDs7Oxw8eBARERGIiYlB//79mYQTEVVT1YnCF6tE+s/NzQ3r1q2DSqUy6b+z5eXlOHbsGObOnSt0KXpHJBKhQ4cO6NChg2annpEjRyI4OBjAg9fcBQUFmq4SuVyOQ4cOobS0FEqlEmVlZWjTpg1at26N1q1bo127dpqQRSQS4c6dO5pwpiE7GxUXF6O4uLhBO0xZWlo2aMCutjsb0eNlZ2fjwIEDmvEJpiowMBDe3t44d+4cZ2rWgu+qm0HVGtVnn30WP/zwwyP35+TkPBKeXLhwAQDg6emJ2NhY/PjjjygpKcHLL79cYxL677//Xud1q5YLdenSBR4eHpruFalUCnd396Z8S0RERqeqE8WU35ARGQovLy+Eh4cjIyMDkyZNErocwWRkZKCoqAheXl5Cl2JwRCIRHB0d4ejoiLfffrtJ51KpVLh169ZjlxpV/7qq+1wbJSUlKCkpadAMw4d3NtKm66V9+/ZczvqQtLQ02Nra4p133hG6FEGNHz8eNjY2SEtL44DZWjBEaYKq7YIftnv3bgDAsGHDUFhYiP/7v/+rMRyroKAA3333neZrhUKBr7/+Gq1bt4aFhQUA4PXXX8eqVasQFBSkWbJz9+5dJCUloWPHjvj7778fue6oUaMgkUiwYsUKDBs2TLNdZ1UIc+PGDc3yICIiU1d9JgoR6bfevXvD3d0d8fHxJh2ixMfHY9iwYfxkWGDm5uaws7ODnZ2d1sfcu3cPRUVF9c55efj3ltjZSJvlRdVvk0gkRh28HD9+HIMGDTLID1hyc3PRvXt3fPHFF5g2bVqTzmVubo5Bgwbh+PHjuinOyDBEaYI5c+agtLRUM89k69atWLlyJdLS0uDi4oLp06fD2dkZEydOrNFB4urqihkzZqCyshLZ2dl4+eWXUVhYiOHDh2PTpk2wsrKCk5MTLCwsEB8fD7FYrHnc5cuXMWvWLKxbt+6ReiQSCTZs2IApU6Zg4MCBeOONNyASiTB79mzMmzcPTz/9NDZt2tSgiepERMaKy3mIDEtgYCA8PT2RlZVlkrMKzpw5g8OHDyM9PV3oUqgR2rRpg86dOzfoA82qnY0aOmC3ITsbFRQUoKCgoEHfx8PhyuO6XqytrdGqVSutr9Ec/vjjD3Ts2BFWVlZ1PkatVkMul8PX17fF6jpw4ACGDRuG9PR0vZs/IpVKkZKSInQZeokhShPExMQgPT0dP/30EwBg1apVeOKJJxAYGIglS5bA2tpa0wp28uRJTUdJr169sHbtWrz55puQy+VwdXVFWloaPDw8sHDhQmzevBllZWV47rnn0K5dO2RmZkIul8PNzQ0//PADbty4UWdN3t7ecHBwwKeffoqEhAS0adMGhYWFuH//Pq5cuYLs7GyGKERE4GBZIkMzduxY2NnZYcOGDYiPjxe6nBa3YcMG2NvbY8yYMUKXQi2k+s5GvXr10uqY2nY20qbrpby8XKvz37t3D4WFhSgsLGzQ92FjY9Og4bq63Nlo27ZtmDhxItq3b4+lS5diwYIFtX6AUlBQgMLCQqMf3KwtqVSKyMhIFBQUGMxuYC2FIUoTvPbaa3jttdfqfUyrVq0emX8CPBh0VfUpaHWff/65Vteu3qL18Pnd3d05A4WI6DHYiUJkWMzMzODn54e4uDh8+umnJrXroEKhwKZNmxAUFMTgl+rV2J2NSktLHxu0PHxbaWmpVuevrKzUHN8Q1tbWDRquW9fORrt27QLwYDTCRx99hC+++ALr1q2Dh4dHjcdVLV1hiPJA1fNw/PjxJs8RMjYMUYiIyCRxsCyR4fH19UVkZCRSUlKwYMECoctpMcnJySgrK2vRZQZkOkQiEdq3b4/27dtrdjbShlKpfCRceVzXS2N2NsrJydH6GEtLy0eCliNHjtR4zPnz5zFixAi8+eabWL16tSZsksvl6Ny5M5ycnLS+Xl3y8vLw2WefYe/evbhy5QratWuH4cOHIzo6Gi4uLlqfp6KiAl27dsWYMWPwxRdf1LhPoVCgS5cumD17NmJiYppc88OcnZ3RqVMnyOVyhigPYYhCREQmR61WczkPkQFycnKCj48PQkJCMG7cuAa9GTFUubm5WLZsGXx8fODo6Ch0OUQaYrEYTk5ODQodHrezUW1hTGN2Nrp8+fJjH/vjjz9i165dyMjIwNixYyGXyyGVSnUyOPe3337DkSNHMGnSJDg5OSE3NxcbNmyAu7s7srOz0a5dO63OY2ZmhnHjxiEjIwOJiYk1PvjZsWMHysvLm23YtkgkglQqhVwub5bzGzKGKEREZHKqAhSAnShEhiYqKgq7d++Gj48P9uzZY9Q7hajVasyYMQO2traIiooSuhyiJmvKzkbaDNVt6M5GarUaaWlpGDt2LPLz8zF06NCmfHsab7zxxiODYt966y0MHjwY27dvx5QpU7Q+l5eXFz7//HNkZmbizTff1NyelpaGJ598Em5ubjqpuTY9e/bEoUOHmu38hoohSgtryH7vRETUPKqHKOxEITIsEokEycnJGDVqFJKSkuDv7y90Sc0mMTER+/btQ2ZmpknNgCGqrqk7G7m5uUGhUDzyGJFIhF69eiE2NhbAg+VJ2naIPI5YLNb8uaKiAgqFAj179oS1tTVOnDjRoBBl+PDh6NSpE9LS0jQhSlFREfbs2YOgoCCd1FsXsVgMpVLZrNcwRMLuNUVERCSA6oO92YlCZHhGjhwJX19fBAUFGe0HVLm5uQgODoafnx9GjBghdDlEBqVqZ6OePXs+svOQg4MDQkNDkZ+fj/Pnz2t2nikrK6sRfjSFUqlESEgInJ2d0bZtW3Tq1AmdO3dGcXExbt++3aBztWnTBuPHj8fOnTs130tGRgYqKirg5eWlk3rrIhaLUVZW1qzXMEQMUYiIyORwOQ+R4YuJiYGNjQ18fHxq3QnRkFVfxhMdHS10OUQGSyQSYcqUKWjVqhVGjBiBjIwM5OXlYdmyZY/MGFKpVDp7TTBnzhxERkbC09MTW7duRWZmJvbs2YOOHTtqtczoYZMmTUJJSQl++uknAMDWrVvx9NNPo3///jqpty7m5uZab39tSrich4iITE71ThQu5yEyTNWX9YSEhCAiIkLoknRm6dKlXMZDpCNJSUlISkp67Pwkc3PzGq8PmmLbtm14//33NUuFgAedLsXFxY0639ChQ2Fvb4+0tDS8/PLL2LdvHxYvXqyTWuujUqnQtm3bZr+OoWGIQkREJofLeYiMw8iRIxEVFQWZTAYbGxssXLhQ6JKaLDY2FpGRkYiOjuYyHiId0Hb4tIWFhc7mf7Ru3fqRDrm1a9fi/v37jTpfq1atMGHCBHz++ed4/vnnce/evWZfygM8WJZkYWHR7NcxNAxRiIjI5HCwLJHxCA4ORnFxMRYtWoQOHTrAz89P6JIaLSkpCUFBQVi8eHGzD4wkoprEYjFKS0t1cq4333wTmzZtgpWVFXr37o2jR4/il19+QceOHWt9/Pbt2/H7778/cvv7778PZ2dnAA926Vm7di2WLVuGvn374plnntFJrfVRKpU6mxNjTBiiEBGRyWEnCpFxWb58OUpKSuDv7487d+4YZEdKbGwsgoKCMHfuXKNamkRkKJydnXHp0iWdnGv16tVo3bo1Nm/ejLKyMrz00kv45ZdfMGrUqFofv2XLllpvd3d314QoL774IpydnZGfn98iXSgAkJOTo7k+/YMhChERmRwOliUyLiKRCKtXr4alpSUWLVqEoqIihIeHa93GLyS1Wo2lS5ciMjISixcvRkREhEHUTWRspFIpEhISoFarm/x30NraGp9//vkjtz+8m5i7u7vWg7FFIhGuXLlS5/0uLi46HbKtVqshl8sRGBios3MaC4YoRERkcjhYlsj4iEQiREZGwtraGjKZDEePHkVKSgqeeOIJoUurU25uLqZNm4Zff/0VUVFRCA4OFrokIpMllUpx48YNXL16ld0XAPLz83Hz5k1IpVKhS9E73OKYiIhMDpfzEBmv4OBgZGZm4sKFC+jTpw8SExP1bgtktVqNhIQE9O7dG4cPHwYAPPXUUwJXRWTa3NzcAAByuVzgSvRD1fNQ9bzQPxiiEBGRyeFgWSLjNmLECJw9exbe3t6YOXMmRowYgby8PKHLAvCg+8TDwwMBAQEYOHCgZreOadOm6U2NRKbIwcEBXbt2ZYjy/8nlctjZ2cHBwUHoUvQOQxQiIjI57EQhMn4SiQSJiYk1ulLi4uKgUCgEqUehUCAuLg59+/bFxYsXkZmZiUOHDmH8+PEAgKKiInh5edX4+URELUckEkEqlTJE+f/kcjmX8tSBIQoREZkcDpYlMh1VXSnvvvsuZDIZHB0dERgYiKysrBa5flZWFgICAuDg4ACZTIZ3330XZ8+exYgRIyASiZCSkoInn3wSAHDs2DH8+9//bpG6iOhRbm5uOHbsmMmHmeXl5Th27BiX8tSBIQoREZkcDpYlMi0SiQQJCQnIzc3FwoULsWPHDvTr1w9Dhw7Fli1bdP6GSaVSITU1FUOGDEG/fv2wc+dOBAUFIS8vDwkJCZBIJJrHWllZYevWrZpANy4uDjt37tRpPUSkHS8vL9y6dQsZGRlClyKojIwMTXccPYohChERmRwu5yEyTU5OTggLC0NeXh7S09PRpk0bTJ48Gfb29hg9ejSWLFmC7777DleuXNF6GK1arcaVK1fw3XffYcmSJRg9ejTs7Ozg7e0NMzMzpKenIy8vD6GhoXB0dKz1HFKpFLGxsZqvp02b9shWqETU/Hr37g13d3fEx8cLXYqg4uPjMWzYMDzzzDNCl6KXuMUxERGZHA6WJTJtZmZmmDBhAiZMmIDs7Gxs3boVx48fR0pKCiIjIwEAnTp1glQqRc+ePSEWiyEWi2Fubg6VSgWlUgmlUomcnBzI5XLcvHkTAGBnZwepVIq5c+fC09MTvXv31rqmWbNm4cCBA9i+fTuKi4sxadIkHDx4kEEvUQsLDAyEp6cnsrKy0LdvX6HLaXFnzpzB4cOHkZ6eLnQpeoshChERmRx2ohBRld69eyM0NBTAg66SgoICyOVyza9Dhw5BqVSirKwM5eXlaNu2LSwsLCAWi+Hs7IzAwEBIpVK4ubk1aReLqvkoJ0+exB9//KGZj1K9Q4WImt/YsWNhZ2eHDRs2mGRHyoYNG2Bvb48xY8YIXYreYohCREQmh4Nliag2IpEIjo6OcHR0xNtvv93i16+aj/Liiy9CpVIhLi4OQ4cO5ZsZohZkZmYGPz8/xMXF4dNPP60xw8jYKRQKbNq0CUFBQezUrQdnohARkcnhYFki0ldSqRRxcXGarzkfhajl+fr6QqlUIiUlRehSWlRycjLKysrg6+srdCl6jSEKERGZHC7nISJ9FhgYiAkTJgCAZj6KqW+5StSSnJyc4OPjg5CQEJMJMXNzc7Fs2TL4+PjUOQSbHmCIQkREJoeDZYlIn4lEIiQnJ+PJJ58EAM18FCJqOVFRUbCxsYGPj4/Wu3UZKrVajRkzZsDW1hZRUVFCl6P3GKIQEZHJYScKEem7qvkoVT+j4uLisHPnToGrIjIdEokEycnJ2Lt3L5KSkoQup1klJiZi3759SE5ONqkZMI3FEIWIiEwOB8sSkSHgfBQiYY0cORK+vr4ICgoy2r97ubm5CA4Ohp+fH0aMGCF0OQaBIQoREZkcDpYlIkPB+ShEwoqJiTHaZT3Vl/FER0cLXY7BYIhCREQmh8t5iMhQcD4KkbCqL+sJCQkRuhydWrp0KZfxNEIboQvQV+fOnRO6BL3C54OIjAkHyxKRIamaj/Liiy9CpVIhLi4OQ4cOxZgxY4QujcgkjBw5ElFRUZDJZLCxscHChQuFLqnJYmNjERkZiejoaC7jaSCGKA+xtLQEALz33nsCV6Kfqp4fIiJDxk4UIjI0VfNRZs+eDeDBfJSTJ0/CxcVF2MKITERwcDCKi4uxaNEidOjQAX5+fkKX1GhJSUkICgrC4sWLERQUJHQ5BochykN69eqFCxcuoKSkROhS9I6lpSV69eoldBlERE3GThQiMkSBgYE4cOAAtm3bhuLiYnh5eeHQoUMMg4layPLly1FSUgJ/f3/cuXPHIDtSYmNjERQUhLlz5yIiIkLocgwSQ5RaMCggIjJu7EQhIkNUNR/lxIkT+OOPP/B///d/+Oijj2rs4ENEzUckEmH16tWwtLTEokWLUFRUhPDwcIhEIqFLeyy1Wo2lS5ciMjISixcvRkREhEHUrY84WJaIiEwOQxQiMlRV81GqfnatXLkSO3fuFLgqItMhEokQGRmJqKgoLF++HCNGjEBeXp7QZdUrNzcXHh4eNepmgNJ4DFGIiMjkVF/OwxCFiAxN1XyUKtOmTUNubq5wBRGZoODgYGRmZuLChQvo06cPEhMT9W4LZLVajYSEBPTt2xcXL15EZmYmgoODhS7L4DFEISIik1O9E4UzUYjIEAUGBmLixIkAoJmPUv1nGxE1vxEjRuDs2bPw9vbGzJkz9aorpar7JCAgAN7e3jh79ix34dERhihERGRy2IlCRIZOJBJh48aN6NGjBwBo5qMQUcuSSCRITEys0ZUSFxcHhUIhSD0KhQJxcXE1uk8SExMhkUgEqccYMUQhIiKTw04UIjIGnI9CpD+qulLeffddyGQyODo6IjAwEFlZWS1y/aysLAQEBMDBwQEymQzvvvsuu0+aCUMUIiIyOVUhikgkQuvWrQWuhoio8QYOHIiVK1dqvuZ8FCLhSCQSJCQkIDc3FwsXLsSOHTvQr18/DB06FFu2bNH5kjuVSoXU1FQMGTIE/fr1w86dOxEUFIS8vDwkJCSw+6SZiNRaTL9RKBSwsrLC7du3+R+CiIgM3rPPPotTp06hbdu2KCsrE7ocIqImUavV8PLyQnp6OgDg+eefx6FDh7hckUhgFRUV2LlzJ+Lj47F//37Y2tri+eefh1Qq1fxydnbWaqcctVqN/Px8yOVyza9jx46hqKgIw4YNQ2BgIMaMGcMO20ZqSObBEIWIiEzOv/71L2RnZ6NDhw4oKSkRuhwioia7ffs2pFIpLl26BABYsGBBjR18iEhY2dnZ2Lp1K44fPw65XI7r168DADp16gSpVIqePXtCLBZDLBbD3NwcKpUKSqUSSqUSOTk5kMvluHnzJgDAzs4OUqkUbm5u8PT0RO/evYX81owCQxQiIqJ69OrVCzk5ObC1tcXff/8tdDlERDpx4sQJDB48WLNkYMeOHRgzZozAVRHRw9RqNQoKCmp0leTn50OpVKKsrAzl5eVo27YtLCwsIBaL4ezsrOlccXNzg4ODg9DfgtFhiEJERFQPFxcX5OXloWvXrppPgoiIjEF8fDxmzZoFALC2tsaJEyfQvXt3gasiItJvDck8OFiWiIhMTtWntJwXQETGJiAgABMnTgQAFBcXw8vLS+fDLImITBlDFCIiMjkVFRUAGKIQkfERiUTYuHEjevToAQD47bff8OGHHwpcFRGR8WCIQkREJqfqU1lOsCciY2RlZYWtW7dqguJVq1Zhx44dwhZFRGQkGKIQEZHJ4XIeIjJ2AwcOxMqVKzVfT58+HZcvXxawIiIi48AQhYiITA6X8xCRKeB8FCIi3WOIQkREJqWyshL3798HwOU8RGTcOB+FiEj3GKIQEZFJqepCAdiJQkTGj/NRiIh0iyEKERGZlOqt7OxEISJTwPkoRES6wxCFiIhMSvUQhZ0oRGQqAgIC4OnpCYDzUYiImoIhChERmRQu5yEiU8T5KEREusEQhYiITAqX8xCRqZJIJEhPT+d8FCKiJmCIQkREJoXLeYjIlD377LNYtWqV5mvORyEiahiGKEREZFKqL+dhJwoRmaKZM2dyPgoRUSMxRCEiIpPCThQiMnW1zUeRyWQCV0VEZBgYohARkUnhYFkiokfno6xevRrfffedwFUREek/hihERGRSOFiWiOgBzkchImo4hihERGRSuJyHiOgf1eej3L59m/NRiIgegyEKERGZFC7nISL6B+ejEBE1DEMUIiIyKVzOQ0RUE+ejEBFpjyEKERGZlPLycs2f2YlCRPQA56MQEWmHIQoREZmUvXv3av7MThQion/MnDkTXl5eADgfhYioLgxRiIjIZBQXF2Pz5s2wsLBA69atce/ePaFLIiLSGyKRCElJSejZsycAzkchIqoNQxQiIjIZS5cuxb1793Do0CGYm5vj559/FrokIiK9IpFIsHXrVrRt2xYA56MQET2MIQoREZmEU6dOIT4+HuHh4XBzc0NERAR+/fVXnD59WujSiIj0CuejEBHVTaRWq9WPe5BCoYCVlRVu374NiUTSEnURERHpTFlZGezt7dG1a1dkZWXBzMwMFRUV6NOnD/Ly8hAQEICVK1cKXSYRkd5Qq9WYPHky0tLSAADPPfccDh8+zIHcRGSUGpJ5sBOFiIiM3tq1a1FcXIyEhATNMFkzMzMkJCSgvLwcq1atglKpFLhKIiL9wfkoRES1Y4hCRERGrbi4GNHR0Zg0aRLc3d1r3Dds2DB4eXnBwsKixtbHRERU+3yUjIwMgasiIhIWQxQiIjJqS5cuhVKpRGxsbK33x8XFoU2bNggJCWnhyoiI9N/D81E++OAD/PHHH8IVREQkMIYoRERktKqGyYaFhcHBwaHWxzg4OCA0NBTr16/nkFkiolr4+/vDy8sLAHD79m14eXmxe4+ITBYHyxIRkVGqrKzEkCFDcPv2bZw8eVIzC6U2FRUVGDBgAGxsbHDw4EG0asXPGIiIqlMoFJBKpcjJyQEAzJ07F6tXrxa4KiIi3eBgWSIiMnlff/01jhw5gnXr1tUboAAPhsyuW7cO//3vf7Fp06YWqpCIyHBIJBKkp6dr5qOsWbOG81GIyCSxE4WIiIxOcXExXF1d4eHhgW+//Vbr47y9vbF3716cP38e1tbWzVcgEZGBSkxMxMyZMwEAVlZWOHHiBJ588kmBqyIiahp2ohARkUmrGiYbExPToONiYmJQWlrKIbNERHXw8/PDpEmTAHA+ChGZJoYoRERkVLQZJlsXDpklIqqfSCRCYmIievXqBQA4fvw4ZDKZwFUREbUcLuchIiKj0ZBhsnXhkFkiosc7deoUXnjhBU0Xyvbt2/HOO+8IXBURUeNwOQ8REZmkhgyTrQuHzBIRPd6AAQNq7M7zwQcf4I8//hCwIiKilsFOFCIiMgqNHSZbFw6ZJSKqn1qthre3N7Zs2QIAcHNzw+HDhzU7+BARGQp2ohARkclp7DDZunDILBFR/TgfhYhMEUMUIiIyeE0ZJlsXDpklIno8iUSCrVu3arpP1qxZg+3btwtcFRFR8+FyHiIiMmi6GCZbFw6ZJSLSTmJiImbOnAngQbBy8uRJPPnkkwJXRUSkHS7nISIik6GLYbJ14ZBZIiLt+Pn5YfLkyQAevBnx9PTU7NxDRGRM2IlCREQGS9fDZOvCIbNERI9XUlICqVSKixcvAgDmzJmDNWvWCFwVEdHjsROFiIhMgq6HydaFQ2aJiB7P0tIS6enpmvkoa9eu5XwUIjI6DFGIiMggNccw2bpwyCwRkXb69+9fo/vkgw8+wB9//CFgRUREusXlPEREZHCac5hsXThklohIO2q1Gu+++y5SU1MBAFKpFP/97381HSpERPqGy3mIiMioNecw2bpwyCwRkXZEIhESExPRq1cvAIBcLkdwcLDAVRER6QY7UYiIyKC01DDZunDILBGRdk6fPo1BgwZpdunZtm0bxo8fL3BVRESPYicKEREZrZYaJlsXDpklItIO56MQkTFiiEJERAajJYfJ1qX6kNlTp04JUgMRkaHw9fXF5MmTATz4pNfT01PTmUJEZIi4nIeIiAyCEMNk68Ihs0RE2ispKYGbmxsuXLgAAJgzZ06NDhUiIqFxOQ8RERkdIYbJ1oVDZomItGdpaYn09HRYWFgAANauXYvt27cLXBURUeMwRCEiIr1XXFwMmUyGyZMnw93dXehyAADDhg3D5MmTIZPJUFxcLHQ5RER6rV+/fo/MRzl//jyWLVuGXr16ITExUcDqiIi0x+U8RESk9+bMmYMvv/wS58+fF2wWSm0KCgrw1FNPYfr06WxNJyJ6DLVajffee0+zs1r79u1x9+5dAIC1tTVu3boFkUgkZIlEZKK4nIeIiIyGPgyTrQuHzBIRaU8kEiEhIQGOjo4AoAlQgAcdh7m5uQJVRkSkPXaiEBGR3tKnYbJ14ZBZIiLthYaGIiwsrNb7duzYgTFjxjT4nGq1GteuXYNcLtf8ys/Ph1KpRFlZGVQqFczNzWFhYQGxWAxnZ2dIpVJIpVK4ubnBwcGBHTBEJq4hmUebFqqJiIiowaqGye7fv18vAxTgnyGzw4cPx6ZNm/D+++8LXRIRkV46efJknQEKAJw+fVrrECU7OxtpaWk4fvw45HI5CgsLAQCdO3eGVCrF0KFD0a5dO4jFYpibm0OlUkGpVKK0tBSXLl1CQkICbty4AQDo2rWrJlDx8vJC7969m/7NEpHRYicKERHppeLiYri6usLDw0Ozfl6feXt7Y+/evTh//jysra2FLoeISO8UFhZiwIABuH79eq33jxs3DhkZGXUeX1FRgR07diA+Ph4HDhyAra0tBg0apOkqkUqlcHJy0qqrRK1W4+rVqzW6V44dO4Zbt27B3d0dgYGBGDt2rN4G+ESkWw3JPBiiEBGRXtLXYbJ14ZBZIqLH++uvvxAdHY3169dDqVTWuM/a2hpFRUWPHHP16lUkJSVh48aNuH79OoYOHYrAwECMGzcO5ubmOqtNpVIhIyMD8fHxOHToEOzt7eHr6wtfX184OTnp7DpEpH8YohARkUE7deoUpFIpoqOjsXDhQqHL0VpsbCxkMhnkcjkGDBggdDlERHqrKkxZt24dysrKNLffv39fM1tKoVBAJpMhOTkZYrEYU6dORUBAAPr06dPs9WVlZWHDhg3YtGkTlEolfHx8EBUVxfdCREaKIQoRERksQxgmWxcOmSUiapi//voL/v7+2L17N15++WXs3bsXAJCZmQkfHx8UFRUhPDwcM2bMEOR9iEKhQEpKCkJCQmBjY4Pk5GSMHDmyxesgoubFLY6JiMhgVQ2TXbdunUEFKMA/Q2b/+9//YtOmTUKXQ0Sk97p06YLvvvsO5eXl2Lt3LxQKBfz8/DBq1Cg89dRTOHv2LBYsWCDYB7kSiQQLFixAVlYWXF1dMWrUKPj5+UGhUAhSDxEJjyEKERHpjeLiYshkMkyePBnu7u46OWdoaChEIhFu3rxZ6/19+vTR2bUAYNiwYZg8eTJkMhmKi4t1dl4iImOXmZmJPn36IDU1FQkJCcjMzMQTTzwhdFkAABcXF+zZswcJCQlITU1Fnz59kJmZKXRZRCQAhihERKQ3li5dCqVSiZiYGKFLaZKYmBiUlpYiJCRE6FKIiAxCdHR0je4Tf39/rXbZaUkikQj+/v41ulKio6OFLouIWhhDFCIi0gunTp1CfHw8wsLCDGI3nvo4ODggNDQU69evx6lTp4Quh4hIb6nVanz88ceQyWRYsmSJXnWf1KWqK2XJkiWQyWRYvHgxtBgzSURGgiEKEREJrrKyErNmzcIzzzyDOXPmCF2OTsydOxdPP/00Zs+ejcrKSqHLISLSO2q1GvPmzcMnn3yCuLg4RERE6F33SV1EIhEiIiIQGxuLFStWYP78+QxSiExEG6ELICIiqhomu3//foMbJluXqiGzw4cPx6ZNm/D+++8LXRIRkV5ZsmQJ1q5di8TERPj5+QldTqMsXLgQHTp0gL+/PywtLbF8+XKhSyKiZsYQhYiIBNUcw2T1RfUhs2PGjIG1tbXQJRER6YXo6GisWLECsbGxBhugVPHz80NJSQmCgoJgZWWF4OBgoUsiombE5TxERCQoYxkmWxcOmSUiqikzM1MzA2XhwoVCl6MTixYtwuLFiyGTybBnzx6hyyGiZsQQhYiIBKMvw2Sbcw0+h8wSEf1DoVDAx8cHHh4eCA8PF7ocnYqIiMDw4cMxY8YMKBQKocshombCEIWIiATzzTffwNzcHDNnzmy2a1hYWAAAlEplrfeXlpZqHtNcAgICYG5ujm+++aZZr0NEpO+CgoJQVFSE5ORkgxkiqy2RSISUlBQUFRVxSQ+REWOIQkREgnnvvfegUqmQkJDQbNeo2irz/Pnzj9xXWlqK/Pz8Zt9Oc8OGDVCpVJgyZUqzXoeISJ9lZmZi48aNiImJ0fttjBvLxcUF0dHRSEpK4rIeIiPFEIWIiAQzYMAABAYGYtmyZSgoKGiWa7z66qswNzfHhg0bHtlqOCkpCffu3cPo0aOb5doAUFBQgNDQUMyaNQv9+/dvtusQEemz6st4DH2Q7OP4+/tzWQ+REROptdjQXKFQwMrKCrdv34ZEImmJuoiIyEQUFxfD1dUVHh4e+Pbbb5vlGpGRkViyZAleeuklvP3222jXrh2OHDmC1NRUjBw5Ej/99BNatWqezxW8vb2xd+9enD9/nrvzEJHJmjlzJjZv3oyzZ88abRdKdbm5uejbty/efffdZu22JCLdaEjmwRCFiIgE9+WXX2L69OnYv39/s21zvHnzZqxbtw5ZWVm4d+8eunfvjsmTJ+PDDz9E27Ztm+Wa+/fvx/Dhw/Hll1/i/fffb5ZrEBHpu6tXr2qWuSxYsEDoclpMXFwcZDIZ8vLy4OjoKHQ5RFQPhihERGRQKisrMWTIEBQXF+PUqVMwMzMTuqQmq6iowIABA2BjY4ODBw82W6cLEZG+W7ZsGeLi4nDt2jWTei+hUCjg4OCAoKAghIaGCl0OEdWjIZkHX9EREZHgWrVqhfXr1+P333/H2rVrhS5HJ9asWYPff/8d69evZ4BCRCaroqICSUlJmDJlikkFKAAgkUgwZcoUJCUloaKiQuhyiEhH+KqOiIj0QksMmW0pHCZLRPTAjh07cP36dQQEBAhdiiACAgLw559/YufOnUKXQkQ6wuU8RESkN1piyGxL4DBZIqIHhg0bhvv37+PgwYNClyKYIUOGwMzMDPv27RO6FCKqA5fzEBGRQbK2tkZUVBRSU1Nx4MABoctplP379yM1NRVRUVEMUIjIpGVnZ+PAgQMIDAwUuhRBBQYGYv/+/Th37pzQpRCRDjBEISIivTJ16lS8+OKLmDVrlsGtIa+oqMDs2bPx0ksvYcqUKUKXQ0QkqLS0NNja2uKdd94RuhRBjR8/HjY2NkhLSxO6FCLSAYYoRESkVwx5yCyHyRIR/eP48eMYNGgQzM3NH/vY0NBQiEQi3Lx5swUqa1nm5uYYNGgQjh8/LnQpRKQDfIVHRER6xxCHzHKYLBHRP9RqNeRyOaRSqU7P6+LiApFIhDlz5jxy34EDByASibBt2zadXrMuoaGhcHFx0eqxUqkUcrm8eQsiohbBEIWIiPRSREQExGIxgoKChC5FK0FBQWjXrh3Cw8OFLoWISHAFBQUoLCzUeYhSZePGjQYTsgMPQpTr168bVM1EVDuGKEREpJcMacgsh8kSEdVUtXSlOUKUf/3rX7h//z4+/fTTRh1/9+5dHVf0eFXPA5f0EBk+hihERKS3DGHILIfJEhE9Si6Xo3PnznBycmrQcTdv3oSnpyckEgk6duyIefPmoaysrMZjXFxcMHXqVK26UapmrWRnZ8Pb2xs2NjZ4+eWXNed58803ceDAAbi5uUEsFqNv376a4D4jIwN9+/aFhYUFpFIpTp482aDvpTpnZ2d06tSJS3qIjABDFCIi0luGMGSWw2SJiB5VNQ9FJBI16DhPT0+UlZXhk08+weuvv441a9bAz8/vkcctXrwY9+7d07obZeLEiSgtLcWKFSvg6+uruT0nJwfe3t5466238Mknn6CoqAhvvfUWNm/ejAULFuC9995DWFgYLl26BE9PT1RWVjbo+6kiEok4F4XISLQRugAiIqL6VB8yO2nSJDg4OAhdkgaHyRIR1S4/Px9Dhw5t8HHdu3fHzp07AQCzZs2CRCJBfHw8goKC0K9fP83jnnzySUyZMgUbN27Ev//9b9jb29d73v79++Pbb7995Pbz58/jyJEjGDx4MACgd+/eGDVqFHx9ffH777+jW7duAAAbGxv4+/vj4MGDcHd3B/CgyyU0NFTr761nz544dOiQ1o8nIv3Ej8yIiEjv6euQWQ6TJSKqnVKpRLt27Rp83KxZs2p8XbULz+7dux957JIlS7TuRpk5c2att/fu3VsToADAoEGDAADDhw/XBCjVb//jjz8ee626iMViKJXKRh9PRPqBIQoREek9fRwyy2GyRER1Kysrg1gsbvBxvXr1qvF1jx490KpVK+Tm5j7y2KpulKSkJPz555/1nrd79+613l49KAEAKysrAA9mmNR2e1FRUb3XqY9YLH5kvgsRGR6GKEREZBD0acgsh8kSEdVPpVLB3Ny8yed53EyVqtkon332Wb2PqyvQad26dYNuV6vV9V6nPubm5igvL2/08USkHxiiEBGRQdCnIbMcJktEVD9zc3OoVKoGH3fx4sUaX+fk5KCyshIuLi61Pr5Hjx547733kJiY+NhuFKGpVCq0bdtW6DKIqIn4yo+IiAxG9SGzj9vWsrlwmCwR0eNZWFg0av7H+vXra3xdFZqPHj26zmOWLFmCiooKREVFNfh6LUmpVMLCwkLoMoioiRiiEBGRQRF6yCyHyRIRPZ5YLEZpaWmDj7t8+TLefvttxMfHY8qUKYiPj4e3t3e9oXVVN8qpU6eaUHHzUyqVjZoTQ0T6hSEKEREZFCGHzHKYLBGRdpydnXHp0qUGH5eWloa2bdvio48+wq5duzB79mykpKQ89rglS5bUOcdEX+Tk5DwysJaIDI9IrcV0JIVCASsrK9y+fRsSiaQl6iIiIqpTZWUlhgwZguLiYpw6dQpmZmbNfs2KigoMGDAANjY2OHjwIGehEBHVIyQkBAkJCSgsLHzscFhToFar0aVLFwQGBiIsLEzocojoIQ3JPPgKkIiIDI4QQ2Y5TJaISHtSqRQ3btzA1atXhS5FL+Tn5+PmzZuQSqVCl0JETcRXgUREZJBacsgsh8kSETWMm5sbAEAulwtciX6oeh6qnhciMlwMUYiIyGC11JBZDpMlImoYBwcHdO3alSHK/yeXy2FnZwcHBwehSyGiJmKIQkREBqslhsxymCwRUcOJRCJIpVKGKP+fXC7nUh4iI8EQhYiIDNrUqVPx4osvYtasWaioqNDpuSsqKjB79my89NJLmDJlik7PTURk7Nzc3HDs2DGoVCqhSxFUeXk5jh07xqU8REaCIQoRERm05hwyy2GyRESN5+XlhVu3biEjI0PoUgSVkZGBoqIieHl5CV0KEekAtzgmIiKjMGfOHHz55Zc4f/68TtacFxQU4KmnnsL06dOxZs0aHVRIRGR6hg0bhvv37+PgwYNClyKYIUOGwMzMDPv27RO6FCKqA7c4JiIik6PrIbMcJktE1HSBgYE4dOgQsrKyhC5FEGfOnMHhw4cRGBgodClEpCMMUYiIyCjocsgsh8kSEenG2LFjYWdnhw0bNghdiiA2bNgAe3t7jBkzRuhSiEhHuJyHiIiMRmVlJYYMGYLi4mKcOnUKZmZmDT5HRUUFBgwYABsbGxw8eJCzUIiImmjZsmWIi4vDtWvXTOq9hEKhgIODA4KCghAaGip0OURUDy7nISIik6SLIbMcJktEpFu+vr5QKpVISUkRupQWlZycjLKyMvj6+gpdChHpEF8dEhGRURkwYAACAwOxbNkyFBQUNOjYgoIChIaGYtasWejfv38zVUhEZFqcnJzg4+ODkJAQ5ObmCl1Oi8jNzcWyZcvg4+MDR0dHocshIh3ich4iIjI6xcXFcHV1hYeHB7799lutj/P29sbevXtx/vx5zkIhItIhhUKBPn36wNXVFXv27IFIJBK6pGajVqvh4eGBnJwcZGVl8f0TkQHgch4iIjJpjRkyy2GyRETNRyKRIDk5GXv37kVSUpLQ5TSrxMRE7Nu3D8nJyQxQiIwQO1GIiMgoNWTILIfJEhG1DD8/P6SmpiIrKwsuLi5Cl6Nzubm56Nu3L7y9vZGYmCh0OUSkJXaiEBGRyWvIkFkOkyUiahkxMTGwsbGBj48PtPgs16Co1WrMmDEDtra2iI6OFrocImomfKVIRERGS5shsxwmS0TUcqov6wkJCRG6HJ1aunQpl/EQmQCGKEREZNQiIiIgFosRFBRU6/1BQUFo164dwsPDW7gyIiLTNHLkSERFRWH58uWIi4sTuhydiI2NRWRkJKKjozFixAihyyGiZtRG6AKIiIiaU9WQ2enTp8PPzw/u7u6a+6qGyX755ZccJktE1IKCg4NRXFyMRYsWoUOHDvDz8xO6pEZLSkpCUFAQFi9eXGdgT0TGg4NliYjI6NU2ZJbDZImIhKVWqzFv3jysXbsWsbGxWLhwodAlNVhsbCyCgoIwd+5crFq1yqi3biYyZg3JPNiJQkRERq9qyKxUKsXatWuxcOFCzTDZEydOMEAhIhKASCTC6tWrYWlpiUWLFqGoqAjh4eEGEUSo1WosXboUkZGRWLx4MSIiIgyibiJqOoYoRERkEqoPmR06dCiHyRIR6QGRSITIyEhYW1tDJpPh6NGjSElJwRNPPCF0aXXKzc3FjBkzsG/fPkRFRSE4OFjokoioBXE5DxERmYzi4mK4urqipKQEEokE58+f5ywUIiI9sWfPHsyYMQNFRUWIiYmBn5+fXnV3qNVqJCYmIjg4GDY2NkhJSeEQWSIj0ZDMg/3LRERkMqytrREdHY2ysjJERUUxQCEi0iMjRozA2bNn4e3tjZkzZ2LEiBHIy8sTuiwAD7pPPDw8EBAQAG9vb5w9e5YBCpGJYohCREQmZerUqTh37hymTp0qdClERPQQiUSCxMREZGZm4sKFC+jTpw/i4uKgUCgEqUehUCAuLg59+/bFxYsXkZmZicTERHbnE5kwhihERGRSRCIRnn76ab1qESciopqqulLeffddyGQyODo6IjAwEFlZWS1y/aysLAQEBMDBwQEymQzvvvsuu0+ICABDFCIiIiIi0kMSiQQJCQnIzc3FwoULsWPHDvTr1w9Dhw7Fli1boFKpdHo9lUqF1NRUDBkyBP369cPOnTsRFBSEvLw8JCQksPuEiABwsCwRERERERmAiooK7Ny5E/Hx8di/fz9sbW3x/PPPQyqVan45Oztr1WmoVquRn58PuVyu+XXs2DEUFRVh2LBhCAwMxJgxY2BmZtYC3xkRCa0hmQdDFCIiIiIiMijZ2dnYunUrjh8/DrlcjuvXrwMAOnXqBKlUip49e0IsFkMsFsPc3BwqlQpKpRJKpRI5OTmQy+W4efMmAMDOzg5SqRRubm7w9PRE7969hfzWiEgADFGIiIiIiMgkqNVqFBQU1Ogqyc/Ph1KpRFlZGcrLy9G2bVtYWFhALBbD2dlZ07ni5uYGBwcHob8FIhIYQxQiIiIiIiIiIi00JPPgYFkiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItICQxQiIiIiIiIiIi0wRCEiIiIiIiIi0gJDFCIiIiIiIiIiLTBEISIiIiIiIiLSAkMUIiIiIiIiIiItMEQhIiIiIiIiItJCG20epFarAQAKhaJZiyEiIiIiIiIiaklVWUdV9lEfrUKUkpISAICzs3MTyiIiIiIiIiIi0k8lJSWwsrKq9zEitRZRS2VlJQoKCmBpaQmRSKSzAomIiIiIiIiIhKRWq1FSUgIHBwe0alX/1BOtQhQiIiIiIiIiIlPHwbJERERERERERFpgiEJEREREREREpAWGKEREREREREREWmCIQkRERERERESkBYYoRERERERERERaYIhCRERERERERKQFhihERERERERERFr4fxKJcnXYh4KIAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "draw_frame_model(pcft.model, figsize=(14, 12))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Building the Solver [INCOMPLETE]" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Preliminery work towards a generic solver for FramedAgentTypes." - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.218074Z", - "iopub.status.busy": "2024-07-11T15:30:49.217816Z", - "iopub.status.idle": "2024-07-11T15:30:49.220573Z", - "shell.execute_reply": "2024-07-11T15:30:49.220097Z" - } - }, - "outputs": [], - "source": [ - "controls = [frame for frame in pcft.frames.values() if frame.control]" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.222097Z", - "iopub.status.busy": "2024-07-11T15:30:49.221862Z", - "iopub.status.idle": "2024-07-11T15:30:49.225744Z", - "shell.execute_reply": "2024-07-11T15:30:49.225272Z" - } - }, - "outputs": [], - "source": [ - "def get_expected_return_function(control: Frame):\n", - " # Input: a control frame\n", - " # Returns: function of the control variable (control frame target)\n", - " # that returns the expected return, which is\n", - " # the sum of:\n", - " # - direct rewards\n", - " # - expected value of next-frame states (not yet implemented)\n", - " #\n", - "\n", - " rewards = [child for child in control.children if child.reward]\n", - " expected_values = [] # TODO\n", - "\n", - " ## note: function signature is what's needed for scipy.optimize\n", - " def expected_return_function(x, *args):\n", - " ## returns the sum of\n", - " ## the reward functions evaluated in context of\n", - " ## - parameters\n", - " ## - the control variable input\n", - "\n", - " # x - array of inputs, here the control frame target\n", - " # args - a tuple of other parameters needed to complete the function\n", - "\n", - " expected_return = 0\n", - "\n", - " for reward in rewards:\n", - " ## TODO: figuring out the ordering of `x` and `args` needed for multiple downstream scopes\n", - "\n", - " local_context = {}\n", - "\n", - " # indexing through the x and args values\n", - " i = 0\n", - " num_control_vars = None\n", - "\n", - " # assumes that all frame scopes list model variables first, parameters later\n", - " # should enforce or clarify at the frame level.\n", - " for var in reward.scope:\n", - " if var in control.target:\n", - " local_context[var] = x[i]\n", - " i = i + 1\n", - " elif var in pcft.parameters:\n", - " if num_control_vars is None:\n", - " num_control_vars = i\n", - "\n", - " local_context[var] = args[i - num_control_vars]\n", - " i = i + 1\n", - "\n", - " # can `self` be implicit here?\n", - " expected_return += reward.transition(reward, **local_context)\n", - "\n", - " return expected_return\n", - "\n", - " return expected_return_function" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.227186Z", - "iopub.status.busy": "2024-07-11T15:30:49.226959Z", - "iopub.status.idle": "2024-07-11T15:30:49.229538Z", - "shell.execute_reply": "2024-07-11T15:30:49.229088Z" - } - }, - "outputs": [], - "source": [ - "def optimal_policy_function(control: Frame):\n", - " erf = get_expected_return_function(control)\n", - " constraints = (\n", - " control.constraints\n", - " ) ## these will reference the context of the control transition, including scope\n", - "\n", - " ## Returns function:\n", - " ## input: control frame scope\n", - " ## output: result of scipy.optimize of the erf with respect to constraints\n", - " ## getting the optimal input (control variable) value\n", - " return func" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:49.230991Z", - "iopub.status.busy": "2024-07-11T15:30:49.230768Z", - "iopub.status.idle": "2024-07-11T15:30:49.233295Z", - "shell.execute_reply": "2024-07-11T15:30:49.232707Z" - } - }, - "outputs": [], - "source": [ - "def approximate_optimal_policy_function(control, grid):\n", - " ## returns a new function:\n", - " ## that is an interpolation over optimal_policy_function\n", - " ## over the grid\n", - "\n", - " return func" - ] - } - ], - "metadata": { - "jupytext": { - "formats": "ipynb,py:percent" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - }, - "latex_envs": { - "LaTeX_envs_menu_present": true, - "autoclose": false, - "autocomplete": true, - "bibliofile": "biblio.bib", - "cite_by": "apalike", - "current_citInitial": 1, - "eqLabelWithNumbers": true, - "eqNumInitial": 1, - "hotkeys": { - "equation": "Ctrl-E", - "itemize": "Ctrl-I" - }, - "labels_anchors": false, - "latex_user_defs": false, - "report_style_numbering": false, - "user_envs_cfg": false - }, - "toc": { - "base_numbering": 1, - "nav_menu": {}, - "number_sections": true, - "sideBar": true, - "skip_h1_title": false, - "title_cell": "Table of Contents", - "title_sidebar": "Contents", - "toc_cell": false, - "toc_position": {}, - "toc_section_display": true, - "toc_window_display": false - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/examples/FrameAgentType/FrameModels.ipynb b/examples/FrameAgentType/FrameModels.ipynb deleted file mode 100644 index cb17f224e..000000000 --- a/examples/FrameAgentType/FrameModels.ipynb +++ /dev/null @@ -1,1180 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "9943b45d", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:50.324553Z", - "iopub.status.busy": "2024-07-11T15:30:50.324299Z", - "iopub.status.idle": "2024-07-11T15:30:51.165514Z", - "shell.execute_reply": "2024-07-11T15:30:51.164938Z" - } - }, - "outputs": [], - "source": [ - "from HARK.distribution import (\n", - " IndexDistribution,\n", - " Lognormal,\n", - " MeanOneLogNormal, # Random draws for simulating agents\n", - ")\n", - "from HARK.frame import (\n", - " BackwardFrameReference,\n", - " Frame,\n", - " FrameAgentType,\n", - " FrameModel,\n", - " draw_frame_model,\n", - ")\n", - "from HARK.rewards import (\n", - " CRRAutility,\n", - ")" - ] - }, - { - "cell_type": "markdown", - "id": "d531d493", - "metadata": {}, - "source": [ - "TO DO:\n", - "\n", - "Refactor to separate model from simulator (AgentType)\n", - "\n", - "- [x] Separate FrameModel from FrameAgentType - AgentType has cycles parameter. FrameModel need not have it.\n", - "- [x] Define Repeater transformation -- transforms FrameModel to be either explicitly infinite or to become finite cycled. Can take age-varying parameters here (and only here).\n", - "- [x] FrameAgentType consumes a FrameModel, and runs simulations in HARK way\n", - "- [ ] Further decouple FrameModel from FrameAgentType.\n", - " - [x] FrameModel should take parameters dictionary\n", - " - [x] Generalize simulation to access appropriate solution (transition_cNrm)\n", - " - [ ] FrameModel transition equations should not reference 'self' whiteboard\n", - " - [ ] FrameAgentType with an arbitrary well-formed FrameModel and solution should be able to forward-simulate\n", - " - [x] Replicate the ConsPortfolioFrameModel with new architecture.\n", - "- [ ] Automated tests\n", - "- [ ] Easier single variable target frames\n", - "\n", - "Solver as something that consumes and works with a FrameModel\n", - "\n", - "- [ ] Data structure for the solution of a model? -- A policy. (Look at Bellman library?)\n", - "- [ ] Extract the key sequence of variables along which to pass value\n", - "- [ ] Value-passing -- inverse function\n", - "- [ ] Value-passing -- Inverse expected value -- for chance transitions\n", - "- [ ] Policy updating --\n", - "- [ ] Value backup\n", - "\n", - "Solvers for repeated FrameModels\n", - "\n", - "- [ ] Finite solver as composition of these tools\n", - "- [ ] Infinite solver through use of tools to convergence\n", - "\n", - "Feed solution back to FrameAgentType\n", - "\n", - "- [ ] Build solution object a la HARK? Or ...\n", - "- [ ] Adjust simulator so that it uses the new solution object" - ] - }, - { - "cell_type": "markdown", - "id": "09b0e141", - "metadata": {}, - "source": [ - "## Some simple models" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "f5349e23", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.167610Z", - "iopub.status.busy": "2024-07-11T15:30:51.167238Z", - "iopub.status.idle": "2024-07-11T15:30:51.170315Z", - "shell.execute_reply": "2024-07-11T15:30:51.169842Z" - } - }, - "outputs": [], - "source": [ - "init_parameters = {}\n", - "init_parameters[\"PermGroFac\"] = 1.05\n", - "init_parameters[\"PermShkStd\"] = 1.5\n", - "init_parameters[\"PermShkCount\"] = 5\n", - "init_parameters[\"TranShkStd\"] = 3.0\n", - "init_parameters[\"TranShkCount\"] = 5\n", - "init_parameters[\"RiskyAvg\"] = 1.05\n", - "init_parameters[\"RiskyStd\"] = 1.5\n", - "init_parameters[\"RiskyCount\"] = 5\n", - "init_parameters[\"Rfree\"] = 1.03" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "d86a211c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.171888Z", - "iopub.status.busy": "2024-07-11T15:30:51.171470Z", - "iopub.status.idle": "2024-07-11T15:30:51.175487Z", - "shell.execute_reply": "2024-07-11T15:30:51.175029Z" - } - }, - "outputs": [], - "source": [ - "# TODO: streamline this so it can draw the parameters from context\n", - "def birth_aNrmNow(N, **context):\n", - " \"\"\"Birth value for aNrmNow\"\"\"\n", - " return Lognormal(\n", - " mu=context[\"aNrmInitMean\"],\n", - " sigma=context[\"aNrmInitStd\"],\n", - " ## TODO -- where does this seed come from? The AgentType?\n", - " seed=self.RNG.integers(0, 2**31 - 1),\n", - " ).draw(N)\n", - "\n", - "\n", - "frame_model_A = FrameModel(\n", - " [\n", - " Frame((\"bNrm\",), (\"aNrm\",), transition=lambda Rfree, aNrm: Rfree * aNrm),\n", - " Frame((\"mNrm\",), (\"bNrm\", \"TranShk\"), transition=lambda bNrm: mNrm),\n", - " Frame((\"cNrm\"), (\"mNrm\",), control=True),\n", - " Frame(\n", - " (\"U\"),\n", - " (\"cNrm\", \"CRRA\"), ## Note CRRA here is a parameter not a state var\n", - " transition=lambda cNrm, CRRA: (CRRAutility(cNrm, CRRA),),\n", - " reward=True,\n", - " context={\"CRRA\": 2.0},\n", - " ),\n", - " Frame(\n", - " (\"aNrm\"),\n", - " (\"mNrm\", \"cNrm\"),\n", - " default={\"aNrm\": birth_aNrmNow},\n", - " transition=lambda mNrm, cNrm: (mNrm - cNrm,),\n", - " ),\n", - " ],\n", - " init_parameters,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "ab44a7f1", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.176808Z", - "iopub.status.busy": "2024-07-11T15:30:51.176641Z", - "iopub.status.idle": "2024-07-11T15:30:51.295861Z", - "shell.execute_reply": "2024-07-11T15:30:51.295342Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAJ8CAYAAABunRBBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByEklEQVR4nO3deVyVdd7/8fdBQY6yiLsoiUtahktBOTWjaaNZ97TYapraoqBSWQrSlGiuLaK2WMhmmWZkdZtOzUzinTrWaE6iJd62iIXhmiZyUMBDcP3+8Ob8JEVB4VxneT0fDx4PzsU553of7rnp7fe6PtdlMQzDEAAAALyGj9kBAAAA4FwUQAAAAC9DAQQAAPAyFEAAAAAvQwEEAADwMhRAAAAAL0MBBAAA8DIUQAAAAC/TsCZPqqio0IEDBxQYGCiLxVLfmQAAAFBLhmGoqKhIoaGh8vE5/xpfjQrggQMHFBYWVifhAAAAUH/y8/PVvn378z6nRgUwMDDQ8YZBQUGXngwAAAB1ymazKSwszNHbzqdGBbDysG9QUBAFEAAAwIXV5HQ9hkAAAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvExDswMAAADUNcMwtH//fmVnZzu+8vPzVVJSotLSUtntdvn5+cnf319Wq1VhYWGKjIxUZGSkoqKiFBoaKovFYvbHqDcUQAAA4BF27dqlFStWaOvWrcrOztbhw4clSS1btlRkZKT69eunxo0by2q1ys/PT3a7XSUlJSouLtaePXuUkpKiI0eOSJJat27tKINDhw5V9+7dzfxodc5iGIZxoSfZbDYFBwersLBQQUFBzsgFAABwQWVlZVq1apWSk5O1YcMGNWvWTH369HGs5kVGRqp9+/Y1Ws0zDEP79u2rsmq4ZcsWHTt2TP3791dsbKyGDBkiX19fJ3yy2qtNX6MAAgAAt7Nv3z6lpaUpPT1dhw4dUr9+/RQbG6u77rpLfn5+dbYfu92ulStXKjk5WZ9//rnatm2r6OhoRUdHq3379nW2n7pAAQQAAB7JZrMpISFBGRkZslqtGjVqlMaPH6+IiIh633dOTo4WLVqkZcuWqaSkRGPGjNHcuXNdphtRAAEAgMfJysrSmDFjVFBQoJkzZ2r06NGm9BKbzabFixdr2rRpCgkJUUZGhm6++Wan5zhXrpr2NS4DAwAAXJrNZlNMTIwGDx6sbt26aefOnZo4caJpi1JBQUGaOHGicnJy1LVrVw0ePFgxMTGy2Wym5LkYFEAAAOCysrKyFBERoczMTKWkpCgrK0sdOnQwO5YkKTw8XGvXrlVKSooyMzMVERGhrKwss2PVCAUQAAC4pKSkpCqrfmPHjnW5a/NZLBaNHTu2ympgUlKS2bEuiAIIAABcimEYevbZZ5WQkKDExESXWvWrTuVqYGJiohISEjRlyhTVYMzCNFwIGgAAuAzDMPTkk09q4cKFWrBggSZOnGh2pBqzWCyaNWuWQkJCFBcXpxMnTuiVV15xuVVLiQIIAABcSGJiohYuXKjU1FTFxMSYHeeiTJo0SQEBARo7dqwCAwM1e/ZssyOdhQIIAABcQlJSkp5//nnNnz/fbctfpZiYGBUVFSk+Pl7BwcGaPHmy2ZGqoAACAADTZWVlOc75mzRpktlx6kRcXJwKCgqUkJCg3r17a9CgQWZHcuBC0AAAwFQ2m00RERHq1q2bsrKyXPKcuYtlGIYGDhyo3bt3a+fOnfXao7gQNAAAcBvx8fEqKChQRkaGR5U/6fRgyOLFi1VQUOBSh4EpgAAAwDRZWVlKT0/XvHnzXP5SLxcrPDxcSUlJSktL09q1a82OI4lDwAAAwCSefOj395xxKJhDwAAAwOUlJCR47KHf3zvzUHBCQoLZcSiAAADA+fbt26eMjAzNnDnTYw/9/l54eLhmzJihjIwM7d+/39QsFEAAAOB06enpslqtGj16tNlRnGrMmDHy9/dXenq6qTkogAAAwKnKysqUlpamkSNHet1sQVBQkEaOHKm0tDSVlZWZloMCCAAAnGrVqlU6dOiQxo8fb3YUU4wfP14HDx7U6tWrTcvAFDAAAHCqAQMGqLy8XBs3bjQ7imn69u0rX19frVu3rs7ekylgAADgknbt2qUNGzYoNjbW7Cimio2N1fr16/Xtt9+asn8KIAAAcJoVK1aoWbNmuvvuu82OYqp77rlHISEhWrFihSn7pwACAACn2bp1q/r06SM/P78av2b69OmyWCw6evRoPSZzLj8/P/Xp00dbt241Zf8UQAAA4BSGYSg7O1uRkZH18v7h4eGyWCx64oknzvrZhg0bZLFY9OGHH9bLvi9GZGSksrOzTdk3BRAAADjFgQMHdPjw4XorgJXS09N14MCBet1HXYiMjNShQ4dMyUoBBAAATlF5uLM+C+BVV12l8vJyvfjiixf1+pMnT9ZxoupV/h7MOAxMAQQAAE6RnZ2tli1bqn379hf1+qNHj+r+++9XUFCQmjdvrieffFKlpaVVnhMeHq5Ro0bVaBWw8tzCXbt2afjw4QoJCdGf/vQnx/vcdttt2rBhg6KiomS1WtWjRw9t2LBBkrRy5Ur16NFD/v7+ioyM1Pbt22v9ecLCwtSiRQtTDgNTAAEAgFNUnv9nsVgu6vX333+/SktL9cILL+i//uu/9NprrykmJuas502ZMkW//fZbjVcB77vvPhUXF+v5559XdHS0Y3tubq6GDx+u22+/XS+88IIKCgp0++23a/ny5Zo4caJGjBihGTNmaM+ePbr//vtVUVFRq89jsVhMOw+wodP3CAAAvFJ+fr769et30a/v2LGj4+4Zjz32mIKCgpScnKz4+Hj17NnT8bxOnTpp5MiRSk9P1zPPPKO2bdue93179eqld99996zt33//vTZt2qTrr79ektS9e3cNHjxY0dHR+u6773TZZZdJkkJCQjR27Fht3LhR/fv3r9Vn6tKliz7//PNavaYusAIIAACcoqSkRI0bN77o1z/22GNVHldO+/7jH/8467mJiYk1XgUcN27cObd3797dUf4kqU+fPpKkm266yVH+ztz+448/XnBfv2e1WlVSUlLr110qCiAAAHCK0tJSWa3Wi3795ZdfXuVx586d5ePjo7y8vLOeW7kKmJaWpoMHD573fTt27HjO7WeWPEkKDg6WdPrcvXNtLygoOO9+zsVqtZ51HqMzUAABAIBT2O32Wl0A+kIudC5h5bmAL7300nmfV10pbdCgQa22G4Zx3v2ci5+fn06dOlXr110qCiAAAHAKPz8/2e32i3797t27qzzOzc1VRUWFwsPDz/n8zp07a8SIEUpNTb3gKqBZ7Ha7GjVq5PT9UgABAIBT+Pv7X9L5bm+88UaVxwsXLpQk3XrrrdW+JjExUWVlZZo7d+5F77c+lZSUyN/f3+n7ZQoYAAA4hdVqVXFx8UW//qefftIdd9yhW265RZs3b9Y777yj4cOHq1evXtW+pnIV8O23377o/dankpKSSzov8mKxAggAAJwiLCxMe/bsuejXr1ixQo0aNdJf//pX/f3vf9fjjz+uxYsXX/B1iYmJ1Z63Z7bc3NyzhkqcwWLU4IxFm82m4OBgFRYWKigoyBm5AACAh5k2bZpSUlJ0+PDhi74YtCcxDEOtWrVSbGysZsyYccnvV5u+xgogAABwisjISB05ckT79u0zO4pLyM/P19GjR+v13sjVoQACAACniIqKkiRTbn3miip/D5W/F2eiAAIAAKcIDQ1V69atKYD/Jzs7W23atFFoaKjT900BBAAATmGxWBQZGUkB/D/Z2dmmHP6VKIAAAMCJoqKitGXLlku6ILQnOHXqlLZs2WLK4V+JAggAAJxo6NChOnbsmFauXGl2FFOtXLlSBQUFGjp0qCn75zIwAADAqQYMGKDy8nJt3LjR7Cim6du3r3x9fbVu3bo6e08uAwMAAFxWbGysPv/8c+Xk5JgdxRQ7duzQF198odjYWNMyUAABAIBTDRkyRG3atNGiRYvMjmKKRYsWqW3btrrzzjtNy0ABBAAATuXr66uYmBgtW7ZMNpvN7DhOZbPZtGzZMsXExMjX19e0HBRAAADgdNHR0SopKanRvXw9SUZGhkpLSxUdHW1qDgogAABwuvbt22vMmDGaNm2a8vLyzI7jFHl5eXruuec0ZswYtWvXztQsTAEDAABT2Gw2RUREqGvXrlq7dq0sFovZkeqNYRgaOHCgcnNzlZOTUy99iilgAADg8oKCgpSamqrPPvtMaWlpZsepV6mpqVq3bp0yMjJcYjGNAggAAEyxd+9ezZkzR5I0ceJEjz0UnJeXp8mTJysmJkaDBg0yO44kCiAAADDB+++/r169eunf//63JKmsrExjxoxRDc5McyuGYWj06NFq1qyZkpKSzI7jQAEEAABOc/LkSY0ZM0ZDhw5VYWGhJCk8PFxJSUn67LPPNG3aNJMT1q2pU6e61KHfSg3NDgAAALzD9u3bNWzYMH3//feObQ888IBSUlIUHByssrIyJSQkKCQkRJMmTTIxad2YP3++5syZo6SkJJc59FuJAggAAOqVYRh69dVX9fTTT8tut0uSmjRpotdff10PPfSQY/p38uTJOn78uOLi4hQQEKCYmBgzY1+StLQ0xcfHa8qUKYqPjzc7zlkogAAAoN788ssvevjhh/XPf/7Tse2aa65RZmamunbtetbzZ8+eraKiIo0dO1YnTpxwy5XA+fPnKz4+XhMmTNCsWbPMjnNOFEAAAFAvsrKyNGrUKB0+fNixLS4uTs8//7z8/PzO+RqLxaJXX31VgYGBiouLU0FBgWbOnOkW1wg0DENTp07VnDlzNGXKFM2aNctlc1MAAQBAnbLb7Xr22Wc1f/58x7bWrVvr7bff1uDBgy/4eovFojlz5qhp06ZKSEjQ5s2btXjxYnXo0KE+Y1+SvLw8jR49WuvWrdPcuXM1efJksyOdF1PAAACgzvzwww+6/vrrq5S/W2+9VTt27KhR+TvT5MmTlZWVpR9++EERERFKTU11ucvEGIahlJQU9ejRQ7t371ZWVpbLlz+JAggAAOqAYRhasmSJrrnmGm3btk2S5Ovrq5dfflmffPKJWrVqdVHvO2jQIO3cuVPDhw/XuHHjNGjQIO3du7cuo1+0vLw8DRw4UOPHj9fw4cO1c+dOl5v2rQ4FEAAAXJLCwkINHz5cjzzyiE6ePClJ6tatm7Zs2aKnnnpKPj6XVjcqbxl35mrgggULZLPZ6iJ+rdlsNi1YsKDKql9qaqpLXefvQiiAAADgom3evFm9e/fWe++959g2evRoZWdn6+qrr67TfVWuBj744INKSEhQu3btFBsbq5ycnDrdT3VycnI0fvx4hYaGKiEhQQ8++KBbrfqdiQIIAABqrby8XLNnz1bfvn0d9/ANDg7WihUrlJGRoSZNmtTLfoOCgpSSkqK8vDxNmjRJq1atUs+ePdWvXz+99957jusM1hW73a7MzEz17dtXPXv21OrVqxUfH6+9e/cqJSXFrVb9zmQxanA2pc1mU3BwsAoLC932gwIAgLqxb98+jRgxQv/6178c22644Qa9++67Tp/ULSsr0+rVq5WcnKz169erWbNmuu666xQZGen4CgsLq9HlWAzDUH5+vrKzsx1fW7ZsUUFBgQYMGKDY2Fjdeeed8vX1dcInq73a9DUKIAAAqLGPPvpIo0ePVkFBgSTJx8dHiYmJmjp1qho2NPfqcrt27dL777+vrVu3Kjs7W4cOHZIktWjRQpGRkerSpYusVqusVqv8/Pxkt9tVUlKikpIS5ebmKjs7W0ePHpUktWnTRpGRkYqKitL999+v7t27m/nRaoQCCAAA6lRxcbHi4uKUkpLi2BYWFqbly5erb9++JiY7N8MwdODAgSqrefn5+SopKVFpaalOnTqlRo0ayd/fX1arVWFhYY4Vw6ioKIWGhpr9EWqNAggAAOpMTk6OHnjgAe3atcux7Z577lF6erpCQkJMTIYz1aavMQQCAADOyTAMvfHGG7r22msd5c9qtSotLU0ffPAB5c+NcSs4AABwlqNHj2r06NH629/+5tjWs2dPvffee7ryyitNTIa6wAogAACoYt26derVq1eV8jdhwgRt2bKF8uchKIAAAEDS6UuqPPPMMxo4cKAOHDgg6fQE7ccff6xXX31V/v7+JidEXeEQMAAA0J49ezR8+HD95z//cWwbOHCgli5dqrZt25qYDPWBFUAAALzc8uXLdfXVVzvKX8OGDfXSSy9pzZo1lD8PxQogAABeqqioSI899piWLVvm2Na5c2dlZmbq2muvNTEZ6hsrgAAAeKGvvvpKV199dZXyN2rUKG3fvp3y5wUogAAAeJGKigq99NJLuuGGG7Rnzx5JUmBgoJYvX663335bgYGBJieEM3AIGAAAL3HgwAGNGjVKn332mWPbddddp8zMTHXq1MnEZHA2VgABAPACn3zyiXr16uUofxaLRc8884y++OILyp8XYgUQAAAPVlpaqoSEBC1cuNCxrW3btnrnnXd00003mZgMZqIAAgDgoXbt2qVhw4Zpx44djm2333673nzzTbVo0cLEZDAbh4ABAPAwhmEoLS1NUVFRjvLXqFEjvf7661q9ejXlD6wAAgDgSY4dO6bo6GitXLnSse2qq65SZmamevToYWIyuBJWAAEA8BAbN25Ur169qpS/8ePH66uvvqL8oQoKIAAAbu63337TtGnTNGDAAO3bt0+S1KxZM3300UdKTk6W1Wo1OSFcDYeAAQBwY3l5eXrwwQe1adMmx7Ybb7xR77zzjtq3b29iMrgyVgABAHBT77//vnr37u0ofw0aNNDs2bP12WefUf5wXqwAAgDgZk6ePKkJEybozTffdGwLDw/Xu+++q+uvv97EZHAXFEAAANzItm3bNGzYMP3www+ObQ888IBSUlIUHBxsYjK4Ew4BAwDgBioqKrRgwQL94Q9/cJS/Jk2a6K233tK7775L+UOtsAIIAICLO3z4sB5++GF9+umnjm3XXHONMjMz1bVrVxOTwV2xAggAgAtbs2aNevXqVaX8xcXFafPmzZQ/XDRWAAEAcEGnTp3Ss88+qwULFji2tW7dWm+//bYGDx5sYjJ4AgogAAAu5ocfftCwYcO0bds2x7Zbb71VS5YsUatWrUxMBk/BIWAAAFyEYRh66623dM011zjKn5+fn15++WV98sknlD/UGVYAAQBwAcePH9e4ceO0YsUKx7Zu3bopMzNTV199tYnJ4IkogEAt7N69W0VFRWbHcDmBgYG6/PLLzY4BuK1NmzZp+PDh2rt3r2PbmDFj9Morr6hJkyYmJoOnogACNbR7924m7s7jhx9+oAQCtVReXq4XXnhB06dPV3l5uSQpODhY6enpuu+++0xOB09GAQRqqHLl75133tGVV15pchrX8e2332rEiBGsjAK1tG/fPo0YMUL/+te/HNv++Mc/avny5erQoYOJyeANKIBALV155ZW65pprzI4BwI199NFHGj16tAoKCiRJPj4+SkxM1NSpU9WwIf9pRv3jf2UAADhJcXGx4uLilJKS4tgWFham5cuXq2/fviYmg7ehAAIA4AQ5OTl64IEHtGvXLse2e+65R+np6QoJCTExGbwR1wEEAKAeGYah119/Xddee62j/FmtVqWlpemDDz6g/MEUrAACAFBPjh49qkcffVQff/yxY1uvXr2UmZnJMBlMxQogAAD1YN26derZs2eV8jdhwgR9+eWXlD+YjgIIAEAdKisr0zPPPKOBAwfq4MGDkqQWLVrok08+0auvvip/f3+TEwIcAgYAoM7s2bNHw4cP13/+8x/HtoEDB2rp0qVq27aticmAqlgBBACgDixfvlxXX321o/w1bNhQc+fO1Zo1ayh/cDmsAAIAcAmKior02GOPadmyZY5tXbp0UWZmpqKiokxMBlSPFUAAAC7SV199pauvvrpK+XvooYe0bds2yh9cGiuAAIB6ZxiG9u/fr+zsbMdXfn6+SkpKVFpaKrvdLj8/P/n7+8tqtSosLEyRkZGKjIxUVFSUQkNDZbFYzP4YDhUVFUpKSlJiYqJ+++03SVJgYKBSUlI0fPhwk9MBF0YBBADUi127dmnFihXaunWrsrOzdfjwYUlSy5YtFRkZqX79+qlx48ayWq3y8/OT3W5XSUmJiouLtWfPHqWkpOjIkSOSpNatWzvK4NChQ9W9e3fTPteBAwc0atQoffbZZ45tffr00bvvvqtOnTqZlguoDQogAKDOlJWVadWqVUpOTtaGDRvUrFkz9enTR9HR0Y4Vvfbt29doNc8wDO3bt6/KquHrr7+umTNnqn///oqNjdWQIUPk6+vrhE922ieffKJHHnlER48elSRZLBY988wzmj59ulNzAJeKAggAuGT79u1TWlqa0tPTdejQIfXr10/vvfee7rrrLvn5+V3Ue1osFoWFhSksLExDhgyRJNntdq1cuVLJycm6//771bZtW0VHRys6Olrt27evw09UVWlpqRISErRw4ULHttDQUC1btkw33XRTve0XqC8MgQAALprNZtO4ceMUHh6ul19+WXfffbdycnL0r3/9S0OHDr3o8lcdPz8/PfDAA9q4caN27NihIUOGaMGCBQoPD9e4ceNks9nqdH+S9O2336pPnz5Vyt8dd9yhb775hvIHt0UBBABclKysLEVERGj58uVKSkrS/v379cYbbygiIsIp++/Ro4eSk5O1f/9+JSUlafny5YqIiFBWVtZFvV9FRYUqKiocjw3DUFpamiIjI7Vjxw5JUqNGjfTGG29o1apVatGiRZ18DsAMFEAAQK3YbDbFxMRo8ODB6tatm3bu3KmJEycqKCjIlDxBQUGaOHGicnJy1LVrVw0ePFgxMTG1Wg1cs2aNmjRpoj/96U+y2Ww6duyY7r33Xo0dO1YlJSWSpKuuukpfffWVYmNjXWoiGbgYFEAAQI1VrvplZmYqJSVFWVlZ6tChg9mxJEnh4eFau3atUlJSlJmZWePVQLvdrnHjxqm0tFSbN2/Wvffeq169emnlypWO54wfP15fffWVevToUZ8fAXAaCiAAoEaSkpKqrPqNHTvW5VbCLBaLxo4dW2U1MCkp6byvycjIUF5enuPx2rVrtW/fPklSs2bN9NFHHyk5OVlWq7U+owNORQEEAJyXYRh69tlnlZCQoMTERJda9atO5WpgYmKiEhISNGXKFBmGcdbziouLNXv27HO+R58+ffTNN984JpABT8JlYAAA1TIMQ08++aQWLlyoBQsWaOLEiWZHqjGLxaJZs2YpJCREcXFxOnHihF555ZUqq5ZvvPGGDh48eM7XV1RUqHXr1s6KCzgVBRAAUK3ExEQtXLhQqampiomJMTvORZk0aZICAgI0duxYBQYGOlb8CgoKNHXq1Gpf99VXX+mf//yn7rjjDmdFBZyGAggAOKekpCQ9//zzmj9/vtuWv0oxMTEqKipSfHy8goODNXnyZE2dOlWnTp2q9jVNmjRRly5dnJgScB4KIADgLFlZWY5z/iZNmmR2nDoRFxengoICJSQkqHfv3rruuuv0xhtvSDp9fb8ePXqoe/fujq8//OEPatmypcmpgfpBAQRcwIYNGzRgwABJ0tatWxUZGVnl5w8//LA+/PBDnThxwox48DI2m01jxozRwIEDNXPmTLPj1KlZs2Zp8+bNGj16tHbu3Kkff/xRZWVl6tKli3x8mIuE9+B/7YCLmT59utkR4OXi4+NVUFCgjIwMl7vMy6WyWCxavHixCgoKNHnyZHXs2FFdu3al/MHr8L94wIX07t1bn3zyibZt21br1xqG4bhjAXCxsrKylJ6ernnz5rn8pV4uVnh4uJKSkpSWlqa1a9eaHQcwBQUQcJL9+/dr9OjRCg0NVaNGjdSxY0eNHz9edrvd8ZwnnnhCISEhNVoFDA8P12233aY1a9YoKipKVqtVqamp2rBhgywWi95//33NmDFD7dq1U2BgoO69914VFhbq1KlTeuqpp9SqVSsFBATokUceOe+J8PAeZx76dfehjwsZO3asbrrpJo0ePbpWt4wDPAXnAAJOcODAAV133XU6fvy4YmJidMUVV2j//v368MMPVVxc7Hhe5T1Np02bpm3btumaa6457/t+//33GjZsmMaOHavo6Gh169bN8bMXXnhBVqtVf/3rX5Wbm6uFCxfK19dXPj4+Kigo0PTp0/Xll19qyZIl6tixo6ZNm1Zvnx/uISEhwWMP/f5e5aHgHj16KCEhQSkpKWZHApzLqIHCwkJDklFYWFiTpwMeKTs725BkZGdn1/q1o0aNMnx8fIyvvvrqrJ9VVFQY69evNyQZH3zwgXH8+HEjJCTEuOOOOxzPeeihh4wmTZpUeV2HDh0MScann35aZXvle0VERBh2u92xfdiwYYbFYjFuvfXWKs+//vrrjQ4dOtT6M1W6lN8LXEd+fr7RoEEDY8GCBWZHcar58+cbDRo0MPbt22d2FOCS1aavcQgYqGcVFRVatWqVbr/9dkVFRZ3189+vtAQHB+upp57S3/72N23fvv28792xY0cNHjz4nD8bNWqUfH19HY/79OkjwzD06KOPVnlenz59lJ+fr99++62mHwkeKD09XVarVaNHjzY7ilONGTNG/v7+Sk9PNzsK4FReXQANw9C33357zvtDAnXlyJEjstlsioiIqPFrnnzySTVt2vSC5wJ27Nix2p9ddtllVR4HBwdLksLCws7aXlFRocLCwhrnq4mjR48qKSlJPXr00HXXXafDhw/X6fuj7pSVlSktLU0jR45UUFCQ2XGcKigoSCNHjlRaWprKysrMjgM4jVcXwKVLl6p79+5aunSp2VGAKmq6Cmi1Wqv9WYMGDWq1vS7+IWQYhr788ks99NBDat++vRISErRz50599dVXTFu6sFWrVunQoUMaP3682VFMMX78eB08eFCrV682OwrgNF5bAI8fP67JkyfL399fCQkJOn78uNmR4KFatmypoKAg7dy5s1ave+qpp9S0aVPNmDGjnpLVrWXLlqlNmza6/vrrtXTp0rMmi0tLSznM7KKSk5PVt29f9ejRw+wopujZs6f+9Kc/KTk52ewogNN47RTw1KlTVVJSos8//1wDBgzQtGnT9Nprr5kdCx7Ix8dHQ4YM0TvvvKOtW7eedR5gdStvlauA06dPV69evZwR9ZK88sor5/15dHS0oqOjFRQUpGbNmqlZs2Zq3ry54/vqtjVv3lwhISFVzmdE3dm1a5c2bNigzMxMs6OYKjY2VsOHD9e3336rK6+80uw4QL3zygL49ddfKzk5WUlJSYqKitL06dOVkJCg0aNHu8V/aOF+nn/+eWVlZenGG29UTEyMrrzySh08eFAffPCBvvjii2pf9+STT+rll1/WN998oyZNmjgxce1ZrdYaXYjaZrPJZrMpLy+vVu8fGBhYbUGs7nFISIj8/Pwu8hN5hxUrVqhZs2a6++67zY5iqnvuuUchISFasWIFd+OBV/C6AlhRUaHHHntMV155pZ544glJ0oQJE/Tmm2/qscce08aNG7klEOpcu3bttGXLFk2dOlXLly+XzWZTu3btdOutt6px48bVvq5p06Z66qmn3OIw8D//+U+9+eabWr58ucrLy8/6+Z///GeVlJTo119/1bFjx3Ts2LFzPq86RUVFKioq0t69e2uVq7I41mbVsVmzZl5THLdu3ao+ffp4zeetjp+fn/r06aOtW7eaHQVwCotRgzO/bTabgoODVVhY6PYTYkuWLNEjjzyi9evXq3///o7t69ev10033aQlS5booYceMi8gXNa2bdsUGRmp7OzsC16g2Zv8/vfy3XffacKECWcNfRQVFSkgIMDx2DAMFRUVVSmEx44du+DjY8eOOeVcwoCAgBqtMv7+sTsVKcMw1LZtW0VHR2vWrFn1tp+8vDzHxPqHH36oe+65p8rPp0+frhkzZujIkSNq0aJFveW4kMTERC1evFgHDx40LQNwKWrT17xqBfD48eNKSEjQsGHDqpQ/SRowYICGDRumhIQE3XnnnWratKkpGQF3d8UVV2jNmjVatWqVJk6cqL1796p3795nHcK2WCwKCgpSUFDQeS9n83uVxbE2pbHycW2K44kTJ3TixAn9/PPPNX6NJDVp0qRKIaxJeQwJCVGjRo1qtZ+6cODAAR0+fFiRkZFO2+fMmTN19913u+SdRiIjIzVnzhwdOHBAoaGhZscB6pVXFcDKwY958+ad8+fz5s1Tt27dGAgBLpHFYtFdd92lW265RZs2bVJUVFSd/Qf/zOIYHh5e49cZhqETJ07UeJWxctuvv/5aq+J48uRJnTx58qKKY21XG5s1a3ZJxbHycKezCmDv3r319ddf66OPPrqocw6Li4vPe8rEpar8PWzdulV33HFHve0HcAVeUwDPHPyo7l92oaGhDITgLIWFhfrss8+0fPlys6O4HavVqj//+c9mx5B0ujgGBgYqMDBQHTp0qPHrDMPQyZMnz1saq/tZbS4sXFkc8/Pza/W5KotjbQ9XN2rUSNnZ2WrZsqXat29/wf1UHqb9/vvvNXPmTH388cfy8/PTuHHjNHPmTO3bt0+PP/641q9fr8aNG2vy5MmKi4ur8h4PPPCAiouLNXPmTN11113n/UdB//79dfToUb399tuaOHGitm7dqpiYGD311FPq2LGjkpKSZLVaNX/+fB06dEh/+tOftHjxYrVv316zZ89Wamqqfv31V918881666231KxZswt+xrCwMLVo0ULZ2dkUQHg8ryiA5xr8qA4DIaioqFB2drbWrFmjNWvWaPPmzbUaVoBnsVgsCggIUEBAwEUVx9ocoq783hnFsXIlrW/fvrVanR06dKiuvPJKvfjii/r73/+u2bNnq1mzZkpNTdVNN92kl156ScuXL1d8fLyuvfZa9evXz/HaBg0aKDExUaNGjarRKuCvv/6qW2+9VQ888IBGjBih1q1bO362fPly2e12PfHEEzp27Jjmzp2r+++/XzfddJM2bNigp59+Wrm5uVq4cKHi4+P15ptvXvCzWSwWx/msgKfzigK4dOlSbdq0SevXr7/gtcR8fX31+uuv66abbtKyZcsYCPESBw8edBS+tWvX6tdffzU7EtzcmcXx97flO58zi2NtznGsbXEsLi6Wr6+vunTpUqvPdd111yk1NVWSFBMTo/DwcMXFxemFF17Q008/LUkaNmyYQkND9eabb1YpgJI0fPhwzZo1q0argIcOHVJKSorGjh3r2FZ5+aD9+/dr9+7djlsclpeX64UXXlBJSYm2bt2qhg1P/+ftyJEjWr58uRYtWlSjw+VdunTR559/XvNfCOCmPL4Anm/wozoMhHi+U6dO6YsvvnCUvh07dlT73G7dumnw4MHq3LmznnzySSemhDe6lOJYXFxcqxXHn376qdbn1I0ZM8bxfYMGDRQVFaV9+/Zp9OjRju1NmzZVt27d9OOPP571+spVwIceekirVq3SXXfdVe2+GjVqpEceeeScP7vvvvsc5U+S+vTpI0kaMWKEo/xVbs/MzNT+/fvVqVOnC36+ml7PEnB3Hl8ALzT4UR0GQjyLYRjavXu3Pv30U61Zs0YbNmxQcXHxOZ8bFBSkgQMHavDgwRo8eLDjsN+2bducGRmoFYvFoiZNmqhJkyYKCwur0WvCwsLOez/pc/l9KQ0ODpa/v/9Zl28JDg6udiX9wQcfdKwCDhkypNp9tWvXrtrL6pwrh6SzPnvl9oKCgmr3cyar1arS0tIaPRdwZx5dAGsy+FEdBkLcX2FhodatW+dY5avuzhMWi0VRUVGOwtenTx9uOwavYLfba33dwgYNGtRom1T9bQ4rVwEffvhhrV69utp9na+cVrfP2mb5PT8/v7PuYw14Io8tgLUZ/KgOAyHupaKiQtu2bXOs8p1veKNNmzaOwjdo0CBTLz4LmMXPz092u92UfY8YMUKzZ8/WjBkzXGri1m63m3JNRsDZPLYA1mbwozoMhLi+gwcPKisryzG8cfTo0XM+z8/PT3379nWUvh49erjkhWgBZ/L39zftfLczVwFdSUlJifz9/c2OAdQ7jyyAFzP4UR0GQlzLqVOn9O9//9txWPebb76p9rldu3Z1FL7+/fufdScKwNtZrdZqz4V1hspzAb/++mvTMvxeSUlJrc+LBNyRRxbAix38qA4DIeYxDEO5ublas2aNPv30U23YsEEnT54853MDAwOrDG/U5i4RgDcKCwvTnj17TNt/w4YNlZiYWO2krxlyc3NrPEQDuDWjBgoLCw1JRmFhYU2ebqrt27cbPj4+xvz58+v0fefNm2f4+PgYX3/9dZ2+L85WWFhofPTRR8a4ceOMjh07GpLO+WWxWIyoqChjypQpxsaNGw273V6vubKzsw1JRnZ2dr3ux93we3FfU6dONVq2bGlUVFSYHcUlVFRUGC1atDCmTZtmdhTgotSmr3nUCmBdDH5Uh4GQ+lNRUaHt27c7Vvk2b95c7b1X27Rpo5tvvlm33HKLBg4cqJYtWzo5LeA5IiMjdeTIEe3bt49VL0n5+fk6evSo0+6NDJjJowpgXQx+VIeBkLp16NChKsMbR44cOefzfH19qwxv9OzZk+ENoI5ERUVJkrKzsymAkuMWcJW/F8CTeUwBrMvBj+owEHLx7HZ7leGN8530ffnll1cZ3ggICHBeUMCLhIaGqnXr1srOzj7vBZm9RXZ2ttq0aVPr68YC7shjCmBdD35Uh4GQmjtzeGP9+vXnHd646aabdMstt2jw4MHq2LGjk5MC3slisSgyMtKx8uXtsrOzOfwLr+ERBfBS7vhRW9whpHpFRUVV7rxxrvuAVoqMjHSs8l1//fXceQMwSVRUlF5//fWLuiuIJzl16pS2bNmiCRMmmB0FcAq3L4D1OfhRHQZCTquoqNDXX3/tuPPGpk2bqh3eaN26tW6++WbHnTdatWrl5LQAzmXo0KGaOXOmVq5cqQceeMDsOKZZuXKlCgoKNHToULOjAE7h9gWwPgc/quPNAyGHDx92DG9kZWWdd3jjj3/8owYPHqxbbrlFPXv29NqiDLiy7t27q3///kpOTvbqApicnKwBAwboyiuvNDsK4BRuXQCdMfhRHW8ZCLHb7dq0aZPjXL7zDW906dLFcVh3wIABDG8AbiI2Nlb333+/cnJy1KNHD7PjON2OHTv0xRdf6IMPPjA7CuA0bl0AnTX4UR1PHQipHN5Ys2aN1q9frxMnTpzzeQEBAbrpppscpa9z585OTgqgLgwZMkRt2rTRokWLlJycbHYcp1u0aJHatm2rO++80+wogNO4bQF05uBHdc4cCHn00UfVu3dvU3JcqqKiIq1fv96xyne+4Y1rrrmmyvCGN580DngKX19fxcTEaMGCBXrxxRcVFBRkdiSnsdlsWrZsmeLj4xlGg1dxywJoxuBHdSoHQh5//HG3GQipHN6oXOXbtGmTysrKzvncVq1aOe68wfAG4Lmio6M1Z84cLV68WBMnTjQ7jtNkZGSotLRU0dHRZkcBnMotC6AZgx/VcZeBkF9++aXK8MYvv/xyzuedObwxePBg9erVyy1KLYBL0759e40ZM0bTpk3TXXfdpfDwcLMj1bu8vDw999xzGjNmjNq1a2d2HMCp3K4Amjn4UR1XHAix2+3avHmzY5Vv27Zt1T63c+fOjmnd/v37KzAw0IlJAbiKuXPn6h//+IfGjBmjtWvXevRtFw3D0OjRo9WsWTPNnTvX7DiA07ldATR78KM6rjAQsmfPHkfhW7duHcMbAGolKChIGRkZGjx4sNLS0jR27FizI9Wb1NRUrVu3TllZWV51ziNQya0KoCsMflSnPgZCPv30U8XGxqpz58765JNP1KhRoyo/P3HihGN4Y82aNcrNza32va6++mpH4bvhhhsY3gBwTjfffLOio6MVHx+vwYMHe+Sh4Ly8PE2ePFkxMTEaNGiQ2XEAU1gMwzAu9CSbzabg4GAVFhaa9i+liooK9e3bV4WFhdq+fbvp5/6dS1lZmXr37q2QkJBLHghZunSpRo8e7bizxvvvv6977rlHO3bscNx549///ne1wxstW7Z0FL5BgwapdevWF50Fp23btk2RkZF65513uFjsGb799luNGDFC2dnZuuaaa8yOgzpgs9kUERGhrl27etyhYMMwNHDgQOXm5ionJ4fVP3iUWvU1owYKCwsNSUZhYWFNnl4v3nrrLUOSsX79etMy1MS6desMScaSJUsu+j2SkpIMSVW+unTpYrRu3fqs7ZVfDRs2NG688Ubj+eefN7Kzs43y8vI6/FQwDMP44Ycfqv398yXjhx9+MPv/RKhDa9asMSQZiYmJZkepU1OmTDEkGVlZWWZHAepcbfqaW6wAHj9+XF27dtXAgQP17rvvOn3/tTV8+HB99tln+v7772s1EFJRUaG4uDi98sorNXp+p06ddMsttzjuvMHwRv3bvXu3ioqKzI5xUcrKyvSXv/xFv/76q3x8fPSPf/xDLVu2rJP3DgwM1OWXX14n7wXXkZSUpISEBM2fP1+TJk0yO84lmz9/vuLj45WUlKT4+Hiz4wB1zuNWAB9//HEjICDA2L9/vyn7r639+/cbAQEBxhNPPFGr11177bXnXWGxWq3G7bffbrz++uvG7t276yk9PNnUqVMd/3uaPn262XHgBp599llDkpGammp2lEuSmppqSDKmTJlidhSg3tSmr7l8Ady+fbvh4+NjzJ8/3+n7vhTz5s0zfHx8jO3bt9fo+YcOHbrgIba5c+fWb2h4vJ9//tnw8fExJBmhoaGG3W43OxJcXEVFhfHEE08Yktzu73ClefPmGZKMCRMmGBUVFWbHAepNbfqaS1/h15Xu+FFbEyZM0BVXXKHHH39cFRUVF3x+q1atLngT9vNdyw+oibCwMN1xxx2SpAMHDujjjz82ORFcncVi0auvvqpnn31WcXFxmjp1qowLnznkEgzDUGJiouLj4zVlyhS98sorHjXQAlwKly6AlXf8eP31111y6vd8Ku8Q8u9//1vLli274PMtFot27Nih4uJi/ec//1FKSopiYmIUFRXluGTLn//85/qODS8QGxvr+D45OdnEJHAXFotFc+bM0dy5czV79mwNGjRIe/fuNTvWeeXl5WngwIFVclP+gDPU9ZJiXSkoKDBatmxpDBs2rM7e87nnnjMkGUeOHDnnz6+66irjxhtvrLP9GYZhDBs2zGjVqpVRUFBw0e9ht9uNEydO1F0oeLXy8nLj8ssvd5xa8O2335odCW4kKyvLCAsLMwICAoyUlBSXO6RaUVFhLFq0yAgICDDCwsKY9oVX8YhDwK56x4/amjdvnoqLizVt2rSLfg9fX181adKkDlPBm/n4+GjcuHGOxykpKSamgbsZNGiQdu7cqeHDh2vcuHH685//7DKrgZWrfuPHj9fw4cO1c+dOLvQMVMMlC2DlHT9mzJjhcnf8qK3KO4S88cYb+vrrr82OA0iSHn74Yfn7+0uSlixZopMnT5qcCO4kKChIqampeuqpp7Rx40ZdeeWVWrBggWw2myl5bDabFixYoB49emj37t3KyspSamoqF3kGzsPlCqA7D35Up7YDIUB9a9asmYYNGyZJKiws1HvvvWdyIriboqIiZWZmqry8XCUlJUpISFC7du0UGxurnJwcp2TIycnR+PHjFRoaqoSEBD344IOs+gE15HIF0J0HP6pT24EQwBnGjx/v+D45OdltJjvhGl566SUdPnxYknTvvfcqLy9PkyZN0qpVq9SzZ0/169dP7733nux2e53u1263KzMzU3379lXPnj21evVqxcfHa+/evUpJSWHVD6ghl7oTSH3f8WP69OmaMWOGjhw5ohYtWpz184iICLVo0UIbNmyo831LF3+HEKC+XHvttdq6daskacuWLbruuutMTgR3kJ+fr65du6q0tFS+vr769ttv1blzZ0mn7zizevVqJScna/369WrWrJmuu+46RUZGOr7CwsJqNJFrGIby8/OVnZ3t+NqyZYsKCgo0YMAAxcbG6s477/SYxQLgUtWmrzV0UqYa8ZTBj+rMmzdP3bp107Rp0/Taa6+ZHQdQbGysHn30UUmnVwEpgKiJKVOmqLS0VJL0xBNPOMqfdPqIx7333qt7771Xu3bt0vvvv6+tW7dq8eLFmjNnjiSpRYsWioyMVJcuXWS1WmW1WuXn5ye73a6SkhKVlJQoNzdX2dnZOnr0qCSpTZs2ioyM1IQJE3T//fere/fuzv/ggAdxmRXAr7/+WpGRkUpKSqq3e07WZAWwZcuWWr9+fb3sXzp9L8qEhARlZ2erd+/e9bYfoCaKi4vVvn17FRQUqFGjRtq/f7+aN29udiy4sOzsbEVFRUk6fS5pbm6uQkJCLvg6wzB04MCBKqt5+fn5KikpUWlpqU6dOqVGjRrJ399fVqtVYWFhjhXDqKgotx8IBJzBLVcA33nnHfn5+VW5PEVdq5x6LCkpOefPi4uLHc+pL+PHj1diYqLeeecdCiBM17hxYz388MN6+eWXderUKb311luKj483OxZclGEYiouLczyeNm1ajcqfdPpi0u3atVO7du0cd6MBYB6XGQIZMWKE7HZ7vV6TrEOHDpKk77///qyfFRcXKz8/3/Gc+rJo0SLZ7XaNHDmyXvcD1NTvrwnIpDqq87e//U3/+te/JEldunSpMkgEwL24TAHs3bu3YmNj9dxzz+nAgQP1so8///nP8vPz06JFi876j1xaWpp+++033XrrrfWyb+n0vVenT5+uxx57TL169aq3/QC10bVrV8dlM/bs2aO1a9eanAiuqKysTAkJCY7Hc+fOddymEoD7cZkCKEmzZs2S1Wqtt0NQrVq10rRp07Ry5Ur169dPc+fO1euvv67hw4dr4sSJuvnmm3X77bfXy74lKT4+Xo0bN9bMmTPrbR/AxeD+wLiQlJQU/fDDD5Kkvn37asiQIeYGAnBJXGYIpNKSJUv0yCOPaP369erfv3+97GP58uV6/fXXlZOTo99++00dO3bUsGHD9PTTT6tRo0b1ss/169frpptu0pIlS/TQQw/Vyz6Ai1X5/wf79u2Tj4+PfvrpJ1122WVmx4KLKCgoUJcuXXTs2DFJ0ldffeUYBAHgOmrT11yuAFZUVKhv3746fvy4vv76a4+4vlNZWZl69+6tkJAQbdy4UT4+LrXwCkg6vQJfec/qKVOmaPbs2SYngquIj4/X/PnzJZ0+X5sL2gOuqTZ9zeWaiI+Pj9544w199913Wrhwodlx6sRrr72m7777Tm+88QblDy5rzJgxatjw9IUB0tPT6/wODnBPP/74o+Nvsb+/v55//nmTEwGoCy7ZRpwxEOIsDH7AXbRt21Z33XWXJOmXX37RypUrTU4EV/DXv/7V8Y+BSZMmKSwszOREAOqCyx0CrlTft4VzFm7/BneyYcMGDRgwQNLpE/03btxociKYadOmTfrjH/8o6fQQXW5urgIDA01OBaA6bn0IuFLTpk01d+5cZWZm1tu9eevb+vXrlZmZqblz51L+4BZuvPFGXXnllZKkzz//XDt37jQ5Eczy+4s+z5w5k/IHeBCXLYCSNGrUKN1www167LHHVFZWZnacWikrK9Pjjz+uP/7xj1z0GW7DYrFUuSTMokWLTEwDM73//vv68ssvJUndu3fX6NGjTU4EoC65dAF054EQBj/grkaOHKnGjRtLkpYuXaqioiKTE8HZSktL9de//tXxeN68eY4BIQCeweWbiTsOhDD4AXcWHBysESNGSJJOnDih5cuXm5wIzvbaa68pLy9PkjRo0CDdcsst5gYCUOdcdgjkTO42EMLgB9zd119/rauvvlqS1KNHD33zzTeyWCwmp4IzHDlyRF26dJHNZpOPj4++/vpr9ejRw+xYAGrAI4ZAzuROAyEMfsAT9O7dWzfccIMkKScnR//+979NTgRnmTFjhmw2myTp0UcfpfwBHsotVgAl97hDCHf8gCd55513HANMw4YNc4vVd1ya7777ThERESovL1eTJk2Um5urNm3amB0LQA153Aqg5B4DIQx+wJPce++9atGihSTpww8/1C+//GJyItS3hIQElZeXS5Kefvppyh/gwdyqpbjyQAiDH/A0/v7+jkt/lJWVafHixSYnQn1av369Pv74Y0lSu3btqlwDEIDncasCKJ2+Yb3ValV8fLzZUaqIj49X48aNNXPmTLOjAHVm7NixjuGPlJQUx+oQPEtFRUWVwjdnzhzHpYAAeCa3K4CuOBDC4Ac8VceOHXXrrbdKkn7++Wf94x//MDkR6sOyZcu0fft2SdLVV1/NxesBL+A2QyBncqWBEAY/4On+/ve/67bbbpMk3XrrrZRAD3Py5El17drVcVrNunXrHPeDBuBePHII5EyuNBDC4Ac83S233KLw8HBJ0qeffqo9e/aYGwh1av78+Y7yd/vtt1P+AC/hto3FFQZCGPyAN2jQoIHGjh0rSTIMQ6mpqSYnQl05ePCg5s6dK0lq2LChkpKSTE4EwFnctgBK5g+EMPgBb/Hoo4/Kz89PkvTmm2+qtLTU5ESoC1OnTtXJkyclSePGjVO3bt1MTgTAWdy6AJo5EMLgB7xJq1atdN9990mSfv31V33wwQcmJ8Kl2rFjh958801Jp+///Nxzz5mcCIAzueUQyJnMGAhh8APeaNOmTfrjH/8oSfrDH/6gzZs3m5wIF8swDA0ePFhr166VJM2dO1eTJ082ORWAS+XxQyBnMmMghMEPeKPrr79ePXv2lCR9+eWXjsuGwP18+umnjvIXHh6uJ554wuREAJzNI9qLMwdCGPyAt7JYLIqNjXU8XrRokYlpcLF+++23Khd9fvHFF+Xv729iIgBmcPtDwJWOHz+url27auDAgfV60/rhw4frs88+0/fff8+5f/A6J06cUGhoqIqKitS4cWPt37+f/z9wMykpKRo/fryk04fyN23a5LjbCwD35lWHgCs5YyCEwQ94u4CAAI0aNUqSVFxcrKVLl5qcCLVhs9k0bdo0x+P58+dT/gAv5TErgFL9DoQw+AGc9r//+7+KiIiQJF1xxRXatWsXJcJNPPvss3rhhRckSffdd5/ef/99kxMBqEteuQIo1e9ACIMfwGlXXXWVbrzxRknSd9995zL35Mb5/fzzz3r55ZclSX5+fnrxxRdNTgTATB7XZOpjIITBD6CqM4dBkpOTTUyCmnr22WcdF/CeMGGCOnXqZHIiAGbyqEPAlep6IITBD6Aqu92uyy67TIcPH1aDBg30888/KzQ01OxYqMZXX32l6667TpLUvHlz5ebm8rcM8EBeewi4Ul0OhDD4AZzNz89P0dHRkqTy8nKlp6ebnAjVMQyjymVfnnvuOf6WAfDMFUCpbgZCGPwAqpefn6/w8HBVVFQoNDRUeXl5TrkTD2pn5cqVuueeeyRJXbt21c6dO/m/E+ChvH4FUKqbgRAGP4DqhYWF6Y477pB0+jzZjz/+2ORE+D273a6nn37a8Xju3LmUPwCSPLgASpc2EMLgB3BhlRcUlhgGcUXJycnKzc2VJN14442Owg4AHnsIuNLFDoQw+AFcWEVFhbp16+YoGd999526detmcipI0rFjx9SlSxcVFBRIkrZu3arIyEiTUwGoTxwCPsPFDIQw+AHUjI+PT5VVwJSUFBPT4EyzZ892lL+RI0dS/gBU4fErgFLtBkIY/ABq59ixY2rXrp1KS0sVHBys/fv3q0mTJmbH8mq5ubnq3r27ysrKZLVa9f333yssLMzsWADqGSuAv1ObgRAGP4DaadasmR544AFJUmFhod577z2TE+Gvf/2rysrKJElxcXGUPwBn8YoVwEpPPPGElixZou+///6cF609cOCAunXrpkceeUSvvfaaCQkB93TmhYavueYabd26lfsDm+SLL75Q3759JUmtW7fW7t27FRgYaHIqAM7ACmA1Zs2aJavVqvj4+HP+PD4+Xo0bN9bMmTOdnAxwb9dee62ioqIkSdu2bdNXX31lciLvVFFRoUmTJjkez5o1i/IH4Jy8qgCebyCEwQ/g0nBJGPO99957jvIdERGhRx991OREAFyVVx0Cls49EMLgB3DpiouL1a5dOx0/flyNGjXS/v371bx5c7NjeY2SkhJdccUV+vnnnyVJn376qQYPHmxyKgDOxCHg8zjXQAiDH8Cla9y4sR555BFJ0qlTp/TWW2+ZnMi7vPrqq47yN3jwYMofgPPyuhXASpUDIevXr9eAAQMY/ADqwA8//OC4EHTnzp31ww8/8I8qJ/jll1/UpUsXFRUVycfHR998840iIiLMjgXAyVgBrIHKgZC+ffsy+AHUkcq77kjSnj17tHbtWpMTeYfp06erqKhIkjR69GjKH4AL8toC2LRpUyUlJam0tJTBD6AOxcbGOr5nGKT+ffvtt0pLS5MkBQQE8I9ZADXitQVQkkaNGqVvv/1Wo0aNMjsK4DFuv/12tWvXTpL0ySefOM5LQ/2YPHmyysvLJZ2+AHSbNm1MTgTAHXh1AbRYLLriiiu4YC1Qhxo2bKiYmBhJp6fuK1enUPf+53/+R3//+98lSe3bt9fEiRNNTgTAXXh1AQRQP8aMGaOGDRtKktLT02W3201O5HnKy8sVFxfnePz888+rcePGJiYC4E4ogADqXGhoqO666y5JpydUV65caXIiz/P2229rx44dkqTIyEg9+OCDJicC4E4ogADqxZnDIIsWLTIxiec5ceKEEhMTHY/nz5/P5XYA1Ap/MQDUixtvvFFXXnmlJGnjxo3auXOnyYk8x7x583Tw4EFJ0p133qkbb7zR5EQA3A0FEEC9sFgsVe4PzCpg3Thw4ICSkpIknR64mTt3rsmJALgjCiCAejNq1CjHYMLSpUsdFyvGxUtMTFRxcbEkafz48eratavJiQC4IwoggHoTHBysESNGSDp93try5ctNTuTevv76ay1ZskTS6d/ttGnTzA0EwG1RAAHUqzMPAycnJ6sGtx/HORiGobi4OMfvb+rUqWrRooXJqQC4KwoggHrVu3dvXX/99ZKknJwc/fvf/zY5kXv6+9//rnXr1kmSOnXqpMcff9zkRADcGQUQQL3j/sCXpqysTJMnT3Y8fvHFF9WoUSMTEwFwdxRAAPXu3nvvVfPmzSVJH374oX755ReTE7mX9PR0fffdd5KkG264Qffee6/JiQC4OwoggHrn7++v0aNHSzq9mrV48WKTE7mPwsJCPffcc47H8+fP5/7lAC4ZBRCAU4wdO9ZRXFJSUlReXm5yIvfwwgsv6OjRo5KkoUOH6g9/+IPJiQB4AgogAKfo1KmTbr31VknSzz//rH/+858mJ3J9eXl5euWVVyRJfn5+euGFF8wNBMBjUAABOM3vLwmD83v22Wd16tQpSdKTTz6pjh07mpwIgKewGDW4KJfNZlNwcLAKCwsVFBTkjFwAPFB5ebk6d+6svXv3ymKxaPfu3ercubPZsVzSf/7zH/Xp00eS1Lx5c+Xm5qpp06bmhgLg0mrT11gBBOA0DRo00Lhx4ySdvrBxamqqyYlck2EYmjRpkuPxjBkzKH8A6hQrgACc6pdfflFYWJjsdruaN2+uffv2yd/f3+xYLuW///u/HZd66datm3JycuTr62tyKgCujhVAAC6rVatWjnLz66+/6oMPPjA5kWs5deqUEhISHI+TkpIofwDqHAUQgNNxZ5DqvfHGG/rxxx8lSQMGDNBtt91mciIAnogCCMDpbrjhBvXs2VOS9OWXX2r79u0mJ3INv/76q2bNmiVJslgsXPQZQL2hAAJwOovFUuWSMIsWLTIxjeuYNWuWjh8/LkkaNWqUrr76anMDAfBYDIEAMEVRUZHatWunoqIiNW7cWPv37/fqSdfdu3ere/fu+u2332S1WrV79261a9fO7FgA3AhDIABcXmBgoEaNGiVJKi4u1tKlS01OZK6nn35av/32myQpPj6e8gegXrECCMA0//u//6uIiAhJ0hVXXKFdu3Z55TlvGzdu1I033ihJatOmjXbv3q2AgACTUwFwN6wAAnALV111lfr16ydJ+u6777RhwwZzA5mgoqJCcXFxjsezZs2i/AGodxRAAKby9kvCZGZmauvWrZKkHj166JFHHjE5EQBvwCFgAKay2+267LLLdPjwYTVo0EA///yzQkNDzY7lFCUlJerWrZvy8/MlSVlZWRo0aJDJqQC4Kw4BA3Abfn5+GjNmjCSpvLxc6enpJidynpdfftlR/m699VbKHwCnYQUQgOl+/vlndezYURUVFQoNDVVeXp7H3/7s8OHD6tKli06cOCEfHx/t2LFDV111ldmxALgxVgABuJXLLrtMt99+uyTpwIED+vjjj01OVP+ee+45nThxQpIUHR1N+QPgVBRAAC7Bm4ZB/vd//9dxqDsgIEAzZswwOREAb0MBBOASBg4cqM6dO0uSPvvsM33//fcmJ6o/kydPVkVFhSTpmWeeUevWrU1OBMDbUAABuAQfH58q9wdOSUkxMU39Wbt2rf75z39KksLCwjRx4kSTEwHwRhRAAC7j4Ycflr+/vyTprbfe0smTJ01OVLfKy8urXPT5+eefl9VqNTERAG9FAQTgMpo3b64HHnhAklRYWKj33nvP5ER1a8mSJcrJyZEkRUVFafjw4SYnAuCtKIAAXMqZh4GTk5NVgytVuYUTJ04oMTHR8Xj+/Pny8eFPMABz8NcHgEu59tprFRkZKUnatm2bvvrqK5MT1Y25c+fq0KFDkqS77rrLcQ9kADADBRCAS7FYLB53SZh9+/Zp3rx5kqSGDRvqpZdeMjkRAG9HAQTgch544AE1bdpUkvTee+/p119/NTfQJUpMTFRJSYkk6bHHHtPll19uciIA3o4CCMDlNG7cWA8//LAk6dSpU3rrrbfMDXQJtm/frqVLl0qSmjZtqmnTppmcCAAogABc1Lhx4xzfp6SkOC6c7E4Mw1BcXJxjkGXq1Klq1qyZyakAgAIIwEV169ZNAwcOlCTt2bNHa9euNTlR7X3yySdav369JKlTp0567LHHTE4EAKdRAAG4rN9fEsadlJWVafLkyY7HL730kho1amRiIgD4/yiAAFzWHXfcodDQUEmnV9N+/vlnkxPVXFpamuN+xn/84x91zz33mJwIAP4/CiAAl9WwYUONHTtWklRRUaG0tDSTE9VMYWGhpk+f7ng8f/58WSwW8wIBwO9QAAG4tDFjxqhhw4aSpPT0dNntdpMTXdjzzz+vo0ePSpKGDRumPn36mJwIAKqiAAJwaaGhoRoyZIgk6ZdfftHKlSvNDXQBP/30k1555RVJUqNGjfTCCy+YGwgAzoECCMDlnXlnkEWLFpmY5MKeeeYZxyrlU089pQ4dOpicCADOZjFqcKd1m82m4OBgFRYWKigoyBm5AMDBMAx1795d3333nSQpJydH3bt318mTJxUYGGhyuv/vyy+/1PXXXy9JatGihXJzcxUcHGxyKgDeojZ9jRVAAC7PYrFUuSRMdHS0OnXqpKCgIMfhVrMZhqFJkyY5Hs+YMYPyB8BlUQABuDzDMNS1a1c1aNBA0umVtr1790qSVq1aZVquEydOOIY9PvzwQ23evFmSdMUVVygmJsa0XABwIQ3NDgAA52MYhu6+++5qi55Zh4CLiorUtWtXHTp0SMOGDdMXX3zh+FlSUpJjchkAXBF/oQC4tJMnT2r16tXV/rx58+ZOTPP/ffnllzp06JAkKTMz07G9X79++stf/mJKJgCoKQ4BA3BpAQEBSkxMrPbnzZo1c2Ka/6+oqOic23fu3KmlS5c6OQ0A1A4FEIDLmzlzphYuXCgfn7P/ZJm1AnjixIlzbj927Jgefvhhffnll05OBAA1RwEE4BYef/xxffTRR2rcuHGV7b6+vqbkOXnyZLU/8/X1ZQIYgEvjHEAAbuOOO+7Qv/71L/Xv399RwM51KVPDMLR//35lZ2c7vvLz81VSUqLS0lLZ7Xb5+fnJ399fVqtVYWFhioyMVGRkpKKiohQaGnrBe/dWtwLYsWNHLVmyRFdeeeWlf2AAqCcUQABuJSoqSl9++aX+8pe/yGq16oknnpAk7dq1SytWrNDWrVuVnZ2tw4cPS5JatmypyMhI9evXT40bN5bVapWfn5/sdrtKSkpUXFysPXv2KCUlRUeOHJEktW7d2lEGhw4dqu7du5+V49tvvz1r27hx45SUlKSAgIB6/A0AwKXjTiAA3FZZWZlWrVql5ORkbdiwQc2aNVOfPn0cq3mRkZFq3779BVfzpNOrhvv27auyarhlyxYdO3ZM/fv3V2xsrIYMGeI45Hz77bfrk08+kSSFhIQoMzNTgwcPrtfPCwDnU5u+RgEE4Hb27duntLQ0paen69ChQ+rXr59iY2N11113yc/Pr872Y7fbtXLlSiUnJ+vzzz9X27ZtFR0drejoaBUXF+uWW25R27Zt9fHHH5s2jQwAlSiAADySzWZTQkKCMjIyZLVaNWrUKI0fP14RERH1vu+cnBwtWrRIy5YtU0lJicaMGaO5c+fyNxGAy6AAAvA4WVlZGjNmjAoKCjRz5kyNHj3alL9HNptNixcv1rRp0xQSEqKMjAzdfPPNTs8BAL9Xm77GZWAAuDSbzaaYmBgNHjxY3bp1086dOzVx4kTT/jEaFBSkiRMnKicnR127dtXgwYMVExMjm81mSh4AuBgUQAAuKysrSxEREcrMzFRKSoqysrLUoUMHs2NJksLDw7V27VqlpKQoMzNTERERysrKMjsWANQIBRCAS0pKSqqy6jd27NgaTfM6k8Vi0dixY6usBiYlJZkdCwAuiAIIwKUYhqFnn31WCQkJSkxMdKlVv+pUrgYmJiYqISFBU6ZMOecFqgHAVXAhaAAuwzAMPfnkk1q4cKEWLFigiRMnmh2pxiwWi2bNmqWQkBDFxcXpxIkTeuWVV1xu1RIAJAogABeSmJiohQsXKjU1VTExMWbHuSiTJk1SQECAxo4dq8DAQM2ePdvsSABwFgogAJeQlJSk559/XvPnz3fb8lcpJiZGRUVFio+PV3BwsCZPnmx2JACoggIIwHRZWVmOc/4mTZpkdpw6ERcXp4KCAiUkJKh3794aNGiQ2ZEAwIELQQMwlc1mU0REhLp166asrCyPOmfOMAwNHDhQu3fv1s6dO/n7CaBecSFoAG4jPj5eBQUFysjI8KjyJ50eDFm8eLEKCgo4DAzApVAAAZgmKytL6enpmjdvnstf6uVihYeHKykpSWlpaVq7dq3ZcQBAEoeAAZjEkw/9/h6HggE4A4eAAbi8hIQEjz30+3tnHgpOSEgwOw4AUAABON++ffuUkZGhmTNneuyh398LDw/XjBkzlJGRof3795sdB4CXowACcLr09HRZrVaNHj3a7ChONWbMGPn7+ys9Pd3sKAC8HAUQgFOVlZUpLS1NI0eO9Lpz4YKCgjRy5EilpaWprKzM7DgAvBgFEIBTrVq1SocOHdL48ePNjmKK8ePH6+DBg1q9erXZUQB4MaaAATjVgAEDVF5ero0bN5odxTR9+/aVr6+v1q1bZ3YUAB6EKWAALmnXrl3asGGDYmNjzY5iqtjYWK1fv17ffvut2VEAeCkKIACnWbFihZo1a6a7777b7CimuueeexQSEqIVK1aYHQWAl6IAAnCarVu3qk+fPvLz8zM7iqn8/PzUp08fbd261ewoALwUBRCAUxiGoezsbEVGRtbL+2/YsEEWi0UWi0XZ2dln/fzhhx9WQEBAvez7YkRGRp4zJwA4AwUQgFMcOHBAhw8frrcCeKbp06fX+z4uVWRkpA4dOqQDBw6YHQWAF6IAAnCKysOd9V0Ae/furU8++UTbtm2r9WsNw1BJSUk9pDpb5e+Bw8AAzEABBOAU2dnZatmypdq3b1+r1+3du1exsbHq1q2brFarmjdvrvvuu095eXnnfP4TTzyhkJCQGq0ChoeH67bbbtOaNWsUFRUlq9Wq1NRUx+Hk999/XzNmzFC7du0UGBioe++9V4WFhTp16pSeeuoptWrVSgEBAXrkkUd06tSpWn2usLAwtWjRgsPAAEzR0OwAALxD5fl/FoulVq/76quvtGnTJj3wwANq37698vLytGjRIvXv31+7du1S48aNqzw/KChIEydO1LRp07Rt2zZdc801533/77//XsOGDdPYsWMVHR2tbt26OX72wgsvyGq16q9//atyc3O1cOFC+fr6ysfHRwUFBZo+fbq+/PJLLVmyRB07dtS0adNq/LksFgvnAQIwDQUQgFPk5+erX79+tX7dX/7yF917771Vtt1+++26/vrr9d///d8aOXLkWa+ZMGGCXn75Zc2YMeOCd9zIzc3Vp59+qsGDBzu2bdiwQZL022+/6V//+pd8fX0lSUeOHNF7772nW265Rf/4xz8knb6mX25urt58881aFUBJ6tKliz7//PNavQYA6gKHgAE4RUlJyVmrdTVhtVod35eVlenXX39Vly5d1LRp02rP8wsODtZTTz2lv/3tb9q+fft5379jx45Vyt+ZRo0a5Sh/ktSnTx8ZhqFHH320yvP69Omj/Px8/fbbbzX9WJJOfzZnnXMIAGeiAAJwitLS0iplrqZKSko0bdo0hYWFqVGjRmrRooVatmyp48ePq7CwsNrXPfnkk2ratOkFzwXs2LFjtT+77LLLqjwODg6WdPr8vd9vr6ioOG+ec7FarSotLa3VawCgLnAIGIBT2O32i7oA9BNPPKG33npLTz31lK6//noFBwfLYrHogQceUEVFRbWvq1wFnD59+nlXAc9XShs0aFCr7TW4tXoVfn5+tR4eAYC6QAEE4BR+fn6y2+21ft2HH36ohx56SPPnz3dsKy0t1fHjxy/42qeeekqvvPKKZsyYoaZNm9Z63/XNbrerUaNGZscA4IU4BAzAKfz9/S/qfLcGDRqctbK2cOFClZeXX/C1lauAq1ev1tdff13rfde3kpIS+fv7mx0DgBdiBRCAU1itVhUXF9f6dbfddpuWLVum4OBgde/eXZs3b9b//M//qHnz5jV6/ZNPPqmXX35Z33zzjZo0aVLr/denkpKSizovEgAuFSuAAJwiLCxMe/bsqfXrXn31VY0aNUrLly9XXFycDh48qP/5n/+p8X19mzZtqqeeeqrW+3WG3NzcswZKAMAZLEYNzlq22WwKDg5WYWGhgoKCnJELgIeZNm2aUlJSdPjw4VpfDNoTGYahVq1aKTY2VjNmzDA7DgAPUJu+xgogAKeIjIzUkSNHtG/fPrOjuIT8/HwdPXq03u+NDADnQgEE4BRRUVGSxK3P/k/l76Hy9wIAzkQBBOAUoaGhat26NQXw/2RnZ6tNmzYKDQ01OwoAL0QBBOAUFotFkZGRFMD/k52dzeFfAKahAAJwmqioKG3ZsuWiLgjtSU6dOqUtW7Zw+BeAaSiAAJxm6NChOnbsmFauXGl2FFOtXLlSBQUFGjp0qNlRAHgpLgMDwKkGDBig8vJybdy40ewopunbt698fX21bt06s6MA8CBcBgaAy4qNjdXnn3+unJwcs6OYYseOHfriiy8UGxtrdhQAXowCCMCphgwZojZt2mjRokVmRzHFokWL1LZtW915551mRwHgxSiAAJzK19dXMTExWrZsmWw2m9lxnMpms2nZsmWKiYmRr6+v2XEAeDEKIACni46OVklJiRYvXmx2FKfKyMhQaWmpoqOjzY4CwMtRAAE4Xfv27TVmzBhNmzZNeXl5Zsdxiry8PD333HMaM2aM2rVrZ3YcAF6OKWAAprDZbIqIiFDXrl21du1aWSwWsyPVG8MwNHDgQOXm5ionJ4e/owDqBVPAAFxeUFCQMjIy9NlnnyktLc3sOPUqNTVV69atU0ZGBuUPgEugAAIwzc0336zo6GjFx8d77KHgvLw8TZ48WTExMRo0aJDZcQBAEoeAAZjMkw8Fc+gXgDNxCBiA2zjzUPC0adPMjlOnpk6dyqFfAC6JAgjAdDfffLPmzp2r2bNna8GCBWbHqRPz58/XnDlzlJSUxKFfAC6nodkBAECSJk+erOPHjysuLk4BAQGKiYkxO9JFS0tLU3x8vKZMmaL4+Hiz4wDAWSiAAFzG7NmzVVRUpLFjx+rEiROaNGmS2ZFqbf78+YqPj9eECRM0a9Yss+MAwDlRAAG4DIvFoldffVWBgYGKi4tTQUGBZs6c6RaDIYZhaOrUqZozZ46mTJmiWbNmuUVuAN6JAgjApVgsFs2ZM0dNmzZVQkKCNm/erMWLF6tDhw5mR6tWXl6eRo8erXXr1mnu3LmaPHmy2ZEA4LwYAgHgkiZPnqysrCz98MMPioiIUGpqqmpw1SqnMgxDKSkp6tGjh3bv3q2srCzKHwC3QAEE4LIGDRqknTt3avjw4Ro3bpwGDRqkvXv3mh1L0ulVv4EDB2r8+PEaPny4du7cybQvALdBAQTg0oKCgpSamlplNXDBggWy2Wym5LHZbFqwYEGVVb/U1FSu8wfArVAAAbiFytXABx98UAkJCWrXrp1iY2OVk5PjlP3n5ORo/PjxCg0NVUJCgh588EFW/QC4LQogALcRFBSklJQU5eXladKkSVq1apV69uypfv366b333pPdbq/T/dntdmVmZqpv377q2bOnVq9erfj4eO3du1cpKSms+gFwW9wLGIDbKisr0+rVq5WcnKz169erWbNmuu666xQZGen4CgsLq9HlWAzDUH5+vrKzsx1fW7ZsUUFBgQYMGKDY2Fjdeeed8vX1dcInA4Daq01fowAC8Ai7du3S+++/r61btyo7O1uHDh2SJDVt2lTXXXedLr/8clmtVlmtVvn5+clut6ukpEQlJSXKzc1Vdna2jh49Kklq06aNIiMjFRUVpfvvv1/du3c386MBQI1QAAF4NcMw9MEHH2jo0KGSpE6dOikgIEAlJSUqLS3VqVOn1KhRI/n7+8tqtSosLMyxYhgVFaXQ0FCTPwEA1F5t+hoXggbgcSwWiwoKChyPJ0+erHHjxpmYCABcC0MgADzSDz/84Pi+W7duJiYBANdDAQTgkb7//nvH9127djUxCQC4HgogAI9UuQLYuHFjzukDgN+hAALwOGVlZfrxxx8lnV79q8llYADAm1AAAXicn376SeXl5ZI4/AsA50IBBOBxzjz/jwEQADgbBRCAxzlzApgVQAA4GwUQgMehAALA+VEAAXgcCiAAnB8FEIDHqSyArVq1UtOmTc0NAwAuiAIIwKMUFRXpwIEDklj9A4DqUAABeJTdu3c7vqcAAsC5UQABeBTO/wOAC6MAAvAoFEAAuDAKIACPcmYB5CLQAHBuFEAAHqXyLiAWi0WdO3c2OQ0AuCYKIACPYRiGYwUwPDxcjRo1MjkRALgmCiAAj/HLL7/IZrNJ4vw/ADgfCiAAj8EACADUDAUQgMeoPP9PYgAEAM6HAgjAY7ACCAA1QwEE4DEogABQMxRAAB6jsgD6+/srLCzM5DQA4LoogAA8Qnl5uXJzcyVJl19+uXx8+PMGANXhLyQAj5CXl6eysjJJHP4FgAuhAALwCJz/BwA1RwEE4BEogABQcxRAAB6BAggANUcBBOARuAg0ANQcBRCAR6hcAWzWrJmaN29uchoAcG0UQABur7i4WPn5+ZI4/AsANUEBBOD2Kq//J1EAAaAmKIAA3B4DIABQOxRAAG6PARAAqB0KIAC3xwogANQOBRCA2zuzAHbp0sXEJADgHiiAANxeZQEMCwtT48aNTU4DAK6PAgjArf366686duyYJM7/A4CaogACcGtnDoBw/h8A1AwFEIBbYwAEAGqPAgjArVEAAaD2KIAA3BoFEABqjwIIwK1VngPo6+ur8PBwc8MAgJugAAJwWxUVFdq9e7ek09f/a9CggcmJAMA9UAABuK38/HydOnVKEod/AaA2KIAA3Bbn/wHAxaEAAnBbFEAAuDgUQABu68yLQHMXEACoOQogALfFCiAAXBwKIAC3VVkAg4KC1KpVK5PTAID7oAACcEunTp1SXl6epNOrfxaLxdxAAOBGKIAA3NKePXtkGIYkzv8DgNqiAAJwS2cOgHD+HwDUDgUQgFtiAAQALh4FEIBbogACwMWjAAJwS2cWwMsvv9zEJADgfiiAANxS5TmAoaGhCgwMNDkNALgXCiAAt1NQUKAjR45I4vAvAFwMCiAAt7N7927H9xRAAKg9CiAAt8MACABcGgogALdzZgHkItAAUHsUQABuh4tAA8CloQACcDuVK4ANGjRQx44dTU4DAO6HAgjArRiG4SiAnTp1kq+vr8mJAMD9UAABuJUDBw6ouLhYEod/AeBiUQABuBUGQADg0lEAAbgVBkAA4NJRAAG4Fa4BCACXjgIIwK1QAAHg0lEAAbiVygLYpEkThYaGmpwGANwTBRCA27Db7frxxx8lSZdffrksFovJiQDAPVEAAbiNn376SeXl5ZKYAAaAS0EBBOA2OP8PAOoGBRCA26AAAkDdoAACcBtcBBoA6gYFEIDbOPMi0JdffrmJSQDAvVEAAbiNyhXAVq1aqWnTpuaGAQA3RgEE4BaKiop08OBBSZz/BwCXigIIwC3s3r3b8T0FEAAuDQUQgFtgAAQA6g4FEIBbOHMAhBVAALg0FEAAboFrAAJA3aEAAnALlQXQYrGoc+fOJqcBAPdGAQTg8gzDcBTA8PBwNWrUyOREAODeKIAAXN7hw4dls9kkMQACAHWBAgjA5XH+HwDULQogAJdHAQSAukUBBODyKIAAULcogABcHgUQAOoWBRCAy6u8CLS/v7/CwsJMTgMA7o8CCMCl/fbbb9qzZ48k6fLLL5ePD3+2AOBS8ZcUgEvbu3evysrKJHH4FwDqCgUQgEvj/D8AqHsUQAAu7cwCyEWgAaBuUAABuLTKARCJFUAAqCsUQAAujUPAAFD3KIAAXFplAWzWrJmaN29uchoA8AwUQAAuq7i4WPn5+ZJY/QOAukQBBOCycnNzHd8zAAIAdYcCCMBlMQACAPWDAgjAZTEAAgD1gwIIwGVRAAGgflAAAbisMwtgly5dTEwCAJ6FAgjAJRmG4TgH8LLLLlPjxo1NTgQAnoMCCMAl/frrryooKJDE4V8AqGsUQAAuifP/AKD+UAABuCQKIADUHwogAJdEAQSA+kMBBOCSzrwINHcBAYC6RQEE4JIqVwB9fX3VoUMHk9MAgGehAAJwORUVFdq9e7ek09f/a9CggcmJAMCzUAABuJz8/HydOnVKEuf/AUB9oAACcDlnDoBw/h8A1D0KIACXc+YACCuAAFD3KIAAXA6XgAGA+kUBBOByKIAAUL8ogABcTmUBDAoKUqtWrUxOAwCehwIIwKWcOnVKeXl5kk4PgFgsFnMDAYAHogACcCm5ubkyDEMSh38BoL5QAAG4FM7/A4D6RwEE4FIogABQ/yiAAFwKBRAA6h8FEIBL4SLQAFD/KIAAXErlCmBoaKgCAgJMTgMAnokCCMBlFBQU6MiRI5JY/QOA+kQBBOAydu/e7fieAggA9YcCCMBlMAACAM5BAQTgMs4cAOnWrZuJSQDAs1EAAbgMVgABwDkogABcRmUBbNCggTp27GhyGgDwXBRAAC7BMAxHAezUqZN8fX1NTgQAnosCCMAlHDhwQMXFxZI4/w8A6hsFEIBL4A4gAOA8Dc0OAMC7nTx5UkVFRRRAAHAiCiAA0+zYsUN/+MMfVFJSIj8/P8f2TZs2qUWLFrrjjjs4FxAA6gGHgAGY5ptvvlFJSYkkyW63O7YvXbpU9957r8aPH29WNADwaBRAAKa58cYbz/vzEydOOCkJAHgXCiAA01x22WW69tprz/mzxo0ba+bMmU5OBADegQIIwFT33nvvObcvWLCAYRAAqCcUQACmuueee87adttttykmJsaENADgHSiAAEzVuXNnhYaGOh4HBgYqIyNDFovFxFQA4NkogABMd+YwyPz589W6dWsT0wCA5+M6gABM9/bbbysgIEBXXnmloqOjzY4DAB6PAgjAdL6+vkpLSzM7BgB4DQoggDpnGIb279+v7Oxsx1d+fr5KSkpUWloqu90uPz8/+fv7y2q1KiwsTJGRkYqMjFRUVJRCQ0M5BxAA6hEFEECd2LVrl1asWKGtW7cqOztbhw8fliS1bNlSkZGR6tevnxo3biyr1So/Pz/Z7XaVlJSouLhYe/bsUUpKio4cOSJJat26taMMDh06VN27dzfzowGAx7EYhmFc6Ek2m03BwcEqLCxUUFCQM3IBcANlZWVatWqVkpOTtWHDBjVr1kx9+vRxrOZFRkaqffv2NVrNMwxD+/btq7JquGXLFh07dkz9+/dXbGyshgwZwr2BAaAatelrFEAAtbZv3z6lpaUpPT1dhw4dUr9+/RQbG6u77rpLfn5+dbYfu92ulStXKjk5WZ9//rnatm2r6OhoRUdHq3379nW2HwDwBBRAAPXCZrMpISFBGRkZslqtGjVqlMaPH6+IiIh633dOTo4WLVqkZcuWqaSkRGPGjNHcuXP5mwQA/4cCCKDOZWVlacyYMSooKNDMmTM1evRoU/4e2Gw2LV68WNOmTVNISIgyMjJ08803Oz0HALia2vQ1LgQN4LxsNptiYmI0ePBgdevWTTt37tTEiRNN+8dgUFCQJk6cqJycHHXt2lWDBw9WTEyMbDabKXkAwB1RAAFUKysrSxEREcrMzFRKSoqysrLUoUMHs2NJksLDw7V27VqlpKQoMzNTERERysrKMjsWALgFCiCAc0pKSqqy6jd27FiXuzafxWLR2LFjq6wGJiUlmR0LAFweBRBAFYZh6Nlnn1VCQoISExNdatWvOpWrgYmJiUpISNCUKVNUg9ObAcBrcSFoAA6GYejJJ5/UwoULtWDBAk2cONHsSDVmsVg0a9YshYSEKC4uTidOnNArr7zicquWAOAKKIAAHBITE7Vw4UKlpqYqJibG7DgXZdKkSQoICNDYsWMVGBio2bNnmx0JAFwOBRCApNPn/D3//POaP3++25a/SjExMSoqKlJ8fLyCg4M1efJksyMBgEuhAAJQVlaW45y/SZMmmR2nTsTFxamgoEAJCQnq3bu3Bg0aZHYkAHAZXAga8HI2m00RERHq1q2bsrKyPOqcOcMwNHDgQO3evVs7d+7k7xcAj8aFoAHUWHx8vAoKCpSRkeFR5U86PRiyePFiFRQUcBgYAM5AAQS8WFZWltLT0zVv3jyXv9TLxQoPD1dSUpLS0tK0du1as+MAgEvgEDDgpTz50O/vcSgYgDfgEDCAC0pISPDYQ7+/d+ah4ISEBLPjAIDpKICAF9q3b58yMjI0c+ZMjz30+3vh4eGaMWOGMjIytH//frPjAICpKICAF0pPT5fVatXo0aPNjuJUY8aMkb+/v9LT082OAgCmogACXqasrExpaWkaOXKk150LFxQUpJEjRyotLU1lZWVmxwEA01AAAS+zatUqHTp0SOPHjzc7iinGjx+vgwcPavXq1WZHAQDTMAUMeJkBAwaovLxcGzduNDuKafr27StfX1+tW7fO7CgAUGeYAgZwTrt27dKGDRsUGxtrdhRTxcbGav369fr222/NjgIApqAAAl5kxYoVatasme6++26zo5jqnnvuUUhIiFasWGF2FAAwBQUQ8CJbt25Vnz595Ofnd8HnTp8+XRaLRUePHnVCMufy8/NTnz59tHXrVrOjAIApKICAlzAMQ9nZ2YqMjKzT9w0PD5fFYtETTzxx1s82bNggi8WiDz/8sE73WZ3p06crPDy8Rs+NjIxUdnZ2/QYCABdFAQS8xIEDB3T48OE6L4CV0tPTdeDAgXp57/oQGRmpQ4cOuVVmAKgrFEDAS1Qe7qyPAnjVVVepvLxcL7744kW9/uTJk3Wc6MIqfw8cBgbgjSiAgJfIzs5Wy5Yt1b59+1q97ujRo7r//vsVFBSk5s2b68knn1RpaWmV54SHh2vUqFE1WgWsPLdw165dGj58uEJCQvSnP/3J8T633XabNmzYoKioKFmtVvXo0UMbNmyQJK1cuVI9evSQv7+/IiMjtX379lp9ljOFhYWpRYsWHAYG4JUogICXqDz/z2Kx1Op1999/v0pLS/XCCy/ov/7rv/Taa68pJibmrOdNmTJFv/32W41XAe+77z4VFxfr+eefV3R0tGN7bm6uhg8frttvv10vvPCCCgoKdPvtt2v58uWaOHGiRowYoRkzZmjPnj26//77VVFRUavPU8lisXAeIACv1dDsAACcIz8/X/369av16zp27Oi4a8Zjjz2moKAgJScnKz4+Xj179nQ8r1OnTho5cqTS09P1zDPPqG3btud93169eundd989a/v333+vTZs26frrr5ckde/eXYMHD1Z0dLS+++47XXbZZZKkkJAQjR07Vhs3blT//v0lnV5dnD59eo0/W5cuXfT555/X+PkA4ClYAQS8RElJiRo3blzr1z322GNVHldO+/7jH/8467mJiYk1XgUcN27cObd3797dUf4kqU+fPpKkm266yVH+ztz+448/XnBf1bFarSopKbno1wOAu6IAAl6itLRUVqu11q+7/PLLqzzu3LmzfHx8lJeXd9ZzK1cB09LSdPDgwfO+b8eOHc+5/cySJ0nBwcGSTp+zd67tBQUF593P+Vit1rPOZwQAb0ABBLyE3W6v0QWgL+RC5xBWngv40ksvnfd51ZXRBg0a1Gp7DW5nXi0/Pz+dOnXqol8PAO6KAgh4CT8/P9nt9lq/bvfu3VUe5+bmqqKiotoLLnfu3FkjRoxQamrqBVcBzWa329WoUSOzYwCA01EAAS/h7+9/Uee7vfHGG1UeL1y4UJJ06623VvuaxMRElZWVae7cubXenzOVlJTI39/f7BgA4HRMAQNewmq1qri4uNav++mnn3THHXfolltu0ebNm/XOO+9o+PDh6tWrV7WvqVwFfPvtty8lcr0rKSm5qPMiAcDdsQIIeImwsDDt2bOn1q9bsWKFGjVqpL/+9a/6+9//rscff1yLFy++4OsSExOrPW/PVeTm5p41XAIA3sBi1OAMapvNpuDgYBUWFiooKMgZuQDUsWnTpiklJUWHDx+u9cWgPZFhGGrVqpViY2M1Y8YMs+MAwCWrTV9jBRDwEpGRkTpy5Ij27dtndhSXkJ+fr6NHj9bLvZEBwNVRAAEvERUVJUnc+uz/VP4eKn8vAOBNKICAlwgNDVXr1q0pgP8nOztbbdq0UWhoqNlRAMDpKICAl7BYLIqMjKQA/p/s7GwO/wLwWhRAwItERUVpy5YtF3VBaE9y6tQpbdmyhcO/ALwWBRDwIkOHDtWxY8e0cuVKs6OYauXKlSooKNDQoUPNjgIApuAyMICXGTBggMrLy7Vx40azo5imb9++8vX11bp168yOAgB1hsvAAKhWbGysPv/8c+Xk5JgdxRQ7duzQF198odjYWLOjAIBpKICAlxkyZIjatGmjRYsWmR3FFIsWLVLbtm115513mh0FAExDAQS8jK+vr2JiYrRs2TLZbDaz4ziVzWbTsmXLFBMTI19fX7PjAIBpKICAF4qOjlZJSUmN7unrSTIyMlRaWqro6GizowCAqSiAgBdq3769xowZo2nTpikvL8/sOE6Rl5en5557TmPGjFG7du3MjgMApmIKGPBSNptNERER6tq1q9auXSuLxWJ2pHpjGIYGDhyo3Nxc5eTk8HcMgEdiChjABQUFBSkjI0OfffaZ0tLSzI5Tr1JTU7Vu3TplZGRQ/gBAFEDAq918882Kjo5WfHy8xx4KzsvL0+TJkxUTE6NBgwaZHQcAXAKHgAEv58mHgjn0C8CbcAgYQI2deSh42rRpZsepU1OnTuXQLwCcAwUQgG6++WbNnTtXs2fP1oIFC8yOUyfmz5+vOXPmKCkpiUO/APA7Dc0OAMA1TJ48WcePH1dcXJwCAgIUExNjdqSLlpaWpvj4eE2ZMkXx8fFmxwEAl0MBBOAwe/ZsFRUVaezYsTpx4oQmTZpkdqRamz9/vuLj4zVhwgTNmjXL7DgA4JIogAAcLBaLXn31VQUGBiouLk4FBQWaOXOmWwyGGIahqVOnas6cOZoyZYpmzZrlFrkBwAwUQABVWCwWzZkzR02bNlVCQoI2b96sxYsXq0OHDmZHq1ZeXp5Gjx6tdevWae7cuZo8ebLZkQDApTEEAuCcJk+erKysLP3www+KiIhQamqqanDVKKcyDEMpKSnq0aOHdu/eraysLMofANQABRBAtQYNGqSdO3dq+PDhGjdunAYNGqS9e/eaHUvS6VW/gQMHavz48Ro+fLh27tzJtC8A1BAFEMB5BQUFKTU1tcpq4IIFC2Sz2UzJY7PZtGDBgiqrfqmpqVznDwBqgQIIoEYqVwMffPBBJSQkqF27doqNjVVOTo5T9p+Tk6Px48crNDRUCQkJevDBB1n1A4CLRAEEUGNBQUFKSUlRXl6eJk2apFWrVqlnz57q16+f3nvvPdnt9jrdn91uV2Zmpvr27auePXtq9erVio+P1969e5WSksKqHwBcJO4FDOCilZWVafXq1UpOTtb69evVrFkzXXfddYqMjHR8hYWF1ehyLIZhKD8/X9nZ2Y6vLVu2qKCgQAMGDFBsbKzuvPNO+fr6OuGTAYD7qU1fowACqBO7du3S+++/r61btyo7O1uHDh2SJLVo0UKRkZHq0qWLrFarrFar/Pz8ZLfbVVJSopKSEuXm5io7O1tHjx6VJLVp00aRkZGKiorS/fffr+7du5v50QDALVAAAZjKMAwdOHCgympefn6+SkpKVFpaqlOnTqlRo0by9/eX1WpVWFiYY8UwKipKoaGhZn8EAHA7FEAAAAAvU5u+xhAIAACAl6EAAgAAeBkKIAAAgJehAAIAAHgZCiAAAICXoQACAAB4GQogAACAl6EAAgAAeBkKIAAAgJehAAIAAHgZCiAAAICXoQACAAB4GQogAACAl6EAAgAAeBkKIAAAgJdpWJMnGYYhSbLZbPUaBgAAABensqdV9rbzqVEBLCoqkiSFhYVdQiwAAADUt6KiIgUHB5/3ORajBjWxoqJCBw4cUGBgoCwWS50FBAAAQN0wDENFRUUKDQ2Vj8/5z/KrUQEEAACA52AIBAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMv8P2CsqXrZmDwsAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "draw_frame_model(frame_model_A)" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "430c58ba", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.297415Z", - "iopub.status.busy": "2024-07-11T15:30:51.297234Z", - "iopub.status.idle": "2024-07-11T15:30:51.300732Z", - "shell.execute_reply": "2024-07-11T15:30:51.300263Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "isinstance(\n", - " list(frame_model_A.frames.var(\"bNrm\").parents.values())[0],\n", - " BackwardFrameReference,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "6430ea1c", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.302058Z", - "iopub.status.busy": "2024-07-11T15:30:51.301890Z", - "iopub.status.idle": "2024-07-11T15:30:51.305046Z", - "shell.execute_reply": "2024-07-11T15:30:51.304588Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{('bNrm',): }" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "frame_model_A.frames.var(\"aNrm\").children" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "e031ba38", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.306374Z", - "iopub.status.busy": "2024-07-11T15:30:51.306194Z", - "iopub.status.idle": "2024-07-11T15:30:51.309245Z", - "shell.execute_reply": "2024-07-11T15:30:51.308784Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "True" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "frame_model_A.infinite" - ] - }, - { - "cell_type": "markdown", - "id": "c425cd0d", - "metadata": {}, - "source": [ - "## Modifying the model\n", - "\n", - "-- To refactor to use standalone models" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "36a87446", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.310618Z", - "iopub.status.busy": "2024-07-11T15:30:51.310449Z", - "iopub.status.idle": "2024-07-11T15:30:51.421905Z", - "shell.execute_reply": "2024-07-11T15:30:51.421397Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAJ8CAYAAABunRBBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABuCUlEQVR4nO3deViVdf7G8fuoIEcFxF2Q1HFNsZwgHSu30qymElvcKqdSMWlVkalccq1G06mp3J2ZMnczzaYFK0nbnCRNDDdSCkXNhUWTTTi/P/hxRlIUkHO+Z3m/rsvrgsM557nB0tvn+/08j8Vms9kEAAAAr1HFdAAAAAA4FwUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1Qry5MKCwuVlpYmf39/WSwWR2cCAABAOdlsNp0+fVrBwcGqUuXS5/jKVADT0tIUGhpaKeEAAADgOKmpqWrSpMkln1OmAujv729/w4CAgCtPBgAAgEqVlZWl0NBQe2+7lDIVwOJl34CAAAogAACACyvLdj2GQAAAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8TDXTAQAAACqbzWbT4cOHlZCQYP+Vmpqq7Oxs5eTkKC8vT76+vvLz85PValVoaKjCw8MVHh6uiIgIBQcHy2KxmP42HIYCCAAAPEJSUpJWrlypbdu2KSEhQceOHZMk1a9fX+Hh4erWrZtq1Kghq9UqX19f5eXlKTs7W2fPntVPP/2kefPm6fjx45Kkhg0b2svggAED1K5dO5PfWqWz2Gw22+WelJWVpcDAQGVmZiogIMAZuQAAAC4rPz9f69at05w5cxQfH686deqoc+fO9rN54eHhatKkSZnO5tlsNh06dKjEWcOtW7fq1KlT6tGjh6KjoxUZGSkfHx8nfGflV56+RgEEAABu59ChQ1qwYIEWLlyoo0ePqlu3boqOjla/fv3k6+tbacfJy8vT2rVrNWfOHG3ZskWNGzfW8OHDNXz4cDVp0qTSjlMZKIAAAMAjZWVlKTY2VosWLZLVatWQIUM0cuRIhYWFOfzYiYmJmjt3rpYsWaLs7GwNGzZMM2bMcJluRAEEAAAeJy4uTsOGDVN6erqmTJmioUOHGuklWVlZWrx4sSZOnKigoCAtWrRIt956q9NzXCxXWfsal4EBAAAuLSsrS1FRUerTp4/atGmjXbt2adSoUcZOSgUEBGjUqFFKTExU69at1adPH0VFRSkrK8tInoqgAAIAAJcVFxensLAwLV++XPPmzVNcXJyaNm1qOpYkqVmzZtq4caPmzZun5cuXKywsTHFxcaZjlQkFEAAAuKSZM2eWOOs3YsQIl7s2n8Vi0YgRI0qcDZw5c6bpWJdFAQQAAC7FZrPp+eefV2xsrMaPH+9SZ/1KU3w2cPz48YqNjdW4ceNUhjELY7gQNAAAcBk2m01PP/20Xn/9dc2ePVujRo0yHanMLBaLpk6dqqCgII0ZM0ZnzpzRq6++6nJnLSUKIAAAcCHjx4/X66+/rvnz5ysqKsp0nAoZPXq0atWqpREjRsjf31/Tpk0zHekCFEAAAOASZs6cqRdffFGzZs1y2/JXLCoqSqdPn1ZMTIwCAwM1duxY05FKoAACAADj4uLi7Hv+Ro8ebTpOpRgzZozS09MVGxurjh07qnfv3qYj2XEhaAAAYFRWVpbCwsLUpk0bxcXFueSeuYqy2Wzq1auX9u/fr127djm0R3EhaAAA4DZiYmKUnp6uRYsWeVT5k4oGQxYvXqz09HSXWgamAAIAAGPi4uK0cOFCvfLKKy5/qZeKatasmWbOnKkFCxZo48aNpuNIYgkYAAAY4slLv7/njKVgloABAIDLi42N9dil3987fyk4NjbWdBwKIAAAcL5Dhw5p0aJFmjJliscu/f5es2bNNHnyZC1atEiHDx82moUCCAAAnG7hwoWyWq0aOnSo6ShONWzYMPn5+WnhwoVGc1AAAQCAU+Xn52vBggV66KGHvG62ICAgQA899JAWLFig/Px8YzkogAAAwKnWrVuno0ePauTIkaajGDFy5EgdOXJE69evN5aBKWAAAOBUPXv2VEFBgTZv3mw6ijFdu3aVj4+PPv/880p7T6aAAQCAS0pKSlJ8fLyio6NNRzEqOjpamzZt0u7du40cnwIIAACcZuXKlapTp47uuece01GMuvfeexUUFKSVK1caOT4FEAAAOM22bdvUuXNn+fr6lvk1kyZNksVi0YkTJxyYzLl8fX3VuXNnbdu2zcjxKYAAAMApbDabEhISFB4e7pD3b9asmSwWi5588skLvhYfHy+LxaI1a9Y45NgVER4eroSEBCPHpgACAACnSEtL07FjxxxWAIstXLhQaWlpDj1GZQgPD9fRo0eNZKUAAgAApyhe7nRkAWzfvr0KCgr08ssvV+j1v/32WyUnKl3xz8HEMjAFEAAAOEVCQoLq16+vJk2aVOj1J06cUP/+/RUQEKC6devq6aefVk5OTonnNGvWTEOGDCnTWcDivYVJSUkaPHiwgoKCdNNNN9nf584771R8fLwiIiJktVrVoUMHxcfHS5LWrl2rDh06yM/PT+Hh4dq+fXu5v5/Q0FDVq1fPyDIwBRAAADhF8f4/i8VSodf3799fOTk5eumll3THHXfoH//4h6Kioi543rhx43Tu3LkynwW8//77dfbsWb344osaPny4/fHk5GQNHjxYd911l1566SWlp6frrrvu0tKlSzVq1Cg9+OCDmjx5sn766Sf1799fhYWF5fp+LBaLsX2A1Zx+RAAA4JVSU1PVrVu3Cr++efPm9rtnPP744woICNCcOXMUExOja665xv68P/zhD3rooYe0cOFCPffcc2rcuPEl3/faa6/VsmXLLnh87969+vrrr9WlSxdJUrt27dSnTx8NHz5ce/bs0VVXXSVJCgoK0ogRI7R582b16NGjXN9Ty5YttWXLlnK9pjJwBhAAADhFdna2atSoUeHXP/744yU+L572/fDDDy947vjx48t8FvCxxx676OPt2rWzlz9J6ty5syTp5ptvtpe/8x8/cODAZY/1e1arVdnZ2eV+3ZWiAAIAAKfIycmR1Wqt8OtbtWpV4vMWLVqoSpUqSklJueC5xWcBFyxYoCNHjlzyfZs3b37Rx88veZIUGBgoqWjv3sUeT09Pv+RxLsZqtV6wj9EZKIAAAMAp8vLyynUB6Mu53F7C4r2Af/vb3y75vNJKadWqVcv1uM1mu+RxLsbX11e5ubnlft2VogACAACn8PX1VV5eXoVfv3///hKfJycnq7CwUM2aNbvo81u0aKEHH3xQ8+fPv+xZQFPy8vJUvXp1px+XAggAAJzCz8/viva7vfnmmyU+f/311yVJt99+e6mvGT9+vPLz8zVjxowKH9eRsrOz5efn5/TjMgUMAACcwmq16uzZsxV+/cGDB3X33Xfrtttu0zfffKN33nlHgwcP1rXXXlvqa4rPAr711lsVPq4jZWdnX9G+yIriDCAAAHCK0NBQ/fTTTxV+/cqVK1W9enU9++yz+s9//qMnnnhCixcvvuzrxo8fX+q+PdOSk5MvGCpxBoutDDsWs7KyFBgYqMzMTAUEBDgjFwAA8DATJ07UvHnzdOzYsQpfDNqT2Gw2NWjQQNHR0Zo8efIVv195+hpnAAEAgFOEh4fr+PHjOnTokOkoLiE1NVUnTpxw6L2RS0MBBAAAThERESFJRm595oqKfw7FPxdnogACAACnCA4OVsOGDSmA/y8hIUGNGjVScHCw049NAQQAAE5hsVgUHh5OAfx/CQkJRpZ/JQogAABwooiICG3duvWKLgjtCXJzc7V161Yjy78SBRAAADjRgAEDdOrUKa1du9Z0FKPWrl2r9PR0DRgwwMjxuQwMAABwqp49e6qgoECbN282HcWYrl27ysfHR59//nmlvSeXgQEAAC4rOjpaW7ZsUWJioukoRuzcuVNffvmloqOjjWWgAAIAAKeKjIxUo0aNNHfuXNNRjJg7d64aN26svn37GstAAQQAAE7l4+OjqKgoLVmyRFlZWabjOFVWVpaWLFmiqKgo+fj4GMtBAQQAAE43fPhwZWdnl+levp5k0aJFysnJ0fDhw43moAACAACna9KkiYYNG6aJEycqJSXFdBynSElJ0QsvvKBhw4YpJCTEaBamgAEAgBFZWVkKCwtT69attXHjRlksFtORHMZms6lXr15KTk5WYmKiQ/oUU8AAAMDlBQQEaNGiRfrss8+0YMEC03Ecav78+fr888+1aNEilziZRgEEAADG3HrrrRo+fLhiYmI8dik4JSVFY8eOVVRUlHr37m06jiSWgAEAgGGevBTsjKXfYiwBAwAAt3H+UvDEiRNNx6lUEyZMcKml32IUQAAAYNytt96qGTNmaNq0aZo9e7bpOJVi1qxZmj59umbOnOkyS7/FqpkOAAAAIEljx45VRkaGxowZo1q1aikqKsp0pApbsGCBYmJiNG7cOMXExJiOcwEKIAAAcBnTpk3T6dOnNWLECJ05c0ajR482HancZs2apZiYGD311FOaOnWq6TgXRQEEAAAuw2Kx6LXXXpO/v7/GjBmj9PR0TZkyxS0GQ2w2myZMmKDp06dr3Lhxmjp1qsvmZg8gAABwKRaLRTfffLMsFoumTZumW265RT///LPpWJeUkpKiXr16afr06fa9jK5a/iQKIAAAcDEpKSkaMGCAiq9Ut2PHDoWFhWn+/Pkqw9XrnMpms2nevHnq0KGD9u/fr7i4OI0dO9Z0rMuiAAIAAJdx9uxZ9evXTydPnpQk3X777frpp580ePBgPfbYY+rdu7fLnA0sPus3cuRIDR48WLt27XK5ad/SUAABAIBLsNlsGjZsmHbs2CFJatmypZYtW6agoCDNnz9fcXFx2rdvn8LCwjR79mxlZWUZyZmVlaXZs2eXOOs3f/58l7rO3+VQAAEAgEuYPXu2li9fLkmqVauW1q1bp9q1a9u/3rt3b+3atUsPPPCAYmNjFRISoujoaCUmJjolX2JiokaOHKng4GDFxsbqgQcecKuzfuejAAIAAOM+/fRTxcbG2j9/66231L59+wueFxAQoHnz5iklJUWjR4/WunXrdM0116hbt25asWKF8vLyKjVXXl6eli9frq5du+qaa67R+vXrFRMTo59//lnz5s1zq7N+5+NewAAAwKiDBw8qIiJCp06dkiSNGzdO06ZNK9Nr8/PztX79es2ZM0ebNm1SnTp11KlTJ4WHh9t/hYaGlmki12azKTU1VQkJCfZfW7duVXp6unr27Kno6Gj17dtXPj4+V/T9Okp5+hoFEAAAGHP27FndcMMN+uGHHyRJd9xxh95//31VrVq13O+VlJSkVatWadu2bUpISNDRo0clSfXq1VN4eLhatmwpq9Uqq9UqX19f5eXlKTs7W9nZ2UpOTlZCQoJOnDghSWrUqJHCw8MVERGh/v37q127dpX3TTsIBRAAALg8m82mwYMHa8WKFZKkVq1a6b///W+JfX9X8t5paWklzualpqYqOztbOTk5ys3NVfXq1eXn5yer1arQ0FD7GcOIiAgFBwdfcQZnK09f404gAADAiFmzZtnL38WGPq6ExWJRSEiIQkJCdPfdd1fKe3oShkAAAIDTbdy4UX/961/tn7/99ttusczqKSiAAADAqQ4ePKiBAweqsLBQkjR+/Hj169fPcCrvQgEEAABO89tvvykyMtI+8fvnP/9ZkydPNpzK+1AAAQCAU9hsNg0dOlQ7d+6UVDT08c4776hKFeqIs/ETBwAATvHKK69o5cqVkip/6APlQwEEAAAOt3HjRj377LP2z5csWcLQh0EUQAAA4FAHDhzQgAED7EMfEydOVGRkpNlQXo4CCAAAHKZ46CM9PV2SdNddd+mFF14wnAoUQAAA4BA2m02PPvqoEhMTJUlt2rTRkiVLGPpwAfwOAAAAh5g5c6ZWrVolSfL399e6desUGBhoOBUkCiAAAHCAuLg4Pffcc/bP33nnHbVt29ZgIpyPAggAACrVTz/9VOJOHy+88AL343UxFEAAAFBpfvvtN/Xr188+9HH33Xdr4sSJhlPh9yiAAACgUjD04T74HQEAAJVixowZFwx9BAQEGE6Fi6EAAgCAK/bJJ58w9OFGKIAAAOCKFA992Gw2SdKkSZMY+nBxFEAAAFBhZ86cUWRkpDIyMiRJffv21YQJE8yGwmVRAAEAQIXYbDY98sgj2rVrlySpbdu2evvttxn6cAP8DgEAgAr529/+pjVr1kiSAgICGPpwIxRAAABQbh9//LGef/55++fvvPOO2rRpYzARyoMCCAAAyiU5OVmDBg2yD31MnjxZd911l+FUKA8KIAAAKLPfD31ERkZq/PjxZkOh3CiAAACgTIqHPn788UdJRUMfb731FkMfbojfMQAAUCYvv/wyQx8eggIIAAAu66OPPtK4ceMkSRaLRUuXLmXow41RAAEAwCUlJydr8ODBJYY+7rzzTsOpcCUogAAAoFSnT5++YOij+Ewg3BcFEAAAXNTvhz6uvvpq7vThIfgdBAAAF/XSSy/p3XfflSQFBgZq3bp18vf3N5wKlYECCAAALvDhhx/ar+9XPPTRunVrw6lQWSiAAACghP3795cY+pgyZYr+/Oc/G06FykQBBAAAdsVDH5mZmZKkfv36lbjnLzwDBRAAAEgqGvp4+OGHlZSUJElq164dd/rwUPyOAgAASdKLL76otWvXSmLow9NRAAEAgP7zn/9owoQJkoqGPpYtW6ZWrVoZTgVHoQACAODl9u/frwceeMA+9DF16lTdcccdhlPBkSiAAAB4sd8Pfdxzzz0MfXgBCiAAAF6qsLBQf/nLX0oMffz73/+WxWIxnAyORgEEAMBLvfjii3rvvfckMfThbSiAAAB4of/85z+aOHGipKKhj+XLlzP04UUogAAAeJl9+/aVuNPHtGnTdPvttxtOBWeiAAIA4EWysrIUGRmprKwsSdK9996r5557znAqOBsFEAAAL1E89LF7925JUvv27Rn68FIUQAAAvMT06dO1bt06SVLt2rW1bt061apVy2woGEEBBADAC3zwwQd64YUXJP1v6KNly5aGU8EUCiAAAB5u7969Je70MX36dN12222GU8EkCiAAAB7s90Mf9913n5599lnDqWAaBRAAAA9VWFioIUOGaM+ePZKksLAw/etf/2LoAxRAAAA81bRp07R+/XpJDH2gJAogAAAeaMOGDRcMfbRo0cJwKrgKCiAAAB5m7969evDBB+2fv/jiiwx9oAQKIAAAHuT3Qx/333+//vrXvxpOBVdDAQQAwEMUFhbqoYcesg99dOjQQf/85z8Z+sAFKIAAAHiIqVOn6v3335ckBQUF6b333mPoAxdFAQQAwAO8//77mjRpkiSpSpUqDH3gkiiAAAC4uT179lww9NGnTx+DieDqKIAAALixzMxMRUZG6vTp05Kk/v37KzY21nAquDoKIAAAbqp46GPv3r2SGPpA2VEAAQBwU1OmTNGGDRskFQ19rFu3TjVr1jScCu6AAggAgBtav369Jk+eLKlo6GPFihX6wx/+YDgV3AUFEAAAN7Nnzx499NBD9s9ffvll3XrrrQYTwd1QAAEAcCOZmZnq27evfehj4MCBiomJMZwK7oYCCACAmygsLNSDDz6offv2SZKuueYaLVq0iKEPlBsFEAAANzF58mR98MEHkqQ6deow9IEKowACAOAG1q1bpylTpkgqGvpYuXKlmjdvbjgV3BUFEAAAF7d79+4SQx9/+9vf1KtXL4OJ4O4ogAAAuLDiO32cOXNGkjRo0CCNGTPGcCq4OwogAAAu6vdDH9deey1DH6gUFEAAAFzUpEmTSgx9vPfee6pRo4bhVPAEFEAAAFzQe++9p6lTp0pi6AOVjwIIAICLSUpK0pAhQ+yfz5gxg6EPVCoKIAAALiQjI6PE0MfgwYM1evRow6ngaSiAAAC4iOKhj/3790uSOnbsqIULFzL0gUpHAQQAwEW88MIL+s9//iNJqlu3LkMfcBgKIAAALmDt2rWaNm2apP8NfTRr1sxsKHgsCiAAAIYlJSXpL3/5i/3zmTNn6pZbbjGYCJ6OAggAgEEZGRnq27evfejjgQce0KhRowyngqejAAIAYEhBQYEGDx6s5ORkSUVDHwsWLGDoAw5HAQQAwJCJEyfqo48+ksTQB5yLAggAgAHvvvuuXnzxRUlS1apVtWrVKoY+4DQUQAAAnGzXrl0XDH3cfPPNBhPB21AAAQBwovT0dEVGRuq3336TVDT08cwzz5gNBa9DAQQAwEmKhz5++uknSdIf//hHhj5gBAUQAAAnmTBhgj7++GNJUr169Rj6gDEUQAAAnGDNmjV66aWXJP1v6KNp06aGU8FbUQABAHCwXbt26eGHH7Z//sorr6hnz57mAsHrUQABAHCg3w99PPjgg3r66acNp4K3owACAOAgBQUFGjRokH3o47rrrmPoAy6BAggAgIOMHz9en3zyiaT/DX1YrVbDqQAKIAAADrF69Wq9/PLLkoqGPlavXq2rrrrKcCqgCAUQAIBKlpiYWGLoY9asWerRo4exPMDvUQABAKhEp06dUmRkpM6ePStJGjJkiJ566inDqYCSKIAAAFSS4qGPAwcOSJLCw8M1b948hj7gciiAAABUknHjxikuLk6SVL9+fa1du5ahD7gkCiAAAJVg1apV+tvf/ibpf3f6YOgDrooCCADAFdq5c6ceeeQR++ezZ89m6AMujQIIAMAVuNjQx5NPPmk4FXBpFEAAACqoeOjj4MGDkhj6gPugAAIAUEHPP/98iaEP7vQBd0EBBACgAlauXKkZM2ZIkqpVq6bVq1crNDTUcCqgbCiAAACU0w8//KBHH33U/vns2bPVvXt3g4mA8qEAAgBQDidPnlS/fv3sQx9/+ctf9MQTTxhOBZQPBRAAgDI6d+5ciaGPiIgIhj7gliiAAACU0fPPP6+NGzdKkho0aKC1a9fKz8/PcCqg/CiAAACUwYoVKzRz5kxJDH3A/VEAAQC4jN8Pffz9739Xt27dDCYCrgwFEACASzh58qQiIyOVnZ0tSXr44Yf1+OOPG04FXBkKIAAApTh37pwGDhyolJQUSdL111+vuXPnMvQBt0cBBACgFM8995w+/fRTSQx9wLNQAAEAuIjly5frlVdekVQ09LFmzRo1adLEcCqgclAAAQD4nR07dmjo0KH2z1999VV17drVYCKgclEAAQA4T/GdPoqHPh555BFFR0cbTgVULgogAAD/79y5cxowYIB96KNTp06aM2cOQx/wOBRAAAD+37PPPqvPPvtMUtHQx7vvvsvQBzwSBRAAAEnLli3TrFmzJDH0Ac9HAQQAeL0dO3Zo2LBh9s9fe+01hj7g0SiAAACvduLEiRJ3+nj00Uc1cuRIw6kAx6IAAgC8VvHQx88//yypaOjjzTffZOgDHo8CCADwWn/961/1+eefS5IaNmzInT7gNSiAAACvkJeXp88++0wnT56UJC1dulSzZ8+W9L+hj5CQEJMRAaehAAIAvMKzzz6rXr16qVWrVnrzzTdLDH384x//0E033WQwHeBcFpvNZrvck7KyshQYGKjMzEwFBAQ4IxcAAJXqqquuUmpq6gWPDx06VAsXLmTfH9xeefpaNSdlAgBANptNhw8fVkJCgv1XamqqsrOzlZOTo7y8PPn6+srPz09Wq1WhoaEKDw9XeHi4IiIiFBwcXKGiduTIkYuWvzp16mjGjBmUP3gdCiAAwKGSkpK0cuVKbdu2TQkJCTp27JgkqX79+goPD1e3bt1Uo0YNWa1W+fr6Ki8vT9nZ2Tp79qx++uknzZs3T8ePH5dUNKhRXAYHDBigdu3alSnD1q1bL/r4qVOndMstt+jrr7+W1WqtnG8YcAMUQABApcvPz9e6des0Z84cxcfHq06dOurcubOGDx9uP6PXpEmTMp15s9lsOnToUImzhm+88YamTJmiHj16KDo6WpGRkfLx8Sn1PUorgFLRRaDj4+N1++23V+h7BdwRBRAAUGkOHTqkBQsWaOHChTp69Ki6deumFStWqF+/fvL19a3Qe1osFoWGhio0NFSRkZGSiiZ6165dqzlz5qh///5q3Lixhg8fruHDh1/09m2ffvppqe/fo0cP3XjjjRXKBrgrhkAAAFcsKytLsbGxWrRokaxWq4YMGaKRI0cqLCzM4cdOTEzU3LlztWTJEmVnZ2vYsGGaMWOG/e8rm82matWqqbCwsMTrbrvtNsXGxqpHjx7sAYRHKE9fowACAK5IXFychg0bpvT0dE2ZMkVDhw418ndFVlaWFi9erIkTJyooKEiLFi3SrbfeqsLCQvn6+qqgoECSNGjQIP31r3/Vtdde6/SMgCOVp69xHUAAQIVkZWUpKipKffr0UZs2bbRr1y6NGjXK2ImCgIAAjRo1SomJiWrdurX69OmjqKgonTlzRhs2bNCQIUOUlJSkZcuWUf7g9SiAAIByi4uLU1hYmJYvX6558+YpLi5OTZs2NR1LktSsWTNt3LhR8+bN0/LlyxUWFqaqVavqrbfe0tVXX206HuASKIAAgHKZOXNmibN+I0aMcLk9dBaLRSNGjChxNnDmzJmmYwEugwIIACgTm82m559/XrGxsRo/frxLnfUrTfHZwPHjxys2Nlbjxo1TGba+Ax6Py8AAAC7LZrPp6aef1uuvv67Zs2dr1KhRpiOVmcVi0dSpUxUUFKQxY8bozJkzevXVV13urCXgTBRAAMBljR8/Xq+//rrmz5+vqKgo03EqZPTo0apVq5ZGjBghf39/TZs2zXQkwBgKIADgkmbOnKkXX3xRs2bNctvyVywqKkqnT59WTEyMAgMDNXbsWNORACMogACAUsXFxdn3/I0ePdp0nEoxZswYpaenKzY2Vh07dlTv3r1NRwKcjgtBAwAuKisrS2FhYWrTpo3i4uI8as+czWZTr169tH//fu3atYu/2+ARuBA0AOCKxcTEKD09XYsWLfKo8icVDYYsXrxY6enpLAPDK1EAAQAXiIuL08KFC/XKK6+4/KVeKqpZs2aaOXOmFixYoI0bN5qOAzgVS8AAgBI8een391gKhidhCRgAUGGxsbEeu/T7e+cvBcfGxpqOAzgNBRAAYHfo0CEtWrRIU6ZM8dil399r1qyZJk+erEWLFunw4cOm4wBOQQEEANgtXLhQVqtVQ4cONR3FqYYNGyY/Pz8tXLjQdBTAKSiAAABJUn5+vhYsWKCHHnrI6/bCBQQE6KGHHtKCBQuUn59vOg7gcBRAAIAkad26dTp69KhGjhxpOooRI0eO1JEjR7R+/XrTUQCHYwoYACBJ6tmzpwoKCrR582bTUYzp2rWrfHx89Pnnn5uOApQbU8AAgHJJSkpSfHy8oqOjTUcxKjo6Wps2bdLu3btNRwEcigIIANDKlStVp04d3XPPPaajGHXvvfcqKChIK1euNB0FcCgKIABA27ZtU+fOneXr62s6ilG+vr7q3Lmztm3bZjoK4FDVTAcA3MH+/ft1+vRp0zFcjr+/v1q1amU6Bq6QzWZTQkKChg8f7rBjpKSkqHnz5pKkNWvW6N577y3x9UmTJmny5Mk6fvy46tWr57AcZREeHq7FixcbzQA4GgUQuIz9+/erdevWpmO4rH379lEC3VxaWpqOHTum8PBwpxxvypQpuueee1z2LiPh4eGaPn260tLSFBwcbDoO4BAUQOAyis/8vfPOO7r66qsNp3Edu3fv1oMPPsiZUQ9QvNzpjALYsWNH7dixQ++9916F9huePXtWNWrUcECy/yn+OWzbtk133323Q48FmEIBBMro6quv1nXXXWc6BlDpEhISVL9+fTVp0uSSzytept27d6+mTJmiDRs2yNfXV4899pimTJmiQ4cO6YknntCmTZtUo0YNjR07VmPGjCnxHgMHDtTZs2c1ZcoU9evX75JnAXv06KETJ07orbfe0qhRo7Rt2zZFRUXpmWeeUfPmzTVz5kxZrVbNmjVLR48e1U033aTFixerSZMmmjZtmubPn6+TJ0/q1ltv1b/+9S/VqVOnTD+P0NBQ1atXTwkJCRRAeCyGQADAyyUkJCg8PLzMS7IDBgxQYWGhXn75ZXXu3FnTpk3Tq6++qt69eyskJER/+9vf1LJlS8XExFxwTcGqVatq/Pjx+uGHH/Tee+9d9lgnT57U7bffro4dO+rVV19Vz5497V9bunSp5syZoyeffFJjxozRF198of79+2v8+PH6+OOP9de//lVRUVHasGGDYmJiyvzzsFgsCg8PV0JCQplfA7gbzgACgJdLTU1Vt27dyvz8Tp06af78+ZKkqKgoNWvWTGPGjNFLL72kv/71r5KkQYMGKTg4WP/85z8veO/Bgwdr6tSpZToLePToUc2bN08jRoywP5aSkiJJOnz4sPbv36/AwEBJUkFBgV566SVlZ2dr27Ztqlat6K+448ePa+nSpZo7d66qV69epu+xZcuW2rJlS9l+IIAb4gwgAHi57Ozscu2rGzZsmP3jqlWrKiIiQjabTUOHDrU/Xrt2bbVp00YHDhy44PXnnwVct27dJY9VvXp1PfLIIxf92v33328vf5LUuXNnSdKDDz5oL3/Fj+fl5enw4cNl+v4kyWq1Kjs7u8zPB9wNBRAAvFxOTo6sVmuZn3/VVVeV+DwwMFB+fn4XXL4lMDBQ6enpF32PBx54QC1bttSUKVN0qTuShoSElHptwovlkIr28F3s8dKyXIzValVOTk6Znw+4GwogAHi5vLy8cl0AumrVqmV6TFKp5a74LOCOHTu0fv36Uo91qWJa2jHLm+VifH19lZubW+bnA+6GAggAXs7X11d5eXlOP+6DDz6oli1bavLkyeUqZ86Ql5dX5v2CgDtiCAQAvJyfn5+R/W7FZwEffvhhpx/7crKzs+Xn52c6BuAwnAEEAC9ks9mUlpamzz//XIWFhTp79qyRHA888IBatGihHTt2GDl+abKzs8u1LxJwN5wBBAAPlpeXp+TkZO3Zs+eCX8V3cbFYLEpOTjaSr1q1aho/fnypk76mJCcnXzBMAngSi60MGy+ysrIUGBiozMxMBQQEOCMX4DK+//57+0VhuRPI//BzcS3p6ekXLXk//fSTCgoKLvv6unXr6vjx4y57f15nstlsatCggaKjozV58mTTcYAyK09f4wwgALiJwsJC/fLLLxeUvN27d+vXX38t8/tYLBY1a9ZMbdu2Vdu2bVVYWKjXXntNhw4d4qyXii6MfeLECafcGxkwhQIIAC4mOztb+/bts5e74qK3b9++cg1rWK1WtWnTxl702rZtq6uvvlqtWrUqsb/t8OHDeu2115SQkEABlOy3gIuIiDCcBHAcCiAAGGCz2XT8+PELSt6ePXv0888/l+uyKA0bNrSXu/PLXmhoqKpUufysX3BwsBo2bKiEhARFRkZewXflGRISEtSoUSMFBwebjgI4DAUQABzo3LlzOnDgwEX355XnzhRVq1ZVixYtLih5bdq0UVBQ0BVltFgs9v2cKCqALP/C01EAAaASZGVlae/evReUvP379ys/P7/M7+Pv739ByWvbtq1atGhRrrt1lFdERITeeOONct8VxNPk5uZq69ateuqpp0xHARyKAggAZWSz2XT48OELBjD27NmjtLS0cr1XaGjoBSWvbdu2aty4sZFJ3AEDBmjKlClau3atBg4c6PTju4q1a9cqPT1dAwYMMB0FcCgKIAD8Tm5ubolr5xWXvL179+rMmTNlfh9fX1+1bt36giGM1q1bq1atWg78DsqvXbt26tGjh+bMmePVBXDOnDnq2bOnrr76atNRAIeiAALwWqdOnbroEMaBAwdUWFhY5vepU6eOfdn2/OXbZs2aqWrVqg78DipXdHS0+vfvr8TERHXo0MF0HKfbuXOnvvzyS61evdp0FMDhKIAAPFpBQYF++eWXC0renj17dPz48TK/j8ViUfPmzS+6P69evXoO/A6cJzIyUo0aNdLcuXM1Z84c03Gcbu7cuWrcuLH69u1rOgrgcBRAAB7ht99+s1877/xf+/btU05OTpnfp0aNGhdM2RZfO8/Pz8+B34F5Pj4+ioqK0uzZs/Xyyy971Z2fsrKytGTJEsXExMjHx8d0HMDhKIAA3IbNZtOxY8cuekmVn3/+uVzv1bhx44sOYTRp0qRM187zVMOHD9f06dO1ePFijRo1ynQcp1m0aJFycnI0fPhw01EAp6AAAqh0Bw8e1K5du9SnT58KXVIkPz+/1GvnZWRklPl9qlWrppYtW5YYwCg+qxcYGFjuXN6gSZMmGjZsmCZOnKh+/fqpWbNmpiM5XEpKil544QUNGzZMISEhpuMATkEBBFBpCgsL9eqrr+q5555TXl6eJkyYoClTppT6/MzMzAuunbd7924lJyfr3LlzZT5uYGDgRe+E8Yc//IHlvAqYMWOGPvzwQw0bNkwbN240clkaZ7HZbBo6dKjq1KmjGTNmmI4DOA0FEEClSEtL08MPP6yNGzfaH9u4caMmT56sQ4cOXfTaeUeOHCnXMZo2bXrRZduGDRt6dElxtoCAAC1atEh9+vTRggULNGLECNORHGb+/Pn6/PPPFRcX51V7HgEKIGBQfHy8evbsKUnatm3bBbefevjhh7VmzZpyXXvOhPXr12vo0KE6efJkice/++471apVS2fPni3ze1WvXl1t2rS5oOS1bt1aNWvWrOzoKMWtt96q4cOHKyYmRn369PHIpeCUlBSNHTtWUVFR6t27t+k4gFNRAAEXMWnSJG3YsMF0jHJ77LHH9N133130awUFBaWWv/r1619wgeS2bdvqqquucqtr53myV155RR9//LFHLgWfv/Q7c+ZM03EAp6MAAi6gY8eO+uCDD/T999/ruuuuK9drbTabcnJyZLVaHZTu0korf8VCQkJ03XXXXXBplbp16zopISrq/KXgiRMnaurUqaYjVZoJEyaw9Auv5r3XOgCc5PDhwxo6dKiCg4NVvXp1NW/eXCNHjlReXp79OU8++aSCgoI0adKky75fs2bNdOedd+qTTz5RRESErFar5s+fr/j4eFksFq1atUqTJ09WSEiI/P39dd999ykzM1O5ubl65pln1KBBA9WqVUuPPPKIcnNzr/j7Cw4OvuTXJ0yYoPfff18zZszQo48+qhtuuIHy50ZuvfVWzZgxQ9OmTdPs2bNNx6kUs2bN0vTp0zVz5kyWfuG1OAMIOFBaWpo6deqkjIwMRUVFqW3btjp8+LDWrFlTYmk0ICBAo0aN0sSJE8t0FnDv3r0aNGiQRowYoeHDh6tNmzb2r7300kuyWq169tlnlZycrNdff10+Pj6qUqWK0tPTNWnSJH377bf697//rebNm2vixIlX9D1u2LBBtWvX1nvvvae1a9fqm2++kc1ms389PT39it4f5o0dO1YZGRkaM2aMatWqpaioKNORKmzBggWKiYnRuHHjFBMTYzoOYI6tDDIzM22SbJmZmWV5OuBREhISbJJsCQkJ5X7tkCFDbFWqVLF99913F3ytsLDQtmnTJpsk2+rVq20ZGRm2oKAg2913321/zl/+8hdbzZo1S7yuadOmNkm2jz/+uMTjxe8VFhZmy8vLsz8+aNAgm8Visd1+++0lnt+lSxdb06ZNy/09FSvt55KWlmabO3eu7fbbb7f17t3b9vPPP1f4GHAdhYWFtieffNImyTZr1izTcSrklVdesUmyPfXUU7bCwkLTcYBKV56+xhIw4CCFhYVat26d7rrrLkVERFzw9d9vqA8MDNQzzzyj999/X9u3b7/kezdv3lx9+vS56NeGDBlS4tp3nTt3ls1m06OPPlrieZ07d1Zqamq5rrdXFo0bN9Zjjz2mDz/8UHFxcbrqqqsq9f1hhsVi0Wuvvabnn39eY8aM0YQJE0qc6XVlNptN48ePt5/5e/XVVz1qoAWoCAog4CDHjx9XVlaWwsLCyvyap59+WrVr177sXsDmzZuX+rXfF67iO16EhoZe8HhhYaEyMzPLnA/ezWKxaPr06fY9gb179y73LficLSUlRb169SqRm/IHUAABl1LWs4CXmvgt7RIqpT3uLmdx4DrGjh2ruLg47du3T2FhYZo/f77L/Xdks9k0b948dejQQfv371dcXJzGjh1rOhbgMiiAgIPUr19fAQEB2rVrV7le98wzz6h27dqaPHmyg5IBV653797atWuXBg8erMcee8ylzgYWn/UbOXKkBg8erF27djHtC/wOBRBwkCpVqigyMlIbNmzQtm3bLvh6aWdMis8Crl+/Xjt27HBwSqDiAgICNH/+/BJnA2fPnq2srCwjebKysjR79uwSZ/3mz5/Pdf6Ai6AAAg704osvqkGDBurevbtGjRqlBQsWaPLkyQoLC7vk3runn35agYGB+uGHH5yYFqiY4rOBDzzwgGJjYxUSEqLo6GglJiY65fiJiYkaOXKkgoODFRsbqwceeICzfsBlUAABBwoJCdHWrVt13333aenSpXrqqaf09ttvq0ePHqpRo0apr6tdu7aeeeYZ5wUFrlBAQIDmzZunlJQUjR49WuvWrdM111yjbt26acWKFSUufF4Z8vLytHz5cnXt2lXXXHON1q9fr5iYGP3888+aN28eZ/2Ay7DYyrBzNysrS4GBgcrMzOR/Knid77//XuHh4UpISCj3bdo8GT8XXEp+fr7Wr1+vOXPmaNOmTQoICNCf/vQnXX/99QoPD1d4eLhCQ0PLNJFrs9mUmpqqhIQE+6+tW7cqPT1dPXv2VHR0tPr27Vvi8keANypPX+NOIACASufj46P77rtP9913nzp27KgffvhBGzdu1I4dOzR9+nRJUr169RQeHq6WLVvKarXKarXK19dXeXl5ys7OVnZ2tpKTk5WQkKATJ05Ikho1aqTw8HA99dRT6t+/v9q1a2fy2wTcFgUQAOAwp0+ftk/Ct2nTRklJSUpLSytxNm/Lli3Kzs5WTk6OcnNzVb16dfn5+clqtSo0NFTR0dEKDw9XRETEZe89DaBsKIAAAIfZsmWLCgoKJEk333yzLBaLQkJCFBISorvvvttwOsB7MQQCAHCYzz77zP7xzTffbDAJgPNRAAEADvP5559LKrqNXI8ePcyGAWBHAQQAOMTJkyftFzPv2LGj6tatazYQADsKIADAIeLj4+0fs/wLuBYKIADAIdj/B7guCiAAwCGK9/9Vq1ZNXbt2NZwGwPkogACASnf48GHt3btXktSpUyf5+/sbTgTgfBRAAECl27Rpk/1jln8B10MBBABUOvb/Aa6NAggAqFQ2m82+/8/Pz09dunQxnAjA71EAAQCV6sCBA/rll18kSTfeeKP8/PwMJwLwexRAAEClYvkXcH0UQOAyvvvuO9MRALdSvPwrSbfccovBJABKQwEESpGZmamoqCg99thjpqMAbuP8/X/+/v4KDw83nAjAxVQzHQBwRe+//75GjhyptLQ001EAt/Ljjz/q+PHjkqTu3burWjX+mgFcEWcAgfP8+uuvGjhwoPr27Wsvf1ar1XAqwH2w/w9wDxRAQEXLVkuXLlW7du20cuVK++O33XabVq9ebTAZ4F7Y/we4BwogvF5qaqruvPNOPfjggzp58qQkqU6dOnr77bf14YcfqnHjxoYTAu7h3Llzio+PlyTVq1dPYWFhZgMBKBUFEF6rsLBQc+fOVfv27fXhhx/aH+/fv7+SkpL00EMPyWKxGEwIuJft27crKytLktSzZ09VqcJfMYCrYncuvNL+/fs1bNgwbd682f5Y48aNNWfOHEVGRpoLBrgx9v8B7oN/nsGrnDt3TjNmzNA111xTovwNHTpUSUlJlD/gCrD/D3AfnAGE1/jhhx80dOhQJSQk2B9r3ry5Fi5cyF9WwBXKzc3Vl19+KUlq0qSJWrZsaTgRgEvhDCA8Xm5uriZMmKCIiAh7+bNYLBo1apQSExMpf0Al2Lp1q7KzsyUVLf+yfxZwbZwBhEf75ptvNHToUO3evdv+WLt27bR48WL96U9/MpgM8Czn7//jH1WA6+MMIDzSmTNn9Mwzz+jGG2+0l79q1app4sSJ+v777yl/QCU7f/9fz549DSYBUBacAYTH2bhxo6KiopSSkmJ/LCIiQv/85z/VoUOHCr/v+WcRwc8D//Pbb7/p22+/lSS1atVKoaGhhhMBuBwKIDxGenq6xowZo3/961/2x/z8/DRt2jQ9/fTTFb4nqb+/vyTpwQcfrJScnqb45wPvtWXLFp07d04Sl38B3AUFEB7hvffeU3R0tI4ePWp/rEePHlq4cOEVTyO2atVK+/bt0+nTp680ptM98cQT+uabbyRJixcvVseOHSv1/f39/dWqVatKfU+4Hy7/ArgfCiDc2tGjR/Xkk09qzZo19scCAgI0c+ZMDRs2rNLuROCuJWfkyJH2Avjdd9/p0UcfNZwInuj8AtijRw9zQQCUGUMgcEs2m01vvfWW2rVrV6L83Xnnnfrxxx8VFRXFbagk9evXTzVq1JAkrVq1Snl5eYYTwdOkp6fr+++/lyRdc801ql+/vuFEAMqCvyHhdn7++Wfdfvvtevjhh5Weni6p6Mbzy5cv1/vvv68mTZoYTug6atWqpb59+0qSTp06pY8//thwInia+Ph42Ww2Sez/A9wJBRBuo7CwUG+88Ybat2+vTz75xP744MGDtXv3bg0cOJCLz17E+cMrS5cuNZgEnoj9f4B7stiK/+l2CVlZWQoMDFRmZqYCAgKckQsoYc+ePRo2bJi++uor+2MhISGaN2+e7rzzToPJXF9+fr5CQkJ0/Phx+fn56dixY/x/jErTvn17JSUlqWrVqjp16hT/bQEGlaevcQYQLi0/P18vvviirr322hLl77HHHtOPP/5I+SsDHx8fDRgwQJKUk5OjtWvXGk4ET3H06FElJSVJKrrWJuUPcB8UQLis7du3q1OnTho3bpx9eKFly5aKj4/X3LlzFRgYaDih+zh/Gfidd94xmASehOVfwH1RAOFysrOz9dxzz+n666/Xjh07JElVqlTR2LFj9cMPP6h79+5mA7qhTp06qUWLFpKK/tJOS0sznAie4PwCyAAI4F4ogHApX375pTp27KiXX35ZBQUFkqQOHTpo69atmjFjhv2SJigfi8ViPwtos9m0fPlyw4ngCYoLoK+vr2644QbDaQCUBwUQLuH06dN64okn1LVrV+3bt09S0V8qU6dO1bZt2xQREWE4oft74IEH7B+zDIwrdfDgQR08eFCSdMMNN8hqtRpOBKA8KIAw7qOPPlL79u315ptv2h/705/+pO3bt2v8+PHy9fU1mM5ztGrVSp06dZIk7dixQz/++KPhRHBn7P8D3BsFEMacPHlSQ4YM0R133KHU1FRJUo0aNfTqq6/qyy+/VLt27Qwn9DznnwXkmoC4Euz/A9wb1wGE09lsNq1Zs0ZPPPGEfv31V/vjvXr10oIFC9S8eXOD6TzbsWPHFBISooKCAjVt2lQHDhzglnkoN5vNpuDgYB09elS1atXSqVOn5OPjYzoW4PW4DiBc1pEjR3TPPfeof//+9vIXGBioxYsXKy4ujvLnYA0bNlTv3r0lFd1S7/xrKwJltXv3bh09elSS1K1bN8of4IYogHAKm82mf/7zn7r66qu1bt06++ORkZFKSkrSo48+ym3cnIRbw+FKsfwLuD8KIBzuwIED6t27t4YOHarMzExJUoMGDbR69WqtXbtWwcHBhhN6l8jISNWsWVOStGrVKvtFtoGyogAC7o8CCIcpKCjQq6++qg4dOuizzz6zPz5kyBAlJSXpvvvu46yfATVr1lRkZKQkKT09XR999JHZQHArBQUFio+PlyTVqVNH1157rdlAACqEAgiHSEpK0k033aRRo0bp7NmzkqSrrrpKH330kd566y3VrVvXcELvxq3hUFE7duxQenq6JKlnz54MEQFuiv9zUany8vI0depU/fGPf9S3335rf/yJJ57Qrl27dNtttxlMh2K9evVSgwYNJEkbNmywL80Dl8PyL+AZKICoNN99950iIiI0ceJE+76yNm3aaMuWLXr99dfl7+9vOCGKVatWTQMHDpQk5ebm6t133zWcCO6CAgh4BgogrtjZs2c1duxY/elPf1JiYqIkqWrVqnr22We1Y8cO3XTTTYYT4mK4KDTKKy8vT1u2bJEkNW7cWG3atDGcCEBFUQBxReLj43XttdfqlVdeUWFhoSSpY8eO+u677/TSSy/Jz8/PcEKU5vrrr1erVq0kSZs2bdKhQ4cMJ4Kr++9//6vffvtNUtHt3xjiAtwXBRAVkpmZqccee0w9e/ZUcnKyJKl69ep68cUX9d///ld//OMfDSfE5VgsFvtZQJvNpuXLlxtOBFfH8i/gOSiAKLf//Oc/at++vebPn29/7MYbb9SOHTv03HPPcVcAN8IyMMqDAgh4Dgogyuz48eN64IEHdOedd+rw4cOSpFq1aumNN97Q5s2b1bZtW8MJUV4tW7ZU586dJUk//PCDdu3aZTgRXNXZs2f1zTffSJJatGihpk2bGk4E4EpQAHFZxcuD7dq107Jly+yP9+nTR7t27dLjjz/OtcDcGLeGQ1l89dVX9ul+zv4B7s+r/9a22WzavXu3bDab6Sgu69ChQ7r77rs1ePBgnThxQpIUFBSkt956Sx999BFnATxA//79VbVqVUlFBbB4mAc4H8u/gGfx6gL49ttvq127dnr77bdNR3E5hYWFWrBggdq3b68PPvjA/vj999+v3bt3a8iQIUwAeogGDRqoT58+kqTU1FR9+eWXhhPBFZ1fAHv27GkwCYDK4LUFMCMjQ2PHjpWfn59iY2OVkZFhOpLLSE5O1i233KIRI0YoKytLktSoUSOtXbtWq1atUsOGDQ0nRGXj1nC4lIyMDG3btk2SFBYWxp8BgAfw2gI4YcIEZWdna8uWLTp79qwmTpxoOpJx586d0yuvvKIOHTrYb/YuSY8++qiSkpLUr18/c+HgUHfffbdq1qwpSVq9erVyc3MNJ4Ir2bx5s31rAMu/gGfwygK4Y8cOzZkzR5MnT1ZERIQmTZqkN998Uz/88IPpaMYkJibqhhtu0NixY5WTkyNJatasmTZu3KjFixcrKCjIcEI4Us2aNXXPPfdIKjrb8+GHHxpOBFfC/j/A83hdASwsLNTjjz+uq6++Wk8++aQk6amnnlLbtm31+OOPe90G+NzcXL3wwgu67rrr9N1330kqukDwM888o8TERPXq1ctwQjgL1wREaYoLYJUqVdS9e3fDaQBUBq8rgG+//ba+/vprvfHGG/YLFvv4+OiNN97QV199pSVLlhhO6DzffvutrrvuOk2ZMkXnzp2TJF199dX66quv9Pe//121atUynBDOdMstt9j3dm3YsIF9sZAk/frrr/Z7fIeHh6t27dpmAwGoFF5VADMyMhQbG6tBgwapR48eJb7Ws2dPDRo0yCsGQn777TeNHj1aN9xwg5KSkiRJ1apV04QJE7R9+3Z16dLFcEKYUK1aNQ0cOFCSlJeXp3fffddwIriCTZs22T9m+RfwHF5VAIsHP1555ZWLfv2VV17x+IGQzz77TB06dNDf//53+/UPw8PDlZCQoClTpqh69eqGE8IkpoHxe+z/AzyT1xTA8wc/goODL/qc4OBgjx0IycjI0LBhw9SrVy8dPHhQkuTn56cZM2bo22+/1TXXXGM4IVxBeHi4WrduLUmKj49Xamqq4UQwrbgA+vj46KabbjKcBkBl8YoCeLHBj9J44kDIunXr1K5dOy1evNj+WLdu3bRz506NHTtW1apVM5gOrsRisZQ4C7h8+XKDaWDaL7/8ouTkZElSly5dVKNGDcOJAFQWryiAFxv8KI0nDYQcO3ZM/fv3V79+/XTkyBFJkr+/v+bOnatNmzapVatWhhPCFQ0ePNj+McvA3o3lX8BzeXwBvNTgR2ncfSDEZrNpyZIlateunVavXm1//M9//rN+/PFHPfbYY6pSxeN/61FBLVq0sA8CJSYmaufOnYYTwRQKIOC5PL4FXG7wozTuOhDyyy+/6I477tCQIUN06tQpSVLdunW1dOlSbdiwQaGhoYYTwh1wTUDYbDZ99tlnkqQaNWqoc+fOhhMBqEweXQDLMvhRGncbCCksLNSbb76p9u3b6+OPP7Y/PnDgQO3evVuDBw+WxWIxmBDupH///va9ocuWLfOY/bAou3379iktLU2S1LVrV/n6+hpOBKAyeWwBLM/gR2ncZSBk79696t69u5544gmdOXNGUlGBXb9+vZYvX6769esbTgh3U79+fd12222SpEOHDmnz5s2GE8HZWP4FPJvHFsDyDH6UxtUHQvLz8/Xyyy/r2muv1Zdffml/PCoqSklJSbr77rsNpoO7YxnYu1EAAc9msRVfDfgSsrKyFBgYqMzMTAUEBDgj1xXJyMhQ69at1atXLy1btuyK32/w4MH67LPPtHfvXpe5DdL27ds1dOhQbd++3f5YixYttHDhQvXs2dNgMniKs2fPqmHDhjpz5owCAwN19OhR+fn5mY4FJygsLFSDBg108uRJ1a5dWydOnFDVqlVNxwJwGeXpax55BrCigx+lcaWBkJycHI0bN07XX3+9vfxVqVJFY8aM0c6dOyl/qDQ1atTQPffcI0nKzMzUhx9+aDgRnGXnzp06efKkJKlHjx6UP8ADeVwBvJLBj9K4ykDIV199pY4dO+rFF19UQUGBJCksLEzffPONXnnlFS7SikrHreG8E8u/gOfzqCXgwsJCde3aVZmZmdq+fXuF9/5dTH5+vjp27KigoCBt3rzZqdfRO3PmjJ5//nm98cYb9vv3+vj4aPz48Xr22WeZzoPDFBQUqEmTJjp69Kh8fX119OhRBQUFmY4FB7vzzjv1n//8R5L0448/ql27doYTASgLr10CrozBj9KYGgj55JNP1L59e73++uv28tepUyd9//33mjhxIuUPDlW1alUNGjRIkpSXl6c1a9YYTgRHy8/P1xdffCFJatiwoa6++mrDiQA4gscUwIrc8aO8HHWHkNOnT+vvf/97iYGOU6dO6eGHH9Ztt92mX375RZJktVo1e/Zsff311woLC6u04wOXcv40MMvAnm/btm32y0ndfPPNXD8U8FAeUwAre/CjNJU9EGKz2XTfffdp9OjRuvHGG5WcnKx3331X7dq101tvvWV/3s0336xdu3Zp1KhRbMiGU1133XVq27atJGnz5s32f5DAM7H/D/AOHlEAHTH4UZrKHghZt26d4uLiJEnZ2dnq0qWL7rvvPh07dkySFBAQoIULF+rTTz/VH/7whys+HlBeFoulxFnAyri0ElxX8e3fJOmWW24xmASAI7n9EIgjBz9KU1kDIdnZ2WrXrp1SUlIu+vW7775bc+bMUUhIyBWkBa7cgQMH1KJFC0lS+/btlZiYyNKgB8rOzlZQUJByc3PVrFkzHTx40HQkAOXgVUMgjhz8KE1lDYTMnDnzouXPYrFozpw5WrduHeUPLuEPf/iDbrjhBklFU6E7d+40nAiO8M033yg3N1cSy7+Ap3PrAuiMwY/SXOlAyIEDBzRt2rSLfs1ms+mTTz7hDAtcyvnXBOTWcJ6J/X+A93DrAuiswY/SXMlASGRkpPLz80v9+gcffKC8vLwriQdUqv79+6tatWqSivYBFl+MHJ7j/P1/FEDAs7ltAXTm4Edpzh8I2bFjR7lee/jw4VK/FhQUpOeee45r/MGl1K1bV7fffrukov9+N2/ebDgRKlNWVpa+++47SdLVV1+txo0bG04EwJHcsgAWFhbq8ccf19VXX60nn3zSaJannnpKbdu21RNPPKHCwsIyv+7dd9/VTTfdpKFDh2rRokX65JNPlJSUpNOnT+vUqVOaOnWqA1MDFcOt4TzXli1b7Gd1OfsHeL5qpgNURPHgx6ZNm5w2+FGa4oGQm2++WUuWLNFf/vKXMr2uR48e2rJli4PTAZXrrrvukr+/v06fPq01a9bozTfflJ+fn+lYqATn7//j8i+A53O7M4AmBz9K46g7hACuxmq16t5775VUtGT4wQcfGE6EylK8/89isah79+6G0wBwNLcrgKYHP0pT2XcIAVwVt4bzPCdOnLBf2P6Pf/yj6tSpYzgRAEdzqwLoCoMfpbmSgRDAnfTs2dM+IPDhhx/q1KlThhPhSsXHx9s/Zv8f4B3cpgC60uBHaSo6EAK4k6pVq2rQoEGSiu6Ks3r1asOJcKXY/wd4H7cpgCbu+FFelXWHEMDVcVFoz1K8/69atWq66aabDKcB4AxucS/gjIwMtW7dWr169XKLG9EPHjxYn332mfbu3avatWubjgNUOpvNpvbt22v37t2SpJSUFDVt2tRwKlTEoUOHFBoaKkm68cYb9eWXXxpOBKCiPO5ewK46+FEaBkLg6SwWS4mzgO7wDzNc3KZNm+wfs/wLeA+XL4CuPPhRGgZC4A0GDx5s//idd95RGRYT4IK4/RvgnVx6CbiwsFBdu3ZVZmamtm/f7rJ7/y4mPz9fHTt2VFBQkDZv3qwqVVy+awPl1rVrV/uS4fbt29WxY0ezgVAuNptNTZs2VWpqqvz8/JSRkaHq1aubjgWggjxmCdgdBj9Kw0AIvAG3hnNvP/30k1JTUyVJN910E+UP8CIuWwAdccePSZMmyWKx6MSJExf9elhYWKXeXYQ7hMDT3X///fZ/nC1fvtx+L1m4By7/Angvly2A7jb4URoGQuDJ6tSpozvuuEOSlJaWVuKCwnB97P8DvJdLFkB3HPwoDQMh8HTn3xqOawK6j8LCQvsEcEBAgK677jrDiQA4k8sVQHe440d5cYcQeLI777zTvtl4zZo1ys7ONpwIZfHjjz/q+PHjkqTu3burWrVqhhMBcCaXK4DuPPhRGgZC4MmsVqvuvfdeSdLp06e1YcMGw4lQFuz/A7ybSxVARwx+uAoGQuDJuDWc+2H/H+DdXKoAesrgR2kYCIGn6t69u32/7ocffqiTJ08aToRLOXfunL744gtJUv369dW+fXvDiQA4m8sUQFcZ/LBYLA57bwZC4KmqVq1qvzPIuXPntHr1asOJcCnff/+9srKyJBWd/eNC9YD3cZn/69955x35+vrqsccec9gx/Pz8JKnUTepnz561P8dRRo4cKV9fXy6aC49z/jQw/327NpZ/AbhMAXzwwQeVl5enefPmOewYTZs2lSTt3bv3gq+dPXtWqamp9uc4yty5c5WXl6eHHnrIoccBnO3aa6+1LyV+9dVXOnjwoOFEKM35AyAUQMA7uUwB7Nixo6Kjo/XCCy8oLS3NIce45ZZb5Ovrq7lz515wOZYFCxbo3Llzuv322x1ybKnoQrmTJk3S448/rmuvvdZhxwFMsFgsJc4CLlu2zGAalCY3N9d+/+bQ0FC1aNHCcCIAJrhMAZSkqVOnymq1KiYmxiHv36BBA02cOFFr165Vt27dNGPGDL3xxhsaPHiwRo0apVtvvVV33XWXQ44tSTExMapRo4amTJnisGMAJhXvA5SKloFtNpvBNLiYb7/9Vjk5OZKK/lHsyH3PAFyXSxXA2rVra8aMGVq+fLnDbik1btw4vfPOOyooKNCUKVMUExOj7du3a/LkyXr//fcdthl606ZNWr58uWbMmKHatWs75BiAaU2bNlW3bt0kSXv27NH27dsNJ8Lvsf8PgCRZbGX4J3pWVpYCAwOVmZlpv+K/oxQWFqpr167KyMjQjh07POJi0Pn5+erYsaOCgoK0efNmJu7g0RYsWKARI0ZIkkaPHq1Zs2YZToTz3XTTTfrqq68kSampqWrSpInhRAAqS3n6mss1kSpVqujNN9/Unj179Prrr5uOUyn+8Y9/aM+ePXrzzTcpf/B4999/v3x9fSVJy5cvV0FBgeFEKHbmzBlt3bpVktS6dWvKH+DFXLKNOGMgxFkY/IC3CQoK0h133CFJOnLkiDZt2mQ4EYp9+eWXOnfunCRu/wZ4O5csgJLjB0KchcEPeKPzbw3HNQFdB/v/ABRz2QLojIEQR2PwA97qz3/+swIDAyVJ7777rs6ePWs4EaSS1//ztPutAygfly2AkjRkyBDdcMMNevzxx5Wfn286Trnk5+friSee0I033shFn+F1/Pz8dN9990kq2ne2YcMGw4lw6tQp+1R2x44dVa9ePcOJAJjk0gXQnQdCGPyAt+PWcK7liy++sF+XkeVfAC7fTNxxIITBD0Dq3r27fcr0448/1okTJwwn8m7s/wNwPpcvgJL7DYQw+AEUncEfNGiQJOncuXNatWqV4UTerXj/X9WqVdW1a1fDaQCY5hYF0J0GQhj8AP7n/GngpUuXGkzi3Y4cOaLdu3dLkjp16uTwC/oDcH1uUQAl9xgIYfADKOmaa65RWFiYJOnrr7/WgQMHDCfyTudP//bs2dNgEgCuwm0KoDsMhDD4AVzo/LOAy5YtM5jEe51fALkANADJBe8FfDlPPvmk/v3vf2vv3r0KDg42muV8aWlpatOmjR555BH94x//MB0HcBmpqam66qqrJElt2rTR7t27ZbFYDKfyLs2bN1dKSoqqV6+u9PR0Wa1W05EAOIBb3wv4clx1IITBD+DiQkND1b17d0nS3r179f333xtO5F0OHjyolJQUSdKNN95I+QMgyQ0LoCsOhDD4AVwat4Yzh8u/ALgYt1sClqTCwkJ17dpVGRkZ2rFjh3x8fIxlyc/PV8eOHRUUFKTNmzez9w+4iIyMDDVs2FB5eXlq1KiRUlNTVa1aNdOxvMLgwYO1fPlySUWDOF26dDGcCICjePQSsORaAyEMfgCXV7t2bd15552SpKNHj5YYSoDj2Gw2+8/a399f119/veFEAFyF2zYWV7hDCHf8AMqOW8M53+7du3Xs2DFJUrdu3TjrCsDObQugZH4ghMEPoOzuuOMO+x7Z9957T7/99pvZQF6A/X8ASuPWBdDkQAiDH0D5+Pn56b777pMknTlzRu+//77hRJ7v/KV2CiCA87nlEMj5TAyEMPgBVMwXX3yhHj16SJL+/Oc/64MPPjAbyIMVFBSoXr16ysjIUN26dfXrr7/yZxXg4Tx+COR8JgZCGPwAKqZr164KDQ2VJH388cc6fvy44USea/v27crIyJBUdPs3/qwCcD6P+BPBmQMhDH4AFVelShUNHjxYUtEZqlWrVhlO5LlY/gVwKR5RACXnDYQw+AFcGS4K7RwUQACX4jEF0BkDIQx+AFcuLCxM11xzjSTp22+/VXJysuFEnicvL09btmyRJIWEhKh169aGEwFwNR5TACVpyJAhuuGGG/T4448rPz+/Ut87Pz9fTzzxhG688UY99NBDlfregLc5/yzgsmXLDCbxTFu3btXZs2clFZ39s1gshhMBcDUeVQAdORDC4AdQeQYNGmQvJUuXLlUZLkaAcmD5F8DleFyTccRACIMfQOVq0qSJ/XIw+/bt07Zt28wG8jAUQACX43EFUKr8gRAGP4DKx63hHOPs2bP65ptvJEktW7bUVVddZTgRAFfkkQWwMgdCGPwAHOPee+9V9erVJUkrVqzQuXPnDCfyDF9++aV9DzRn/wCUxiMLoFQ5AyEMfgCOU7t2bd15552SpF9//VWffvqp4USegeVfAGXhsQWwMgZCGPwAHOv8aeClS5caTOI5zi+APXv2NJgEgCtz+3sBX86TTz6pf//739q7d6+Cg4PL/Lq0tDS1adNGjzzyiP7xj384MCHgvXJzc9WoUSNlZGSoZs2aOnbsmGrWrGk6ltsqvu9vYWGhOnTooJ07d5qOBMCJvOpewJdT0YEQBj8Ax6tevbr69+8vSfrtt9+0fv16w4nc2xdffKHCwkJJLP8CuDSPL4AVGQhh8ANwHqaBKw/7/wCUlccvAUtSYWGhunbtqoyMDO3YsUM+Pj6lPjc/P18dO3ZUUFCQNm/ezN4/wMEKCwvVvHlz/fLLL6patarS0tLUoEED07HcUocOHbRr1y5VqVJFp06dUmBgoOlIAJyIJeDfKc9ACIMfgHNVqVLFfhawoKBAK1euNJzIPR07dky7du2SJEVERFD+AFyS1zScstwhhDt+AGacvwzMNHDFbNq0yf4xy78ALsdrCqB0+YEQBj8AM9q3b6+OHTtKkrZu3ar9+/ebDeSG2P8HoDy8qgBeaiCEwQ/ALM4CXpniAujr66sbb7zRcBoArs4rhkDOd7GBEAY/APMOHz6s0NBQ2Ww2tWzZUvv27ZPFYjEdyy38/PPPatasmSSpe/fuV3wLTADuiSGQS7jYQAiDH4B5ISEh9jtXJCcn67///a/hRO6D5V8A5eWVbef8gZBt27Yx+AG4CG4NVzEUQADl5XVLwMUyMjLUunVrnT59WgEBAdq7dy97/wDDMjMz1bBhQ+Xm5qp+/fo6fPjwJa/bCclmsykkJERHjhxRzZo1derUKfn6+pqOBcAAloDLoHbt2po5c6ZycnIY/ABcRGBgoO6++25J0vHjx/Xpp58aTuT69u7dqyNHjkiSunbtSvkDUCZeWwAlaciQIdq9e7eGDBliOgqA/8et4cqH5V8AFeHVBdBisaht27ZMGgIu5Pbbb1edOnUkSevWrdOZM2cMJ3Jt5xfAW265xWASAO7EqwsgANfj6+ur+++/X5J09uxZrVu3zmwgF1ZYWGi/A0hQUBCDbADKjAIIwOUwDVw2P/zwg06dOiVJ6tGjh6pWrWo4EQB3QQEE4HJuuOEG+4WN4+LidOzYMbOBXBT7/wBUFAUQgMupUqWKBg8eLKlomXPFihWGE7km9v8BqCgKIACXxL2BLy0/P1+bN2+WJDVq1Eht27Y1nAiAO6EAAnBJ7dq10x//+EdJ0nfffad9+/YZTuRavvvuO/uE9M0338zVDACUCwUQgMtiGKR07P8DcCUogABc1sCBA+1ntt555x2V4c6VXuOzzz6zf8z+PwDlRQEE4LKCg4Pt5ebAgQPaunWr4USuITs7W19//bUkqXnz5vaJaQAoKwogAJfGreEu9PXXXysvL08Sy78AKoYCCMCl3XPPPfLz85MkrVy5Uvn5+YYTmcf+PwBXigIIwKUFBATo7rvvliSdOHFCcXFxhhOZd/7+PwoggIqgAAJweUwD/09mZqa+++47SUWXymnUqJHhRADcEQUQgMvr06eP6tSpI0lat26dTp8+bTiROVu2bFFhYaEkzv4BqDgKIACX5+vrqwEDBkgqmoB97733DCcyh9u/AagMFEAAboFl4CLF+/8sFou6d+9uOA0Ad0UBBOAWunTpoubNm0uSPv30Ux09etRwIuc7fvy4du7cKUm67rrrFBQUZDgRAHdFAQTgFiwWi/2agIWFhVqxYoXhRM4XHx9v/5j9fwCuBAUQgNvw9otCc/s3AJWFAgjAbbRt21bh4eGSpISEBO3Zs8dwIucqHgCpVq2abrrpJsNpALgzCiAAt3L+WUBvGgZJTU3V/v37JUl/+tOfVLNmTcOJALgzCiAAtzJw4EBVqVL0R9fSpUtls9kMJ3KOTZs22T9m/x+AK0UBBOBWGjdubN//dvDgQX3zzTeGEzkH+/8AVCYKIAC3423XBLTZbPb9f1arVZ07dzacCIC7owACcDv9+vWT1WqVJK1cuVJ5eXmGEzlWcnKyDh06JEm66aabVL16dcOJALg7CiAAt+Pv76++fftKkk6ePKlPPvnEcCLHOv/2b+z/A1AZKIAA3JI3LQOz/w9AZbPYyjBCl5WVpcDAQGVmZiogIMAZuQDgkvLz8xUcHKwTJ07Iz89Px44d88g/nwoLC9WwYUOdOHFCgYGBOnHihKpVq2Y6FgAXVJ6+xhlAAG7Jx8dHAwYMkCTl5OTovffeM5zIMXbt2qUTJ05Ikrp37075A1ApKIAA3JY33BqO/X8AHIECCMBt/elPf9If/vAHSUVFKS0tzXCiysf+PwCOQAEE4LYsFov9LGBhYaFWrFhhOFHlOnfunL744gtJUv369dW+fXvDiQB4CgogALfmyfcGTkhI0OnTpyUVLf9aLBbDiQB4CgogALfWpk0bRURESJK+//577d6923CiysPyLwBHoQACcHueek1ABkAAOAoFEIDbGzBggKpUKfrjbOnSpSosLDSc6Mrl5OToq6++kiRdddVV9mEXAKgMFEAAbq9Ro0bq3bu3JCklJUVff/214URX7ttvv1VOTo4k9v8BqHwUQAAewdOGQdj/B8CRKIAAPEK/fv1Uo0YNSdKqVauUl5dnONGVOX//X8+ePQ0mAeCJKIAAPEKtWrUUGRkpSTp16pQ+/vhjs4GuwOnTp/Xf//5XUtGUc0hIiOFEADwNBRCAx/CUW8N9+eWXOnfunCSmfwE4BgUQgMfo3bu36tevL0nasGGDMjMzDSeqGPb/AXA0CiAAj+Hj46MBAwZIKrqMytq1aw0nqpjz9//16NHDXBAAHosCCMCjuPtFoU+ePKkdO3ZIkjp27Ki6deuaDQTAI1EAAXiUTp06qUWLFpKKzqQdPnzYcKLyiY+Pl81mk8T+PwCOQwEE4FEsFov9LKDNZtOKFSsMJyqf85d/2f8HwFEogAA8jjtPAxcXwKpVq6pr166G0wDwVBRAAB6nVatW6tSpkyRpx44d+vHHHw0nKpu0tDTt2bNHUtFStr+/v+FEADwVBRCAR3LHW8Ox/AvAWSiAADzSgAEDVLVqVUlFBbCwsNBwoss7vwAyAALAkSiAADxSw4YN1bt3b0nSL7/8oq+++spwokuz2Wz2C0BXr15dXbp0MZwIgCejAALwWOdfE9DVh0EOHjyoX375RZJ04403ys/Pz3AiAJ6MAgjAY0VGRqpmzZqSpNWrVys3N9dwotJx+zcAzkQBBOCxatasqcjISElSenq6PvroI7OBLoH9fwCciQIIwKO5w63hbDabvQD6+/srIiLCcCIAno4CCMCj9erVSw0aNJAkbdiwQZmZmYYTXejHH3/Ur7/+Kknq1q2bqlWrZjgRAE9HAQTg0apVq6aBAwdKknJzc/Xuu+8aTnQhrv8HwNkogAA8nqvfGo79fwCcjQIIwONdf/31atWqlSQpPj5ehw4dMpzofwoKChQfHy9Jqlu3rjp06GA2EACvQAEE4PEsFov9LKDNZtPy5csNJ/qf77//3r4vsWfPnqpShT+WATgef9IA8AquugzM/j8AJlAAAXiFli1bqnPnzpKknTt3KjEx0XCiIuz/A2ACBRCA13C1awLm5eVpy5YtkqSQkBD7PkUAcDQKIACvMWDAAFWtWlWStGzZMhUWFhrN8+233yo7O1tS0fKvxWIxmgeA96AAAvAa9evXV58+fSRJqamp9rNvprD8C8AUCiAAr+JKy8DnF8CePXsaTALA21AAAXiVu+++WzVr1pQkrV69Wrm5uUZy/Pbbb/r2228lFQ2oXHXVVUZyAPBOFEAAXqVmzZq65557JEkZGRn68MMPjeT48ssvlZ+fL4nLvwBwPgogAK/jCtcEZP8fAJMogAC8zi233KKGDRtKkj744AOlp6c7PcP5BbBHjx5OPz4A70YBBOB1qlWrpoEDB0oquhbfu+++69Tjp6enKyEhQZLUoUMHNWjQwKnHBwAKIACvdP40sLOXgb/44gvZbDZJ7P8DYAYFEIBXCg8PV+vWrSUVFbJffvnFacdm/x8A0yiAALySxWIpcRZw+fLlTjt2cQGsUqWKunXr5rTjAkAxCiAArzV48GD7x866KPTRo0f1448/SpIiIiIUGBjolOMCwPkogAC8VosWLdSlSxdJUmJionbu3OnwY27atMn+Mfv/AJhCAQTg1Zx9azj2/wFwBRRAAF6tf//+qlatmiRp2bJlKiwsrPRj/PDDD5oxY4Y+/PBDbdy4UZLk6+urG264odKPBQBlUc10AAAwqV69errtttv0wQcf6NChQ1q1apV++eUXnT17VmPHjrXfN/hK3HbbbTp69GiJxxo3bqytW7fqpptuko+PzxUfAwDKgwIIwOv17dtXH3zwgSRp0KBB9sdr1Kih2NjYK3pvm82mvLy8Cx7/+eefdfPNN6tLly766quvZLFYrug4AFAeLAED8FpnzpzRkCFDFB0dfdGv5+bmXvExLBaLrr/++lK//v333ys7O/uKjwMA5UEBBOC11q9fryVLlig/P/+iX2/atGmlHKdz586lfu2FF15QjRo1KuU4AFBWFEAAXqtbt26XvA6fowvgsGHD9Oyzz1bKMQCgPCiAALxWaGioPv/8c9WtW/eiX6+sAnixJeA+ffpozpw57P0DYAQFEIBXu+666/TFF1+oUaNGJR63WCwKCQmplGPUr19ftWrVsn/eunVrrV69mulfAMZQAAF4vfbt22vz5s1q2LCh/bHq1atXakG77rrrJBVd/2/jxo3y9/evtPcGgPKiAAKApFatWunbb7+V1WqVVHSbuMr06aef6t///rcOHjyoq666qlLfGwDKy2Kz2WyXe1JWVpYCAwOVmZmpgIAAZ+QCACNOnjypdevW6YEHHpCfn5/9cZvNpsOHDyshIcH+KzU1VdnZ2crJyVFeXp58fX3l5+cnq9Wq0NBQhYeHKzw8XBEREQoODma/HwCHKk9fowACQCmSkpK0cuVKbdu2TQkJCTp27Jikoj194eHhatGihWrUqCGr1SpfX1/l5eUpOztbZ8+e1U8//aSEhAQdP35cktSwYUN7GRwwYIDatWtn8lsD4IEogABQQfn5+Vq3bp3mzJmj+Ph41alTR507d7afzQsPD1eTJk3KdDbPZrPp0KFDJc4abt26VadOnVKPHj0UHR2tyMhIhkEAVAoKIACU06FDh7RgwQItXLhQR48eVbdu3RQdHa1+/frJ19e30o6Tl5entWvXas6cOdqyZYsaN26s4cOHa/jw4WrSpEmlHQeA96EAAkAZZWVlKTY2VosWLZLVatWQIUM0cuRIhYWFOfzYiYmJmjt3rpYsWaLs7GwNGzZMM2bM4M9ZABVCAQSAMoiLi9OwYcOUnp6uKVOmaOjQoUb+jMvKytLixYs1ceJEBQUFadGiRbr11ludngOAeytPX+MyMAC8TlZWlqKiotSnTx+1adNGu3bt0qhRo4z9AzcgIECjRo1SYmKiWrdurT59+igqKkpZWVlG8gDwfBRAAF4lLi5OYWFhWr58uebNm6e4uLhKu+XblWrWrJk2btyoefPmafny5QoLC1NcXJzpWAA8EAUQgNeYOXNmibN+I0aMcLlr81ksFo0YMaLE2cCZM2eajgXAw1AAAXg8m82m559/XrGxsRo/frxLnfUrTfHZwPHjxys2Nlbjxo1TGbZsA0CZVDMdAAAcyWaz6emnn9brr7+u2bNna9SoUaYjlZnFYtHUqVMVFBSkMWPG6MyZM3r11Vdd7qwlAPdDAQTg0caPH6/XX39d8+fPV1RUlOk4FTJ69GjVqlVLI0aMkL+/v6ZNm2Y6EgA3RwEE4LFmzpypF198UbNmzXLb8lcsKipKp0+fVkxMjAIDAzV27FjTkQC4MQogAI8UFxdn3/M3evRo03EqxZgxY5Senq7Y2Fh17NhRvXv3Nh0JgJviQtAAPE5WVpbCwsLUpk0bxcXFedSeOZvNpl69emn//v3atWsXfyYDsONC0AC8WkxMjNLT07Vo0SKPKn9S0WDI4sWLlZ6ezjIwgAqjAALwKHFxcVq4cKFeeeUVl7/US0U1a9ZMM2fO1IIFC7Rx40bTcQC4IZaAAXgMT176/T2WggH8HkvAALxSbGysxy79/t75S8GxsbGm4wBwMxRAAB7h0KFDWrRokaZMmeKxS7+/16xZM02ePFmLFi3S4cOHTccB4EYogAA8wsKFC2W1WjV06FDTUZxq2LBh8vPz08KFC01HAeBGKIAA3F5+fr4WLFighx56yOv2wgUEBOihhx7SggULlJ+fbzoOADdBAQTg9tatW6ejR49q5MiRpqMYMXLkSB05ckTr1683HQWAm2AKGIDb69mzpwoKCrR582bTUYzp2rWrfHx89Pnnn5uOAsAQpoABeI2kpCTFx8crOjradBSjoqOjtWnTJu3evdt0FABugAIIwK2tXLlSderU0T333GM6ilH33nuvgoKCtHLlStNRALgBCiAAt7Zt2zZ17txZvr6+pqMY5evrq86dO2vbtm2mowBwAxRAAG7LZrMpISFB4eHhlf7e8fHxslgsslgsSkhIuODrDz/8sGrVqlXpx70S4eHhF80KAL9HAQTgttLS0nTs2DGHFMDzTZo0yaHvX1nCw8N19OhRpaWlmY4CwMVRAAG4reLlTkcWwI4dO+qDDz7Q999/X+7X2mw2ZWdnOyDVxRX/HFgGBnA5FEAAbishIUH169dXkyZNyvyan3/+WdHR0WrTpo2sVqvq1q2r+++/XykpKRd9/pNPPqmgoKAynQVs1qyZ7rzzTn3yySeKiIiQ1WrV/Pnz7cvJq1at0uTJkxUSEiJ/f3/dd999yszMVG5urp555hk1aNBAtWrV0iOPPKLc3Nwyf0/FQkNDVa9ePZaBAVxWNdMBAKCiivf/WSyWMr/mu+++09dff62BAweqSZMmSklJ0dy5c9WjRw8lJSWpRo0aJZ4fEBCgUaNGaeLEifr+++913XXXXfL99+7dq0GDBmnEiBEaPny42rRpY//aSy+9JKvVqmeffVbJycl6/fXX5ePjoypVqig9PV2TJk3St99+q3//+99q3ry5Jk6cWK6fh8ViYR8ggDKhAAJwW6mpqerWrVu5XvPnP/9Z9913X4nH7rrrLnXp0kXvvvuuHnrooQte89RTT+nvf/+7Jk+efNm7bSQnJ+vjjz9Wnz597I/Fx8dLks6dO6cvvvhCPj4+kqTjx49rxYoVuu222/Thhx9KKrqeX3Jysv75z3+WuwBKUsuWLbVly5Zyvw6Ad2EJGIDbys7OvuCM3eVYrVb7x/n5+Tp58qRatmyp2rVrl7rPLzAwUM8884zef/99bd++/ZLv37x58xLl73xDhgyxlz9J6ty5s2w2mx599NESz+vcubNSU1N17ty5sn5bdlar1an7DgG4JwogALeVk5NTotCVRXZ2tiZOnKjQ0FBVr15d9erVU/369ZWRkaHMzMxSX/f000+rdu3al90L2Lx581K/dtVVV5X4PDAwUFLR3r3fP15YWHjJPKWxWq3Kyckp9+sAeBeWgAG4rby8vHJfAPrJJ5/Uv/71Lz3zzDPq0qWLAgMDZbFYNHDgQBUWFpb6uuKzgJMmTbrkWcBLFdKqVauW6/Ey3Kr9Ar6+vhUaIAHgXSiAANyWr6+v8vLyyvWaNWvW6C9/+YtmzZplfywnJ0cZGRmXfe0zzzyjV199VZMnT1bt2rXLmdY58vLyVL16ddMxALg4loABuC0/P79y73erWrXqBWfWXn/9dRUUFFz2tcVnAdevX68dO3aU67jOkp2dLT8/P9MxALg4zgACcFtWq1Vnz54t12vuvPNOLVmyRIGBgWrXrp2++eYbffrpp6pbt26ZXv/000/r73//u3744QfVrFmzIrEdKjs7u9z7IgF4H84AAnBboaGh+umnn8r1mtdee01DhgzR0qVLNWbMGB05ckSffvppme/rW7t2bT3zzDMVSOscycnJFwyVAMDvWWxl2GWclZWlwMBAZWZmKiAgwBm5AOCyJk6cqHnz5unYsWPluhi0p7LZbGrQoIGio6M1efJk03EAOFl5+hpnAAG4rfDwcB0/flyHDh0yHcUlpKam6sSJEw69NzIAz0ABBOC2IiIiJIlbn/2/4p9D8c8FAEpDAQTgtoKDg9WwYUMK4P9LSEhQo0aNFBwcbDoKABdHAQTgtiwWi8LDwymA/y8hIYHlXwBlQgEE4NYiIiK0devWcl8Q2tPk5uZq69atLP8CKBMKIAC3NmDAAJ06dUpr1641HcWotWvXKj09XQMGDDAdBYAb4DIwANxez549VVBQoM2bN5uOYkzXrl3l4+Ojzz//3HQUAIZwGRgAXiU6OlpbtmxRYmKi6ShG7Ny5U19++aWio6NNRwHgJiiAANxeZGSkGjVqpLlz55qOYsTcuXPVuHFj9e3b13QUAG6CAgjA7fn4+CgqKkpLlixRVlaW6ThOlZWVpSVLligqKko+Pj6m4wBwExRAAB5h+PDhys7O1uLFi01HcapFixYpJydHw4cPNx0FgBuhAALwCE2aNNGwYcM0ceJEpaSkmI7jFCkpKXrhhRc0bNgwhYSEmI4DwI0wBQzAY2RlZSksLEytW7fWxo0bZbFYTEdyGJvNpl69eik5OVmJiYn82QyAKWAA3ikgIECLFi3SZ599pgULFpiO41Dz58/X559/rkWLFlH+AJQbBRCAR7n11ls1fPhwxcTEeOxScEpKisaOHauoqCj17t3bdBwAboglYAAex5OXgln6BVAaloABeLXzl4InTpxoOk6lmjBhAku/AK4YBRCAR7r11ls1Y8YMTZs2TbNnzzYdp1LMmjVL06dP18yZM1n6BXBFqpkOAACOMnbsWGVkZGjMmDGqVauWoqKiTEeqsAULFigmJkbjxo1TTEyM6TgA3BwFEIBHmzZtmk6fPq0RI0bozJkzGj16tOlI5TZr1izFxMToqaee0tSpU03HAeABKIAAPJrFYtFrr70mf39/jRkzRunp6ZoyZYpbDIbYbDZNmDBB06dP17hx4zR16lS3yA3A9VEAAXg8i8Wi6dOnq3bt2oqNjdU333yjxYsXq2nTpqajlSolJUVDhw7V559/rhkzZmjs2LGmIwHwIAyBAPAaY8eOVVxcnPbt26ewsDDNnz9fZbgSllPZbDbNmzdPHTp00P79+xUXF0f5A1DpKIAAvErv3r21a9cuDR48WI899ph69+6tn3/+2XQsSUVn/Xr16qWRI0dq8ODB2rVrF9O+AByCAgjA6wQEBGj+/PklzgbOnj1bWVlZRvJkZWVp9uzZJc76zZ8/n+v8AXAYCiAAr1V8NvCBBx5QbGysQkJCFB0drcTERKccPzExUSNHjlRwcLBiY2P1wAMPcNYPgFNQAAF4tYCAAM2bN08pKSkaPXq01q1bp2uuuUbdunXTihUrlJeXV6nHy8vL0/Lly9W1a1ddc801Wr9+vWJiYvTzzz9r3rx5nPUD4BTcCxgAzpOfn6/169drzpw52rRpk+rUqaNOnTopPDzc/is0NLRMl2Ox2WxKTU1VQkKC/dfWrVuVnp6unj17Kjo6Wn379pWPj48TvjMAnq48fY0CCAClSEpK0qpVq7Rt2zYlJCTo6NGjkqR69eopPDxcLVu2lNVqldVqla+vr/Ly8pSdna3s7GwlJycrISFBJ06ckCQ1atRI4eHhioiIUP/+/dWuXTuT3xoAD0QBBIBKZrPZlJaWVuJsXmpqqrKzs5WTk6Pc3FxVr15dfn5+slqtCg0NtZ8xjIiIUHBwsOlvAYCHowACAAB4mfL0NYZAAAAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALwMBRAAAMDLUAABAAC8DAUQAADAy1AAAQAAvAwFEAAAwMtQAAEAALxMtbI8yWazSZKysrIcGgYAAAAVU9zTinvbpZSpAJ4+fVqSFBoaegWxAAAA4GinT59WYGDgJZ9jsZWhJhYWFiotLU3+/v6yWCyVFhAAAACVw2az6fTp0woODlaVKpfe5VemAggAAADPwRAIAACAl6EAAgAAeBkKIAAAgJehAAIAAHgZCiAAAICXoQACAAB4GQogAACAl/k/9+k0fuYBU58AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "draw_frame_model(frame_model_A.make_terminal())" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "39fa6959", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.423514Z", - "iopub.status.busy": "2024-07-11T15:30:51.423278Z", - "iopub.status.idle": "2024-07-11T15:30:51.572857Z", - "shell.execute_reply": "2024-07-11T15:30:51.572359Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAOwCAYAAACuwMU6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3rklEQVR4nOzdeViU5eI+8HtUBsaFLRdkUSwTNVxq+EadlLRcWtXKNHEpF0BwV6BFJHGrQGlRkbVjoaHlcWnxGBaidkqLSROOKybGoqSJjMbAoLy/PzzMT5RlgJl5hpn7c11cl7yzvPdwOnj7PO/zvDJJkiQQERERkdVoJToAEREREZkWCyARERGRlWEBJCIiIrIyLIBEREREVoYFkIiIiMjKsAASERERWRkWQCIiIiIrwwJIREREZGXa6POkqqoqFBUVoUOHDpDJZMbORERERESNJEkSrl27BldXV7RqVf8Yn14FsKioCB4eHgYJR0RERETGk5+fD3d393qfo1cB7NChg+4N7e3tm5+MiIiIiAxKrVbDw8ND19vqo1cBrJ72tbe3ZwEkIiIiMmP6XK7HRSBEREREVoYFkIiIiMjKsAASERERWRkWQCIiIiIrwwJIREREZGVYAImIiIisDAsgERERkZVhASQiIiKyMiyARERERFaGBZCIiIjIyrAAEhEREVkZFkAiIiIiK8MCSERERGRlWACJiIiIrAwLIBEREZGVYQEkIiIisjIsgERERERWhgWQiIiIyMqwABIRERFZGRZAIiIiIivDAkhERERkZVgAiYiIiKwMCyARERGRlWEBJCIiIrIyLIBEREREVoYFkIiIiMjKsAASERERWRkWQCIiIiIrwwJIREREZGVYAImIiIisDAsgERERkZVhASQiIiKyMiyARERERFaGBZCIiIjIyrAAEhEREVkZFkAiIiIiK8MCSERERGRlWACJiIiIrAwLIBEREZGVYQEkIiIisjIsgERERERWhgWQiIiIyMq0ER2AiIiIyNAkSUJhYSFUKpXuKz8/HxqNBuXl5dBqtZDL5bCzs4NCoYCHhweUSiWUSiV8fHzg6uoKmUwm+mMYDQsgERERWYTjx49j69atyMrKgkqlQnFxMQCgU6dOUCqV8PPzQ9u2baFQKCCXy6HVaqHRaFBWVoazZ88iPj4ely5dAgB06dJFVwbHjx+Pvn37ivxoBieTJElq6ElqtRoODg4oLS2Fvb29KXIRERERNaiyshI7d+5EXFwcMjMz4ezsDF9fX91onlKphLu7u16jeZIkoaCgoMao4eHDh3HlyhUMGTIEISEhGDNmDGxsbEzwyRqvMX2NBZCIiIhanIKCAiQmJiIpKQkXL16En58fQkJC8MILL0AulxvsPFqtFtu3b0dcXBwOHjyIrl27IiAgAAEBAXB3dzfYeQyBBZCIiIgsklqtRnh4OJKTk6FQKDBlyhQEBwfD29vb6OfOzs7Ghg0bkJqaCo1GgxkzZiA6OtpsuhELIBEREVmc9PR0zJgxAyUlJVi2bBmmT58upJeo1WqkpKQgMjISTk5OSE5OxogRI0yeo7Zc+vY1bgNDREREZk2tViMwMBAjR46El5cXcnJysGDBAmGDUvb29liwYAGys7PRq1cvjBw5EoGBgVCr1ULyNAULIBEREZmt9PR0eHt7Iy0tDfHx8UhPT0f37t1FxwIAeHp6Yu/evYiPj0daWhq8vb2Rnp4uOpZeWACJiIjILMXExNQY9QsKCjK7vflkMhmCgoJqjAbGxMSIjtUgFkAiIiIyK5Ik4a233kJ4eDgiIiLMatSvLtWjgREREQgPD8fixYuhxzILYbgRNBEREZkNSZIwb948rF27FrGxsViwYIHoSHqTyWRYvnw5nJycsGjRIly/fh0ffPCB2Y1aAiyAREREZEYiIiKwdu1aJCQkIDAwUHScJlm4cCHat2+PoKAgdOjQAStWrBAd6S4sgERERGQWYmJisGrVKqxZs6bFlr9qgYGBuHbtGkJDQ+Hg4ICwsDDRkWpgASQiIiLh0tPTddf8LVy4UHQcg1i0aBFKSkoQHh6OgQMHYvjw4aIj6XAjaCIiIhJKrVbD29sbXl5eSE9PN8tr5ppKkiQMGzYMZ86cQU5OjlF7FDeCJiIiohYjNDQUJSUlSE5OtqjyB9xaGJKSkoKSkhKzmgZmASQiIiJh0tPTkZSUhNWrV5v9Vi9N5enpiZiYGCQmJmLv3r2i4wDgFDAREREJYslTv3cyxVQwp4CJiIjI7IWHh1vs1O+dbp8KDg8PFx2HBZCIiIhMr6CgAMnJyVi2bJnFTv3eydPTE1FRUUhOTkZhYaHQLCyAREREZHJJSUlQKBSYPn266CgmNWPGDNjZ2SEpKUloDhZAIiIiMqnKykokJiZi8uTJVre2wN7eHpMnT0ZiYiIqKyuF5WABJCIiIpPauXMnLl68iODgYNFRhAgODsaFCxewa9cuYRm4CpiIiIhMaujQobh58yYOHDggOoowgwcPho2NDTIyMgz2nlwFTERERGbp+PHjyMzMREhIiOgoQoWEhGDfvn04ceKEkPOzABIREZHJbN26Fc7OznjxxRdFRxHqpZdegpOTE7Zu3Srk/CyAREREZDJZWVnw9fWFXC6v8zlLly6FTCbD5cuXTZjMtORyOXx9fZGVlSXk/CyAREREZBKSJEGlUkGpVBrk/Tw9PSGTyTBnzpy7HsvMzIRMJsO2bdsMci5jUCqVUKlUQs7NAkhEREQmUVRUhOLiYoMVwGpJSUkoKioy6HuaglKpxMWLF4VkZwEkIiIik6ie7jRkAXzggQdw8+ZNvPvuu016/d9//22wLI1V/XMQMQ3MAkhEREQmoVKp0KlTJ7i7u+v1/MuXL2PcuHGwt7fHPffcg3nz5qG8vLzGczw9PTFlyhS9RgGrry08fvw4/P394eTkhEGDBune57nnnkNmZiZ8fHygUCjQr18/ZGZmAgC2b9+Ofv36wc7ODkqlEkeOHGn8D+AOHh4e6Nixo5BpYBZAIiIiMonq6/9kMplezx83bhzKy8vxzjvv4JlnnsFHH32EwMDAu563ePFi3LhxQ+9RwJdffhllZWVYtWoVAgICdMdzc3Ph7++P559/Hu+88w5KSkrw/PPPY/PmzViwYAEmTZqEqKgonD17FuPGjUNVVZV+H7wOMplM2HWAbUx+RiIiIrJK+fn58PPz0/v5PXr00N0tY9asWbC3t0dcXBxCQ0PRv39/3fPuvfdeTJ48GUlJSXjzzTfRtWvXet93wIAB+Oyzz+46furUKfz444949NFHAQB9+/bFyJEjERAQgJMnT6Jbt24AACcnJwQFBeHAgQMYMmSI3p+nNj179sTBgweb9R5NwRFAIiIiMgmNRoO2bdvq/fxZs2bV+L56te/u3bvvem5ERITeo4AzZ86s9Xjfvn115Q8AfH19AQBPPPGErvzdfvz3339v8FwNUSgU0Gg0zX6fxmIBJCIiIpMoLy+HQqHQ+/n3339/je/vu+8+tGrVCnl5eXc9t3oUMDExERcuXKj3fXv06FHr8dtLHgA4ODgAuHWtXm3HS0pK6j2PPhQKxV3XNZoCCyARERGZhFarrXcD6IY0dO1g9bWA7733Xr3Pq6uEtm7dulHHJUmq9zz6kMvlqKioaPb7NBYLIBEREZmEXC6HVqvV+/lnzpyp8X1ubi6qqqrg6elZ6/Pvu+8+TJo0CQkJCQ2OApoLrVYLW1tbk5+XBZCIiIhMws7OrlHXu61fv77G92vXrgUAPP3003W+JiIiApWVlYiOjm5aSBPTaDSws7Mz+Xm5CpiIiIhMQqFQoKysTO/nnzt3DqNGjcJTTz2Fn376CZs2bYK/vz8GDBhQ52uqRwE/+eQTQ0Q2Oo1G06jrIg2FI4BERERkEh4eHjh79qzez9+6dStsbW3xxhtv4JtvvsHs2bORkpLS4OsiIiLqvG7P3OTm5t61yMQUZJIeVzCq1Wo4ODigtLQU9vb2pshFREREFiYyMhLx8fEoLi7WezNoSyZJEjp37oyQkBBERUU1+/0a09c4AkhEREQmoVQqcenSJRQUFIiOYhby8/Nx+fJlg94bWV+8BpCIiIhMwsfHB8CtW8KJmPY0Bq1WiytXrtT7HAcHh1qv86u+BVz1z8WUOAJIREREJuHq6oouXboIufetsfz444/o2rVrvV9bt26t9bUqlQouLi5wdXU1cWqOABIREZGJyGQyKJVKiyqAAwYMwN69e+t9zgMPPFDrcZVKJWT6F2ABJCIiIhPy8fHBunXrmn1XEHPh5OSEYcOGNfp1FRUVOHz4MObOnWuEVA3jFDARERGZzPjx43HlyhVs375ddBShtm/fjpKSEowfP17I+bkNDBEREZnU0KFDcfPmTRw4cEB0FGEGDx4MGxsbZGRkGOw9uQ0MERERma2QkBAcPHgQ2dnZoqMIcezYMfzwww8ICQkRloEFkIiIiExqzJgxcHFxwYYNG0RHEWLDhg3o2rUrRo8eLSwDCyARERGZlI2NDQIDA5Gamgq1Wi06jkmp1WqkpqYiMDAQNjY2wnKwABIREZHJBQQEQKPR6HVvX0uSnJyM8vJyBAQECM3BAkhEREQm5+bmhscffxwRERHIy8sTHcck8vLy8Pbbb2PGjBlwc3MTmoUFkIiIiEzqzJkzGDFiBDIyMlBRUYGpU6dCj01JWjRJkjB9+nQ4OzsjOjpadBxuBE1EtTtz5gyuXbsmOobZ6dChA+6//37RMYhapIqKCkRHR2PlypWoqKgAANy8eROZmZlITExEUFCQ4ITGk5CQgIyMDKSnp5vFlnosgER0lzNnzqBXr16iY5it06dPswQSNdL+/fsRFBSEU6dO6Y5169YN69evx5dffonQ0FCMHDkSnp6e4kIaSV5eHsLCwhAYGIjhw4eLjgOABZCIalE98rdp0yb06dNHcBrzceLECUyaNIkjo0SNcPnyZYSFhWHjxo26Y61bt8bChQvx9ttvo127dvDz88OePXswY8YM7N27FzKZTFxgA7t96jcmJkZ0HB0WQCKqU58+ffDQQw+JjkFELZAkSdi4cSPCwsLw119/6Y4/8sgjiI+Px4ABA3TH7O3tkZycjJEjRyIyMhLLly8XEdkolixZYlZTv9W4CISIiIgM6uTJkxg6dCimTZumK38ODg7YsGED/vOf/9Qof9VGjBiB6OhorFixArGxsaaObBRr1qzBypUrERMTYzZTv9U4AkhEREQGodFosGrVKrz33nuorKzUHZ8wYQJiY2Ph4uJS7+vDwsJw9epVLFq0CO3bt0dgYKCxIxtNYmIiQkNDsXjxYoSGhoqOcxcWQCIiImq27777DsHBwcjNzdUdu/fee7FhwwaMGDFC7/dZsWIFrl27hqCgIFy/fh0LFy40RlyjWrNmDUJDQzF37lyznc5mASQiIqImKy4uxsKFC/HZZ5/pjtnY2CA8PByLFy+GQqFo1PvJZDJ8+OGH6NChAxYtWoSSkhIsW7asRSwMkSQJS5YswcqVK7F48WIsX77cbHOzABIREVGjVVVVITk5Ga+//jquXr2qOz548GDEx8ejb9++TX5vmUyGlStXwtHREeHh4fjpp5+QkpKC7t27GyC5ceTl5WH69OnIyMhAdHQ0wsLCREeqFxeBkEFJkoQTJ05Y/I7uRETWLDs7G4MHD0ZQUJCu/Dk7OyMlJQWZmZnNKn+3CwsLQ3p6Ok6fPg1vb28kJCSY3d8vkiQhPj4e/fr1w5kzZ5Cenm725Q9gASQD+/TTT9G3b198+umnoqMQEZGBlZWV4Y033sBDDz2EH3/8UXd8ypQpOHnyJKZNm4ZWrQxbLYYPH46cnBz4+/tj5syZGD58OM6fP2/QczRVXl4ehg0bhuDgYPj7+yMnJ8fsVvvWhQWQDObq1asICwuDnZ0dwsPDa0wJEBFRy7Z792488MADeO+993Djxg0AQK9evZCRkYFPPvkEnTp1Mtq57e3tkZCQUGM0MDY2Fmq12mjnrI9arUZsbGyNUb+EhASz2uevISyAZDBLliyBRqPBwYMHUVZWhsjISNGRiIiomYqKivDyyy/j2WefRV5eHgBALpdj6dKlOHbsGIYOHWqyLNWjgRMnTkR4eDjc3NwQEhKC7Oxsk5w/OzsbwcHBcHV1RXh4OCZOnNiiRv1uxwJIBnH06FHExcUhKioKPj4+WLp0KdavX4/ffvtNdDQiImqCmzdvYt26dejduze2bdumO/7EE08gOzsbb7/9NmxtbU2ey97eHvHx8cjLy8PChQuxc+dO9O/fH35+ftiyZQu0Wq1Bz6fVapGWlobBgwejf//+2LVrF0JDQ3H+/HnEx8e3qFG/28kkPa6mVKvVcHBwQGlpaYv9oGQ8VVVVGDx4MEpLS3HkyBHY2NigsrISAwcOhJOTEw4cOGDwa0LIuH799VcolUqoVCreCu42/LmQtThy5AiCgoLwyy+/6I517NgRsbGxmDRpklltbVJZWYldu3YhLi4O+/btg7OzMx5++GEolUrdl4eHh16ZJUlCfn4+VCqV7uvw4cMoKSnB0KFDERISgtGjR8PGxsYEn6zxGtPXuA0MNdunn36KH3/8Efv27dP9n8LGxgbr1q3DE088gdTUVLz66quCUxIRUUOuX7+OyMhIfPjhh6iqqtIdnzFjBt577z04OzsLTFc7GxsbjB07FmPHjsXx48fx+eefIysrCykpKVi5ciWAW+VVqVSiZ8+eUCgUUCgUkMvl0Gq10Gg00Gg0yM3NhUqlwuXLlwEALi4uUCqVmDt3LsaNG2ewlc3mggWQmuXq1asIDw/HhAkTMGTIkBqPDR06FBMmTEB4eDhGjx4NR0dHIRmJiKhhu3btwuzZs1FQUKA71rdvXyQkJGDQoEECk+mvb9++WLp0KYBbo3lFRUU1RvMOHjwIjUaD8vJyVFRUwNbWFnZ2dlAoFPDw8EBISAiUSiV8fHzg6uoq9sMYGQsgNUv1wo/Vq1fX+vjq1avh5eWFyMhIfPTRRyZOR0REDcnPz8ecOXOwa9cu3TE7OztERkZi0aJFkMvlAtM1nUwmg5ubG9zc3DBq1CjRccwOL8yiJrt94Udd/1JydXXlghAiIjN048YNxMbGok+fPjXK38iRI/Hf//4Xb775Zostf9QwFkBqkqqqKsyaNQt9+vTBnDlz6n3u3Llz0bt3b8yaNavGNSVERCTGL7/8gv/7v//DokWL8PfffwO4dc3bli1b8O9//xv33nuv4IRkbCyA1CTVCz/WrVvX4Gqo6gUh//nPf5CammqihEREdKfS0lLMnj0bvr6+OHr0KIBbU6XBwcE4ceIExo8fb1YrfMl4WACp0epb+FGX2xeE8A4hRESmJUkSvvjiC/Tp0wfr16/X3U+3f//++OmnnxAXF8eFelaGBZAaraGFH3VZvXo17xBCRGRi586dw7PPPotx48bhwoULAIC2bdsiJiYGWVlZ8PX1FZyQRGABpEbRZ+FHXbgghIjIdCorK/Hee+/hgQcewL///W/d8eeffx7Hjx9HaGio2W5oTMbHAkh6a8zCj7pwQQgRkfH9+OOPeOihh/DGG29Ao9EAANzc3LB9+3bs2rUL3bt3F5yQRGMBJL01ZuFHXbgghIjIeEpKShAUFITHHnsMOTk5AIBWrVph3rx5OHHiBF544QUu8iAALICkp6Ys/KgLF4QQERmWJEn47LPP0Lt3byQmJuqOK5VK/Pzzz/jggw/QoUMHgQnJ3PBOIKSXpi78qAvvEEJExiJJEgoLC2vcAiw/P193CzCtVgu5XF7jFmBKpbLGLcBa0ihZbm4ugoOD8d133+mOdejQAStWrMCsWbPQunVrgenIXLEAUoOqF37ExMQY7N6I1QtCwsPDMX36dAwYMMAg70vmJzMzE0OHDgUAZGVlQalU1nj8tddew7Zt23D9+nUR8chCHD9+HFu3bkVWVhZUKhWKi4sBAJ06dYJSqYSfnx/atm0LhUIBuVwOrVYLjUaDsrIynD17FvHx8bh06RIAoEuXLroyOH78ePTt21fkR6tTRUUFoqOjsXLlSlRUVOiOv/TSS/jwww/h5uYmMB2ZOxZAqpchFn7UZe7cufj4448xa9YsHDhwAK1a8YoES7d06VJ89dVXomOQhaisrMTOnTsRFxeHzMxMODs7w9fXFwEBAboRPXd3d71G8yRJQkFBQY1Rw3Xr1mHZsmUYMmQIQkJCMGbMGLNZNbt//37MnDkTJ0+e1B3r1q0b1q9fj+eee05gMmopWACpXtULP/bt22fwX3zVC0KeeOIJpKam4tVXXzXo+5N5GThwIL7++mv8+uuveOihhxr1WkmSUF5eDoVCYaR01JIUFBQgMTERSUlJuHjxIvz8/LBlyxa88MILTb53rUwmg4eHBzw8PDBmzBgAgFarxfbt2xEXF4dx48aha9euCAgIQEBAANzd3Q34ifR3+fJlhIWFYePGjbpjrVu3xsKFC/H222+jXbt2QnJRy8MhF6qTIRd+1IULQixDYWEhpk+fDldXV9ja2qJHjx4IDg6GVqvVPWfOnDlwcnLC0qVLG3w/T09PPPfcc/j222/h4+MDhUKBhIQEZGZmQiaT4fPPP0dUVBTc3NzQoUMHjB07FqWlpaioqMD8+fPRuXNntG/fHlOnTq0xNUYtm1qtxsyZM+Hp6Yn3338fL774IrKzs7F//36MHz++yeWvLnK5HK+88goOHDiAY8eOYcyYMYiNjYWnpydmzpwJtVpt0PPVR5IkbNy4Eb17965R/nx9faFSqRAdHc3yR43CEUCqk6EXftSFC0JatqKiIjz88MO4evUqAgMD0bt3bxQWFmLbtm0oKyvTPc/e3h4LFixAZGSkXqOAp06dwoQJExAUFISAgAB4eXnpHnvnnXegUCjwxhtvIDc3F2vXroWNjQ1atWqFkpISLF26FIcOHcLGjRvRo0cP3n3GAqSnp2PGjBkoKSlBTEwMpk+fDnt7e5Odv1+/foiLi8O7776LlJQUREZGYvfu3UhOTsaIESOMeu6TJ09i5syZ2L9/v+6Yg4MD3n33XQQGBvLyGWoaSQ+lpaUSAKm0tFSfp5MFOHLkiNSqVStpzZo1Jjnf6tWrpVatWklHjx41yfmofiqVSgIgqVSqBp87ZcoUqVWrVtIvv/xy12NVVVXSvn37JADSF198IV29elVycnKSRo0apXvOq6++KrVr167G67p37y4BkPbs2VPjePV7eXt7S1qtVnd8woQJkkwmk55++ukaz3/00Uel7t276/OR9dKYnwsZRmlpqRQQECABkIYNGybl5eWJjiRJkiSdO3dOevLJJyUAUkBAgFH+ftRoNNKSJUskGxsbCYDu65VXXpEuXLhg8PNRy9eYvsZ/NtBdjLnwoy68Q0jLVFVVhZ07d+L555+Hj4/PXY/fefG9g4MD5s+fjy+//BJHjhyp97179OiBkSNH1vrYlClTalyT6uvrC0mSMG3atBrP8/X1RX5+Pm7cuKHvRyIzkp6eDm9vb6SlpSE+Ph7p6elmcwcLT09P7N27F/Hx8UhLS4O3tzfS09MN9v7fffcd+vXrh+XLl6OyshIAcO+992LPnj1IS0uDi4uLwc5F1okFkO5iiDt+NBbvENIyXbp0CWq1Gt7e3nq/Zt68eXB0dGzwWsAePXrU+Vi3bt1qfO/g4AAA8PDwuOt4VVUVSktL9c5H5iEmJgYjR46El5cXcnJyEBQUZHZ788lkMgQFBSE7Oxu9evXCyJEjERMTo/fr8/LysGrVKpw7d0537M8//8SkSZMwfPhw5ObmArj1+3Hx4sXIycmp8x9FRI3FAkg1mGLhR124IMQ66DsKWN+K37o2tq3ruCRJjQtJwkiShLfeegvh4eGIiIgwq1G/ulSPBkZERCA8PByLFy9u8L+569ev4/HHH8fixYvx+OOPo7S0FImJifDy8sLmzZt1zxs8eDCOHj2KFStWcBU8GRQLINVgqoUfdVm9ejXKysp40X4L0alTJ9jb2+vuOaqv+fPnw9HREVFRUUZKRi2RJEmYN28e3nnnHcTGxmL58uVmN+pXF5lMhuXLl2PNmjVYtWoV5s+fX28JXLZsGf744w8AQH5+Pvr06YOgoCDdP36dnZ2RkpKCzMxMs92Imlo2FkDSqb7jR1RUlMHu+NFY1XcIWb9+PY4ePSokA+mvVatWGDNmDL766itkZWXd9XhdfwFWjwLu2rWL/zuTTkREBNauXYuEhAQsWLBAdJwmWbhwIRISEvDRRx9hyZIltT4nJycH77//fo1jFy5c0P15ypQpOHnyJKZNm8YVvmQ0/C+LAIhZ+FGX6gUhs2fP5oIQQW7evKn3c1etWoXOnTvj8ccfx4IFC5CYmIioqCh4e3vXe+3dvHnz4ODggN9++80QkYVSq9XYtm0b5syZg6SkJE45N0FMTAxWrVqFNWvWIDAwUHScZgkMDMTq1auxcuXKu64JrKqqQnBwcK0Lk2xtbZGeno5PPvkEnTp1MlVcslLcB5AAGPeOH43FO4SYzvXr13Hq1CmcPHnyri99ubm54fDhw1iyZAk2b94MtVoNNzc3PP3002jbtm2dr3N0dMT8+fNb7DRwbm4uvv76a3z99dc4cOCAbqUmcOt61p49ewpM17Kkp6frrvlbuHCh6DgGsWjRIpSUlCA8PBwDBw7E8OHDAQAffvghfvjhh1pfU1FRgdOnT+ueS2RMMkmPf6qq1Wo4ODigtLTUpBtvkmlcvXoVvXr1wrBhw/DZZ5+JjqPj7++P77//HqdOnYKjo6PoOC2WJEm4cOGCrtidOHFC9+eCgoJ6X6tSqRp92zZL9uuvv0KpVKJdu3b4+++/63zeuXPn4OnpabpgLVj1KnIvLy+kp6e3mGv+9CFJEoYNG4YzZ84gJycHcrkc7du3r3eEfciQIdi3b58JU5IlaUxf4wggCV/4URfeIaRxtFotcnNzax3Nu3btmt7vY2NjA3d39xpbU1BN9ZW/1q1bIyYmBv3790e/fv3g7e3NfzjXIzQ0FCUlJUhOTrao8gfcWhiSkpKCfv36ISwsDDExMfWWvy5dumDmzJkmTEjWjAXQylUv/IiJiRG28KMu1QtCwsPDMW3aNAwcOFB0JLNQUlJSa8k7e/Zso67dc3JyQp8+fdC7d+8aXz169MCxY8egVCqN+ClMr7S0FBqNpt7n6Lu5rlwur3Gf49vdvHkTcXFxNY51794d/fr105XCfv36oVevXsIvtxAtPT0dSUlJiI+PN/utXprK09MTMTExCA4OxtixY7Fp0yZs374d//jHP9CzZ0906dIFLi4u6NKlC7d5IZPiFLAVq6qqwuDBg1FaWoojR46Y5V9GlZWVGDhwIJycnHDgwAGrWRFXVVWFP/74464p25MnT+LPP//U+31kMhk8PT3vKnm9e/dGp06d6hxxqZ7qtKQp4Ndeew2ffPJJvc9p6Ndh9c8lMzMTH330EbZv397kPHK5HL1799YVwupy6ObmZnEjYbWx5KnfO905Fcy/R8lYOAVMejGnhR91sfQFIWVlZTh9+vRdo3mnTp1CeXm53u+jUCjg5eVVo+D16dMH999/P0cV/ic8PByTJk0yyHt16NAB27ZtQ3x8PBYsWICKigrdY++99x4eeeQRZGdn49ixY8jOzkZOTs5d0/BarRbHjh3DsWPHahx3dHTUlcLqYmiJ08jh4eEWO/V7p9ungsPDwxEfHy86EhFHAK2VuS78qEtLXhAiSRL+/PPPu0reiRMncP78+Ua9l4uLS62jeR4eHgYdHbXEEUBDqO3ncvToUYwfPx6nT5/WfT9gwIAar5MkCefPn0d2drbu69ixYzh16pTe0/bV08i3f3l5eZntP97qU1BQoJsaban7/TVFbGwswsPDcf78ebi5uYmOQxaoMX2NBdBKzZkzBxs3bsSpU6fM7tq/2hQVFcHLywtTp0412wUhlZWVOHfu3F1TtidPnmzUre1at26Nnj173lXyvLy84OTkZLwPcBsWwNrV9XO5du0akpKS4O7ujnHjxun9fhUVFTh58uRdxbCwsFCv19vY2KBPnz53FUN3d3ezHlV7++23ERsbi8LCQqv6O0WtVsPV1RWhoaEN3gubqCk4BUz1MueFH3Ux9IKQQ4cOYdOmTXjllVcwaNCgRr22tLS01r3zcnNza+wF1xB7e3t4eXmhT58+NRZj3HvvvZDL5Y39SCRQhw4dmrR/na2tLQYMGHDXiGFJSUmNUlj9dec0cmVlpV7TyNWrkR0cHBr/4QyssrISiYmJmDx5slWVP+DW/+cnT56MxMRELF68uEWO3pLl4AiglWkJCz/qYogFITdu3MCyZcuwcuVKVFVVoWvXrigsLLxrtESSJBQUFNQ6bXv7LZv00a1bt1qnbV1cXMx2lIYjgLUT+XOpbRo5OzsbJ0+e1HsauVu3bjVWIouYRv7iiy8wbtw4HDt2DP369TPZec3FsWPHMGDAAHzxxRcYO3as6DhkYTgCSHVqCQs/6tLcBSFnz57FpEmTcOjQId2xCxcuYN++ffjrr7/uWoRR315vd7K1tUWvXr10iy+qS16vXr3Qrl27RuUkqk31im5PT088//zzuuO1TSNnZ2fXusn3H3/8gT/++ANff/217piNjY1uNfLt5dBY08hxcXEYPHiwVZY/AOjfvz8GDRqEuLg4FkASiiOAVsQQCz+WLl2KqKgoXLp0CR07drzrcW9vb3Ts2BGZmZnNTFu3xi4IkSQJcXFxCAsLa3AfuIZ06tSp1tG87t27o3Xr1s16b3PCEcDataSfS0lJCXJycnQrkeuaRq6Lo6MjvL29axTD5k4jHz9+HA888ADS0tLwyiuvNPl9Wrq0tDT4+/vj+PHj6NOnj+g4ZEE4Aki1Mtc7fjRWY+8Q8txzz2H37t16v3+rVq1w77331thOpXoRxj333NOc6EQm4+TkhMGDB2Pw4MG6Y5Ik4Y8//qixRU12djZOnTqFGzdu1Hj91atX8cMPP9x139pu3brdtU2NvtPIW7duhbOzM1588UXDfMgW6qWXXoKTkxO2bt3KxSAkDAuglWiJCz/q0tgFIXXdeL2al5cXJk+erCt8PXv2hK2trQETE5kHmUyG7t27o3v37njuued0xysqKnDq1KkaK5Ebmkb+5ptvdMdun0a+vRjeOY2clZUFX19fq1/kJJfL4evri6ysLNFRyIqxAFqBqqoqzJo1C3369MGcOXNExzGIuXPn4uOPP8bs2bMbXBDy4YcfIiwsDJcvX671cXd3dyxevNhYUYnMnq2tLfr374/+/fvXOF49jXx7MczJyYFara7xvMrKSt1zbufg4FBjFfIvv/yCoKAgg2bPy8tDjx49AADbtm3DSy+9VOPxhi5bEUWpVCIlJUV0DLJiLIBWoCUv/KhLYxaEvPbaa3jttddQWFiInTt3YseOHcjMzNStnLT20QiiujQ0jXznauQ7p5FLS0vvmkY25j2mly1bhhdffNFsV9ffTqlUYuXKlSgqKmrxszLUMrEAWrirV68iPDwcEyZMwJAhQ0THMaihQ4diwoQJCA8Px+jRoxtcEOLm5oZZs2Zh1qxZ+Ouvv/D111/j9OnTCAwMNE1gIgtQ1zSyVqutdTVyfn5+jdcbqwAOHDgQR48exY4dO5p0jWFZWRnatm1rhGS1q/45ZGVlYdSoUSY7L1E1w907isySpSz8qMvq1atRVlaGyMjIRr3unnvuwauvvoqVK1eie/fuRkpHZD3kcjn69++PiRMn4t1338U333yDP/74A1euXMGBAwfw7LPPomPHjnB3d7/rtUuXLoVMJsPp06cxadIkODg4oFOnTliyZAkkSUJ+fj5Gjx4Ne3t7uLi4YM2aNXe9xyuvvIJevXph2bJlaGhziyFDhsDb2xsqlQp+fn5o27Yt3nrrLeTl5UEmk2H16tVYv3497r33XrRt2xYjRoxAfn4+JEnC8uXL4e7uDoVCgdGjR+PKlStN+nl5eHigY8eOUKlUTXo9UXOxAFqw6oUfUVFRJp1iMOX0S/WCkPXr1+Po0aMmOy8R6ad6GlmSJPj4+NT7+2H8+PGoqqrCu+++C19fX6xYsQIffPABhg8fDjc3N7z33nvo2bMnQkNDceDAgRqvbd26NSIiIvDbb79hx44dDeb666+/8PTTT2PgwIH44IMPMHToUN1jmzdvRlxcHObMmYNFixZh//79GDduHCIiIrBnzx68/vrrCAwMxFdffYXQ0NAm/VxkMpluSyEiETgFbME2bdoEuVyOmTNnGuw97ezsAKDO/fTKysp0zzGV4OBgREREYNOmTc2+RRwRGUd+fj78/Pzqfc7DDz+MhIQEAEBgYCA8PT2xaNEivPPOO3j99dcBABMmTICrqys+/vjju97P398fy5cvx7Jly/DCCy/UWzYvXryI+Pj4GotS8vLyAACFhYU4c+aMbs/Dmzdv4p133oFGo0FWVhbatLn1V+elS5ewefNmbNiwoUk7B/Ts2RMHDx5s9OuIDIEjgBZs0qRJ0Gq1iI+PN9h7Vk+Xnjp16q7HysrKkJ+fb/Ip1Q0bNkCr1WLy5MkmPS8R6U+j0TR4jd2MGTN0f27dujV8fHwgSRKmT5+uO+7o6AgvLy/8/vvvd73+9lHAnTt31nsuW1tbTJ06tdbHXn755RobXvv6+gK49Tu1uvxVH9dqtSgsLKz3XHVRKBTN3pyeqKlYAC3YwIEDERISgrfffhtFRUUGec8nn3wScrkcGzZsQFVVVY3HEhMTcePGDTz99NMGOZc+ioqKsHTpUsyaNQsDBgww2XmJqHHKy8uhUCjqfU63bt1qfO/g4AA7O7u7tm9xcHBASUlJre8xceJE9OzZs8FrAd3c3OrcAaC2HMCt6/ZqO15XloYoFAqUl5c36bVEzcUCaOGWL18OhULR5OtU7tS5c2dERkZi+/bt8PPzQ3R0NNatWwd/f38sWLAAI0aMqHGfUmMLDQ1F27ZtsWzZMpOdk4gaT6vVNrjlUm23U6zrFot1lbvqUcCjR49i165ddZ6rvjJa1zkbm6UhcrkcFRUVTXotUXOxAFo4R0dHREdHIy0tzWD35128eDE2bdqEmzdvYtmyZQgNDcWRI0cQFRWFL7/8st5NmQ1p3759SEtLQ3R0tF73BCYiceRyObRarUnONWnSJPTs2RNRUVFNLmemoNVqedchEoaLQKzAlClTkJSUhFmzZuHo0aMG2Qx64sSJmDhxogHSNU1lZSVmz56Nxx57jNf+EbUAdnZ2JrverXoU8LXXXjPJ+ZpKo9GYfNEcUTWOAFqBVq1aYf369Th58iTWrl0rOo5BfPTRRzh58iTWr19vshFHImo6hUKBsrIyk51v4sSJuO+++8x6eyiNRtPgdZFExsK/Oa2EMRaE1OfSpUu4ePFinV9N3TwV4MIPopbIw8MDZ8+eNdn52rRpg4iICJOdrylyc3PvWlhCZCoySY8LJNRqNRwcHFBaWgp7e3tT5CIjuHr1Knr16oVhw4bhs88+M+q5PD09cf78+Toff/zxx5t8TaK/vz++//57nDp1itf+Gcmvv/6q26T2oYceEh3HbPDn0nSRkZGIj49HcXFxi7hXr7FJkoTOnTsjJCQEUVFRouOQhWhMX+M1gFakekHI1KlTERgYaNR7A2/evLne632cnJya9L7VCz82btzI8kfUgiiVSly6dAkFBQUc9cKtjbEvX75stHsjEzWEBdDKGGNBSG0ee+wxg78nF34QtVw+Pj4AAJVKZZEF8Pr167h+/Xq9z+nUqZNuK5nqW8BV/1yITI0F0MpULwhRKpVYu3YtFi5cKDqS3qoXfvz6669c+GEiJ06cEB3BrPDn0XSurq7o0qULVCoVxowZIzqOwa1evbrBqdxz587B09MTwK0C6OLiYtL7tBPdjgXQCt2+IOSVV15pEb+AuPDDtDp06ADg1n5qdLfqnw/pTyaT6a6ftERTpkzBoEGD6n2Oi4uL7s8qlYrTvyQUF4FYKVMuCDEELvwwvTNnzuDatWuiYzTamjVrdP9NL168GC+++KJB379Dhw64//77Dfqe1uLtt9/GunXrcOHChQbvCmLJKioq0LVrV8ydOxdLly4VHYcsSGP6GgugFdu4cSOmTp2Kffv2GXVBSHPt27cPTzzxBDZu3IhXX31VdBwyc9UrdQFg0KBBOHjwoOBEVO348eN44IEHkJaWhldeeUV0HGHS0tLg7++P48ePo0+fPqLjkAVhASS9VFVVYfDgwbh69apRF4Q0R2VlJQYOHAgnJyccOHCA1/5RgyRJgre3N44fPw4A+P3339GjRw/Bqaja0KFDcfPmTRw4cEB0FGEGDx4MGxsbZGRkiI5CFqYxfY1/m1qxlnCHEN7xgxpLJpPVWCW+adMmgWnoTiEhITh48CCys7NFRxHi2LFj+OGHHxASEiI6Clk5/o1q5Ux9h5DG4MIPaqrb71OdmpoKPSY6yETGjBkDFxcXbNiwQXQUITZs2ICuXbti9OjRoqOQlWMBJCxfvhwKhQKhoaGio9QQGhqKtm3bYtmyZaKjUAvj4eGhu671zJkz+Pnnn8UGIh0bGxsEBgYiNTUVarVadByTUqvVSE1NRWBgoFleckPWhQWQdHcISUtLa/Lt2Qyt+o4f0dHRXPVLTcJpYPMVEBAAjUaDlJQU0VFMKjk5GeXl5QgICBAdhYiLQOgWc1oQwoUfZAhqtRpdunRBeXk5OnbsiKKiIo66mJGZM2di8+bNyM7O1m2ObMny8vLQr18/TJw4EfHx8aLjkIXiIhBqNHNaEMKFH2QI9vb2uuusLl++jD179ghORLeLjo6Gk5MTZsyYYfHXaEqShOnTp8PZ2RnR0dGi4xABYAGk25jDghAu/CBDun0aODU1VWASupO9vT2Sk5Px/fffIzExUXQco0pISEBGRgaSk5M5i0Zmg1PAVIPoO4Twjh9kSJWVlXBzc8OlS5dga2uLixcv8r8rMxMYGIi0tDSLnQqunvr19/dHQkKC6Dhk4TgFTE0mckEIF36QodnY2GDChAkAbt1+a9u2bYIT0Z1Wr15tsVPBt0/9xsTEiI5DVAMLIN1lypQp+Mc//oFZs2ahsrLSJOesrKzE7Nmz8dhjj9WYtiNqLk4Dm7fbp4IjIyNFxzGoJUuWcOqXzBYLIN1FxIIQLvwgY1EqlejduzcA4MCBA8jLyxMbiO4yYsQIREdHY8WKFYiNjRUdxyDWrFmDlStXIiYmBsOHDxcdh+gu/JuWamXKBSFc+EHGdOet4TZv3iwwDdUlLCwMb731FhYtWtTiF4UkJiYiNDQUixcvNrsN9omqsQBSnUx1hxDe8YOMzd/fX/dn3hrOfK1YsQKzZ89GUFBQix0JXLNmDYKCgjB37lwsX75cdByiOrEAUp1MsSCECz/IFDw9PeHn5wcAOHXqFLKysgQnotrIZDJ06tQJALBo0SIsWbKkxZR1SZIQERGhG/n74IMPIJPJRMciqhO3gaF6GfMOIbzjB5lScnKy7hZcc+bMwUcffSQ4Ed1p06ZNdy0Ce/LJJ5GSkoLu3bsLStWwvLw8TJ8+HRkZGYiOjkZYWJjoSGSluA0MGYwxF4Rw4QeZ0tixY2FrawsA2LJli8lWuJN+9u/fj2nTpum+j46ORnp6Ok6fPg1vb28kJCSY3WigJEmIj49Hv379cObMGaSnp7P8Ucsh6aG0tFQCIJWWlurzdLJAs2fPltq3by8VFhYa5P0KCwul9u3bS3PmzDHI+xHp4+WXX5YASACkr776SnQc+p+TJ09KTk5Ouv9tgoKCpKqqKkmSbv39ExgYKAGQnnzySSkvL09w2lvOnTsnPfHEExIAKTAwkH8/klloTF/jsAvpxdALQrjwg0TgnoDm59KlS3jmmWdQUlICAHjqqaewbt063fVz9vb2SEhIqDEaGBsbC7VaLSSvWq1GbGxsjVG/hIQEXh5FLY+hGyVZrn/+858SAGnfvn3Nep+MjAwJgLRx40bDBCPSk1arlTp27CgBkGxtbaWrV6+KjmTVysrKpEceeUQ38te/f/96/54pLS2VgoKCpNatW0vt27eXgoODpWPHjpkk67Fjx6SZM2dK7dq1k1q3bi0FBQXx70QyOxwBJKMwxB1CeMcPEsnGxgavvPIKgFu3hvvXv/4lOJH1qqqqwpQpU3Do0CEAgKurK7755pt6R9Ls7e0RHx+PvLw8LFy4EDt37kT//v3h5+eHLVu2QKvVGjSjVqtFWloaBg8ejP79+2PXrl0IDQ3F+fPnER8fz1E/atG4Cpga5ejRo1AqlYiJicHChQsb/fo1a9YgPDwcv/76Kzd9JiF+/vln+Pr6AgCGDBmCffv2CU5knV5//XVER0cDANq1a4eDBw/iwQcfbNR7VFZWYteuXYiLi8O+ffvg7OyMhx9+GEqlUvfl4eGh13YskiQhPz8fKpVK93X48GGUlJRg6NChCAkJwejRow26EwKRoTWmr7EAUqPNmTMHGzduxKlTp+Dq6qr364qKiuDl5YWpU6dyCw4SRpIk9O7dG6dPnwYAnD9/Ht26dROcyrokJiYiKCgIwK2dBr766is888wzzXrP48eP4/PPP0dWVhZUKhUuXrwIAOjYsSOUSiV69uwJhUIBhUIBuVwOrVYLjUYDjUaD3NxcqFQqXL58GQDg4uICpVIJHx8fjBs3Dn379m3eByYyERZAMqqrV6+iV69eGDZsGD777DO9X+fv74/vv/8ep06d4qbPJNTy5csRGRkJAFi1ahXefPNNwYmsx549e/Dcc8/h5s2bAIC4uDgEBwcb9BySJKGoqKjGaF5+fj40Gg3Ky8tRUVEBW1tb2NnZQaFQwMPDQzdi6OPj06h/2BKZExZAMrqNGzdi6tSp2LdvH4YMGdLg8/ft24cnnngCGzduxKuvvmr8gET1OHfuHO69914AQJ8+ffDf//6Xd20wgWPHjmHQoEG4du0agFt3+1i9erXgVESWgwWQjK4xdwjhHT/IHA0ePBg//PADACArKwtKpVJwIstWVFQEX19fFBQUAABefPFFfPHFF/x9QGRAvBMIGV1j7hDCO36QOeKegKZz7do1PPvss7ry9/DDDyM1NZW/D4gE4gggNUtDC0K48IPMVUlJCVxcXKDVatG5c2cUFhaiTZs2omNZnBs3bmD06NHYvXs3AMDT0xOHDh1Cly5dBCcjsjwcASSTaegOIbzjB5krJycnPP/88wCAP//8E+np6YITWR5JkjBv3jxd+XN0dMTu3btZ/ojMAAsgNYujoyOio6ORlpaGzMzMGo/t27cPaWlpiI6O5qpfMkucBjau999/H3FxcQBubcK9fft29OnTR3AqIgI4BUwGUNuCEC78oJZAq9XC1dUVf/31F+zs7FBcXMzfcQayY8cOvPTSS6j+K4Y7ABAZH6eAyaRqWxDChR/UEsjlcowfPx4AUF5ezlvDGcjPP/+MiRMn6spfZGQkyx+RmeHfzGQQAwcOREhICN5++21kZWVh6dKlmDVrFm/3RmaP08CGde7cOTz//PPQaDQAgEmTJmHp0qViQxHRXTgFTAZTfYeQa9euwd7ennf8oBZBkiT06tULubm5kMlkOH/+PDw8PETHapFKSkrw2GOP4cSJEwCAxx9/HN9++y1sbW0FJyOyDpwCJiEcHR0RExOD8vJyLvygFkMmk2HSpEkAbpXBzZs3C07UMmm1Wrz00ku68ufl5YUdO3aw/BGZKY4AkkFJkoRTp07By8uLt9aiFuPs2bPo2bMnAKBv377Iycnhf7+NIEkSpk6dik8++QQA0KlTJxw6dEh3uz0iMg2OAJIwMpkMvXv35l+e1KLcd999+Mc//gEAOH78OI4ePSo2UAuzYsUKXfmzs7PDl19+yfJHZOZYAImIwMUgTbV582ZERkbqvk9NTcUjjzwiMBER6YMFkIgIwLhx4yCXywEAn332GW7cuCE4kfnbv38/pk2bpvs+OjoaY8eOFZiIiPTFAkhEBMDZ2RnPPvssAKC4uBjfffed4ETm7dSpU3jhhReg1WoBAEFBQXXeEpKIzA8LIBHR/3AaWD+XLl3CM888g5KSEgDAU089hXXr1vHaX6IWhAWQiOh/nnnmGTg5OQG4dSuza9euCU5kfjQaDUaNGoXff/8dANC/f39s3boVbdq0EZyMiBqDBZCI6H9sbW11t4bTaDTYvn274ETmpaqqClOmTMGhQ4cAAK6urvjmm2+4PRhRC8QCSER0G04D1+3NN9/Etm3bAADt2rXD119/DXd3d8GpiKgpWACJiG7z6KOP4r777gMAZGRkoKCgQHAi85CYmIjo6GgAQKtWrfD555/jwQcfFJyKiJqKBZCI6DZ33hrus88+E5xIvD179iAkJET3/dq1a/HMM88ITEREzcUCSER0h+oCCNyaBtbjjpkW69ixYxg3bhxu3rwJAFi0aFGNMkhELRMLIBHRHXr27IlHH30UAJCTk4PffvtNcCIxioqK8Oyzz+pWQ7/44ou6aWAiatlYAImIanH7YpBNmzYJTCLG9evX8dxzz+mugXz44YeRmpqKVq341waRJeD/k4mIajFu3DjY2NgAuHVruOopUGtw48YNvPLKKzhy5AgAwNPTE19++SXatm0rOBkRGQoLIBFRLe655x7dQocLFy7g+++/F5zINCRJwrx58/DNN98AABwdHbF792506dJFcDIiMiQWQCKiOljjnoDvv/8+4uLiAAA2NjbYvn07+vTpIzgVERkaCyARUR2ee+45ODo6AgC2b9+O69eviw1kZDt27EBoaKju+6SkJAwdOlRgIiIyFhZAIqI62NraYty4cQCAsrIy7NixQ3Ai4/n5558xceJE3ZY3kZGRePXVVwWnIiJjYQEkIqqHNUwDnzt3Ds8//zw0Gg2AW/sgLl26VGwoIjIqFkAiono89thj6NGjBwDg+++/R1FRkeBEhlVSUoJnn30Wf/75JwDAz88PycnJkMlkgpMRkTGxABIR1eP2W8NVVVVZ1K3htFotXnrpJZw4cQIA4OXlhR07dsDW1lZwMiIyNhZAIqIGWOI0sCRJCAwMxL59+wAAnTp1wu7du+Hs7Cw4GRGZQhvRAYiIzN39998PX19fHD58GMeOHcPmzZtx5MgRtGrVCm+//TbatWsnOmKjrVixAp988gkAwM7ODl9++SXuvfdewamIyFRYAImI9PDMM8/g8OHDAKCbEgZuTZtOnz5dVKwm2bx5MyIjI3Xfp6am4pFHHhGYiIhMjQWQiKgef/75JyZPnoz09PRaH6/eNqWlOHDgAKZNm6b7Pjo6GmPHjhWYiIhE4DWARET1SEtLq7P8AYCHh4cJ0zTPqVOnMGbMGGi1WgBAUFBQjY2fich6sAASEdXj6aefRvv27et8vFu3biZM03SXLl3CM888g5KSEgDAU089hXXr1nG7FyIrxQJIRFSPXr164bvvvoOTk1Otj7eEEUCNRoNRo0bh999/BwD0798fW7duRZs2vAqIyFqxABIRNcDX1xeZmZno3LlzjePt2rWrd3TQHFRVVWHKlCk4dOgQAMDV1RXffPMN7O3tBScjIpFYAImI9NC/f38cPHiwRgm0sbERmKh2J0+exBtvvIGff/4ZAPDmm29i27ZtAG4V1q+//hru7u4iIxKRGeD4PxGRnnr16oVDhw7hgQcegEajwUMPPVTjcUmSUFhYCJVKpfvKz8+HRqNBeXk5tFot5HI57OzsoFAo4OHhAaVSCaVSCR8fH7i6ujb7mrzJkycjKysLa9aswaRJk7Bx40YAQKtWrfD555/jwQcfbNb7E5FlkEl67GGgVqvh4OCA0tJSThsQkdW7du0afvzxRwwfPhwnT57E1q1bkZWVBZVKheLiYgC37qyhVCpx3333oW3btlAoFJDL5dBqtdBoNCgrK8PZs2ehUqlw6dIlAECXLl10ZXD8+PHo27dvo3L9+eef6NKlS62PrV+/HiEhIc374ERk1hrT1zgCSETUSHZ2dlCr1XjyySeRmZkJZ2dn+Pr6IiAgQDei5+7urtdoniRJKCgoqDFquG7dOixbtgxDhgxBSEgIxowZo9d0c2ZmZq3H+/Tp0+I2qyYi42IBJCLSU0FBARITE5GUlISLFy/Cz88PW7ZswQsvvAC5XN6k95TJZPDw8ICHhwfGjBkDANBqtdi+fTvi4uIwbtw4dO3aFQEBAQgICKj3+r3q+/re6cSJExg7diy+/PJLbvtCRAA4BUxE1CC1Wo3w8HAkJydDoVBgypQpCA4Ohre3t9HPnZ2djQ0bNiA1NRUajQYzZsxAdHR0rb+Le/XqhTNnztT5XteuXTP7VctE1HSN6WtcBUxEVI/09HR4e3tj8+bNiImJQWFhIdavX2+S8gcA/fr1Q1xcHAoLCxETE4PNmzfD29v7rruT5Ofn11n+2rVrh3fffZflj4h0WACJiGqhVqsRGBiIkSNHwsvLCzk5OViwYIGwWRB7e3ssWLAA2dnZ6NWrF0aOHInAwECo1WoAwObNm+96Te/evbF27VoUFhbi9ddfN3VkIjJjLIBERHeoHvVLS0tDfHw80tPT0b17d9GxAACenp7Yu3cv4uPjkZaWphsN9PPz013f5+fnh++//x7Hjx/H7Nmz4eDgIDg1EZkbFkAiotvExMTUGPULCgoyu4UTMpkMQUFBNUYD//Of/6C4uBiFhYXYv38/nnjiCbPLTUTmgwWQiAi3tmN56623EB4ejoiICLMa9atL9WhgREQEwsPD8cEHH6Br166iYxFRC8BtYIjI6kmShHnz5mHt2rWIjY3FggULREfSm0wmw/Lly+Hk5IRFixbh+vXr+OCDDzj6R0T1YgEkIqsXERGBtWvXIiEhAYGBgaLjNMnChQvRvn17BAUFoUOHDlixYoXoSERkxlgAiciqxcTEYNWqVVizZk2LLX/VAgMDce3aNYSGhsLBwQFhYWGiIxGRmWIBJCKrlZ6errvmb+HChaLjGMSiRYtQUlKC8PBwDBw4EMOHDxcdiYjMEO8EQkRWSa1Ww9vbG15eXkhPT7eoa+YkScKwYcNw5swZ5OTk8Pc2kZXgnUCIiBoQGhqKkpISJCcnW1T5A24tDElJSUFJSQmngYmoViyARGR10tPTkZSUhNWrV5v9Vi9N5enpiZiYGCQmJmLv3r2i4xCRmeEUMBFZFUue+r0Tp4KJrAungImI6hAeHm6xU793un0qODw8XHQcIjIjLIBEZDUKCgqQnJyMZcuWWezU7508PT0RFRWF5ORkFBYWio5DRGaCBZCIrEZSUhIUCgWmT58uOopJzZgxA3Z2dkhKShIdhYjMBAsgEVmFyspKJCYmYvLkyVZ3LZy9vT0mT56MxMREVFZWio5DRGaABZCIrMLOnTtx8eJFBAcHi44iRHBwMC5cuIBdu3aJjkJEZoCrgInIKgwdOhQ3b97EgQMHREcRZvDgwbCxsUFGRoboKERkBFwFTER0m+PHjyMzMxMhISGiowgVEhKCffv24cSJE6KjEJFgLIBEZPG2bt0KZ2dnvPjii6KjCPXSSy/ByckJW7duFR2FiARjASQii5eVlQVfX1/I5XLRUYSSy+Xw9fVFVlaW6ChEJBgLIBFZNEmSoFKpoFQqm/1emZmZkMlkkMlkUKlUdz3+2muvoX379s0+jzEplcpasxORdWEBJCKLVlRUhOLiYoMUwNstXbrUoO9nKkqlEhcvXkRRUZHoKEQkEAsgEVm06ulOQxbAgQMH4uuvv8avv/7a6NdKkgSNRmOwLI1V/XPgNDCRdWMBJCKLplKp0KlTJ7i7u9f5nPPnzyMkJAReXl5QKBS455578PLLLyMvL6/W58+ZMwdOTk56jQJ6enriueeew7fffgsfHx8oFAokJCToppM///xzREVFwc3NDR06dMDYsWNRWlqKiooKzJ8/H507d0b79u0xdepUVFRUNPGn8P95eHigY8eOnAYmsnJtRAcgIjKm6uv/ZDJZnc/55Zdf8OOPP+KVV16Bu7s78vLysGHDBgwZMgTHjx9H27Ztazzf3t4eCxYsQGRkJH799Vc89NBD9WY4deoUJkyYgKCgIAQEBMDLy0v32DvvvAOFQoE33ngDubm5WLt2LWxsbNCqVSuUlJRg6dKlOHToEDZu3IgePXogMjKyWT8PmUzG6wCJiAWQiCxbfn4+/Pz86n3Os88+i7Fjx9Y49vzzz+PRRx/Fv/71L0yePPmu18ydOxfvv/8+oqKiGry7Rm5uLvbs2YORI0fqjmVmZgIAbty4gf3798PGxgYAcOnSJWzZsgVPPfUUdu/eDeDW/n25ubn4+OOPm10AAaBnz544ePBgs9+HiFouTgETkUXTaDR3jeDdSaFQ6P5cWVmJv/76Cz179oSjo2Od1/k5ODhg/vz5+PLLL3HkyJF6379Hjx41yt/tpkyZoit/AODr6wtJkjBt2rQaz/P19UV+fj5u3LhR77n0oVAohF6HSETisQASkUUrLy+vUfBqo9FoEBkZCQ8PD9ja2qJjx47o1KkTrl69itLS0jpfN2/ePDg6OjZ4LWCPHj3qfKxbt241vndwcABw61q9O49XVVXVm0dfCoUC5eXlzX4fImq5OAVMRBZNq9U2uAH0nDlz8M9//hPz58/Ho48+CgcHB8hkMrzyyiuoqqqq83XVo4BLly6tdxSwvgLaunXrRh3X4/btDZLL5QZZUEJELRcLIBFZNLlcDq1WW+9ztm3bhldffRVr1qzRHSsvL8fVq1cbfP/58+fjgw8+QFRUFBwdHZuZ1jS0Wi1sbW1FxyAigTgFTEQWzc7OrsHr3Vq3bn3XyNratWtx8+bNBt+/ehRw165dOHr0aHOimoxGo4GdnZ3oGEQkEEcAiciiKRQKlJWV1fuc5557DqmpqXBwcEDfvn3x008/4bvvvsM999yj1znmzZuH999/H7/99hvatWtniNhGpdFoGrwukogsG0cAiciieXh44OzZs/U+58MPP8SUKVOwefNmLFq0CBcuXMB3332n9319HR0dMX/+fAOkNY3c3Ny7FpkQkXWRSXpcUaxWq+Hg4IDS0lLY29ubIhcRkUFERkYiPj4excXF9W4GbS0kSULnzp0REhKCqKgo0XGIyIAa09c4AkhEFk2pVOLSpUsoKCgQHcUs5Ofn4/Llywa9NzIRtTy8BpCILJqPjw+AW7eEs5Rpz9LS0gYXtri4uNR6vPoWcNU/FyKyTiyARGTRXF1d0aVLF6hUKowZM0Z0HIOYN28ePvnkk3qfU9fVPSqVCi4uLnB1dTVGNCJqIVgAiciiyWQyKJVK3ciXJQgPD8ekSZOa9FqVSsXpXyJiASQiy+fj44N169bpdVeQlqBv377o27dvo19XUVGBw4cPY+7cuUZIRUQtCReBEJHFGz9+PK5cuYLt27eLjiLU9u3bUVJSgvHjx4uOQkSCcRsYIrIKQ4cOxc2bN3HgwAHRUYQZPHgwbGxskJGRIToKERkBt4EhIrpDSEgIDh48iOzsbNFRhDh27Bh++OEHhISEiI5CRGaABZCIrMKYMWPg4uKCDRs2iI4ixIYNG9C1a1eMHj1adBQiMgMsgERkFWxsbBAYGIjU1FSo1WrRcUxKrVYjNTUVgYGBsLGxER2HiMwACyARWY2AgABoNBqkpKSIjmJSycnJKC8vR0BAgOgoRGQmWACJyGq4u7tjxowZiIyMRF5enug4JpGXl4e3334bM2bMgJubm+g4RGQmuAqYiKyKWq2Gt7c3evXqhb1790Imk4mOZDSSJGHYsGHIzc1FdnY2f38TWTiuAiYiqoO9vT2Sk5Px/fffIzExUXQco0pISEBGRgaSk5NZ/oioBhZAIrI6I0aMQEBAAEJDQy12KjgvLw9hYWEIDAzE8OHDRcchIjPDKWAiskqWPBXMqV8i68QpYCKiBtw+FRwZGSk6jkEtWbKEU79EVC8WQCKyWiNGjEB0dDRWrFiB2NhY0XEMYs2aNVi5ciViYmI49UtEdWojOgARkUhhYWG4evUqFi1ahPbt2yMwMFB0pCZLTExEaGgoFi9ejNDQUNFxiMiMsQASkdVbsWIFrl27hqCgIFy/fh0LFy4UHanR1qxZg9DQUMydOxfLly8XHYeIzBwLIBFZPZlMhg8//BAdOnTAokWLUFJSgmXLlrWIhSGSJGHJkiVYuXIlFi9ejOXLl7eI3EQkFgsgERFulcCVK1fC0dER4eHh+Omnn5CSkoLu3buLjlanvLw8TJ8+HRkZGYiOjkZYWJjoSETUQnARCBHRbcLCwpCeno7Tp0/D29sbCQkJ0GO3LJOSJAnx8fHo168fzpw5g/T0dJY/ImoUFkAiojsMHz4cOTk58Pf3x8yZMzF8+HCcP39edCwAt0b9hg0bhuDgYPj7+yMnJ4erfYmo0VgAiYhqYW9vj4SEhBqjgbGxsVCr1ULyqNVqxMbG1hj1S0hI4D5/RNQkLIBERPWoHg2cOHEiwsPD4ebmhpCQEGRnZ5vk/NnZ2QgODoarqyvCw8MxceJEjvoRUbOxABIRNcDe3h7x8fHIy8vDwoULsXPnTvTv3x9+fn7YsmULtFqtQc+n1WqRlpaGwYMHo3///ti1axdCQ0Nx/vx5xMfHc9SPiJqN9wImImqkyspK7Nq1C3Fxcdi3bx/s7e3xyCOP4P/+7/+gVCqhVCrh4eGh13YskiQhPz8fKpVK93X48GGUlJRg6NChCAkJwejRo2FjY2OCT0ZELVlj+hoLIBFRE1VUVMDJyQkajQa2trZwcnLCxYsXAQAdO3aEUqlEz549oVAooFAoIJfLodVqodFooNFokJubC5VKhcuXLwMAXFxcoFQq4ePjg3HjxqFv374iPx4RtTCN6WvcB5CIqIkOHjwIjUYDABg/fjw2btyIoqKiGqN51c8pLy9HRUUFbG1tYWdnB4VCAQ8PD4SEhOhKn6urq+BPRETWggWQiKiJ/v3vf+v+/PTTT0Mmk8HNzQ1ubm4YNWqUwGRERPXjIhAioibavXs3AKBVq1YYMWKE4DRERPpjASQiaoJz587h5MmTAIBHH30Uzs7OghMREemPBZCIqAnunP4lImpJWACJiJqgevoXAJ555hmBSYiIGo8FkIiokcrLy5GRkQEA6Nq1KwYOHCg2EBFRI7EAEhE10v79+3Xbvzz11FN6bfhMRGROWACJiBqJ079E1NKxABIRNVJ1AWzdujWGDx8uOA0RUeOxABIRNcKZM2eQm5sLABg0aBAcHBwEJyIiajwWQCKiRuD2L0RkCVgAiYgagdf/EZElYAEkItJTWVkZMjMzAQDu7u7w9vYWG4iIqIlYAImI9LRv3z5UVFQAuDX9y+1fiKilYgEkItITp3+JyFKwABIR6UGSJF0BtLGxwZNPPik4ERFR07EAEhHp4dSpU8jLywMADB48GB06dBAbiIioGVgAiYj0wOlfIrIkLIBERHq4ff8/FkAiaulYAImIGnD9+nXs378fANC9e3f07t1bcCIiouZhASQiasD333+PyspKALdG/7j9CxG1dCyAREQN4PQvEVkaFkAionrcvv2Lra0thg4dKjgREVHzsQASEdXjv//9L/Lz8wEAjz/+ONq1ayc4ERFR87EAEhHVg9O/RGSJWACJiOrB/f+IyBKxABIR1UGtVuOHH34AANx33324//77BSciIjIMFkAiojp89913uHHjBgCO/hGRZWEBJCKqA6d/ichSsQASEdVCkiTdAhA7Ozs8/vjjghMRERkOCyARUS2OHTuGoqIiAMATTzwBhUIhOBERkeGwABIR1YLTv0RkyVgAiYhqcXsBfPrppwUmISIyPBZAIqI7lJSU4KeffgIAeHl54d577xWciIjIsFgAiYjusHfvXty8eRMAp3+JyDKxABIR3YHTv0Rk6VgAiYhuU1VVhT179gAA2rVrBz8/P8GJiIgMjwWQiOg2R44cQXFxMQDgySefhK2treBERESGxwJIRHQbbv9CRNaABZCI6DbVd/8AeP0fEVkuFkAiov+5fPkyDh06BAB44IEH0K1bN8GJiIiMgwWQiOh/0tPTIUkSAE7/EpFlYwEkIvofTv8SkbVgASQiAnDz5k3d9i8dOnTAY489JjgREZHxsAASEQHIysrC5cuXAQDDhw+HXC4XnIiIyHhYAImIwLt/EJF1YQEkIgKv/yMi68ICSERWr7i4GL/88gsAYMCAAXBzcxOciIjIuFgAicjqffvtt7o/c/sXIrIGLIBEZPU4/UtE1oYFkIis2o0bN3QjgA4ODnj00UcFJyIiMj4WQCKyaocPH0ZJSQkAYOTIkWjTpo3gRERExscCSERWjdO/RGSNWACJyKrdvv/fU089JTAJEZHpsAASkdW6cOECjhw5AgBQKpVwcXERnIiIyDRYAInIalXf+xfg9C8RWRcWQCKyWrdP/3L/PyKyJiyARGSVKisrkZ6eDgBwdnbGww8/LDgREZHpsAASkVX66aefoFarAdza/qV169aCExERmQ4LIBFZJU7/EpE1YwEkIqtUXQBlMhlGjhwpOA0RkWmxABKR1cnPz0d2djYA4OGHH0anTp0EJyIiMi0WQCKyOtz+hYisHQsgEVkdXv9HRNaOdz0nIqvw7rvv4ttvv4VSqcS3334LAOjUqROUSqXgZEREpieTJElq6ElqtRoODg4oLS2Fvb29KXIRERlMWVkZ2rVrd9fxbt264e2338b48eNrfZyIqCVpTF/jFDARWTxbW9taC94ff/yB6dOn46mnnhKQiohIHBZAIrJ4rVu3Rr9+/ep8/MKFC9BjMoSIyGKwABKRVRg4cGCtx21tbZGcnAyZTGbaQEREArEAEpFVGDBgwF3HWrVqha1bt2LIkCGmD0REJBALIBFZhdpGAJOTkzF69GjThyEiEowFkIiswp3XAEZHR2Pq1KmC0hARicUCSERWoV27dvDx8QEAjBkzBmFhYYITERGJw42giahFkCQJhYWFUKlUuq/8/HxoNBqUl5dDq9VCLpfDzs4OCoUCHh4eUCqVUCqV8PHxgaurK3755RfcuHEDbdrwVx8RWTf+FiQis3X8+HFs3boVWVlZUKlUKC4uBvD/7+Dh5+eHtm3bQqFQQC6XQ6vVQqPRoKysDGfPnkV8fDwuXboEAOjSpYuuDI4fPx59+/YV+dGIiITinUCIyKxUVlZi586diIuLQ2ZmJpydneHr66sbzVMqlXB3d9dr2xZJklBQUFBj1PDw4cO4cuUKhgwZgpCQEIwZMwY2NjYm+GRERMbVmL7GAkhEZqGgoACJiYlISkrCxYsX4efnh5CQELzwwguQy+UGO49Wq8X27dsRFxeHgwcPomvXrggICEBAQADc3d0Ndh4iIlNjASSiFkOtViM8PBzJyclQKBSYMmUKgoOD4e3tbfRzZ2dnY8OGDUhNTYVGo8GMGTMQHR3N33NE1CKxABJRi5Ceno4ZM2agpKQEy5Ytw/Tp04X8jlGr1UhJSUFkZCScnJyQnJyMESNGmDwHEVFzNKavcRsYIjI5tVqNwMBAjBw5El5eXsjJycGCBQuE/QPT3t4eCxYsQHZ2Nnr16oWRI0ciMDAQarVaSB4iImNjASQik0pPT4e3tzfS0tIQHx+P9PR0dO/eXXQsAICnpyf27t2L+Ph4pKWlwdvbG+np6aJjEREZHAsgEZlMTExMjVG/oKAgvVbzmpJMJkNQUFCN0cCYmBjRsYiIDIoFkIiMTpIkvPXWWwgPD0dERIRZjfrVpXo0MCIiAuHh4Vi8eDH0uGSaiKhF4EbQRGRUkiRh3rx5WLt2LWJjY7FgwQLRkfQmk8mwfPlyODk5YdGiRbh+/To++OADsxu1JCJqLBZAIjKqiIgIrF27FgkJCQgMDBQdp0kWLlyI9u3bIygoCB06dMCKFStERyIiahYWQCIympiYGKxatQpr1qxpseWvWmBgIK5du4bQ0FA4ODggLCxMdCQioiZjASQio0hPT9dd87dw4ULRcQxi0aJFKCkpQXh4OAYOHIjhw4eLjkRE1CTcCJqIDE6tVsPb2xteXl5IT0+3qGvmJEnCsGHDcObMGeTk5PB3IhGZDW4ETURChYaGoqSkBMnJyRZV/oBbC0NSUlJQUlLCaWAiarFYAInIoNLT05GUlITVq1eb/VYvTeXp6YmYmBgkJiZi7969ouMQETUap4CJyGAseer3TpwKJiJzwylgIhIiPDzcYqd+73T7VHB4eLjoOEREjcICSEQGUVBQgOTkZCxbtsxip37v5OnpiaioKCQnJ6OwsFB0HCIivbEAEpFBJCUlQaFQYPr06aKjmNSMGTNgZ2eHpKQk0VGIiPTGAkhEzVZZWYnExERMnjzZ6q6Fs7e3x+TJk5GYmIjKykrRcYiI9MICSETNtnPnTly8eBHBwcGiowgRHByMCxcuYNeuXaKjEBHphauAiajZhg4dips3b+LAgQOiowgzePBg2NjYICMjQ3QUIrJSXAVMRCZz/PhxZGZmIiQkRHQUoUJCQrBv3z6cOHFCdBQiogaxABJRs2zduhXOzs548cUXRUcR6qWXXoKTkxO2bt0qOgoRUYNYAImoWbKysuDr6wu5XK73a5YuXQqZTIbLly8bMZlpyeVy+Pr6IisrS3QUIqIGsQASUZNJkgSVSgWlUmmU9/f09IRMJsOcOXPueiwzMxMymQzbtm0zyrmbQqlUQqVSiY5BRNQgFkAiarKioiIUFxcbrQBWS0pKQlFRkVHPYQhKpRIXL15sEVmJyLqxABJRk1VPdxqzAD7wwAO4efMm3n333Sa9/u+//zZworpV/xw4DUxE5o4FkIiaTKVSoVOnTnB3d2/S6y9fvoxx48bB3t4e99xzD+bNm4fy8vIaz/H09MSUKVP0GgWsvrbw+PHj8Pf3h5OTEwYNGqR7n+eeew6ZmZnw8fGBQqFAv379kJmZCQDYvn07+vXrBzs7OyiVShw5cqTRn8fDwwMdO3bkNDARmT0WQCJqsurr/2QyWZNeP27cOJSXl+Odd97BM888g48++giBgYF3PW/x4sW4ceOG3qOAL7/8MsrKyrBq1SoEBATojufm5sLf3x/PP/883nnnHZSUlOD555/H5s2bsWDBAkyaNAlRUVE4e/Ysxo0bh6qqqkZ9HplMxusAiahFaCM6ABG1XPn5+fDz82vy63v06KG7e8asWbNgb2+PuLg4hIaGon///rrn3XvvvZg8eTKSkpLw5ptvomvXrvW+74ABA/DZZ5/ddfzUqVP48ccf8eijjwIA+vbti5EjRyIgIAAnT55Et27dAABOTk4ICgrCgQMHMGTIkEZ9pp49e+LgwYONeg0RkalxBJCImkyj0aBt27ZNfv2sWbNqfF+92nf37t13PTciIkLvUcCZM2fWerxv37668gcAvr6+AIAnnnhCV/5uP/777783eK47KRQKaDSaRr+OiMiUWACJqMnKy8uhUCia/Pr777+/xvf33XcfWrVqhby8vLueWz0KmJiYiAsXLtT7vj169Kj1+O0lDwAcHBwA3Lp2r7bjJSUl9Z6nNgqF4q7rGImIzA0LIBE1mVarbdQG0A1p6FrC6msB33vvvXqfV1cpbd26daOO63Gr9LvI5XJUVFQ0+nVERKbEAkhETSaXy6HVapv8+jNnztT4Pjc3F1VVVfD09Kz1+ffddx8mTZqEhISEBkcBRdFqtbC1tRUdg4ioXiyARNRkdnZ2zbrebf369TW+X7t2LQDg6aefrvM1ERERqKysRHR0dJPPa0wajQZ2dnaiYxAR1YurgImoyRQKBcrKypr8+nPnzmHUqFF46qmn8NNPP2HTpk3w9/fHgAED6nxN9SjgJ5980uTzGpNGo2nWdZFERKbAEUAiajIPDw+cPXu2ya/funUrbG1t8cYbb+Cbb77B7NmzkZKS0uDrIiIi6rxuT7Tc3Ny7FpUQEZkbmaTHVc5qtRoODg4oLS2Fvb29KXIRUQsQGRmJ+Ph4FBcXN3kzaEsiSRI6d+6MkJAQREVFiY5DRFamMX2NI4BE1GRKpRKXLl1CQUGB6ChmIT8/H5cvXzbqvZGJiAyBBZCImszHxwcAeOuz/6n+OVT/XIiIzBULIBE1maurK7p06cIC+D8qlQouLi5wdXUVHYWIqF4sgETUZDKZDEqlkgXwf1QqFad/iahFYAEkombx8fHB4cOHm7UhtCWoqKjA4cOHOf1LRC0CCyARNcv48eNx5coVbN++XXQUobZv346SkhKMHz9edBQiogZxGxgiarahQ4fi5s2bOHDggOgowgwePBg2NjbIyMgQHYWIrBS3gSEikwoJCcHBgweRnZ0tOooQx44dww8//ICQkBDRUYiI9MICSETNNmbMGLi4uGDDhg2iowixYcMGdO3aFaNHjxYdhYhILyyARNRsNjY2CAwMRGpqKtRqteg4JqVWq5GamorAwEDY2NiIjkNEpBcWQCIyiICAAGg0Gr3u5WtJkpOTUV5ejoCAANFRiIj0xgJIRAbh7u6OGTNmIDIyEnl5eaLjmEReXh7efvttzJgxA25ubqLjEBHpjauAichg1Go1vL290atXL+zduxcymUx0JKORJAnDhg1Dbm4usrOz+buRiITjKmAiEsLe3h7Jycn4/vvvkZiYKDqOUSUkJCAjIwPJycksf0TU4rAAEpFBjRgxAgEBAQgNDbXYqeC8vDyEhYUhMDAQw4cPFx2HiKjROAVMRAZnyVPBnPolInPFKWAiEur2qeDIyEjRcQxqyZIlnPolohaPBZCIjGLEiBGIjo7GihUrEBsbKzqOQaxZswYrV65ETEwMp36JqEVrIzoAEVmusLAwXL16FYsWLUL79u0RGBgoOlKTJSYmIjQ0FIsXL0ZoaKjoOEREzcICSERGtWLFCly7dg1BQUG4fv06Fi5cKDpSo61ZswahoaGYO3culi9fLjoOEVGzsQASkVHJZDJ8+OGH6NChAxYtWoSSkhIsW7asRSwMkSQJS5YswcqVK7F48WIsX768ReQmImoICyARGZ1MJsPKlSvh6OiI8PBw/PTTT0hJSUH37t1FR6tTXl4epk+fjoyMDERHRyMsLEx0JCIig+EiECIymbCwMKSnp+P06dPw9vZGQkIC9NiJyqQkSUJ8fDz69euHM2fOID09neWPiCwOCyARmdTw4cORk5MDf39/zJw5E8OHD8f58+dFxwJwa9Rv2LBhCA4Ohr+/P3Jycrjal4gsEgsgEZmcvb09EhISaowGxsbGQq1WC8mjVqsRGxtbY9QvISGB+/wRkcViASQiYapHAydOnIjw8HC4ubkhJCQE2dnZJjl/dnY2goOD4erqivDwcEycOJGjfkRkFVgAiUgoe3t7xMfHIy8vD/PmzUNKSgr69++Pxx57DFu2bIFWqzXo+bRaLdLS0jB48GD0798fu3btQmhoKM6fP4/4+HiO+hGRVeAqYCIyC+7u7vD19dUVvrNnz2LChAlwdnbGww8/DKVSqfvy8PDQazsWSZKQn58PlUql+zp8+DBKSkowdOhQfPHFFxg9ejRsbGyM/fGIiMyKTNJjCV5jbi5MRNRUL774Inbs2AEA+Prrr9GjRw98/vnnyMrKgkqlwsWLFwEAHTt2hFKpRM+ePaFQKKBQKCCXy6HVaqHRaKDRaJCbmwuVSoXLly8DAFxcXKBUKuHj44Nx48ahb9++wj4nEZExNKavsQASkVn4888/4ebmhhs3bqBr1674448/0KbN/5+kkCQJRUVFNUbz8vPzodFoUF5ejoqKCtja2sLOzg4KhQIeHh66EUMfHx+4uroK/HRERMbXmL7GKWAiMgubN2/GjRs3AACvvvpqjfIH3NpM2s3NDW5ubhg1apSIiEREFoOLQIhIOEmSkJKSovt+6tSpAtMQEVk+FkAiEi4rKwv//e9/AQCPPfYYevXqJTgREZFlYwEkIuH++c9/6v7M0T8iIuNjASQioTQaDT777DMAQNu2bTFu3DjBiYiILB8LIBEJtXPnTpSWlgIAXn75ZXTo0EFwIiIiy8cCSERCffzxx7o/T5s2TWASIiLrwQJIRMKcP38e33//PQCgZ8+eGDx4sOBERETWgQWQiIT55JNPUL0X/WuvvabX7d2IiKj5WACJSIiqqips3LgRwK1Nnl999VWxgYiIrAgLIBEJsX//fpw7dw4AMGLECLi7uwtORERkPVgAiUgILv4gIhKHBZCITK60tBT/+te/AABOTk68ty8RkYmxABKRyW3duhUajQYAMHHiRNjZ2QlORERkXVgAicjkeOs3IiKxWACJyKROnDiBQ4cOAQAGDBiABx98UHAiIiLrwwJIRCZ1++jftGnTuPcfEZEALIBEZDKVlZX49NNPAQA2Njbw9/cXnIiIyDqxABKRyfz73/9GcXExAGD06NHo2LGj4ERERNaJBZCITIaLP4iIzAMLIBGZxJ9//omvv/4aAODq6ooRI0YITkREZL1YAInIJDZt2oQbN24AAKZMmYI2bdoITkREZL1YAInI6CRJqnHrN07/EhGJxQJIREaXlZWF//73vwCAQYMGoVevXoITERFZNxZAIjI6jv4REZkXFkAiMiqNRoO0tDQAQLt27fDyyy8LTkRERCyARGRUO3bsQGlpKQDg5ZdfRocOHQQnIiIiFkAiMqrbp3+nTZsmMAkREVVjASQio8nLy0NGRgYAoGfPnhg0aJDgREREBLAAEpERffLJJ5AkCcCtxR8ymUxwIiIiAlgAichIqqqqsHHjRgBAq1atMGXKFLGBiIhIhwWQiIwiMzMTeXl5AIARI0bA3d1dbCAiItJhASQio/jnP/+p+zMXfxARmRcWQCIyuNLSUmzbtg0A4OzsjFGjRglOREREt2MBJCKD27JlC8rLywEAEydOhK2treBERER0OxZAIjK426d/ees3IiLzwwJIRAZ1/PhxHD58GAAwcOBAPPjgg4ITERHRnVgAiciguPiDiMj8sQASkcFUVlbi008/BQDI5XL4+/sLTkRERLVhASQig9m9ezf+/PNPAMDo0aNxzz33CE5ERES1YQEkIoPh4g8iopaBBZCIDKK4uBhff/01AMDNzQ0jRowQnIiIiOrCAkhEBrFp0ybcvHkTADBlyhS0bt1acCIiIqoLCyARNZskSfj4449133P6l4jIvLEAElGz/fLLLzh+/DgAYPDgwbj//vsFJyIiovqwABJRs3H0j4ioZWEBJKJmKSsrQ1paGgCgXbt2ePnllwUnIiKihrAAElGz7NixA2q1GgAwbtw4tG/fXnAiIiJqCAsgETXL7dO/vPUbEVHLwAJIRE2Wl5eHjIwMAMD999+Pxx57THAiIiLSBwsgETXZxo0bdX+eOnUqZDKZuDBERKQ3FkAiapKqqipdAWzVqhWmTJkiNhAREemNBZCImmTfvn04f/48AGDkyJFwc3MTnIiIiPTFAkhETcLFH0RELRcLIBE12tWrV7F9+3YAgLOzM55//nnBiYiIqDFYAImo0bZs2YLy8nIAwKRJk2Brays4ERERNQYLIBE1Gqd/iYhaNhZAImqUnJwc/PLLLwCABx98EAMGDBCciIiIGosFkIga5Z///Kfuzxz9IyJqmVgAiUhvlZWVSE1NBQDI5XL4+/sLTkRERE3BAkhEevvmm29w6dIlAMCYMWPg7OwsOBERETVFG9EBiMi8xcTEYPny5fDx8cHVq1d1xzn9S0TUcrEAElG9kpKScO3aNezbt093rF27dujQoQMkSeL9f4mIWiBOARNRvRwcHO469vfff+Oxxx7jNYBERC0UCyAR1atr1651PrZz507cuHHDhGmIiMgQWACJqF6urq51PrZy5Uq0acMrSYiIWhr+5iaietU2AiiTybBhwwYEBQUJSERERM3FAkhE9erYsWON7+VyOTZv3oyxY8cKSkRERM3FAkhE9bp9itfGxga7d+/Gk08+KTARERE1l0ySJKmhJ6nVajg4OKC0tBT29vamyEVEzSBJEgoLC6FSqXRf+fn50Gg0KC8vh1arhVwuh52dHRQKBTw8PKBUKqFUKuHj4wNXV1fd9i7Xr19H7969UVpaiq1bt+KZZ54R/OmIiKg2jelrHAEkshDHjx/H1q1bkZWVBZVKheLiYgBAp06doFQq4efnh7Zt20KhUEAul0Or1UKj0aCsrAxnz55FfHy87i4fXbp00ZXB8ePHo6CgQORHIyIiA+MIIFELVllZiZ07dyIuLg6ZmZlwdnaGr6+vbjRPqVTC3d1dr82aJUlCQUFBjVHDw4cP48qVKxgyZAhCQkIwZswY2NjYmOCTERFRYzWmr7EAErVABQUFSExMRFJSEi5evAg/Pz+EhITghRdegFwuN9h5tFottm/fjri4OBw8eBBdu3ZFQEAAAgIC4O7ubrDzEBFR87EAElkotVqN8PBwJCcnQ6FQYMqUKQgODoa3t7fRz52dnY0NGzYgNTUVGo0GM2bMQHR0NH8nEBGZCRZAIguUnp6OGTNmoKSkBMuWLcP06dOF/P9RrVYjJSUFkZGRcHJyQnJyMkaMGGHyHEREVFNj+hrvBEJk5tRqNQIDAzFy5Eh4eXkhJycHCxYsEPaPMXt7eyxYsADZ2dno1asXRo4cicDAQKjVaiF5iIio8VgAicxYeno6vL29kZaWhvj4eKSnp6N79+6iYwEAPD09sXfvXsTHxyMtLQ3e3t5IT08XHYuIiPTAAkhkpmJiYmqM+gUFBem1mteUZDIZgoKCaowGxsTEiI5FREQNYAEkMjOSJOGtt95CeHg4IiIizGrUry7Vo4EREREIDw/H4sWLocflxUREJAg3giYyI5IkYd68eVi7di1iY2OxYMEC0ZH0JpPJsHz5cjg5OWHRokW4fv06PvjgA7MbtSQiIhZAIrMSERGBtWvXIiEhAYGBgaLjNMnChQvRvn17BAUFoUOHDlixYoXoSEREdAcWQCIzERMTg1WrVmHNmjUttvxVCwwMxLVr1xAaGgoHBweEhYWJjkRERLdhASQyA+np6bpr/hYuXCg6jkEsWrQIJSUlCA8Px8CBAzF8+HDRkYiI6H+4ETSRYGq1Gt7e3vDy8kJ6erpFXTMnSRKGDRuGM2fOICcnh78/iIiMiBtBE7UgoaGhKCkpQXJyskWVP+DWwpCUlBSUlJRwGpiIyIywABIJlJ6ejqSkJKxevdrst3ppKk9PT8TExCAxMRF79+4VHYeIiMApYCJhLHnq906cCiYiMj5OARO1AOHh4RY79Xun26eCw8PDRcchIrJ6LIBEAhQUFCA5ORnLli2z2KnfO3l6eiIqKgrJyckoLCwUHYeIyKqxABIJkJSUBIVCgenTp4uOYlIzZsyAnZ0dkpKSREchIrJqLIBEJlZZWYnExERMnjzZ6q6Fs7e3x+TJk5GYmIjKykrRcYiIrBYLIJGJ7dy5ExcvXkRwcLDoKEIEBwfjwoUL2LVrl+goRERWi6uAiUxs6NChuHnzJg4cOCA6ijCDBw+GjY0NMjIyREchIrIYXAVMZKaOHz+OzMxMhISEiI4iVEhICPbt24cTJ06IjkJEZJVYAIlMaOvWrXB2dsaLL74oOopQL730EpycnLB161bRUYiIrBILIJEJZWVlwdfXF3K5XHQUoeRyOXx9fZGVlSU6ChGRVWIBJDIRSZKgUqmgVCqNdo68vDzIZDLIZDL861//uuvxpUuXQiaT4fLly0bLoC+lUgmVSiU6BhGRVWIBJDKRoqIiFBcXG7UA3m7ZsmXQY42XMEqlEhcvXkRRUZHoKEREVocFkMhEqqc7TVEABw4ciGPHjmHHjh1Nen1ZWZmBE92t+ufAaWAiItNjASQyEZVKhU6dOsHd3b3e51VP054+fRqTJk2Cg4MDOnXqhCVLlkCSJOTn52P06NGwt7eHi4sL1qxZc9d7vPLKK+jVq5deo4BDhgyBt7c3VCoV/Pz80LZtW7z11lu66eTVq1dj/fr1uPfee9G2bVuMGDEC+fn5kCQJy5cvh7u7OxQKBUaPHo0rV67o/fPw8PBAx44dOQ1MRCQACyCRiVRf/yeTyfR6/vjx41FVVYV3330Xvr6+WLFiBT744AMMHz4cbm5ueO+999CzZ0+Ehobetadg69atERERgd9++02vUcC//voLTz/9NAYOHIgPPvgAQ4cO1T22efNmxMXFYc6cOVi0aBH279+PcePGISIiAnv27MHrr7+OwMBAfPXVVwgNDdX75yGTyXgdIBGRIG1EByCyFvn5+fDz89P7+Q8//DASEhIAAIGBgfD09MSiRYvwzjvv4PXXXwcATJgwAa6urvj444/vem9/f38sX74cy5YtwwsvvFBv8bx48SLi4+MRFBSkO5aXlwcAKCwsxJkzZ+Dg4AAAuHnzJt555x1oNBpkZWWhTZtbv0YuXbqEzZs3Y8OGDbC1tdXrM/bs2RMHDx7U7wdCREQGwxFAIhPRaDRo27at3s+fMWOG7s+tW7eGj48PJEnC9OnTdccdHR3h5eWF33///a7X3z4KuHPnznrPZWtri6lTp9b62Msvv6wrfwDg6+sLAJg0aZKu/FUf12q1KCws1OvzAYBCoYBGo9H7+UREZBgsgEQmUl5eDoVCoffzu3XrVuN7BwcH2NnZoWPHjncdLykpqfU9Jk6ciJ49ezZ4LaCbm1udexPWlgO4dQ1fbcfrylIbhUKB8vJyvZ9PRESGwQJIZCJarbZRG0C3bt1ar2MA6ix31aOAR48exa5du+o8V33FtK5zNjZLbeRyOSoqKvR+PhERGQYLIJGJyOVyaLVak5930qRJ6NmzJ6KiosxuX0CtVqv39YJERGQ4XARCZCJ2dnZCrnerHgV87bXXTH7uhmg0GtjZ2YmOQURkdTgCSGQiCoXCJBss12bixIm47777cPToUSHnr4tGo2nUdZFERGQYLIBEJuLh4YGzZ88KOXebNm0QEREh5Nz1yc3NvWsxCRERGZ9M0uOiILVaDQcHB5SWlsLe3t4UuYgsTmRkJOLj41FcXKz3ZtCWTJIkdO7cGSEhIYiKihIdh4ioxWtMX+MIIJGJKJVKXLp0CQUFBaKjmIX8/HxcvnzZJPdGJiKimlgAiUzEx8cHAHjrs/+p/jlU/1yIiMh0WACJTMTV1RVdunRhAfwflUoFFxcXuLq6io5CRGR1WACJTEQmk0GpVLIA/o9KpeL0LxGRICyARCbk4+ODw4cPC9kQ2pxUVFTg8OHDnP4lIhKEBZDIhMaPH48rV65g+/btoqMItX37dpSUlGD8+PGioxARWSVuA0NkYkOHDsXNmzdx4MAB0VGEGTx4MGxsbJCRkSE6ChGRxeA2MERmLCQkBAcPHkR2drboKEIcO3YMP/zwA0JCQkRHISKyWiyARCY2ZswYuLi4YMOGDaKjCLFhwwZ07doVo0ePFh2FiMhqsQASmZiNjQ0CAwORmpoKtVotOo5JqdVqpKamIjAwEDY2NqLjEBFZLRZAIgECAgKg0WiQkpIiOopJJScno7y8HAEBAaKjEBFZNRZAIgHc3d0xY8YMREZGIi8vT3Qck8jLy8Pbb7+NGTNmwM3NTXQcIiKrxlXARIKo1Wr06tULDzzwAL777jvIZDLRkYxGkiQMGzYMubm5yM7O5u8RIiIj4CpgIjNXWlqK2bNno7i4GBkZGUhMTBQdyagSEhKQkZGB5ORklj8iIjPAEUAiEzt48CAmT56M8+fP6461a9cOOTk58PT0FBfMSPLy8tCvXz/4+/sjISFBdBwiIovFEUAiM6TVavHmm2/i8ccf15U/e3t7JCYmwtnZGTNmzIAe/x5rUSRJwvTp0+Hs7IyYmBjRcYiI6H/aiA5AZA1OnDiBiRMn4siRI7pjfn5++PTTT9G9e3d0794dI0eORGRkJJYvXy4wqWEtWbIEGRkZSE9P5+wBEZEZ4QggkRFJkoT169fjoYce0pU/GxsbvPvuu8jIyED37t0BACNGjEB0dDRWrFiB2NhYkZENZs2aNVi5ciViYmIwfPhw0XGIiOg2HAEkMpKLFy9i6tSp2LNnj+5Ynz59sGnTJjz00EN3PT8sLAxXr17FokWL0L59ewQGBpoyrkElJiYiNDQUixcvRmhoqOg4RER0BxZAIiPYuXMnAgICcPnyZd2x2bNnIzo6GgqFos7XrVixAteuXUNQUBCuX7+OhQsXmiKuQa1ZswahoaGYO3euRU1nExFZEhZAIgO6fv065s+fX+MOHy4uLvj444/x9NNPN/h6mUyGDz/8EB06dMCiRYtQUlKCZcuWtYg9AiVJwpIlS7By5UosXrwYy5cvbxG5iYisEQsgkYEcOnQIkyZNwtmzZ3XHxowZg6SkJHTs2FHv95HJZFi5ciUcHR0RHh6On376CSkpKbrrBc1RXl4epk+fjoyMDERHRyMsLEx0JCIiqgcXgRA1040bN7B06VIMGjRIV/7atWuHlJQUbN++vVHl73ZhYWFIT0/H6dOn4e3tjYSEBLPbJkaSJMTHx6Nfv344c+YM0tPTWf6IiFoAFkCiZjhz5gwGDRqEqKgo3Lx5EwDwyCOP4LfffsO0adOaPQU6fPhw5OTkwN/fHzNnzsTw4cNrbCAtUl5eHoYNG4bg4GD4+/sjJyeHq32JiFoIFkCiJpAkCcnJyXjwwQdx+PBhAEDr1q0RFRWFgwcP4r777jPYuezt7ZGQkFBjNDA2NhZqtdpg52gMtVqN2NjYGqN+CQkJ3OePiKgFYQEkaqRLly7hhRdeQEBAAP7++28AQM+ePfGf//wHkZGRaNPGOJfWVo8GTpw4EeHh4XBzc0NISAiys7ONcr47ZWdnIzg4GK6urggPD8fEiRM56kdE1EKxABI1wu7du9GvXz/s2rVLdywgIABHjhyBr6+v0c9vb2+P+Ph45OXlYeHChdi5cyf69+8PPz8/bNmyBVqt1qDn02q1SEtLw+DBg9G/f3/s2rULoaGhOH/+POLj4znqR0TUQskkPa4qb8zNhYksUVlZGcLCwhAXF6c71rFjR6SkpGDUqFHCclVWVmLXrl2Ii4vDvn374OzsjIcffhhKpVL35eHhode1iJIkIT8/HyqVSvd1+PBhlJSUYOjQoQgJCcHo0aNhY2Njgk9GRESN1Zi+xgJI1ACVSoWJEyfi1KlTumPPPPMMUlJS4OLiIjBZTcePH8fnn3+OrKwsqFQqXLx4EcCtoqpUKtGzZ08oFAooFArI5XJotVpoNBpoNBrk5uZCpVLpNq52cXGBUqmEj48Pxo0bh759+4r8aEREpAcWQCIDuHnzJqKjoxEZGYkbN24AABQKBdasWYOZM2ea9SbHkiShqKioxmhefn4+NBoNysvLUVFRgbKyMlRUVAAAHn/8cfzjH//QlT5XV1fBn4CIiBqLBZComfLy8jB58mT88MMPumNKpRKbNm1C7969BSYznICAACQnJwMAjh49igEDBghOREREzdGYvsZFIES3kSQJqamp6N+/v678tWrVCosXL8aPP/5oMeUPADp37qz7859//ikwCRERmRpvBUf0P1euXMHMmTPxxRdf6I55enoiNTUVgwYNEpjMOFgAiYisF0cAiQB899136NevX43y9+qrr+K3336zyPIHsAASEVkzFkCyauXl5Vi4cCGGDx+OoqIiAICTkxM+//xzbNy40aKvee3SpYvuzyyARETWhVPAZLWOHTumu5tFtWHDhmHjxo1wc3MTmMw0OAJIRGS9OAJIVqeqqgqxsbH4v//7P135s7W1xfvvv49vv/3WKsofwAJIRGTNOAJIVqWgoACvvvoqMjIydMf69++PzZs3w9vbW2Ay07vnnnsgk8kgSRILIBGRleEIIFmNrVu3ol+/fjXK38KFC/Hzzz9bXfkDgNatW6Njx44AOAJIRGRtOAJIFq+0tBSzZ8/Gpk2bdMfc3d3xySef4IknnhCYTLzOnTvj0qVLLIBERFaGI4Bk0Q4cOID+/fvXKH/jx4/HsWPHrL78Af//OsCysjL8/fffgtMQEZGpsACSRdJqtXjjjTcwZMgQ/PHHHwAAe3t7bNq0CWlpaXBychKc0DxwIQgRkXXiFDBZnBMnTmDixIk4cuSI7pifnx8+/fRTdO/eXWAy83NnAezRo4fANEREZCocASSLIUkS1q1bh4ceekhX/mxsbPDee+8hIyOD5a8WHAEkIrJOHAEki3DhwgVMmzYNe/bs0R3r06cPNm/ejAcffFBgMvN2ewEsLi4WmISIiEyJBVCQM2fO4Nq1a6JjmJ0OHTrg/vvvb9RrduzYgYCAAPz111+6Y3PmzMF7770HhUJh6IgWhSOARETWiQVQgDNnzqBXr16iY5it06dP61UCr127hgULFiAlJUV3zMXFBRs3bsTIkSONGdFisAASEVknFkABqkf+Nm3ahD59+ghOYz5OnDiBSZMm6TUy+tNPP2HSpEn4/fffdcdeeOEFJCYm6jY3poaxABIRWScWQIH69OmDhx56SHSMFqWyshIrVqzAihUrUFVVBQBo3749PvroI7z22muQyWSCE7YsLIBERNaJBZBajDNnzmDSpEn4+eefdcceffRRpKam4r777hOYrOXq0KED7OzsUF5ezgJIRGRFuA0MmT1JkpCUlISBAwfqyl/r1q2xbNkyHDhwgOWvGWQymW4UkAWQiMh6cASQzNqff/6JgIAAfPnll7pj999/PzZt2oSHH35YYDLL0blzZ/zxxx+4dOkSqqqq0KoV/11IRGTp+JuezNY333yDfv361Sh/QUFBOHLkCMufAVWPAFZVVeHKlSuC0xARkSmwAJLZ0Wg0CAkJwXPPPaebluzUqRO+/PJLxMfHo127doITWhYuBCEisj6cAiazM3bsWFy8eFH3/bPPPouUlBR06dJFYCrLdWcB7Nu3r8A0RERkChwBJLNTXf4UCgU2bNiAr776iuXPiDgCSERkfTgCSGapS5cu2L9/P7y8vERHsXgsgERE1ocjgGSWiouLUVBQIDqGVWABJCKyPiyAZLZuv8cvGQ8LIBGR9WEBJLNkb2+P8ePHi45hFVgAiYisD68BJLOzY8cOPPvss7CxsREdxSp06tRJ9+fi4mKBSYiIyFQ4Akhmp1u3bix/JiSXy+Ho6AiAI4BERNaCBZCIeD9gIiIrwwJIRLoCqFarUV5eLjgNEREZGwsgEdVYCHLp0iWBSYiIyBRYAImoxp1WOA1MRGT5WACJqMYIIFcCExFZPhZAIuIUMBGRlWEBJCJuBk1EZGVYAImIBZCIyMqwABIRCyARkZVhASQiFkAiIivDAkhEcHR0RJs2t24NzgJIRGT5WAAtUGZmJmQyGWQyGVQq1V2Pv/baa2jfvr2AZGSuWrVqhU6dOgFgASQisgYsgBZu6dKloiNQC3H7/YAlSRKchoiIjIkF0IINHDgQX3/9NX799ddGv1aSJGg0GiOkInNVXQC1Wi1KS0sFpyEiImNiAWyhCgsLMX36dLi6usLW1hY9evRAcHAwtFqt7jlz5syBk5OTXqOAnp6eeO655/Dtt9/Cx8cHCoUCCQkJuunkzz//HFFRUXBzc0OHDh0wduxYlJaWoqKiAvPnz0fnzp3Rvn17TJ06FRUVFUb85GQsXAhCRGQ92ogOQI1XVFSEhx9+GFevXkVgYCB69+6NwsJCbNu2DWVlZbrn2dvbY8GCBYiMjMSvv/6Khx56qN73PXXqFCZMmICgoCAEBATAy8tL99g777wDhUKBN954A7m5uVi7di1sbGzQqlUrlJSUYOnSpTh06BA2btyIHj16IDIy0mifn4zjzgLYq1cvgWmIiMiYWABboDfffBMXL17E4cOH4ePjozu+bNmyu67dmjt3Lt5//31ERUVh165d9b5vbm4u9uzZg5EjR+qOZWZmAgBu3LiB/fv3w8bGBsCt24Vt2bIFTz31FHbv3g0ACAkJQW5uLj7++GMWwBaII4BERNaDU8AtTFVVFXbu3Innn3++RvmrJpPJanzv4OCA+fPn48svv8SRI0fqfe8ePXrUKH+3mzJliq78AYCvry8kScK0adNqPM/X1xf5+fm4ceOGvh+JzAQLIBGR9WABbGEuXboEtVoNb29vvV8zb948ODo6NngtYI8ePep8rFu3bjW+d3BwAAB4eHjcdbyqqoqLCFogFkAiIuvBAmgF9B0FVCgUdT7WunXrRh3nNiItDwsgEZH1YAFsYTp16gR7e3vk5OQ06nXz58+Ho6MjoqKijJSMWjoWQCIi68EC2MK0atUKY8aMwVdffYWsrKy7Hq9r5K16FHDXrl04evSokVNSS1R9JxCABZCIyNKxALZAq1atQufOnfH4449jwYIFSExMRFRUFLy9veu99m7evHlwcHDAb7/9ZsK01FK0a9cO7dq1A8ACSERk6VgAWyA3NzccPnwYY8eOxebNmzF37lx8+umnGDJkCNq2bVvn6xwdHTF//nzTBaUW5/bbwRERkeWSSXpcra9Wq+Hg4IDS0lLY29ubIpdF+/XXX6FUKqFSqRrcnNma8Oci3qOPPopDhw4BACorK9GmDbcKJSJqKRrT1zgCSEQ6ty8EuXz5ssAkRERkTCyARKRzewEsLi4WmISIiIyJBZCIdLgVDBGRdWABJCIdFkAiIuvAAkhEOiyARETWgQWQiHRYAImIrAMLIBHpsAASEVkHFkAi0mEBJCKyDiyAZHbWr1+PwsJC0TGs0j333AOZTAYAuHjxIv744w9cvHhRcCoiIjI0FkAyOx9//DE8PT0xYcIE3V0pyLj+/PNPBAQEwM/PT1cAs7Ky0L17d3Tt2hVxcXGCExIRkSGxAJJZunHjBrZs2YJHH30Uvr6+2Lx5M7RarehYFisuLg7Jycn46aefUFVVddfjKpVKQCoiIjIWFkAyOzNmzECnTp103//888+YNGkSPD09sXz5cl6bZgQPPvhgvY+PGjXKREmIiMgUWADJ7AQHB+OPP/7AP//5TwwcOFB3/MKFC4iMjES3bt0wdepUHD16VFhGSzNq1CgMGzas1se6du2KZ5991sSJiIjImFgAySzZ2dnhtddew6+//or9+/fjxRdfRKtWt/5zraiowMaNG/Hggw/i8ccfx/bt23Hz5k3BiVs2mUyG9evXQy6X3/XYtGnT0KZNGwGpiIjIWFgAyazJZDL4+fnhX//6F86ePYvQ0FA4OjrqHj9w4ABeeukl3HfffVi9ejVKSkrEhW3hevXqhTfeeKPGMZlMhunTpwtKRERExsICSC2Gp6cnYmJiUFBQgLi4OPTu3Vv32Pnz5xEWFgZ3d3eEhITg5MmTApO2XG+++WaN6y/79u2LHj16CExERETGwAJILU67du0QHByM//73v9izZw+efvpp3WNlZWXYsGED+vTpg6eeegr//ve/a13VSrWzs7PDO++8o/s+KChIYBoiIjIWFkBqsVq1aoWRI0di9+7dOHnyJGbNmoV27drpHv/222/xzDPPoE+fPli3bh2uX78uMG3LMX36dOzatQtpaWmYM2eO6DhERGQELIBkEby8vLBu3ToUFBQgNja2xrTl6dOnMWfOHLi5uWHhwoX4/fffBSZtGUaNGoVXXnlFdAwiIjISLu0ji+Lo6IgFCxZg7ty5+Prrr/Hhhx9i3759AAC1Wo33338fH3zwAUaNGoV58+ZhyJAhujtfWDNJklBYWAiVSqX7ys/Ph0ajQXl5ObRaLeRyOezs7KBQKODh4QGlUgmlUgkfHx+4urry50hE1IKwAJJFat26NUaPHo3Ro0fj2LFj+Oijj7Bp0yZUVFRAkiTs2rULu3btQv/+/TF37lz4+/tDoVCIjm1Sx48fx9atW5GVlQWVSoXi4mIAQKdOnaBUKuHn54e2bdtCoVBALpdDq9VCo9GgrKwMZ8+eRXx8PC5dugQA6NKli64Mjh8/Hn379hX50YiIqAEySZKkhp6kVqvh4OCA0tJS2NvbmyKXRfv111+hVCqhUqnw0EMPiY5jNoz9c7l8+TISExOxfv16FBUV1XjsnnvuQVBQEEJCQuDm5mbwc5uLyspK7Ny5E3FxccjMzISzszN8fX11o3lKpRLu7u56jeZJkoSCgoIao4aHDx/GlStXMGTIEISEhGDMmDGwsbExwScjIqLG9DVeA0hWo2PHjnjrrbeQl5eHtLQ0PPLII7rH/vrrL6xater/tXfvYVGVa//Av6MyMqYcPKUkiVvDMhRrUHYH3VooWVpmOw8kHlJAMTQVufYvEEG03lfEUlMBwcxDihZppbYxRbE0y1EEtopiG7eKWr4BQzk4COv3hy/zigLO4Mw8M7O+n+viumRmzVo37p1+vZ91rwdeXl4YN24cfvzxR4GVmt+lS5cMu6iMHj0aNTU12Lp1K65cuYLdu3cjISEBI0eOhKenp9FLuQqFAp6enhg5ciQSEhKwe/duXLlyBVu2bEF1dTVGjx6Nrl27YsGCBbh06ZKFf0IiIjIFAyDJjpOTE8aOHYsjR47g6NGjCAoKMux0cevWLWzduhXPPPMM/P39sXnzZuj1esEVN51Wq8W0adPg5eWFDz/8EKNGjUJ+fj4OHjyIMWPG1Lvzx4NQKpUYO3YscnJykJeXh5EjR2LZsmXw8vLCtGnToNVqzXo9IiJqGgZAkrX+/ftj8+bNuHDhAmJiYuo8BPmnn37C+PHj4eXlhYSEBPz6668CKzVdVlYWfHx8sHnzZiQmJuLy5ctYtWoVfHx8rHL93r17Y/Xq1bh8+TISExOxefNm+Pj4ICsryyrXJyKihjEAEgHw8PBAQkIC/vOf/2DdunXw9fU1vHflyhXD8unkyZORm5srrlAjaLVahIaGIjAwED179kRBQQFmz54t7P5dFxcXzJ49G/n5+fD29kZgYCBCQ0PZDSQiEogBkOgOzs7OmDx5Mk6cOIGDBw/i9ddfR7Nmt/8zuXnzJtavX4+nnnoKf/vb35CZmYnq6mrBFddV2/XbsmULkpOTkZWVha5du4ouC8Dtrfz27t2L5ORkbNmyhd1AIiKBGACJ6qFQKDBw4EBkZmbi/PnziIyMhJubm+H9nJwcvPHGG+jevTuWLl2K0tJSccX+r8TExDpdv7CwMJt7Np9CoUBYWFidbmBiYqLosoiIZIePgRGg9nEnmzZtwhNPPCG6HJtx+vRpjB8/3mYfj/PHH39g48aNWLFiBc6cOVPnvVatWmHixImYOXMmHn/8cavWJUkSoqOj8cEHHyAmJgYLFy60ueBXH0mSEBsbi0WLFuG9997DokWL7KJuIiJbZVJek4xQXl4uAZDKy8uNOZzu4+zZsxIAfjXwdfbsWdH/EzWqurpa+vbbb6Vhw4bVW39gYKC0e/duqbq62uK11NTUSBERERIAadmyZRa/niUkJSVJAKSZM2dKNTU1osshIrJbpuQ1dgAFOXfuHCoqKpr02V27diE2NhYAoFarkZqaas7ShGrTpg0ee+wx0WUYrbCwECtXrsT69evx559/1nnP29sbERERmDRpElq3bm2R60dHR+P9999HSkoKQkNDLXINa0hNTUVYWBiio6OxaNEi0eUQEdklU/IaA6CduXXrFnr16oVz584BALKzszFo0CCxRRHKysqwbt06rFy5EsXFxXXec3FxwZQpUxAREYFu3bqZ7ZqJiYmIiopCUlIS5syZY7bzipKUlITIyEgsWbIE8+bNE10OEZHd4U4gDmzr1q2G8Pe3v/2N4c9GuLm5Yc6cOSgqKsKXX35Z538XrVaLDz/8EN27d8fIkSORnZ2Nu//d9euvv+Kjjz5CUVGRUdfLyspCVFQUYmJiHCL8AcDcuXMRHR2NqKgo7N27V3Q5REQOjR1AO1JdXY1evXrh7NmzANj9s3V5eXlYsWIFNm3ahJs3b9Z5r0+fPpg5cyaCgoKgUqkwaNAgHDx4EG5ubvjxxx/Rs2fPBs+r1Wrh4+ODnj17Iisry6EGJyRJQkBAAM6dO4eCggL+eUNEZAJ2AB3U1q1bDeGP3T/b16dPH6SlpeHSpUtYvHgxPDw8DO/l5eVh6tSp8PT0xOTJk3Hw4EEAt5eSR4wYgd9//73B80ZGRqK0tBRpaWkOFf6A24+JSU9PR2lpKZeBiYgsiB1AO3F392///v0YPHiw4KrIFFVVVfjiiy+wfPly/Pjjj40eO3jwYPzzn/+Ek5NTndezsrIQGBiI5ORkhIWFWbJcoZKTkzF9+nRkZWVhyJAhosshIrILHAJxQJs3b8b48eMBAAMHDsSBAwccrvsjJz/99BOWL1+OjIyMBncTefvtt+t0+Rx56fduXAomIjIdl4AdTHV1NRISEgzfx8XFOfRf/nLQv39/bN68GREREQ0es27dOoSHhxu+j4qKctil37vduRQcFRUluhwiIofDAGgHMjIyUFhYCAAYMGAA7/1zIJmZmY2+n56eDgC4dOkS0tLSsHDhQpvZ29fSvLy8EB8fj7S0NFy+fFl0OUREDoUB0MZVV1dj4cKFhu/Z/XMsd+4vXJ/nnnsOALB27VqoVCpMmTLFClXZjqlTp8LZ2Rlr164VXQoRkUNpIboAaty2bdsM3b/nn3+egx8OZv/+/Th48CCUSiVcXFzu+VIqlaiqqkJqaiqCg4Nldy+ci4sLgoODkZqaiujo6HuGYoiIqGk4BGLDqqur4ePjgzNnzgAAvvvuO7z44ouCqyJr2759O0aPHo28vDz07t1bdDlWl5eXB19fX2zfvh1///vfRZdDRGSzOATiILZv324If88//zxeeOEFwRWRCKtXr8aAAQNkGf6A289TfP7557F69WrRpRAROQwGQBt1971/CxYs4L1/MnTq1CkcOHCgzjSwHIWHhyM7OxunT58WXQoRkUNgALRR27dvN/xl99xzz3HpV6YyMjLQtm1bjBo1SnQpQr3xxhtwd3dHRkaG6FKIiBwCA6AN4nP/qNaxY8fg7+8PpVIpuhShlEol/P39cezYMdGlEBE5BAZAG/T555/j1KlTAIBnn32W3T+ZkiQJGo0GarXaIuev3U1GoVBAo9Hc8/6kSZPQunVri1y7KdRqdb11EhGR6RgAbUxNTQ2f+0cAgJKSEly7ds1iAfBOcXFxFr/Gg1Kr1bh69SpKSkpEl0JEZPcYAG3M3d2/gIAAwRWRKLXLnZYOgH379sU333yD48ePm/xZSZKg0+ksUNW9an8fuAxMRPTgGABtyN3dP07+yptGo0GHDh3QpUsXkz534cIFhIeHo2fPnlCpVGjXrh3efPNNFBcX13t8REQE3N3djeoCenl5Yfjw4fjnP/8JPz8/qFQqpKSkGJaTt23bhvj4eDzyyCNo06YN/v73v6O8vBw3b97Eu+++i44dO6J169aYPHkybt68adLP5enpifbt23MZmIjIDLgTiA354osv8K9//QsA8Mwzz2DIkCGCKyKRau//M/UfAT///DMOHz6MsWPHokuXLiguLsaaNWswaNAgnDp1Cq1atapzvIuLC2bPno3Y2FgcP34cTz/9dKPnLywsxLhx4xAWFoaQkBD07NnT8N4HH3wAlUqFf/zjHygqKsLKlSvh5OSEZs2aobS0FHFxcfjxxx+xfv16dOvWDbGxsUb/XAqFgvcBEhGZCQOgjaipqUF8fLzhe3b/6OLFixg4cKDJn3vllVfu2TFjxIgReOaZZ/DFF18gODj4ns/MnDkTH374IeLj47Fz585Gz19UVIRvv/0WgYGBhtcOHDgAALh16xYOHjxo2LLtt99+w9atW/HSSy9h9+7dAG4/06+oqAjr1q0zKQACQI8ePXDo0CGTPkNERPfiErCNuLP799e//hVDhw4VXBGJptPp7unWGUOlUhl+XVVVhf/5n/9Bjx494Obm1uB9fq6urnj33Xfx1Vdf4cSJE42ev1u3bnXC350mTJhQZ79ef39/SJKEt99+u85x/v7+uHjxIm7dumXsjwXg9s9mrXsOiYgcGQOgDeDkL9WnsrKyTpgzlk6nQ2xsLDw9PdGyZUu0b98eHTp0QFlZGcrLyxv83KxZs+Dm5nbfewG7devW4HuPPvpone9dXV0B3L5/7+7Xa2pqGq2nPiqVCpWVlSZ9hoiI7sUlYBuQmZmJgoICALc7I+z+EQDo9fomPQA6IiICn3zyCd59910888wzcHV1hUKhwNixY1FTU9Pg52q7gHFxcY12ARsLpc2bNzfpdUmSGjxXfZRKpcnDI0REdC8GQMHY/aOGKJVK6PV6kz/3+eefY+LEiUhKSjK8VllZibKysvt+9t1338VHH32E+Ph4uLm5mXxtS9Pr9WjZsqXoMoiI7B6XgAX78ssvkZ+fD+B296+he6tIfpydnZt0v1vz5s3v6aytXLkS1dXV9/1sbRdw586dyM3NNfnalqbT6eDs7Cy6DCIiu8cOoECc/KXGqFQq3Lhxw+TPDR8+HBs3boSrqyt69eqFI0eO4LvvvkO7du2M+vysWbPw4Ycf4uTJk3jooYdMvr4l6XS6Jt0XSUREdbEDKNCOHTsM3b/+/fvjpZdeElwR2RJPT0+cP3/e5M8tX74cEyZMwObNmzF37lxcuXIF3333ndH7+rq5ueHdd981+brWUFRUdM9ACRERmU4hGXEXtlarhaurK8rLy+Hi4mKNuhxeTU0NnnrqKeTl5QEAdu3ahZdffllwVWRLYmNjkZycjGvXrrEzjNsDIx07dkR4eHidzjkREd1mSl5jB1CQHTt2GMJfv379MGzYMMEVka1Rq9X47bffcOnSJdGl2ISLFy/i+vXrFt8bmYhIDhgABeDkLxnDz88PALj12f+q/X2o/X0hIqKmYwAUYOfOnTh58iSA23+ZsftH9fHw8MDDDz/MAPi/NBoNOnXqBA8PD9GlEBHZPQZAK5Mkid0/MopCoYBarWYA/F8ajYbLv0REZsIAaGV3Pl/Nz8+Pgx/UKD8/Pxw9erRJD4R2JDdv3sTRo0e5/EtEZCYMgFYkSRKf+0cmGTNmDH7//XdkZmaKLkWozMxMlJaWYsyYMaJLISJyCHwMjBXt3LkTI0eOBHB7wvPnn39mAKT7Gjx4MKqrq5GTkyO6FGEGDBgAJycn7N+/X3QpREQ2i4+BsUGSJCEuLs7wPe/9I2OFh4fj0KFDhoeGy01eXh6+//57hIeHiy6FiMhhMABayVdffWW490+tVuOVV14RWxDZjZEjR6JTp05Ys2aN6FKEWLNmDTp37ozXXntNdClERA6DAdAKeO8fPQgnJyeEhoZi48aN0Gq1osuxKq1Wi40bNyI0NBROTk6iyyEichgMgFbw9ddf48SJEwCAp59+GsOHDxdcEdmbkJAQ6HQ6pKeniy7FqtLS0lBZWYmQkBDRpRARORQGQAu7+94/dv+oKbp06YKpU6ciNjYWxcXFosuxiuLiYixYsABTp07FI488IrocIiKHwilgC/v666/x6quvAgCeeuopaDQaBkBqEq1WCx8fH3h7e2Pv3r0O/f8jSZIQEBCAoqIi5Ofn888dIiIjcArYRrD7R+bk4uKCtLQ07Nu3D6mpqaLLsaiUlBTs378faWlpDH9ERBbAAGhB33zzDY4fPw4A6Nu3r6ETSNRUQ4cORUhICCIjIx12Kbi4uBjz5s1DaGgohgwZIrocIiKHxCVgC5EkCf369TPs47pjxw4+xoLMwpGXgrn0S0TUdFwCNpIkSTh9+jSMyMAm27VrlyH8sftH5nTnUnBsbKzocsxq/vz5XPolIrICWQfADRs2oFevXtiwYYNZz8vn/pGlDR06FEuWLMGiRYuwbNky0eWYRVJSEhYvXozExEQu/RIRWZhsl4DLysrg7e2NiooKuLi4oLCwEG5ubmY5965duwzP+uvbty+OHz/OAEgWER0djffffx8pKSkIDQ0VXU6TpaamIiwsDNHR0Vi0aJHocoiI7BKXgI0wf/586HQ6HDp0CDdu3DDbUtrdk7+xsbEMf2QxixYtQkREBMLCwuy2E5iUlISwsDDMnDkTCQkJosshIpIFWQbA3NxcrF69GvHx8fDz80NcXBxWrVqFkydPPvC59+zZg2PHjgEAfH19OfhBFqVQKLB8+XK89957mDt3LubPn2+Re1otQZIkxMTEIDIyEtHR0fjoo4/4jyUiIiuR3RJwTU0NBgwYgPLycpw4cQJOTk6oqqpC37594e7ujpycHDRr1rRcLEkS/P398fPPPwMAMjMz8frrr5uzfKIGJSYmIioqCi+++CLS09PRtWtX0SU1qLi4GFOmTMH+/fuxZMkSzJs3T3RJRER2j0vAjdiwYQMOHz6Mjz/+2LC5vJOTEz7++GP88MMP2LhxY5PPvWfPHkP469OnD7t/ZFXz5s1DVlYWzp49Cx8fH6SkpNhcN1CSJCQnJ6N37944d+4csrKyGP6IiASQVQAsKytDVFQUxo0bh0GDBtV5b/DgwRg3bhyioqJQVlZm8rnrm/xtaieRqKmGDBmCgoICBAUFYdq0aRgyZAguXLgguiwAt7t+AQEBmD59OoKCglBQUMBpXyIiQWSVUGoHP5YuXVrv+0uXLjVpIOTQoUN4+umnMX78eKSkpOCnn34CcLv7N3LkSHOVTWQSFxcXpKSk1OkGLlu2DFqtVkg9Wq0Wy5Ytq9P1S0lJsfvbSYiI7JpkhPLycgmAVF5ebszhNunEiRNSs2bNpKSkpEaPW7p0qdSsWTMpNzf3vuccNWqUBOCer88//9xcZRM9kPLyciksLExq3ry51Lp1a2n69OlSXl6eVa6dl5cnTZs2TXrooYek5s2bS2FhYXb9ZwgRka0zJa/JogNYU1ODGTNm4IknnkBERESjx86cOROPP/44ZsyYgZqamkaPvXHjRr2vZ2Rk4N///neT6yUyFxcXFyQnJ6O4uBhz5szBjh070KdPHwwcOBBbt26FXq836/X0ej22bNmCZ599Fn369MHWrVsRGRmJCxcuIDk5mV0/IiIbIYsp4PXr12Py5MnIzs6+596/+mRnZ+OFF17A+vXrMXHixAaPGzZsGL799tt633vsscdw9uzZppZMZBFVVVXYuXMnVq9ejezsbLRt2xb9+/eHWq02fHl6ehr1OBZJknDx4kVoNBrD19GjR1FaWopmzZqhpqYGvr6+yM3NtfwPRkREJuU1hw+AtTt+BAQE4LPPPjP6c0FBQdi3b1+jO4Q0FgCffPJJFBQUNKVkIqs4deoUtm3bhmPHjkGj0eDq1asAgPbt20OtVqNHjx5QqVRQqVRQKpXQ6/XQ6XTQ6XQoKiqCRqPB9evXAQCdOnWCWq2Gn58fRo8ejcmTJxvuidVoNHj66aeF/ZxERHJhSl5rYaWahLnf4EdDli5dip49eyI2NhYrVqyo95iGuiT9+vXDtm3bTK6VyJp69epl2LVGkiSUlJTU6eYdOnQIOp0OlZWVuHnzJlq2bAlnZ2eoVCp4enoiPDzcEPo8PDzqnHvKlCmGAJiens4ASERkYxy6A5ibmwu1Wo3ExETMmTPH5M8nJSUhKioKx48fh6+v7z3v9+/f3/Dcv1qzZs3CkiVLoFQqm1w3kb0rLy9H586dodPp4ObmhpKSEqhUKtFlERE5ND4IGqYNfjTkfgMhv/76q+HXrVq1QmZmJj766COGP5I9V1dXvPnmmwBu34bx5ZdfCq6IiIju5LABsL4dP0x1vx1Cav+Ca9euHU6ePMlt34juMGXKFMOv09PTBVZCRER3c8gl4KYOfjSksYEQvV4PJycnbmJPdBdJkuDt7Y2ioiIAwC+//IJu3boJroqIyHHJfgm4qYMfDWlshxClUsnwR1QPhUKBt99+2/D9J598IrAaIiK6k8MFwNzcXKxevRrx8fH3TCY2lYeHB+Li4rBq1SqcPHnSLOckkoOJEyca9sT+5JNPUF1dLbgiIiICHGwJuKamBgMGDEB5eTlOnDjR5Hv/6lNVVYW+ffvC3d0dOTk5hr/UiKhxw4cPx65duwAA3377LQIDAwVXRETkmGS7BGyOwY+G3G8ghIjqx2EQIiLb4zAdQHMPfjTEmB1CiOj/VFVVoUuXLvj111/h5OSEkpIStG/fXnRZREQOR5YdQHMPfjSksYEQIrqXk5MTgoODAdwOg5s3bxZcEREROUQAtMTgR0M4EEJkuruXgY1YeCAiIguy+yVgSw5+NIQDIUSme/bZZ3HkyBEAwE8//YR+/foJroiIyLHIagnYkoMfDeFACJHp7nwmIIdBiIjEsusOoLUGPxrCgRAi41VUVKBz5874888/4eLigitXrqBVq1aiyyIichiy6QBaa/CjIRwIITJemzZtMHr0aAC3/5D64osvBFdERCRfdhsArTn40ZA7B0Jyc3OF1EBkT7gMTERkG+xyCVjE4EdDOBBCZDxJkvDEE0+gsLAQAHDu3Dn06NFDcFVERI7B4ZeARQx+NIQDIUTGUygUdbqAn3zyicBqiIjky+46gKIHPxrCgRAi41y9ehVdunRBdXU1PDw8cOHCBbRo0UJ0WUREds+hO4CiBz8awoEQIuN06tQJr7zyCgCgpKQEWVlZgisiIpIfuwqAtjD40RAOhBAZ7+6dQYiIyLrsZgnYlgY/GsKBECLjVFVVwdPTE9euXUOLFi1w+fJldOzYUXRZRER2zSGXgG1p8KMhHAghMo6TkxMmTpwIALh16xY2bdokuCIiInmxiw6grQ5+NIQDIUT3V1hYiMcffxwA0KtXLxQUFEChUAiuiojIfjlcB9BWBz8awoEQovvr2bMnnn/+eQDAqVOncPToUcEVERHJh80HQFse/GgIB0KIjHPnMwHXrVsnsBIiInmx6SVgexj8aAgHQoju748//kDnzp3xxx9/oE2bNrhy5Qoeeugh0WUREdklh1kCtofBj4ZwIITo/lq3bo2xY8cCACoqKrB9+3bBFRERyYPNBsCysjJERUVh3LhxGDRokFnOGRcXB4VCgevXr9f7vo+Pj9muBQCDBw/GuHHjEBUVhbKyMrOdl8iR3LkMzGcCEhFZh80GQHsb/GgIB0KIGvfXv/4VTzzxBADg+++/x9mzZwVXRETk+GwyANrj4EdDOBBC1DiFQlFnZxAOgxARWZ7NBcCamhrMmDEDTzzxBCIiIkSXYxYzZ87E448/jnfeeQc1NTWiyyGyOcHBwWjRogUA4NNPP8WtW7cEV0RE5NhsLgDa8+BHQzgQQtS4jh07YsSIEQCAq1evYvfu3YIrIiJybDYVAC0x+GErOBBC1DguAxMRWY9NBUBHGfxoCAdCiBoWGBiIzp07AwC++eYbXL16VXBFRESOy2YCoK0MflhyL1IOhBA1rEWLFpg0aRIAoLq6mrdLEBFZkM0EwE2bNkGpVGLatGkWu4azszMAQKfT1fv+jRs3DMdYyvTp06FUKrFp0yaLXofIHt39TEAjNioiIqImsJkAOH78eOj1eiQnJ1vsGl27dgUAFBYW3vPejRs3cPHiRcMxlrJmzRro9XoEBwdb9DpE9qhHjx4YOHAggNv/nR4+fFhwRUREjslmAmDfvn0RHh6OBQsWoKSkxCLXePHFF6FUKrFmzZp7HseSmpqKW7duYdiwYRa5NgCUlJQgLi4OM2bMgK+vr8WuQ2TPOAxCRGR5CsmINRZTNhd+EGVlZfD29kZAQAA+++wzi1xj8eLFiImJwXPPPYdXX30VrVq1wuHDh7FlyxYMHToUe/bsQbNmlsnFQUFB2LdvHwoLC+Hm5maRaxDZuxs3bqBTp06oqKjAQw89hCtXrqBNmzaiyyIisnmm5DWb6QACgJubG5YsWYItW7bgwIEDFrlGdHQ0Nm3ahOrqaixcuBCRkZE4ceIE4uPj8dVXX1ks/GVnZ2PLli1YsmQJwx9RI1q1aoVx48YBAP78809s27ZNcEVERI7HpjqAwO2dQAYMGICysjLk5uY6xMOgq6qq0LdvX7i7uyMnJ8diIZPIUfz000/w9/cHADz77LP44YcfBFdERGT77LYDCADNmjXDqlWrcObMGaxcuVJ0OWaxYsUKnDlzBqtWrWL4IzJCv3794OPjAwA4fPgwTp8+LbgiIiLHYpNpxBoDIdbCwQ8i0ykUijqPhOEwCBGRedncEnAtawyEWAMHP4ia5vr16/Dw8EBVVRU6duyIS5cuOcQtIURElmLXS8C1rDEQYmkc/CBquvbt2+O1114DAPz666/YtWuX4IqIiByHzXYAAfseCOHgB9GD27NnD15++WUAwPDhw/H1118LroiIyHY5RAcQsO+BEA5+ED24oUOHokuXLgCA3bt32/09wUREtsLmk4k9DoRw8IPIPJo3b45JkyYBuL0isGHDBrEFERE5CJteAq5lbwMhHPwgMp9ffvkF3bt3BwA89thjKCwshEKhEFwVEZHtcZgl4Fr2NBDCwQ8i8/rLX/6CwYMHAwDOnTuH77//XnBFRET2zy4CIABMmDABzz77LGbMmIGqqirR5dSrqqoK77zzDp577jkEBweLLofIYUyZMsXw6/T0dIGVEBE5BrsJgPYwEMLBDyLLGDVqFFxdXQEA27dvh1arFVwREZF9s6uUYssDIRz8ILIclUqFoKAgAMCNGzeQkZEhuCIiIvtmVwEQABISEqBSqRAZGSm6lDoiIyPRqlUrLFy4UHQpRA6Jy8BEROZjdwHQFgdCOPhBZHlPP/20obt+9OhR/Otf/xJcERGR/bK7AAjY1kAIBz+IrEOhUODtt982fL9u3TqB1RAR2Te7DIC2NBDCwQ8i63nrrbegVCoBABs2bIBerxdcERGRfbLbxGILAyEc/CCyrnbt2uH1118HAFy/fp17AxMRNZHdBkBA/EAIBz+IrI/LwERED86uA6DIgRAOfhCJERAQgEcffRQAsGfPHowbNw7u7u7w9fXl8wGJiIxkF3sBN6ampgYDBgxAWVkZcnNz4eTkZPFrVlVVoW/fvnB3d0dOTg7v/SOyomvXriE4OBh79+69573s7GwMGjTI+kUREdkAh9sLuDEiBkI4+EEkxp49e9C1a9d6wx8Aw24hRETUOIdIL9YcCOHgB5E4e/bswc2bNxt8v3PnzlashojIfjlEAASsNxDCwQ8icWbNmgUPD49632vWrBk6dOhg5YqIiOyTwwRAawyEcPCDSKzu3bvjhx9+gLe39z3vdejQAc2bNxdQFRGR/bH7IZA7WXIghIMfRLbjt99+w8svv4xjx44ZXvP09MR//vMfgVUREYklqyGQO1lyIISDH0S2o0OHDti/fz/8/f0Nr/G/SyIi4zlUB7BWREQE1q9fj8LCwgbvFzJFSUkJevbsicmTJ2PFihVmqJCIzEGv12PgwIHIz8/HihUrMGXKlDrvS5KEy5cvQ6PRGL4uXrwInU6HyspK6PV6KJVKODs7Q6VSwdPTE2q1Gmq1Gn5+fvDw8IBCoRD00xERmcaUvOaQAbCsrAze3t4ICAjAZ5999sDnCwoKwr59+1BYWMh7/4hs3KlTp5CRkYFjx45Bo9Hg2rVrAG53DdVqNbp3745WrVpBpVJBqVRCr9dDp9Phxo0bOH/+PDQaDX777TcAwMMPP2wIg2PGjEGvXr1E/mhERI2SfQAEgPXr12Py5MkP/GDY7OxsvPDCC1i/fj0mTpxovgKJyGyqqqqwY8cOrF69GgcOHEDbtm3h7+9v6Oap1Wp06dLFqG6eJEm4dOlSna7h0aNH8fvvv2PQoEEIDw/HyJEjrfLQeSIiUzAAwjwDIRz8ILJtly5dQmpqKtauXYurV69i4MCBCA8Px+uvvw6lUmm26+j1emRmZmL16tU4dOgQOnfujJCQEISEhKBLly5muw4R0YOQ7RDIncwxEMLBDyLbpNVqMW3aNHh5eeHDDz/EqFGjkJ+fj4MHD2LMmDFmDX8AoFQqMXbsWOTk5CAvLw8jR47EsmXL4OXlhWnTpnEPYiKyOw7bAazV1IEQDn4Q2aasrCxMnToVpaWlWLhwIaZMmSLkzyWtVov09HTExsbC3d0daWlpGDp0qNXrICKqxQ7gHZq6Qwh3/CCyLVqtFqGhoQgMDETPnj1RUFCA2bNnC/tHqYuLC2bPno38/Hx4e3sjMDAQoaGh7AYSkV1w+ADYlB1CuOMHkW3JysqCj48PtmzZguTkZGRlZaFr166iywIAeHl5Ye/evUhOTsaWLVvg4+ODrKws0WURETXK4ZeAAdMGQjj4QWRbEhMTERUVhYCAAKSlpdlM8KtPcXExpk6din379mHJkiWYN2+e6JKISEa4BHwXUwZCOPhBZBskScJ7772HqKgoxMTE2FTXryG13cCYmBhERUUhOjoaRvwbm4jI6lqILsBa+vbti/DwcCxYsABjx46tdyCkpKQEcXFxmDFjBnx9fQVUSUTA7fA3a9YsrFy5EsuWLcPs2bNFl2Q0hUKBhIQEuLu7Y+7cufjjjz/w0UcfcUcRIrIpsmpx3W8ghIMfRLYhJiYGK1euREpKil2FvzvNmTMHKSkpWLFiBebPny+6HCKiOmTTAQT+byBk8uTJCA0NrbNDSO3gx/r16zn4QSRQYmIi3n//fSQlJSE0NFR0OQ8kNDQUFRUViIyMhKurK+8JJCKbIYshkDvVNxDCwQ8i25CVlYXAwEDExMQgISFBdDlmExMTg8WLFyMrKwtDhgwRXQ4ROShuBXcfubm5UKvVSExMxJw5c5CUlISoqCgcP36c9/4RCaLVauHj44OePXsiKyvLoe6ZkyQJAQEBOHfuHAoKChziz1Eisj2cAr6POwdCjh07xsEPIhsQGRmJ0tJSpKWlOVT4A24PhqSnp6O0tJTLwERkE2TZAQSAsrIyeHt7o6KiAi4uLigsLOS9f0SC1C79JicnIywsTHQ5FpOcnIzp06dzKZiILIJLwEb69NNPMWnSJKxfvx4TJ04UXQ6RLDny0u/duBRMRJbEJWAjTZgwAadPn8aECRNEl0IkW1FRUQ679Hu3O5eCo6KiRJdDRDIm6wCoUCjw+OOPO/xfOkS26tKlS0hLS8PChQttfpcPc/Hy8kJ8fDzS0tJw+fJl0eUQkUzJOgASkVhr166FSqXClClTRJdiVVOnToWzszPWrl0ruhQikikGQCISoqqqCqmpqQgODpbdvXAuLi4IDg5GamoqqqqqRJdDRDLEAEhEQuzYsQNXr17F9OnTRZcixPTp03HlyhXs3LlTdClEJEOyngImInEGDx6M6upq5OTkiC5FmAEDBsDJyQn79+8XXQoROQBOARORTTt16hQOHDiA8PBw0aUIFR4ejuzsbJw+fVp0KUQkMwyARGR1GRkZaNu2LUaNGiW6FKHeeOMNuLu7IyMjQ3QpRCQzDIBEZHXHjh2Dv78/lEplndfj4uKgUChw/fp1QZVZl1KphL+/P44dOya6FCKSGQZAIrIqSZKg0WigVqubfA4vLy8oFApERETc896BAwegUCjw+eefP0iZZlNcXAyFQoEDBw7U+75arYZGo7FuUUQkewyARGRVJSUluHbt2gMFwFpr165FSUmJGaoSR61W4+rVq3b/cxCRfWEAJCKrql3ufNAA+OSTT6K6uhr/9V//1aTP//nnnw90fXOp/X3gMjARWRMDIBFZlUajQYcOHdClS5cGj7l+/TpGjx4NFxcXtGvXDrNmzUJlZWWdY7y8vDBhwgSjuoC19xaeOnUKQUFBcHd3x/PPP284z/Dhw3HgwAH4+flBpVKhd+/ehiXbzMxM9O7dG87OzlCr1Thx4sSD/QbcxdPTE+3bt+cyMBFZFQMgEVlV7f1/je3BPXr0aFRWVuKDDz7Ayy+/jBUrViA0NPSe46Kjo3Hr1i2ju4Bvvvkmbty4gffffx8hISGG14uKihAUFIQRI0bggw8+QGlpKUaMGIHNmzdj9uzZGD9+POLj43H+/HmMHj0aNTU1pv/gDVAoFLwPkIisroXoAohIXi5evIiBAwc2eky3bt0MO2TMmDEDLi4uWL16NSIjI9GnTx/DcX/5y18QHByMtWvX4v/9v/+Hzp07N3peX19ffPbZZ/e8XlhYiMOHD+OZZ54BAPTq1QuBgYEICQnBmTNn8OijjwIA3N3dERYWhpycHAwaNMion9fLywv3e95+jx49cOjQIaPOR0RkDuwAEpFV6XQ6tGrVqtFjZsyYUef72mnf3bt333NsTEyM0V3AadOm1ft6r169DOEPAPz9/QEAL7zwgiH83fn6L7/8ct9rmUKlUkGn05n1nEREjWEAJCKrqqyshEqlavSYxx57rM733bt3R7NmzVBcXHzPsbVdwNTUVFy5cqXR83br1q3e1+8MeQDg6uoK4Pb9efW9Xlpa2uh1TKVSqe65x5GIyJIYAInIqvR6/T0PgL6fxu4XBP7vXsD//u//bvS4hoJn8+bNTXrdiC3UTaJUKnHz5k2znpOIqDEMgERkVUqlEnq9vtFjzp07V+f7oqIi1NTUwMvLq97ju3fvjvHjxyMlJeW+XUBbpNfr0bJlS9FlEJGMMAASkVU5Ozvf9363VatW1fl+5cqVAIBhw4Y1+JmYmBhUVVVhyZIlD16klel0Ojg7O4sug4hkhFPARGRVKpUKN27caPSYf//733j11Vfx0ksv4ciRI9i0aROCgoLg6+vb4Gdqu4CffvqpuUu2OJ1Od9/7IomIzIkdQCKyKk9PT5w/f77RYzIyMtCyZUv84x//wK5du/DOO+8gPT39vueOiYlp8L49W1ZUVHTPwAkRkSUpJCPuZtZqtXB1dUV5eTlcXFysURcROajY2FgkJyfj2rVr9x3ukANJktCxY0eEh4cjPj5edDlEZMdMyWvsABKRVanVavz222+4dOmS6FJswsWLF3H9+vUH3huZiMgUvAeQiKzKz88PwO0t4ex52VOv1+P3339v9BhXV9f73ttXuwVc7e8LEZE1sANIRFbl4eGBhx9+2O73vj18+DA6d+7c6FdGRsZ9z6PRaNCpUyd4eHhYoWoiotvYASQiq1IoFFCr1XYfAH19fbF3795Gj3nyySfvex6NRsPlXyKyOgZAIrI6Pz8/fPzxx03aFcRWuLu7IyAg4IHOcfPmTRw9ehQzZ840U1VERMbhEjARWd2YMWPw+++/IzMzU3QpQmVmZqK0tBRjxowRXQoRyQwfA0NEQgwePBjV1dXIyckRXYowAwYMgJOTE/bv3y+6FCJyAHwMDBHZvPDwcBw6dAj5+fmiSxEiLy8P33//PcLDw0WXQkQyxABIREKMHDkSnTp1wpo1a0SXIsSaNWvQuXNnvPbaa6JLISIZYgAkIiGcnJwQGhqKjRs3QqvVii7HqrRaLTZu3IjQ0FA4OTmJLoeIZIgBkIiECQkJgU6nM2qfX0eSlpaGyspKhISEiC6FiGSKAZCIhOnSpQumTp2K2NhYFBcXiy7HKoqLi7FgwQJMnToVjzzyiOhyiEimOAVMREJptVr4+PjA29sbe/fuhUKhEF2SxUiShICAABQVFSE/P59/nhKRWXEKmIjshouLC9LS0rBv3z6kpqaKLseiUlJSsH//fqSlpTH8EZFQDIBEJNzQoUMREhKCyMhIh10KLi4uxrx58xAaGoohQ4aILoeIZI5LwERkExx5KZhLv0RkDVwCJiK7c+dScGxsrOhyzGr+/Plc+iUim8IASEQ2Y+jQoViyZAkWLVqEZcuWiS7HLJKSkrB48WIkJiZy6ZeIbEYL0QUQEd1p3rx5KCsrw9y5c9G6dWuEhoaKLqnJUlNTERkZiejoaERGRoouh4jIgAGQiGzOokWLUFFRgbCwMPzxxx+YM2eO6JJMlpSUhMjISMycORMJCQmiyyEiqoMBkIhsjkKhwPLly9GmTRvMnTsXpaWlWLhwoV0MhkiShPnz52Px4sWIjo5GQkKCXdRNRPLCAEhENkmhUGDx4sVwc3NDVFQUjhw5gvT0dHTt2lV0aQ0qLi7GlClTsH//fixZsgTz5s0TXRIRUb04BEJENm3evHnIysrC2bNn4ePjg5SUFBjx9CqrkiQJycnJ6N27N86dO4esrCyGPyKyaQyARGTzhgwZgoKCAgQFBWHatGkYMmQILly4ILosALe7fgEBAZg+fTqCgoJQUFDAaV8isnkMgERkF1xcXJCSklKnG7hs2TJotVoh9Wi1WixbtqxO1y8lJYXP+SMiu8AASER2pbYb+NZbbyEqKgqPPPIIwsPDkZ+fb5Xr5+fnY/r06fDw8EBUVBTeeustdv2IyO4wABKR3XFxcUFycjKKi4sxZ84c7NixA3369MHAgQOxdetW6PV6s15Pr9djy5YtGDBgAPr06YOdO3ciMjISFy5cQHJyMrt+RGR3uBcwEdm9qqoq7Ny5E6tXr0Z2djbatm2L/v37Q61WG748PT2NehyLJEm4ePEiNBqN4evo0aMoLS3F4MGDER4ejtdeew1OTk5W+MmIiIxnSl5jACQih3Lq1Cls27YNx44dg0ajwdWrVwEA7du3h1qtRo8ePaBSqaBSqaBUKqHX66HT6aDT6VBUVASNRoPr168DADp16gS1Wg0/Pz+MHj0avXr1EvmjERE1igGQiAi3u3klJSV1unkXL16ETqdDZWUlbt68iZYtW8LZ2RkqlQqenp6GjqGfnx88PDxE/whEREZjACQiIiKSGVPyGodAiIiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZhgAiYiIiGSGAZCIiIhIZloYc5AkSQAArVZr0WKIiIiIqGlqc1ptbmuMUQGwoqICAODp6fkAZRERERGRpVVUVMDV1bXRYxSSETGxpqYGJSUlaNOmDRQKhdkKJCIiIiLzkCQJFRUV8PDwQLNmjd/lZ1QAJCIiIiLHwSEQIiIiIplhACQiIiKSGQZAIiIiIplhACQiIiKSGQZAIiIiIplhACQiIiKSGQZAIiIiIpn5/xNZzVfuEhcWAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "double_model = frame_model_A.prepend(frame_model_A)\n", - "draw_frame_model(double_model, figsize=(8, 12))" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "456c2bbd", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.574536Z", - "iopub.status.busy": "2024-07-11T15:30:51.574287Z", - "iopub.status.idle": "2024-07-11T15:30:51.711871Z", - "shell.execute_reply": "2024-07-11T15:30:51.711396Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAOwCAYAAACuwMU6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACq9UlEQVR4nOzdeViU5eI+8HtAllEWcRch0cwVtwZFO0FqLnVaXCpNUrNkEcwVmBYRxT0R00xk82SZmdnxaMs5hamElllMmvDFVCw6CGqiwKgMDML7+8PD/EQFBhjmmeX+XBfXkXfembmHU3j3PO/zvDJJkiQQERERkdWwER2AiIiIiIyLBZCIiIjIyrAAEhEREVkZFkAiIiIiK8MCSERERGRlWACJiIiIrAwLIBEREZGVYQEkIiIisjIt9DmpqqoKBQUFcHZ2hkwma+5MRERERNRAkiTh+vXrcHd3h41N3WN8ehXAgoICeHp6GiQcERERETWfvLw8eHh41HmOXgXQ2dlZ94IuLi5NT0ZEREREBqVWq+Hp6anrbXXRqwBWT/u6uLiwABIRERGZMH0u1+MiECIiIiIrwwJIREREZGVYAImIiIisDAsgERERkZVhASQiIiKyMiyARERERFaGBZCIiIjIyrAAEhEREVkZFkAiIiIiK8MCSERERGRlWACJiIiIrAwLIBEREZGVYQEkIiIisjIsgERERERWhgWQiIiIyMqwABIRERFZGRZAIiIiIivDAkhERERkZVgAiYiIiKwMCyARERGRlWEBJCIiIrIyLIBEREREVoYFkIiIiMjKsAASERERWRkWQCIiIiIrwwJIREREZGVYAImIiIisDAsgERERkZVhASQiIiKyMiyARERERFaGBZCIiIjIyrAAEhEREVkZFkAiIiIiK8MCSERERGRlWACJiIiIrAwLIBEREZGVYQEkIiIisjIsgERERERWhgWQiIiIyMqwABIRERFZGRZAIiIiIivDAkhERERkZVqIDkBERERkaJIkIT8/HyqVSveVl5cHjUaDsrIyaLVa2Nvbw9HREXK5HJ6enlAoFFAoFPDx8YG7uztkMpnoj9FsWACJiIjIImRnZ2P37t3IyMiASqXC5cuXAQDt27eHQqGAv78/WrZsCblcDnt7e2i1Wmg0GpSWluL8+fNISEjAlStXAAAdO3bUlcEpU6agb9++Ij+awckkSZLqO0mtVsPV1RUlJSVwcXExRi4iIiKielVUVGDfvn2Ij49HWloa2rRpA19fX91onkKhgIeHh16jeZIk4cKFCzVGDY8fP45r165hxIgRCAsLw4QJE2BnZ2eET9ZwDelrLIBERERkdi5cuICkpCQkJyfj0qVL8Pf3R1hYGCZOnAh7e3uDvY9Wq8XevXsRHx+PI0eOoHPnzggKCkJQUBA8PDwM9j6GwAJIREREFkmtVkOpVCIlJQVyuRwzZsxAaGgovL29m/29MzMzsXXrVuzYsQMajQaBgYFYt26dyXQjFkAiIiKyOKmpqQgMDERRURGWL1+OWbNmCeklarUa27ZtQ3R0NNzc3JCSkoKxY8caPcf9cunb17gNDBEREZk0tVqN4OBgjBs3Dr169UJWVhYWLlwobFDKxcUFCxcuRGZmJnr27Ilx48YhODgYarVaSJ7GYAEkIiIik5Wamgpvb2/s2rULCQkJSE1NRdeuXUXHAgB4eXnhwIEDSEhIwK5du+Dt7Y3U1FTRsfTCAkhEREQmKTY2tsaoX0hIiMntzSeTyRASElJjNDA2NlZ0rHqxABIREZFJkSQJb731FpRKJaKiokxq1K821aOBUVFRUCqVWLx4MfRYZiEMN4ImIiIikyFJEubPn4/Nmzdjw4YNWLhwoehIepPJZFixYgXc3NwQHh6OGzduYOPGjSY3agmwABIREZEJiYqKwubNm5GYmIjg4GDRcRpl0aJFcHJyQkhICJydnbFy5UrRke7BAkhEREQmITY2FqtXr0ZcXJzZlr9qwcHBuH79OiIiIuDq6orIyEjRkWpgASQiIiLhUlNTddf8LVq0SHQcgwgPD0dRURGUSiUGDRqEMWPGiI6kw42giYiISCi1Wg1vb2/06tULqampJnnNXGNJkoTRo0fj3LlzyMrKatYexY2giYiIyGxERESgqKgIKSkpFlX+gNsLQ7Zt24aioiKTmgZmASQiIiJhUlNTkZycjPXr15v8Vi+N5eXlhdjYWCQlJeHAgQOi4wDgFDAREREJYslTv3czxlQwp4CJiIjI5CmVSoud+r3bnVPBSqVSdBwWQCIiIjK+CxcuICUlBcuXL7fYqd+7eXl5ISYmBikpKcjPzxeahQWQiIiIjC45ORlyuRyzZs0SHcWoAgMD4ejoiOTkZKE5WACJiIjIqCoqKpCUlITp06db3doCFxcXTJ8+HUlJSaioqBCWgwWQiIiIjGrfvn24dOkSQkNDRUcRIjQ0FBcvXsT+/fuFZeAqYCIiIjKqkSNHorKyEunp6aKjCOPn5wc7OzscOnTIYK/JVcBERERkkrKzs5GWloawsDDRUYQKCwvD4cOHcfr0aSHvzwJIRERERrN79260adMGkyZNEh1FqOeeew5ubm7YvXu3kPdnASQiIiKjycjIgK+vL+zt7Ws9Z9myZZDJZCgsLDRiMuOyt7eHr68vMjIyhLw/CyAREREZhSRJUKlUUCgUBnk9Ly8vyGQyzJ07957H0tLSIJPJ8NlnnxnkvZqDQqGASqUS8t4sgERERGQUBQUFuHz5ssEKYLXk5GQUFBQY9DWNQaFQ4NKlS0KyswASERGRUVRPdxqyAPbr1w+VlZVYu3Zto55/8+ZNg2VpqOqfg4hpYBZAIiIiMgqVSoX27dvDw8NDr/MLCwsxefJkuLi4oG3btpg/fz7KyspqnOPl5YUZM2boNQpYfW1hdnY2AgIC4ObmhkcffVT3Ok8//TTS0tLg4+MDuVyO/v37Iy0tDQCwd+9e9O/fH46OjlAoFDhx4kTDfwB38fT0RLt27YRMA7MAEhERkVFUX/8nk8n0On/y5MkoKyvDmjVr8Pe//x3vvvsugoOD7zlv8eLFuHXrlt6jgC+88AJKS0uxevVqBAUF6Y7n5OQgICAAzzzzDNasWYOioiI888wz2LlzJxYuXIhp06YhJiYG58+fx+TJk1FVVaXfB6+FTCYTdh1gC6O/IxEREVmlvLw8+Pv7631+t27ddHfLmDNnDlxcXBAfH4+IiAgMGDBAd1737t0xffp0JCcn480330Tnzp3rfN2BAwfi448/vuf4mTNn8MMPP2D48OEAgL59+2LcuHEICgrCb7/9hgceeAAA4ObmhpCQEKSnp2PEiBF6f5776dGjB44cOdKk12gMjgASERGRUWg0GrRs2VLv8+fMmVPj++rVvv/+97/vOTcqKkrvUcDZs2ff93jfvn115Q8AfH19AQCjRo3Slb87j//+++/1vld95HI5NBpNk1+noVgAiYiIyCjKysogl8v1Pv+hhx6q8f2DDz4IGxsb5Obm3nNu9ShgUlISLl68WOfrduvW7b7H7yx5AODq6grg9rV69zteVFRU5/voQy6X33NdozGwABIREZFRaLXaOjeArk991w5WXwv49ttv13lebSXU1ta2QcclSarzffRhb2+P8vLyJr9OQ7EAEhERkVHY29tDq9Xqff65c+dqfJ+Tk4Oqqip4eXnd9/wHH3wQ06ZNQ2JiYr2jgKZCq9XCwcHB6O/LAkhERERG4ejo2KDr3bZs2VLj+82bNwMAnnzyyVqfExUVhYqKCqxbt65xIY1Mo9HA0dHR6O/LVcBERERkFHK5HKWlpXqf/8cff+DZZ5/FE088gWPHjuGjjz5CQEAABg4cWOtzqkcBP/jgA0NEbnYajaZB10UaCkcAiYiIyCg8PT1x/vx5vc/fvXs3HBwc8MYbb+Crr77Ca6+9hm3bttX7vKioqFqv2zM1OTk59ywyMQaZpMcVjGq1Gq6urigpKYGLi4sxchEREZGFiY6ORkJCAi5fvqz3ZtCWTJIkdOjQAWFhYYiJiWny6zWkr3EEkIiIiIxCoVDgypUruHDhgugoJiEvLw+FhYUGvTeyvngNIBERERmFj48PgNu3hBMx7dkctFotrl27Vuc5rq6u973Or/oWcNU/F2PiCCAREREZhbu7Ozp27Cjk3rfN5YcffkDnzp3r/Nq9e/d9n6tSqdCpUye4u7sbOTVHAImIiMhIZDIZFAqFRRXAgQMH4sCBA3We069fv/seV6lUQqZ/ARZAIiIiMiIfHx+89957Tb4riKlwc3PD6NGjG/y88vJyHD9+HPPmzWuGVPXjFDAREREZzZQpU3Dt2jXs3btXdBSh9u7di6KiIkyZMkXI+3MbGCIiIjKqkSNHorKyEunp6aKjCOPn5wc7OzscOnTIYK/JbWCIiIjIZIWFheHIkSPIzMwUHUWIU6dO4ejRowgLCxOWgQWQiIiIjGrChAno1KkTtm7dKjqKEFu3bkXnzp0xfvx4YRlYAImIiMio7OzsEBwcjB07dkCtVouOY1RqtRo7duxAcHAw7OzshOVgASQiIiKjCwoKgkaj0evevpYkJSUFZWVlCAoKEpqDBZCIiIiMSpIkpKWlwd7eHosXL0Zubq7oSEaRm5uLpUuXIjAwEF26dBGahQWQiIiIjCYrKwsjRozA9OnTodFooNVq8eqrr0KPTUnMmiRJmDVrFtq0aYN169aJjsMCSERERM1PrVYjPDwcgwYNqrH9i6+vLw4fPoykpCSB6ZpfYmIiDh06hJSUFJPYUo8FkIiIiJqNJEnYtWsXevfujQ0bNqCyshIA8OCDD+Lf//43vv/+ewQFBSEiIsJip4Jzc3MRGRmJ4OBgjBkzRnQcANwImoiIiJpJdnY25syZg7S0NN0xR0dHvPXWW4iMjISjoyOA2z3D29sbPXv2xIEDByCTyQQlNjxJkjB69Gjk5OQgMzOzWXsUN4ImIiIiYa5fv47IyEgMHDiwRvl79tlnkZ2djSVLlujKHwC4uLggJSUFBw8eRHR0tIDEzWfJkiUmNfVbrYXoAERERGQZJEnCnj17sGjRIuTn5+uOd+vWDe+++y6efvrpWp87duxYrFu3DkqlEm5ubli0aJExIjeruLg4rFq1CrGxsSYz9VuNBZCIiIia7LfffsNrr72GgwcP6o45ODjgjTfewOuvvw65XF7va0RGRqK4uBjh4eFwcnJCcHBwc0ZuVklJSYiIiMDixYsREREhOs49WACJiIio0W7evIkVK1Zgw4YNqKio0B3/+9//jnfffRcPPvhgg15v5cqVuH79OkJCQnDjxg2zHAmMi4tDREQE5s2bhxUrVoiOc18sgERERNRgkiRh7969WLhwIfLy8nTHu3btik2bNuHZZ59t1GIOmUyGTZs2wdnZGeHh4SgqKsLy5cvNYmGIJElYsmQJVq1ahcWLF2PFihUmm5sFkIiIiBrk7NmzmDt3LlJTU3XH7O3toVQq8eabb6Jly5ZNen2ZTIZVq1ahdevWUCqVOHbsGLZt24auXbs2NXqzyc3NxaxZs3Do0CGsW7cOkZGRoiPViauAiYiISC83b97E4sWL4e3tXaP8jRs3DllZWVixYkWTy9+dIiMjkZqairNnz8Lb2xuJiYkmd8cQSZKQkJCA/v3749y5c0hNTTX58gewABIREVE9JEnCv/71L/Tt2xerV6/WXevn6emJf/7zn/jPf/6Dhx56qFnee8yYMcjKykJAQABmz56NMWPG4M8//2yW92qo3NxcjB49GqGhoQgICEBWVpbJrfatDQsgERER1SonJwdPPfUUJk2ahP/+978AADs7O7z55ps4ffo0Jk2a1OzXubm4uCAxMbHGaOCGDRugVqub9X1ro1arsWHDhhqjfomJiSa1z199WACJiIjoHqWlpYiOjka/fv3wn//8R3d8zJgxyMzMxOrVq9GqVSujZqoeDXzppZegVCrRpUsXhIWFITMz0yjvn5mZidDQULi7u0OpVOKll14yq1G/O7EAEhERUQ2ff/45+vXrhxUrVkCr1QIAPDw8sGfPHnzzzTfo1auXsGwuLi5ISEhAbm4uFi1ahH379mHAgAHw9/fHJ598ostrKFqtFrt27YKfnx8GDBiA/fv3IyIiAn/++ScSEhLMatTvTrwXMBEREQEAzp8/j/nz5+Orr77SHWvRogXCw8MRFRUFJycngenur6KiAvv370d8fDwOHz6MNm3aYOjQoVAoFLovT09PvaapJUlCXl4eVCqV7uv48eMoKirCyJEjERYWhvHjx8POzs4In6zhGtLXWACJiIisnEajwdtvv421a9eivLxcd3zUqFF477330KdPH4Hp9JednY1PP/0UGRkZUKlUuHTpEgCgXbt2UCgU6NGjB+RyOeRyOezt7aHVaqHRaKDRaJCTkwOVSoXCwkIAQKdOnaBQKODj44PJkyejb9++Ij+aXlgAiYiISC9fffUV5s2bh99//113zN3dHRs2bMDkyZNNdiPj+kiShIKCghqjeXl5edBoNCgrK0N5eTkcHBzg6OgIuVwOT09P3Yihj48P3N3dRX+EBmMBJCIiojr98ccfWLBgAT7//HPdsRYtWmDBggWIjo6Gs7OzwHTUGA3pa7wTCBERkRUpKytDbGwsVq9ejbKyMt3xESNG4L333kO/fv0EpiNjYQEkIiKyEl9//TXmzp2LnJwc3bHOnTsjLi4OL774otlO91LDcRsYIiIiC/fnn39i0qRJePLJJ3Xlz9bWFgsXLsRvv/2GqVOnsvxZGY4AEhERWajy8nLExcVh5cqV0Gg0uuN+fn7YsmUL+vfvLzAdicQCSEREZIFSU1Px2muv4dy5c7pjHTt2xPr16/HSSy9xxM/KcQqYiIjIguTl5eH555/HuHHjdOXPxsYG8+bNw2+//YZp06ax/BFHAIka69y5c7h+/broGCbH2dkZDz30kOgYRFZHq9XinXfewfLly1FaWqo7/re//Q1btmzBwIEDBaYjU8MCSNQI586dQ8+ePUXHMFlnz55lCSQyooMHD2LOnDk4c+aM7lj79u0RGxuL6dOnw8aGE35UEwsgUSNUj/x99NFHZnOLJGM4ffo0pk2bxpFRIiPJz8/HokWL8Omnn+qO2djYICwsDCtWrEDr1q3FhSOTxgJI1AR9+vTBww8/LDoGEVmZiooKbNq0CcuWLcPNmzd1x4cNG4b4+HgMHjxYYDoyByyAREREZuTw4cN47bXXkJ2drTvWrl07vP3225g5cyane0kv/KeEiIjIDBQUFCAgIACjRo3SlT+ZTIbQ0FCcOXMGr776Kssf6Y0jgERERCasoqICmzdvxtKlS3Hjxg3d8aFDhyI+Ph4KhUJgOjJXLIBEREQmKj09HXPmzEFWVpbuWNu2bbF27VqO+FGT8J8cIiIiE3Pp0iVMnz4djz32mK78yWQyBAcH48yZMwgMDGT5oybhCCAREZGJuHXrFrZs2YLo6Gio1WrdcR8fH2zZsgVDhw4VmI4sCQsgERGRCTh69CjmzJmDU6dO6Y65ublhzZo1CAwMhK2trcB0ZGk4fkxERCTQ5cuXMXPmTPj5+dUof4GBgTh79ixCQkJY/sjgOAJIREQkwK1bt5CQkICoqCiUlJTojj/88MPYsmULhg0bJjAdWToWQCIiEkaSJOTn50OlUum+8vLyoNFoUFZWBq1WC3t7ezg6OkIul8PT0xMKhQIKhQI+Pj5wd3eHTCYT/TEa7IcffsCcOXNw8uRJ3bHWrVtj1apVHPEjo2ABJCIio8rOzsbu3buRkZEBlUqFy5cvAwDat28PhUIBf39/tGzZEnK5HPb29tBqtdBoNCgtLcX58+eRkJCAK1euAAA6duyoK4NTpkxB3759RX60ev31119444038P7779c4/sorr2Dt2rXo0KGDoGRkbVgAiYio2VVUVGDfvn2Ij49HWloa2rRpA19fXwQFBelG9Dw8PPQazZMkCRcuXKgxavjee+9h+fLlGDFiBMLCwjBhwgTY2dkZ4ZPpp7KyEklJSXjrrbdQXFysOz5w4EDEx8fjkUceEReOrBILIBERNZsLFy4gKSkJycnJuHTpEvz9/fHJJ59g4sSJsLe3b9RrymQyeHp6wtPTExMmTAAAaLVa7N27F/Hx8Zg8eTI6d+6MoKAgBAUFwcPDw4CfqOGOHz+OsLAw/PLLL7pjLi4uWLlyJUJDQ9GiBf8qJuPjKmAiIjI4tVqN2bNnw8vLC++88w4mTZqEzMxMfPfdd5gyZUqjy19t7O3t8eKLLyI9PR2nTp3ChAkTsGHDBnh5eWH27Nk19tQzlsLCQgQFBWHYsGE1yt+MGTNw9uxZzJ07l+WPhGEBJCIig0pNTYW3tzd27tyJ2NhY5OfnY8uWLfD29jbK+/fv3x/x8fHIz89HbGwsdu7cCW9vb6Smphrl/SsrK5GYmIhevXohJSWlRq709HR88MEH6Nixo1GyENWGBZCIiAxCrVYjODgY48aNQ69evZCVlYWFCxfCxcVFSB4XFxcsXLgQmZmZ6NmzJ8aNG4fg4OBmHQ38+eefMWzYMMyePRvXrl0DADg7O2Pjxo345Zdf4Ofn12zvTdQQLIBERNRk1aN+u3btQkJCAlJTU9G1a1fRsQAAXl5eOHDgABISErBr165mGQ28evUqZs+eDV9fX2RkZOiOT5s2DWfOnMH8+fM53UsmhQWQiIiaJDY2tsaoX0hIiMntzSeTyRASElJjNDA2NrZBr3Hjxg3k5+fXOFZVVYWUlBT06tULiYmJkCQJANCvXz+kpaVhx44d6Ny5s8E+B5GhWHUBlCQJp0+f1v0LS0RE+pMkCW+99RaUSiWioqJMatSvNtWjgVFRUVAqlVi8eLFefwdcuXIFAwcOhKenp24PP5VKhUceeQRBQUG4evUqAMDJyQlxcXE4ceIEHnvssWb9LERNYdXj0R9++CFmzpyJ7du34+WXXxYdh4jIbEiShPnz52Pz5s3YsGEDFi5cKDqS3mQyGVasWAE3NzeEh4fjxo0b2LhxY52jlgsXLsTvv/8OAJg/f75uMced5XHq1KlYv3493N3dm/0zEDWV1RbA4uJiREZGwtHREUqlEuPHj0fr1q1FxyIiMgtRUVHYvHkzEhMTERwcLDpOoyxatAhOTk4ICQmBs7MzVq5ced/zvvnmG+zcuVP3/fXr17F9+3bd93369MGWLVswcuTI5o5MZDBWOwW8ZMkSaDQaHDlyBKWlpYiOjhYdiYjILMTGxmL16tWIi4sz2/JXLTg4GOvXr8eqVavue03gzZs3MXv27Ps+19HREbGxsTh58iTLH5kdqyyAJ0+eRHx8PGJiYuDj44Nly5Zhy5Yt+PXXX0VHIyIyaampqbpr/hYtWiQ6jkGEh4dj8eLFUCqVOHDgQI3H3njjDeTm5t73eV27dsX8+fMNvqk1kTHIJD2uflWr1XB1dUVJSYmw/ZwMpaqqCn5+figpKcGJEydgZ2eHiooKDBo0CG5ubkhPT4eNjVX2YmqAX375BQqFAiqVCg8//LDoOCaDPxfLplar4e3tjV69eiE1NdXkVvo2hSRJGD16NM6dO4esrCy4uLjg4MGDGD16dJ3P++c//4lJkyYZKSVR3RrS16yu6Xz44Yf44Ycf8N577+luFG5nZ4f33nsP33//PXbs2CE4IVmbtLQ0yGQyyGQyqFSqex6fOXMmnJycBCQjqikiIgJFRUVISUmxqPIH3F4Ysm3bNhQVFSEyMhIAdKt968Jrx8lcWdUikOLiYiiVSkydOhUjRoyo8djIkSMxdepULgghoZYtW4YvvvhCdAyie6SmpiI5ORkJCQkmv9VLY3l5eSE2NhahoaF4/vnnERMTg6NHj6K8vFy3BUy7du10X4MHD8aAAQNExyZqFKsqgNULP9avX3/fx9evX49evXohOjoa7777rpHTkbUbNGgQvvzyS/zyyy8Nnj6VJAllZWWQy+XNlI6smVqtRmBgIEaPHm32iz7qExISgj179mDWrFnIysqq9fo/InNnNVPAdy78qG2PJnd3dy4IoWaRn5+PWbNmwd3dHQ4ODujWrRtCQ0Oh1Wp158ydOxdubm5YtmxZva/n5eWFp59+Gt988w18fHwgl8uRmJiom07+9NNPERMTgy5dusDZ2RnPP/88SkpKUF5ejgULFqBDhw5wcnLCK6+8gvLy8mb85GQJlEqlxU793u3OqWClUik6DlGzsYoRwKqqKsyZMwd9+vTB3Llz6zx33rx5+Mc//oE5c+ZwQQgZREFBAYYOHYri4mIEBwejd+/eyM/Px2effYbS0lLdedU3ro+OjtZrFPDMmTOYOnUqQkJCEBQUhF69eukeW7NmDeRyOd544w3k5ORg8+bNsLOzg42NDYqKirBs2TL8+OOP2L59O7p168ZtkKhWFy5cQEpKCmJjYy126vduXl5eiImJgVKpxJIlS9ClSxfRkYgMT9JDSUmJBEAqKSnR53ST8/7770sApMOHD+t1/qFDhyQA0vbt25s3GJktlUolAZBUKlW9586YMUOysbGRfv7553seq6qqkg4fPiwBkPbs2SMVFxdLbm5u0rPPPqs75+WXX5ZatWpV43ldu3aVAEhff/11jePVr+Xt7S1ptVrd8alTp0oymUx68skna5w/fPhwqWvXrvp8ZL005OdC5iE6OlpycnIy29//jVVSUiK1atVKWrp0qegoRHprSF+z+OGtuhZ+1ObOBSHFxcXNmo8sW1VVFfbt24dnnnkGPj4+9zx+93Saq6srFixYgM8//xwnTpyo87W7deuGcePG3fexGTNm6Fa5A4Cvry8kScKrr75a4zxfX1/k5eXh1q1b+n6kRisuLsa2bdvw6aef8v7bZqKiogJJSUmYPn262W8B1lAuLi6YPn06kpKSUFFRIToOkcFZfAGsb+FHbdavX887hFCTXblyRbd3mr7mz5+P1q1b13stYLdu3Wp97IEHHqjxvaurKwDA09PznuNVVVUoKSnRO19DnTp1CiEhIejSpQsCAwMxZcoUHDp0qNnejwxn3759uHTpEkJDQ0VHESI0NBQXL17E/v37RUchMjiLLoD6LPyoDReEkCj6jgLWteLX1ta2QccNPSJ369YtJCUl4W9/+xsGDhyIpKSkGtc7Xr582aDvR80jPj4efn5+6N+/v+goQgwYMACPPvoo4uPjRUchMjiLXQTSkIUfteGCEGqq9u3bw8XFBVlZWQ163oIFC7Bx40bExMSY5Z6Uo0ePxvXr12t9PDExEUePHoWbmxvc3NzQunVr3Z/v/HJxcbH4VaemKjs7G2lpadi1a5foKEKFhYUhICAAp0+fRp8+fUTHITIYiy2A1Xf8OHz4cI1roRqi+g4ho0aNwo4dO/Dyyy8bOCVZOhsbG0yYMAEfffQRMjIy7rkOsLaRt+pRwGXLlmHgwIHGiGpQdZU/AEhPT0d6enq9r2NjY1NrOaztePWXq6sr/6OtCXbv3o02bdpY/W3OnnvuObi5uWH37t16bdFEZC4ssgA2ZuFHbXiHEGqq1atXIzU1FY899hiCg4PRp08fXLx4EXv27MHRo0drfd78+fPxzjvv4Ndff0WrVq2MmLjpZsyYgV27djX54vmqqipcu3YN165da/BzZTIZXF1dG1wcq8+pbbrcWmRkZMDX1xf29vaiowhlb28PX19fZGRkiI5CZFAWWQAbu/CjNrxDCDVFly5dcPz4cSxZsgQ7d+6EWq1Gly5d8OSTT6Jly5a1Pq9169ZYsGABYmJijJjWMObPn4+4uDgsWbIEiYmJ94x0/vjjj7C1tUVRUZHuq7i4uMb3d38VFxc36FpFSZJQXFyM4uJi/PHHHw3+DC4uLg0qjXee29hZB1MhSRJUKhWCgoIM+rq5ubm6xUufffYZnnvuuRqPL1u2DDExMbhy5QratWtn0PduCoVCgW3btomOQWRQMkmP36hqtRqurq4oKSkx+a0ATp48CYVCgdjYWCxatMhgrxsXFwelUolffvnFLKfkyDA0Gg1OnjyJvXv3Yv369VCpVA2+bZsl++WXX6BQKGr8XE6cOIF58+bpRjtbtmyJoqKiBo8sVVVVQa1WN6g03nleZWWlwT9vbZycnBpcHKvPd3BwMFrO2uTn58PDwwP/+te/MGHCBIO97p0FcMCAATh58mSNazxNtQD+61//wqRJk5Cfn9/gBYVExtSQvmZRI4CGWPhRGy4IsT4VFRXIysrCzz//jIyMDPz888/Iysoyyp55lmTw4MFIT0/HJ598gp07d2Ly5MmNmlasvh6wdevWdW6Bcz+SJOH69esNLo7VXw39//zGjRu4ceMG8vLyGvQ84Pbq7oaWxuo/G+pe0NXTnQqFwiCvd7dBgwbh5MmTumLVUKWlpXWOnhta9c8hIyMDzz77rNHel6g5WVQBNMTCj9pwQYhlq6qqwpkzZ/Dzzz/rCt/JkydRVlYmOprRlJSUQKPR1HlOp06dGvXaMpkMU6dOxdSpUxv1/KaSyWRwcXGBi4tLg29nJkkSbt682eDSWP115/2e9aHRaKDRaFBQUNCg5wGAg4NDg0tj9VfLli11o3EqlQrt27eHh4fHPe9RPUp35swZLF++HF988QXs7e0xe/ZsLF++HBcuXMBrr72Gw4cPo2XLloiMjER4eHiN13jxxRdRWlqK5cuXY+LEiXWu9B4xYgQKCwvxwQcfYOHChcjIyEBwcDAWLFiAbt26ITY2FnK5HHFxcbh06RIeffRRbNu2DR4eHli5ciUSExNx9epVjB07Fu+//z7atGnT4J+rp6cn2rVrB5VKxQJIFsNiCqAhF37UhgtCLIMkScjNza0xsqdSqepduWpjY4M+ffpgyJAh6NixI95++20jJTaO+fPn44MPPqjzHGu8g4dMJoOTkxOcnJzuW4jqo9Fo9C6Ld5fM+gr53crLy3Hp0iVcunSpwTnt7Ox0ZfCvv/7C0KFD6yxmU6ZMQZ8+fbB27Vp89dVXWLlyJdq0aYPExESMGjUKb7/9Nnbu3ImIiAgMGTIE/v7+uufa2toiKioKM2bM0GsU8OrVq3jyySfx4osvYtq0aejYsaPusZ07d0Kr1WLu3Lm4du0a1q1bh8mTJ2PUqFFIS0vD66+/rrsfdkREBP7xj380+Gcjk8l0lzYQWQqLKYCGXvhRGy4IMT8XL16sMbKXkZGBwsLCep/Xo0cP+Pj4YMiQIRgyZAgGDx4MJycnALevdbO0AqhUKjFt2jTRMSyOXC6HXC5v1LVj5eXlDS6N1V83b95s0HtVVFTgr7/+wl9//QU7Ozv06NGjzvOHDh2KxMREAEBwcDC8vLwQHh6ONWvW4PXXXwcATJ06Fe7u7vjHP/5RowACQEBAAFasWKHXKOClS5eQkJCAkJAQ3bHc3FwAt69XPHfunO5uN5WVlVizZg00Gg0yMjLQosXtv+auXLmCnTt3YuvWrY26zrJHjx44cuRIg59HZKosogBW3/EjNja22S/Qrb5DiFKpxKxZs7ggxMRcu3ZNN6pX/b/5+fn1Ps/Dw6NG2fPx8YGbm5sREpuOvn37om/fvqJj0B0cHBzQqVOnRk29a7Xa+5ZDfaayy8rK6r3GLjAwUPdnW1tb+Pj44MKFC5g1a5bueOvWrdGrVy/8/vvv9zy/ehTw5Zdfxr59+zBx4sQ6fw6vvPLKfR974YUXdOUPuH1/awCYNm2arvxVH9+1axfy8/PRvXv3Oj/b/cjl8gaPyBKZMrMvgM258KM2XBBiGm7cuIFffvmlRtk7f/58vc9r27atruhVl73OnTsbITGR8djb26NDhw7o0KFDg5/r6elZ74KS+91v2tHR8Z7Vu66urrh69ep9X+Oll17SjQLWtdq4S5cutS4cash9rwGgqKio1vepi1wut6prgsnymX0BbM6FH7XhghDjKy8vx6+//lqj7J0+fRpVVVV1Ps/Z2RkKhaJG4evatStvL0ZUB61WW+9K7fttlN3Qe01XjwLOnDkT+/fvr/W9TOG+1/b29igvL2/Uc4lMkVkXQGMs/KgNF4Q0n1u3biE7O7tG2Tt16lS9d5VwdHTEoEGDapS9nj17coSWqIHs7e0bvHq5saZNm4aVK1ciJibGpFfYarVak9ijkchQzLoAGmvhR224IKTpqqqqkJOTU6PsnThxAqWlpXU+r0WLFujfv3+N6/b69etn9ndgIDIFjo6ORrve7c5RQFOm0Wjg6OgoOgaRwZhtATTmwo/a3Lkg5NVXX8WgQYOE5DAXkiQhLy+vRtnLyMhASUlJnc+TyWTo3bt3jbI3cOBAg216S0Q1yeXyev8jzJCqrwU8efKk0d6zoTQaDX/nkEUxywIoYuFHbaoXhLz22mtcEHKXv/76q0bZ+/nnn/HXX3/V+7xu3brVKHsPP/ywyd+CkMiSeHp66rWgylBatGiBqKioWlf6moKcnJx7FpYQmTOzvBfw9u3b8corr+Dw4cNGv/bvfg4fPoxRo0Zh+/btVrsgpKSk5J7tV/773//W+7xOnTrdsyLXlO4BWpv73fOW+HOxFNHR0UhISMDly5e5YAq3Zy86dOiAsLAwxMTEiI5DVCuLvhewyIUftbG2BSGlpaU4ceJEjbJ39uzZep/n5uZWY2RvyJAh6NKlixESE1FDKBQKXLlyBRcuXOCoF4C8vDwUFhY2272RiUQwuwIoeuFHbSx1QYhWq0VmZmaNsvd///d/qKysrPN5rVq1gkKhqFH4unfvztEEIjPg4+MD4PY9gS2xAN64cQM3btyo85z27dvrtpKpvgVc9c+FyBKYVQE0hYUftbGEBSGVlZX47bffapS9X3/9td69r+zt7XXbr1QXvt69e9e6DxcRmTZ3d3d07NgRKpWqzg2azdX69evrncr9448/4OXlBeB2AezUqZPJ/b1D1BRmUwBNaeFHbcxpQYgkSfj9999rlL1ffvml3v8qtrW1Rb9+/WqUvf79+9e7aSwRmQ+ZTKa7ltMSzZgxA48++mid59x5+z2VSsXpX7I4ZlMARdzxo6FM+Q4h+fn592y/cu3atXqf17Nnzxplb/DgwfXeI5SIzJ+Pjw/ee+89ve4KYm66d++u9/2Ay8vLcfz4ccybN6+ZUxEZl1kUQFNc+FEbQy8IKS0txf79+zF48GD07t1br+dcvXr1nu1XLl68WO/zHnjggRqrcRUKhcUvaCGi+5syZQqWL1+OvXv34sUXXxQdR5i9e/eiqKgIU6ZMER2FyKDMogCa6sKP2hhqQUhOTg4mTpyIrKwstG3bFn/88QecnZ1rnHP9+nWoVKoaZe+PP/6o97U7dOhwz/YrjblpPBFZpr59+2LEiBGIj4+36gIYHx+PkSNHok+fPqKjEBmUyRdAU174URtDLAj58ssvMW3aNN1dMq5evYqjR4/Czc2tRtn77bff6r25uaura43VuD4+PvD09OSKXCKqU1hYGCZPnozMzEz0799fdByjO3XqFI4ePYo9e/aIjkJkcCa9EXRVVRX8/PxQUlKCEydOmOy1f/dTUVGBQYMGwc3NrUELQqqqqhATE4Ply5ff85iNjQ2qqqrqfL5cLsfDDz9cY3TvwQcfNOkFKeaIGx7fH38ulqWiogIPPPAAJk6ciPj4eNFxjC40NBT79+/Hn3/+aVZ//5D1spiNoM1h4UdtGrMgpKioCL6+vjh37tx9H7+7/NnZ2WHAgAE1yl6fPn3QooVJ/99KRGbCzs4OwcHB2LBhA9auXWsSd4IyFrVajR07diAiIsLs/v4h0ofJDgsZYuHHsmXLIJPJUFhYeN/Hvb29m3VRyZ0LQoqLi+s9PywsrNbyB9z+ZTxz5kxs2bIFP/30E65fv46MjAxs3boVr776Kvr378/yR0QGFRQUBI1Gg23btomOYlQpKSkoKytDUFCQ6ChEzcJkC6C5Lfyozfr161FaWoro6Oh6z/Xz86vz8YqKCqxduxZhYWEYMmQIHBwcDBWTiOi+PDw8EBgYiOjoaOTm5oqOYxS5ublYunQpAgMDebtKslgmWQCrF37ExMSYzcKP2lQvCNmyZQtOnjxZ57nVI4AbN27ElClT0K5du3vOKSoqaqakRET/nyRJugVm69atg5ubGwIDA+tddGbuJEnCrFmz0KZNG6xbt050HKJmY3IF0Bzu+NFQ8+bNQ+/evfHaa6/Vu4ijR48emD9/Pj755BNcvnwZv/zyC9atW4eJEydi2bJl6Nmzp5FSE5E1urP4Ve8U4OLigpSUFBw8eBBJSUki4zW7xMREHDp0CCkpKVZ1zSNZH5O7YMycF37UprF3CLGxscHgwYMxePDgZk5IRHRbbdtDjR07FkFBQYiIiMC4ceN098m1JLm5uYiMjERwcDDGjBkjOg5RszKpEUBzuuNHQzV0QQgRkalZv369xU4F3zn1GxsbKzoOUbMzqRFAS1n4URtD3SGETMfp06dFRzAp/HlYtuqp4HHjxiE6OhorVqwQHclglixZgkOHDiE1NZVTv2QVTKYAirrjhzHvhmGIO4SQaai+Jd+0adMEJzFNd9+ykCzH2LFjsW7dOiiVSri5uWHRokWiIzVZXFwcVq1ahdjYWE79ktUwmQL40Ucfwd7eHrNnzzbYazo6OgIANBrNfR8vLS3VnWMsoaGhiIqKwkcffcQCaMYeeughnD17FtevXxcdxeBef/11fPvttwCAgIAAhIeHN+j5zs7OeOihh5ojGpmIyMhIFBcXIzw8HE5OTggODhYdqdGSkpIQERGBxYsXIyIiQnQcIuOR9FBSUiIBkEpKSvQ5vVFOnDgh2djYSHFxcQZ7zY8//lgCIB04cOCex27evCm1aNFCCgkJMdj76WP9+vWSjY2NdPLkSaO+L5G+cnNzJblcLgGQWrRoIWVnZ4uORAZQVVVl8NebO3euBMCgv7eNaf369RIAad68eQb/+RCJ0JC+ZjKLQAYNGoSwsDAsXboUBQUFBnnNxx9/HPb29ti6des9268kJSXh1q1bePLJJw3yXvooKCjAsmXLMGfOHAwcONBo70vUEF27dsXrr78OALh16xYWLFhgcRf8U9PJZDKEhITAwcEB4eHhWLJkidn8cyJJEqKionQjfxs3bjTq5UBEJsHQjbIpioqKpPbt20tTp0412GuuXLlSAiD97W9/k95++21p8+bN0tSpUyUA0tixY6XKykqDvVd9pk6dKnXo0EEqKioy2nsSNcbNmzelBx54QAIgAZD2798vOhKZmEuXLkleXl66f0YASI8//riUm5srOlqd/vjjD2nUqFESAGndunWi4xAZVEP6mkkVQEmSpPfff18CIB0+fNhgr/nRRx9Jw4YNk1q1aiU5ODhIvXv3lmJiYqSysjKDvUd9Dh06JAGQtm/fbrT3JGqKTz/9VPcXe/fu3SWNRiM6EpmI0tJSydfXV/fPx+DBg6X9+/dLnp6ekpOTk5SQkGByU6pVVVXS1q1bJScnJ8nT01NKTU0VHYnI4My6AFZWVkqPPPKI1LdvX0mr1Tb7+xmDVquV+vbtK/3tb38z6ogjUVNUVVVJI0aM0P0lv3r1atGRyARUVlZKL7zwgu6fiy5dukgXLlyQJOn23xXBwcEmNxp456hfcHCwUf4uIxLBLK8BrGZjY4MtW7bgt99+w+bNm0XHMYh3330Xv/32G7Zs2QIbG5P7kRPdl0wmw6ZNm3T/zK5atQr5+fmCU5FoUVFR2LNnDwCgVatW+PLLL9GlSxcAt/cJTExMRGpqKs6ePQtvb29s2LABarVaSFa1Wo0NGzagf//+OHfuHFJTU5GYmMh9/ogA07oG8E6vvfaa5OTkJOXn5zf7e/3111/SxYsXa/26evVqo187Pz9fcnJykubOnWvAxETGExYWphvtmTZtmug4dJeqqiqjTbdu27ZN98+CjY2N9OWXX9Z6bklJiRQSEiLZ2tpKTk5OUmhoqHTq1Cmj5Dx16pQ0e/ZsqVWrVpKtra0UEhLCUT+yCmY9BVytORaE1KZr1641LmS+++uxxx5r9Gtz4QeZu8LCQsnNzU3378P3338vOhL9jzHL37fffiu1aNFC98/Bu+++q9fz8vLypOjoaKlz584SAMnPz0/atWuXVF5ebtB85eXl0scffyw9+uijEgCpc+fO0tKlS3XT00TWoCF9TSZJ9a/bV6vVcHV1RUlJiVGHzrdv345XXnkFhw8fbtZ7A3///fe1bhYNAG5ublAoFA1+3cOHD2PUqFHYvn07Xn755aZEJBIqPj4ec+bMAQAoFAr89NNPvJzBipw+fRrDhw9HSUkJAGDevHnYtGlTg16joqIC+/fvR3x8PA4fPow2bdpg6NChUCgUui9PT0+9tmORJAl5eXlQqVS6r+PHj6OoqAgjR45EWFgYxo8fDzs7u0Z9XiJz1ZC+ZtIFsKqqCn5+figuLsbJkyfN6l/miooKDBo0CG5ubkhPT+dflmTWbt26hYcffhiZmZkAgJSUFMyaNUtwKjKGv/76C8OGDcMff/wBAHj66aexb98+2NraNvo1s7Oz8emnnyIjIwMqlQqXLl0CALRr1w4KhQI9evSAXC6HXC6Hvb09tFotNBoNNBoNcnJyoFKpUFhYCADo1KkTFAoFfHx8MHnyZPTt27fpH5rITFlMAQRu3yNYoVAgNjbWrO45GRcXB6VSiV9++YWbPpNFSEtLw8iRIwEA7du3x9mzZ9G6dWuxoahZlZWVYdSoUTh27BiA2xv2HzlyBE5OTgZ7D0mSUFBQUGM0Ly8vDxqNBmVlZSgvL4eDgwMcHR0hl8vh6empGzH08fEx6r3jiUydRRVAAJg7dy62b9+OM2fOmMW/7AUFBejVqxdeeeUVvPvuu6LjEBnM5MmTdStAFy5ciA0bNghORM2lqqoKAQEB2L17NwDA3d0dx48fh4eHh+BkRFQbiyuAxcXF6NmzJ0aPHo2PP/7Y6O/fUAEBATh48CDOnDnDERKyKH/++Sd69+6NsrIytGjRAqdOnUKfPn1Ex6JmsHjxYqxevRrA7e1ejhw5gsGDBwtORUR1aUhfM4sL01q3bo1169Zh165dSEtLEx2nTocPH8auXbuwbt06lj+yOLxPcPOTbu/OIDTD+++/ryt/NjY2+OSTT1j+iCyMWYwAAuaxIIQLP8galJaWonfv3sjLywMA7N+/H88++6zgVJah+texPithm8vhw4cxduxY3Lp1CwCwadMmzJs3T1geItKfxY0AAuZxhxDe8YOsQcuWLREXF6f7ftGiRSgvLxeYyHLIZDKh5e+3337DpEmTdOXvtddeY/kjslBm1VIGDRqEsLAwLF26FAUFBaLj1FBQUIBly5Zhzpw5XPVLFu/555/HY489BgA4f/483nnnHcGJqKmuXLmCp556CsXFxQCAv//97/z/lciCmc0UcDVTXRDChR9kbU6dOoXBgwejqqoKrVq1wtmzZ81ilT7dq6ysDI8//jh++OEHAMDAgQNx5MgRODs7C05GRA1hkVPA1UxxQQgXfpA1GjBgAEJCQgAAN2/e1C0OIfNSVVWFV155RVf+3N3d8eWXX7L8EVk4sxsBBExrQQgXfpA1u3r1Kh566CEUFRUBAH744QcMHz5ccCpqiCVLlmDlypUAbl/feeTIETz88MOCUxFRY1j0CCBgWgtCuPCDrFnbtm2xYsUK3fdz585FVVWVwESmSfS2LrX54IMPdOVPJpNh165dLH9EVsJsG4spLAjhwg8iICQkBP379wcAqFQqvP/++4ITkT7S0tIQFBSk+37Dhg3czofIipjlFHA10QtCuPCD6LbDhw9j1KhRAIAOHTrg7NmzcHV1FZyKanPmzBkMHz5cN3U/Z84cbN68WegWNETUdBY/BVxN5IIQLvwg+v9GjhyJ559/HgDw119/Yfny5YITUW0KCwvx1FNP6crfk08+iY0bN7L8EVkZsx4BBMQsCOHCD6J73X2f4MzMTPTu3Vt0LLpDWVkZRo8eje+//x7A7ZXcR48e5YpfIgthNSOAgJgFIVz4QXSvrl27QqlUAuB9gk2RJEl49dVXdeWvc+fO3O6FyIpZRHsx5oIQLvwgqt3rr78OT09PAMA333yDL7/8UnAiqrZ06VLs2rULwO3tXr744gvd/1dEZH0sogACwIoVKyCXyxEREdGs7xMREYGWLVvyGiei+2jZsiXWr1+v+37hwoUWeZ9gcxvZ/PDDD3Xb9chkMnz88cdQKBSCUxGRSBZTAI2xIIQLP4jq98ILL/A+wSbku+++Q2BgoO77uLg4jB8/XmAiIjIFZr8I5E7NuSCECz+I9Pfrr7/i4Ycf5n2CBTt79iyGDRumW/EbGhqKLVu2cMUvkYWyqkUgd2rOBSFc+EGkv4EDB9a4T/Abb7whOJH1uXu7lyeeeALvvvsuyx8RAbCwEcBqc+fOxfbt23HmzBmDjDoUFBSgV69eeOWVV/Duu+8aICGR5eN9gsUpLy/H6NGjcfToUQBA//79cfToUbP4/U1EjWe1I4DVDL0ghAs/iBqubdu2Nf6dmTdvHu8TbATV271Ul79OnTrhyy+/ZPkjohossgAackEIF34QNd7s2bPh7e0NAMjIyMD27dvFBrICMTExultjyuVyfPHFF3jggQcEpyIiU2ORU8CAYRaEcOEHUdMdOnQIjz/+OADTvk9w9a9Cc75G7qOPPsL06dMB3P4ce/fuxYQJE8SGIiKjsfopYMAwC0K48IOo6UaNGoXnnnsOwO37BFfvR2dKLKH8paenY9asWbrvY2NjWf6IqFYWOwJYrbELQrjwg8hwcnNz0adPH94nuJmcO3cOw4YNw7Vr1wDcnnqPj48360JLRA3HEcA7NHZBCBd+EBmOl5cXIiMjAdy+T/DChQvN7m4apurq1av4+9//rit/48aNw+bNm1n+iKhOFl8AG7MghAs/iAzvjTfe0N179uuvv8ZXX30lOJH5Ky8vx8SJE5GTkwMA8Pb2xqeffooWLVoITkZEps7ip4CBhi0I4cIPouaze/duvPjiiwCAHj16ICsrCw4ODoJTmSdJkjBjxgx89NFHAICOHTvi+PHj6Nq1q+BkRCQKp4Dv0pAFIVz4QdR8Jk+eDH9/fwBATk4ONm7cKDaQGVu+fLmu/FVv98LyR0T6sooRwGr1LQjhwg+i5nfy5EkoFApUVVXByckJZ8+eRefOnUXHMis7d+7EtGnTANxeufzZZ59h0qRJglMRkWgcAaxFfQtCuPCDqPkNGjQIwcHBAIAbN27wPsENdOTIEbz66qu679etW8fyR0QNZlUFsK4FIVz4QWQ8K1as0P179uGHH+LHH38UG8hM5OTkYOLEidBqtQCA4OBghIeHC05FRObIqqaAgfsvCOHCDyLj27x5M+bNmwcAGDJkCH788Uf+u1eHq1evYvjw4Th37hwAYMyYMfjqq68adZcjIrJMnAKuw/0WhHDhB5HxhYaGol+/fgCAn3/+GR988IHgRKarvLwckyZN0pW/fv36Yc+ePSx/RNRoVtl2Bg0ahLCwMCxduhQZGRlYtmwZ5syZg4EDB4qORmQ1WrRoUWOx1Ztvvgm1Wi0wkWmSJAlBQUFIT08HcHu7l6+++sok76dMRObDKgsg8P8XhPj5+XHhB5Ego0aN0i1guHz5sl73Cba2O4isXLkSO3bsAHB7u5fPP/+c270QUZNZbQFs3bo1YmNjUVZWxoUfRAKtX79etxn0xo0bcebMGcGJTMfHH3+M6Oho3fc7duzA0KFDBSYiIkthtQUQAGbMmIHTp09jxowZoqMQWa1u3bpBqVQC+P/3Ca6Ltdzj9ujRo3jllVd037/99tt47rnnBCYiIktidauAicj03Lx5E71798aFCxcAAF9++SWeeuopwanEycnJwbBhw3D16lUAQFBQEBITE62m/BJR43AVMBGZlVatWiE2Nlb3/YIFC1BeXi4wkTjXrl3DU089pSt/Y8aMwZYtW1j+iMigWACJyCRMmTIFfn5+AG6PgG3atElwIuPTarV47rnncPbsWQBA3759ud0LETULFkAiMgkymQzvvvuubi/OFStW4OLFi4JTGY8kSQgODtbdpahDhw7c7oWImg0LIBEJJUmS7mvQoEEICgoCcPs+wW+++abgdMazatUq3WbYjo6O+Pzzz+Hl5SU2FBFZLC4CISJhqn/93Hl9W2FhIR566CEUFxcDAH788Uf4+vqKiGc0u3btQkBAgO77PXv24PnnnxeYiIjMEReBEJFZkMlk9yxuaNeuXY2N2efOnYuqqipjRzOaH374ocZ2L2vXrmX5I6JmxwJIRCbn7vsEf/jhhygtLcUnn3wClUolOJ3hnD9/HuPHj9eteJ41a5ZuT0QioubEKWAiMkkHDx7E6NGjAQCurq5wcXFBXl4e7O3tceHCBbRv315wwqYpKirC8OHDdXc+efzxx/Gf//yHK36JqNE4BUxEZu/xxx/H448/DgAoKSlBXl4egNtbpWRnZ4uM1mRarRaTJk3Slb8+ffrgs88+Y/kjIqNhASQik1NVVYVFixbh8OHD9328eoGIOZIkCSEhIbrtXtq3b4+vvvqK9yMnIqNiASQig9PjypI6HTx4EO+8806tiz/MqQAWFRXh8OHDqKioAACsWbMG27dvB/D/t3vp1q2bwIREZI1aiA5ARJalqeUPuD0l2rZtW93t0O5WVFTU5PcwhqqqKowYMQKnTp3C0KFD8eqrr2Lx4sW6xz/88EMMGzZMYEIislYsgERkUIa4Z62HhwdOnjyJ2bNn46uvvrrn8dqK4d0kSUJ+fj5UKpXuKy8vDxqNBmVlZdBqtbC3t4ejoyPkcjk8PT2hUCigUCjg4+MDd3f3Jn2e7OxsnDp1CgDw008/4aefftI9tnr1arzwwguNfm0ioqZgASQik+Th4YEvvvgCH3/8MebNm4dr167pHjt27Fitz8vOzsbu3buRkZEBlUqFy5cvA7h9rZ1CoYC/vz9atmwJuVwOe3t7aLVaaDQalJaW4vz580hISMCVK1cAAB07dtSVwSlTpqBv374N+gzV1/ndbdy4cXjjjTca9FpERIbEbWCIyORdvnwZ06ZNw7fffgsAePrpp/HFF1/oHq+oqMC+ffsQHx+PtLQ0tGnTBr6+vrrRPIVCAQ8PD71G8yRJwoULF2qMGh4/fhzXrl3DiBEjEBYWhgkTJui1Yvf555/HP//5z3uO29raYseOHZg6dWoDfgpERHVrSF9jASQisxEfH4+ff/4Z7733Hlq1aoULFy4gKSkJycnJuHTpEvz9/REWFoaJEyfC3t7eYO+r1Wqxd+9exMfH48iRI+jcuTOCgoIQFBQEDw+P+z6nqqoKHTt2RGFh4X0f9/Dw0G1tQ0RkCCyARGTR1Go1lEolUlJSIJfLMWPGDISGhsLb27vZ3zszMxNbt27Fjh07oNFoEBgYiHXr1t3zuzEzMxMDBgyo9XXmzZuHTZs2NXdcIrIi3AiaiCxWamoqvL29sXPnTsTGxiI/Px9btmwxSvkDgP79+yM+Ph75+fmIjY3Fzp074e3tjdTU1BrnJSQk3PNcBwcHvPzyy/jpp59Y/ohIKBZAIjILarUawcHBGDduHHr16oWsrCwsXLhQ2KyEi4sLFi5ciMzMTPTs2RPjxo1DcHAw1Go1AKBFi/+/xq5du3ZYs2YN8vLysH37dgwZMkRIZiKialwFTEQmLzU1FYGBgSgqKkJCQgKCg4MNst2MIXh5eeHAgQNISkpCREQEvv76a6SkpCAuLg5OTk7o3LkzZs+eXaMQEhGJxhFAIjJpsbGxNUb9QkJCTKb8VZPJZAgJCakxGvjOO+9g1apVeO2111j+iMjksAASkUmSJAlvvfUWlEoloqKikJqaiq5du4qOVafq0cCoqCgolUosXrzYIHdGISIyNP5nKRGZHEmSMH/+fGzevBkbNmzAwoULRUfSm0wmw4oVK+Dm5obw8HDcuHEDGzduNLlRSyKybiyARGRyoqKisHnzZiQmJiI4OFh0nEZZtGgRnJycEBISAmdnZ6xcuVJ0JCIiHRZAIjIpsbGxWL16NeLi4sy2/FULDg7G9evXERERAVdXV0RGRoqOREQEgAWQiExIamqq7pq/RYsWiY5jEOHh4SgqKoJSqcSgQYMwZswY0ZGIiHgnECIyDWq1Gt7e3ujVqxdSU1Mt6po5SZIwevRonDt3DllZWfw9SkTNgncCISKzExERgaKiIqSkpFhU+QNuLwzZtm0bioqKOA1MRCaBBZCIhEtNTUVycjLWr19v8lu9NJaXlxdiY2ORlJSEAwcOiI5DRFaOU8BEJJQlT/3ejVPBRNScOAVMRGZDqVRa7NTv3e6cClYqlaLjEJEVYwEkImEuXLiAlJQULF++3GKnfu/m5eWFmJgYpKSkID8/X3QcIrJSLIBEJExycjLkcjlmzZolOopRBQYGwtHREcnJyaKjEJGVYgEkIiEqKiqQlJSE6dOnW921cC4uLpg+fTqSkpJQUVEhOg4RWSEWQCISYt++fbh06RJCQ0NFRxEiNDQUFy9exP79+0VHISIrxFXARCTEyJEjUVlZifT0dNFRhPHz84OdnR0OHTokOgoRWQCuAiYik5adnY20tDSEhYWJjiJUWFgYDh8+jNOnT4uOQkRWhgWQyMTpMUhvdnbv3o02bdpg0qRJoqMI9dxzz8HNzQ27d+8WHYWIrAwLIBEZXUZGBnx9fWFvby86ilD29vbw9fVFRkaG6ChEZGVYAIlMnKVtjixJElQqFRQKRZNfKy0tDTKZDDKZDCqV6p7HZ86cCScnpya/T3NSKBT3zU5E1JxYAInIqAoKCnD58mWDFMA7LVu2zKCvZywKhQKXLl1CQUGB6ChEZEVYAInIqKqnOw1ZAAcNGoQvv/wSv/zyS4OfK0kSNBqNwbI0VPXPgdPARGRMLIBEZFQqlQrt27eHh4dHref8+eefCAsLQ69evSCXy9G2bVu88MILyM3Nve/5c+fOhZubm16jgF5eXnj66afxzTffwMfHB3K5HImJibrp5E8//RQxMTHo0qULnJ2d8fzzz6OkpATl5eVYsGABOnToACcnJ7zyyisoLy9v5E/h//P09ES7du04DUxERtVCdAAisi7V1//VdW3jzz//jB9++AEvvvgiPDw8kJubi61bt2LEiBHIzs5Gy5Yta5zv4uKChQsXIjo6Gr/88gsefvjhOjOcOXMGU6dORUhICIKCgtCrVy/dY2vWrIFcLscbb7yBnJwcbN68GXZ2drCxsUFRURGWLVuGH3/8Edu3b0e3bt0QHR3dpJ+HTCbjdYBEZHQsgERkVHl5efD396/znKeeegrPP/98jWPPPPMMhg8fjn/+85+YPn36Pc+ZN28e3nnnHcTExNR7d42cnBx8/fXXGDdunO5YWloaAODWrVv47rvvYGdnBwC4cuUKPvnkEzzxxBP497//DeD2/n05OTn4xz/+0eQCCAA9evTAkSNHmvw6RET64hQwERmVRqO5ZwTvbnK5XPfniooKXL16FT169EDr1q1rvc7P1dUVCxYswOeff44TJ07U+frdunWrUf7uNGPGDF35AwBfX19IkoRXX321xnm+vr7Iy8vDrVu36nwvfcjlcqHXIRKR9WEBJCKjKisrq1Hw7kej0SA6Ohqenp5wcHBAu3bt0L59exQXF6OkpKTW582fPx+tW7eu91rAbt261frYAw88UON7V1dXALev1bv7eFVVVZ159CWXy1FWVtbk1yEi0hengInIqLRabb0bQM+dOxfvv/8+FixYgOHDh8PV1RUymQwvvvgiqqqqan1e9SjgsmXL6hwFrKuA2traNui4Ie7UYm9vb5AFJURE+mIBJCKjsre3h1arrfOczz77DC+//DLi4uJ0x8rKylBcXFzv6y9YsAAbN25ETEwMWrdu3cS0xqHVauHg4CA6BhFZEU4BE5FROTo61nu9m62t7T0ja5s3b0ZlZWW9r189Crh//36cPHmyKVGNRqPRwNHRUXQMIrIiHAEkIqOSy+UoLS2t85ynn34aO3bsgKurK/r27Ytjx47h22+/Rdu2bfV6j/nz5+Odd97Br7/+ilatWhkidrPSaDT1XhdJRGRIHAEkIqPy9PTE+fPn6zxn06ZNmDFjBnbu3Inw8HBcvHgR3377rd739W3dujUWLFhggLTGkZOTc88iEyKi5iST9LiCWa1Ww9XVFSUlJXBxcTFGLiKyUNHR0UhISMDly5fr3AzaWkiShA4dOiAsLAwxMTGi4xCRGWtIX+MIIBEZlUKhwJUrV3DhwgXRUUxCXl4eCgsLDXpvZCKi+vAaQCIyKh8fHwC3bwlnKdOeJSUl9S5s6dSp032PV98CrvrnQkRkDCyARGRU7u7u6NixI1QqFSZMmCA6jkHMnz8fH3zwQZ3n1Ha1jUqlQqdOneDu7t4c0YiI7osFkIiMSiaTQaFQ6Ea+LIFSqcS0adMa9VyVSsXpXyIyOhZAIjI6Hx8fvPfee3rdFcQc9O3bF3379m3w88rLy3H8+HHMmzevGVIREdWOi0CIyOimTJmCa9euYe/evaKjCLV3714UFRVhypQpoqMQkZXhNjBEJMTIkSNRWVmJ9PR00VGE8fPzg52dHQ4dOiQ6ChFZAG4DQ0QmLywsDEeOHEFmZqboKEKcOnUKR48eRVhYmOgoRGSFWACJSIgJEyagU6dO2Lp1q+goQmzduhWdO3fG+PHjRUchIivEAkhEQtjZ2SE4OBg7duyAWq0WHceo1Go1duzYgeDgYNjZ2YmOQ0RWiAWQiIQJCgqCRqPBtm3bREcxqpSUFJSVlSEoKEh0FCKyUiyARCSMh4cHAgMDER0djdzcXNFxjCI3NxdLly5FYGAgunTpIjoOEVkprgImIqHUajW8vb3Rs2dPHDhwADKZTHSkZiNJEkaPHo2cnBxkZmby9ykRGRRXAROR2XBxcUFKSgoOHjyIpKQk0XGaVWJiIg4dOoSUlBSWPyISigWQiIQbO3YsgoKCEBERYbFTwbm5uYiMjERwcDDGjBkjOg4RWTlOARORSbDkqWBO/RKRMXAKmIjMzp1TwdHR0aLjGNSSJUs49UtEJoUFkIhMxtixY7Fu3TqsXLkSGzZsEB3HIOLi4rBq1SrExsZy6peITEYL0QGIiO4UGRmJ4uJihIeHw8nJCcHBwaIjNVpSUhIiIiKwePFiREREiI5DRKTDAkhEJmflypW4fv06QkJCcOPGDSxatEh0pAaLi4tDREQE5s2bhxUrVoiOQ0RUAwsgEZkcmUyGTZs2wdnZGeHh4SgqKsLy5cvNYmGIJElYsmQJVq1ahcWLF2PFihVmkZuIrAsLIBGZJJlMhlWrVqF169ZQKpU4duwYtm3bhq5du4qOVqvc3FzMmjULhw4dwrp16xAZGSk6EhHRfXERCBGZtMjISKSmpuLs2bPw9vZGYmIi9Ni9yqgkSUJCQgL69++Pc+fOITU1leWPiEwaCyARmbwxY8YgKysLAQEBmD17NsaMGYM///xTdCwAt0f9Ro8ejdDQUAQEBCArK4urfYnI5LEAEpFZcHFxQWJiYo3RwA0bNkCtVgvJo1arsWHDhhqjfomJidznj4jMAgsgEZmV6tHAl156CUqlEl26dEFYWBgyMzON8v6ZmZkIDQ2Fu7s7lEolXnrpJY76EZHZYQEkIrPj4uKChIQE5ObmYtGiRdi3bx8GDBgAf39/fPLJJ9BqtQZ9P61Wi127dsHPzw8DBgzA/v37ERERgT///BMJCQkc9SMis8N7AROR2auoqMD+/fsRHx+Pw4cPo02bNhgyZAh8fHygUCigUCjg6emp13YskiQhLy8PKpVK93X8+HEUFRVh5MiRCAsLw/jx42FnZ2eET0ZEpL+G9DUWQCKyKNnZ2fj000/x7rvv4vr167h16xYAoF27dlAoFOjRowfkcjnkcjns7e2h1Wqh0Wig0WiQk5MDlUqFwsJCAECnTp2gUCjg4+ODyZMno2/fviI/GhFRnVgAiciqlZeXw8XFBVqtFt26dcPGjRt1o3l5eXnQaDQoKytDeXk5HBwc4OjoCLlcDk9PT92IoY+PD9zd3UV/FCIivTWkr3EjaCKyOCdOnNBdB+jn54dnn30Wzz77rOBURESmg4tAiMji/Pjjj7o/Dx8+XGASIiLTxAJIRBbn2LFjuj8PGzZMYBIiItPEAkhEFqd6BLBly5bw9vYWnIaIyPSwABKRRSkoKMB///tfAMCQIUPQogUvdSYiuhsLIBFZlOPHj+v+zOv/iIjujwWQiCzKnQtAeP0fEdH9sQASkUW5cwGIr6+vwCRERKaLBZCILEZFRQUyMjIAAF5eXujUqZPgREREpokFkIgsRmZmJjQaDQBe/0dEVBcWQCKyGLz+j4hIPyyARGQxWACJiPTDAkhEFqN6AYiDgwMGDRokNgwRkQljASQii1BYWIicnBwAwMMPPwx7e3vBiYiITBcLIBFZBG4ATUSkPxZAIrIIvP6PiEh/LIBEZBHu3ACaBZCIqG4sgERk9iorK/HTTz8BANzd3eHh4SE4ERGRaWMBJCKzd/r0aVy/fh3A7ev/ZDKZ4ERERKaNBZCIzB6v/yMiahgWQCIyeyyAREQNwwJIRGavegFIixYtoFAoBKchIjJ9LIBEZNaKi4uRnZ0NABg0aBDkcrngREREpo8FkIjM2s8//6z7M6d/iYj0wwJIRGaN1/8RETUcCyARmTVuAE1E1HAsgERktiRJ0o0Atm/fHt27dxeciIjIPLAAEpHZOnfuHIqKigDcHv3jBtBERPphASQis8Xr/4iIGocFkIjMFgsgEVHjsAASkdmqXgBiY2ODIUOGCE5DRGQ+WACJyCzdvHkTp06dAgB4e3vD2dlZcCIiIvPBAkhEZikjIwNVVVUAOP1LRNRQLIBEZJZ4/R8RUeOxABKRWbqzAA4fPlxgEiIi88MCSERmR5Ik3QKQ1q1bo2fPnoITERGZFxZAIjI7f/75Jy5fvgwA8PX1hY0Nf5URETUEf2sSkdnh9X9ERE3DAkhEZofX/xERNQ0LIBGZnerr/wBg6NChApMQEZknFkAiMitlZWU4ceIEAKB3795wc3MTnIiIyPywABKRWTlx4gQqKioA8Po/IqLGYgEkIrPCBSBERE3HAkhEZuXO6/+4AISIqHFYAInIrFSPALZq1Qr9+vUTnIaIyDyxABKR2cjPz0deXh6A26t/bW1tBSciIjJPLIBEZDaOHz+u+zOv/yMiajwWQCIyG7z+j4jIMFgAichs3LkC2NfXV2ASIiLzxgJIRGahoqICGRkZAIDu3bujQ4cOghMREZkvFkAiMgu//vorysrKAPD6PyKipmIBJCKzcOf0L6//IyJqGhZAIjILvAMIEZHhsAASkVmoLoCOjo4YMGCA4DREROaNBZCITN5ff/2F8+fPAwAUCgXs7e0FJyIiMm8sgERk8rgBNBGRYbEAEpHJ4wIQIiLDYgEkIpPHBSBERIbFAkhEJq2yshI//fQTAMDDwwNdunQRnIiIyPyxABKRSfu///s/3LhxAwBH/4iIDIUFkIhMGq//IyIyPBZAIjJpvP6PiMjwWACJyKQdO3YMAGBnZ4fBgwcLTkNEZBlYAInIZBUVFeG3334DAAwaNAhyuVxwIiIiy8ACSEQmq3r1L8DpXyIiQ2IBJCKTxQUgRETNgwWQiExW9fV/AEcAiYgMqYXoAEREd9qzZw8+/PBDdO/eHUeOHAEAtG/fHl5eXmKDERFZEBZAIjIpc+fOxeXLl2scU6vVmDRpEmbOnInx48cLSkZEZDk4BUxEJqVjx473HCsvL8e+ffswYcIEFBQUCEhFRGRZWACJyKSMHDmy1sfatWuHNm3aGDENEZFlYgEkIpNSWwG0tbXFJ598AkdHRyMnIiKyPCyARGRS/P39IZPJ7jm+fv16PP744wISERFZHhZAIjIpbm5uePDBB2sce/nllzF//nxBiYiILA8LIBGZnG7dutX4c0JCwn1HBYmIqHFYAInI5CxZsgR2dnZo1aoVUlNTed0fEZGBcR9AIjI5fn5+0Gq1kCSJI39ERM2ABZCImo0kScjPz4dKpdJ95eXlQaPRoKysDFqtFvb29nB0dIRcLoenpycUCgUUCgV8fHzg7u4u+iMQEVkkFkAiMqjs7Gzs3r0bGRkZUKlUurt6tG/fHgqFAv7+/mjZsiXkcjns7e2h1Wqh0WhQWlqK8+fPIyEhAVeuXAFwe1Po6jI4ZcoU9O3bV+RHIyKyGDJJkqT6TlKr1XB1dUVJSQlcXFyMkYuIzEhFRQX27duH+Ph4pKWloU2bNvD19dWN5ikUCnh4eOg1nStJEi5cuFBj1PD48eO4du0aRowYgbCwMEyYMAF2dnZG+GREROajIX2NBZCIGu3ChQtISkpCcnIyLl26BH9/f4SFhWHixImwt7c32PtotVrs3bsX8fHxOHLkCDp37oygoCAEBQXBw8PDYO9DRGTOWACJqFmp1WoolUqkpKRALpdjxowZCA0Nhbe3d7O/d2ZmJrZu3YodO3ZAo9EgMDAQ69at4+8mIrJ6LIBE1GxSU1MRGBiIoqIiLF++HLNmzRLye0GtVmPbtm2Ijo6Gm5sbUlJSMHbsWKPnICIyFQ3pa9wHkIj0olarERwcjHHjxqFXr17IysrCwoULhf1HoYuLCxYuXIjMzEz07NkT48aNQ3BwMNRqtZA8RETmhAWQiOqVmpoKb29v7Nq1CwkJCUhNTUXXrl1FxwIAeHl54cCBA0hISMCuXbvg7e2N1NRU0bGIiEwaCyAR1Sk2NrbGqF9ISIjJbc4sk8kQEhJSYzQwNjZWdCwiIpPFAkhE9yVJEt566y0olUpERUWZ1KhfbapHA6OioqBUKrF48WLocZkzEZHV4UbQRHQPSZIwf/58bN68GRs2bMDChQtFR9KbTCbDihUr4ObmhvDwcNy4cQMbN240uVFLIiKRWACJ6B5RUVHYvHkzEhMTERwcLDpOoyxatAhOTk4ICQmBs7MzVq5cKToSEZHJYAEkohpiY2OxevVqxMXFmW35qxYcHIzr168jIiICrq6uiIyMFB2JiMgksAASkU5qaqrumr9FixaJjmMQ4eHhKCoqglKpxKBBgzBmzBjRkYiIhONG0EQE4Pa/597e3ujVqxdSU1Mt6po5SZIwevRonDt3DllZWfw9RkQWiRtBE1GDRUREoKioCCkpKRZV/oDbC0O2bduGoqIiTgMTEYEFkIhwe+o3OTkZ69evN/mtXhrLy8sLsbGxSEpKwoEDB0THISISilPARFbOkqd+78apYCKyZJwCJiK9KZVKi536vdudU8FKpVJ0HCIiYVgAiazYhQsXkJKSguXLl1vs1O/dvLy8EBMTg5SUFOTn54uOQ0QkBAsgkRVLTk6GXC7HrFmzREcxqsDAQDg6OiI5OVl0FCIiIVgAiaxURUUFkpKSMH36dKu7Fs7FxQXTp09HUlISKioqRMchIjI6FkAiK7Vv3z5cunQJoaGhoqMIERoaiosXL2L//v2ioxARGR1XARNZqZEjR6KyshLp6emiowjj5+cHOzs7HDp0SHQUIqIm4ypgIqpTdnY20tLSEBYWJjqKUGFhYTh8+DBOnz4tOgoRkVGxABJZod27d6NNmzaYNGmS6ChCPffcc3Bzc8Pu3btFRyEiMioWQCIrlJGRAV9fX9jb2+t1/rJlyyCTyVBYWNjMyYzL3t4evr6+yMjIEB2FiMioWACJrIwkSVCpVFAoFAZ/bS8vL8hkMsydO/eex9LS0iCTyfDZZ58Z/H2bQqFQQKVSiY5BRGRULIBEVqagoACXL19ulgJYLTk5GQUFBc32+oakUChw6dIls8lLRGQILIBEVqZ6urO5CmC/fv1QWVmJtWvXNur5N2/eNHCiulX/HDgNTETWhAWQyMqoVCq0b98eHh4eDX5uYWEhJk+eDBcXF7Rt2xbz589HWVlZjXO8vLwwY8YMvUYBq68tzM7ORkBAANzc3PDoo4/qXufpp59GWloafHx8IJfL0b9/f6SlpQEA9u7di/79+8PR0REKhQInTpxo8OcBAE9PT7Rr147TwERkVVgAiaxM9fV/Mpmswc+dPHkyysrKsGbNGvz973/Hu+++i+Dg4HvOW7x4MW7duqX3KOALL7yA0tJSrF69GkFBQbrjOTk5CAgIwDPPPIM1a9agqKgIzzzzDHbu3ImFCxdi2rRpiImJwfnz5zF58mRUVVU1+DPJZDJeB0hEVqeF6ABEZFx5eXnw9/dv1HO7deumu3PGnDlz4OLigvj4eERERGDAgAG687p3747p06cjOTkZb775Jjp37lzn6w4cOBAff/zxPcfPnDmDH374AcOHDwcA9O3bF+PGjUNQUBB+++03PPDAAwAANzc3hISEID09HSNGjGjw5+rRoweOHDnS4OcREZkrjgASWRmNRoOWLVs26rlz5syp8X31at9///vf95wbFRWl9yjg7Nmz73u8b9++uvIHAL6+vgCAUaNG6crfncd///33et/rfuRyOTQaTaOeS0RkjlgAiaxMWVkZ5HJ5o5770EMP1fj+wQcfhI2NDXJzc+85t3oUMCkpCRcvXqzzdbt163bf43eWPABwdXUFcPu6vfsdLyoqqvN9aiOXy++5lpGIyJKxABJZGa1Wq/cG0PWp7zrC6msB33777TrPq62Q2traNui4Hrc2vy97e3uUl5c36rlEROaIBZDIytjb20Or1TbquefOnavxfU5ODqqqquDl5XXf8x988EFMmzYNiYmJ9Y4CiqTVauHg4CA6BhGR0bAAElkZR0fHRl/vtmXLlhrfb968GQDw5JNP1vqcqKgoVFRUYN26dY16T2PQaDRwdHQUHYOIyGi4CpjIysjlcpSWljbquX/88QeeffZZPPHEEzh27Bg++ugjBAQEYODAgbU+p3oU8IMPPmhs5Gan0WgafV0kEZE54gggkZXx9PTE+fPnG/Xc3bt3w8HBAW+88Qa++uorvPbaa9i2bVu9z4uKiqr1uj1TkJOTc8/CEiIiSyaT9LhqWq1Ww9XVFSUlJXBxcTFGLiJqJtHR0UhISMDly5cbtRm0pZEkCR06dEBYWBhiYmJExyEiarSG9DWOABJZGYVCgStXruDChQuio5iEvLw8FBYWNtu9kYmITBELIJGV8fHxAQDe+ux/qn8O1T8XIiJrwAJIZGXc3d3RsWNHFsD/UalU6NSpE9zd3UVHISIyGhZAIisjk8mgUChYAP9HpVJx+peIrA4LIJEV8vHxwfHjxxu9IbSlKC8vx/Hjxzn9S0RWhwWQyApNmTIF165dw969e0VHEWrv3r0oKirClClTREchIjIqbgNDZKVGjhyJyspKpKeni44ijJ+fH+zs7HDo0CHRUYiImozbwBBRvcLCwnDkyBFkZmaKjiLEqVOncPToUYSFhYmOQkRkdCyARFZqwoQJ6NSpE7Zu3So6ihBbt25F586dMX78eNFRiIiMjgWQyErZ2dkhODgYO3bsgFqtFh3HqNRqNXbs2IHg4GDY2dmJjkNEZHQsgERWLCgoCBqNRq/7+VqSlJQUlJWVISgoSHQUIiIhWACJrJiHhwcCAwMRHR2N3Nxc0XGMIjc3F0uXLkVgYCC6dOkiOg4RkRBcBUxk5dRqNby9vdGzZ08cOHAAMplMdKRmI0kSRo8ejZycHGRmZvL3GRFZFK4CJiK9ubi4ICUlBQcPHkRSUpLoOM0qMTERhw4dQkpKCssfEVk1FkAiwtixYxEUFISIiAiLnQrOzc1FZGQkgoODMWbMGNFxiIiE4hQwEQGw7KlgTv0SkTXgFDARNdidU8HR0dGi4xjUkiVLOPVLRHQHFkAi0hk7dizWrVuHlStXYsOGDaLjGERcXBxWrVqF2NhYTv0SEf1PC9EBiMi0REZGori4GOHh4XByckJwcLDoSI2WlJSEiIgILF68GBEREaLjEBGZDBZAIrrHypUrcf36dYSEhODGjRtYtGiR6EgNFhcXh4iICMybNw8rVqwQHYeIyKSwABLRPWQyGTZt2gRnZ2eEh4ejqKgIy5cvN4uFIZIkYcmSJVi1ahUWL16MFStWmEVuIiJjYgEkovuSyWRYtWoVWrduDaVSiWPHjmHbtm3o2rWr6Gi1ys3NxaxZs3Do0CGsW7cOkZGRoiMREZkkLgIhojpFRkYiNTUVZ8+ehbe3NxITE6HH7lFGJUkSEhIS0L9/f5w7dw6pqaksf0REdWABJKJ6jRkzBllZWQgICMDs2bMxZswY/Pnnn6JjAbg96jd69GiEhoYiICAAWVlZXO1LRFQPFkAi0ouLiwsSExNrjAZu2LABarVaSB61Wo0NGzbUGPVLTEzkPn9ERHpgASSiBqkeDXzppZegVCrRpUsXhIWFITMz0yjvn5mZidDQULi7u0OpVOKll17iqB8RUQOxABJRg7m4uCAhIQG5ublYtGgR9u3bhwEDBsDf3x+ffPIJtFqtQd9Pq9Vi165d8PPzw4ABA7B//35ERETgzz//REJCAkf9iIgaiPcCJqImq6iowP79+xEfH4/Dhw/DxcUFw4YNw5AhQ6BQKKBQKODp6anXdiySJCEvLw8qlUr3dfz4cRQVFWHkyJEICwvD+PHjYWdnZ4RPRkRkPhrS11gAicigQkJCkJSUBJlMhtatW6OoqAgA0K5dOygUCvTo0QNyuRxyuRz29vbQarXQaDTQaDTIycmBSqVCYWEhAKBTp05QKBTw8fHB5MmT0bdvX5EfjYjIpDWkr3EfQCIyqOprASVJ0v35ztG8I0eOQKPRoKysDOXl5XBwcICjoyPkcjk8PT0RFhamK33u7u4iPwoRkcXiCCARGcyNGzfg5uaGW7duoWfPnjhz5ozoSEREVqMhfY2LQIjIYI4ePYpbt24BAEaOHCk4DRER1YYFkIgM5vDhw7o/swASEZkuFkAiMpg7C+CIESPEBSEiojqxABKRQZSUlEClUgEA+vXrh44dOwpOREREtWEBJCKDOHLkCKqqqgBw+peIyNSxABKRQfD6PyIi88ECSEQGcejQIQCATCbDY489JjgNERHVhQWQiJrs2rVr+PXXXwEAAwYMQNu2bQUnIiKiurAAElGTfffdd6jeU57Tv0REpo8FkIia7M7r/0aNGiUwCRER6YMFkIiarLoA2tjYwN/fX3AaIiKqDwsgETXJlStXkJWVBQB4+OGH4erqKjgRERHVhwWQiJokLS1N92de/0dEZB5YAImoSbj/HxGR+WEBJKImqd7/z9bWFo8++qjgNEREpA8WQCJqtIKCApw5cwYAMHToUDg7OwtORERE+mABJKJG4/V/RETmiQWQiBqN1/8REZknFkAiarTqAmhnZ4dHHnlEcBoiItIXCyARNUpeXh7Onz8PABg2bBhatmwpOBEREemLBZCIGoXTv0RE5osFkIgahQWQiMh8sQASUYNJkqTb/8/R0RHDhg0TnIiIiBqCBZCIGuyPP/7Af//7XwDAI488AkdHR8GJiIioIVgAiajBOP1LRGTeWACJqMFYAImIzBsLIBE1iCRJugLYsmVLDBkyRHAiIiJqKBZAImqQc+fOoaCgAADw6KOPwt7eXnAiIiJqKBZAImoQTv8SEZk/FkAiapA7C+CoUaMEJiEiosZiASQivd15/Z+zszMefvhhwYmIiKgxWACJSG/Z2dn466+/AAD+/v5o0aKF4ERERNQYLIBEpDde/0dEZBlYAIlIbyyARESWgQWQiPRSVVWF7777DgDQunVrDBw4UHAiIiJqLBZAItJLZmYmrl69CgB47LHHYGtrKzgRERE1FgsgEemF278QEVkOFkAi0guv/yMishwsgERUr8rKSt31f+3atUO/fv0EJyIioqZgASSiep04cQIlJSUAgBEjRsDGhr86iIjMGX+LE1G9OP1LRGRZWACJqF4sgEREloUFkIjqVFFRgSNHjgAAOnXqhN69ewtORERETcUCSER1UqlUuHHjBoDb1//JZDLBiYiIqKlYAImoTtz/j4jI8rAAElGdeP0fEZHlYQEkolpptVocPXoUAODh4YEHH3xQcCIiIjIEFkAiqtXx48eh0WgA3B794/V/RESWgQWQiGrF6V8iIsvEAkhEtWIBJCKyTCyARHRfZWVlOHbsGADAy8sLXl5eYgMREZHBsAAS0X0dO3YM5eXlADj6R0RkaVgAiei+uP8fEZHlYgEkovvi9X9ERJaLBZCI7lFaWorjx48DAB566CF06dJFcCIiIjIkFkAiusf333+PiooKABz9IyKyRCyARHSPQ4cO6f7MAkhEZHlYAInoHnde/zdixAhxQYiIqFmwABJRDdevX0dGRgYAoE+fPujUqZPgREREZGgsgERUw5EjR1BZWQmA079ERJaKBZCIauD+f0RElo8FkIhquLMAPvbYYwKTEBFRc2EBJCKd4uJinDhxAgAwYMAAtGvXTnAiIiJqDiyARKSTnp6OqqoqALz+j4jIkrEAEhE0Gg2qqqq4/x8RkZVgASSycmvWrEHLli3RsWNHbN++XXfcz89PXCgiImpWLIBEVu7f//43AKCwsBAlJSW64/369UNERITulnBERGQ5WACJrFyfPn3ue/zSpUuIi4vDjz/+aORERETU3FgAiazcsGHDan2sQ4cOGDhwoBHTEBGRMbAAElm52gqgXC7HF198ARcXFyMnIiKi5sYCSGTlevfuDWdn5xrHZDIZdu7ciaFDhwpKRUREzYkFkMjK2djYwMvLq8axuLg4TJw4UUwgIiJqdiyARITu3bvr/jxhwgQsWLBAXBgiImp2LUQHICLx4uPj8ccff8Dd3R179uyBTCYTHYmIiJoRCyCRhZAkCfn5+VCpVLqvvLw8aDQalJWVQavVwt7eHo6OjpDL5fD09IRCoYBCoYCPjw9OnjzJ4kdEZCVYAInMWHZ2Nnbv3o2MjAyoVCpcvnwZANC+fXsoFAr4+/ujZcuWkMvlsLe3h1arhUajQWlpKc6fP4+EhARcuXIFANCxY0ddGZwyZQr69u0r8qMREVEzkkmSJNV3klqthqurK0pKSrglBJFgFRUV2LdvH+Lj45GWloY2bdrA19dXN5qnUCjg4eGh12ieJEm4cOFCjVHD48eP49q1axgxYgTCwsIwYcIE2NnZGeGTERFRUzSkr7EAEpmJCxcuICkpCcnJybh06RL8/f0RFhaGiRMnwt7e3mDvo9VqsXfvXsTHx+PIkSPo3LkzgoKCEBQUBA8PD4O9DxERGRYLIJEFUavVUCqVSElJgVwux4wZMxAaGgpvb+9mf+/MzExs3boVO3bsgEajQWBgINatW8ffA0REJogFkMhCpKamIjAwEEVFRVi+fDlmzZol5N9BtVqNbdu2ITo6Gm5ubkhJScHYsWONnoOIiGrXkL7GfQCJTJBarUZwcDDGjRuHXr16ISsrCwsXLhT2H2AuLi5YuHAhMjMz0bNnT4wbNw7BwcFQq9VC8hARUdOwABKZmNTUVHh7e2PXrl1ISEhAamoqunbtKjoWAMDLywsHDhxAQkICdu3aBW9vb6SmpoqORUREDcQCSGRCYmNja4z6hYSEmNzefDKZDCEhITVGA2NjY0XHIiKiBmABJDIBkiThrbfeglKpRFRUlEmN+tWmejQwKioKSqUSixcvhh6XFBMRkQngRtBEgkmShPnz52Pz5s3YsGEDFi5cKDqS3mQyGVasWAE3NzeEh4fjxo0b2Lhxo8mNWhIRUU0sgESCRUVFYfPmzUhMTERwcLDoOI2yaNEiODk5ISQkBM7Ozli5cqXoSEREVAcWQCKBYmNjsXr1asTFxZlt+asWHByM69evIyIiAq6uroiMjBQdiYiIasECSCRIamqq7pq/RYsWiY5jEOHh4SgqKoJSqcSgQYMwZswY0ZGIiOg+uBE0kQBqtRre3t7o1asXUlNTLeqaOUmSMHr0aJw7dw5ZWVn8nUFEZCTcCJrIxEVERKCoqAgpKSkWVf6A2wtDtm3bhqKiIk4DExGZKBZAIiNLTU1FcnIy1q9fb/JbvTSWl5cXYmNjkZSUhAMHDoiOQ0REd+EUMJERWfLU7904FUxEZFycAiYyUUql0mKnfu9251SwUqkUHYeIiO7AAkhkJBcuXEBKSgqWL19usVO/d/Py8kJMTAxSUlKQn58vOg4REf0PCyCRkSQnJ0Mul2PWrFmioxhVYGAgHB0dkZycLDoKERH9DwsgkRFUVFQgKSkJ06dPt7pr4VxcXDB9+nQkJSWhoqJCdBwiIgILIJFR7Nu3D5cuXUJoaKjoKEKEhobi4sWL2L9/v+goREQErgImMoqRI0eisrIS6enpoqMI4+fnBzs7Oxw6dEh0FCIii8RVwEQmJDs7G2lpaQgLCxMdRaiwsDAcPnwYp0+fFh2FiMjqsQASNbPdu3ejTZs2mDRpkugoQj333HNwc3PD7t27RUchIrJ6LIBEzSwjIwO+vr6wt7cXHUUoe3t7+Pr6IiMjQ3QUIiKrxwJI1IwkSYJKpYJCoWi298jNzYVMJoNMJsM///nPex5ftmwZZDIZCgsLmy2DvhQKBVQqlegYRERWjwWQqBkVFBTg8uXLzVoA77R8+XLosa5LGIVCgUuXLqGgoEB0FCIiq8YCSNSMqqc7jVEABw0ahFOnTuFf//pXo55fWlpq4ET3qv45cBqYiEgsFkCiZqRSqdC+fXt4eHjUeV71NO3Zs2cxbdo0uLq6on379liyZAkkSUJeXh7Gjx8PFxcXdOrUCXFxcfe8xosvvoiePXvqNQo4YsQIeHt7Q6VSwd/fHy1btsRbb72lm05ev349tmzZgu7du6Nly5YYO3Ys8vLyIEkSVqxYAQ8PD8jlcowfPx7Xrl3T++fh6emJdu3acRqYiEgwFkCiZlR9/Z9MJtPr/ClTpqCqqgpr166Fr68vVq5ciY0bN2LMmDHo0qUL3n77bfTo0QMRERH37Cloa2uLqKgo/Prrr3qNAl69ehVPPvkkBg0ahI0bN2LkyJG6x3bu3In4+HjMnTsX4eHh+O677zB58mRERUXh66+/xuuvv47g4GB88cUXiIiI0PvnIZPJeB0gEZEJaCE6AJEly8vLg7+/v97nDx06FImJiQCA4OBgeHl5ITw8HGvWrMHrr78OAJg6dSrc3d3xj3/8457XDggIwIoVK7B8+XJMnDixzuJ56dIlJCQkICQkRHcsNzcXAJCfn49z587B1dUVAFBZWYk1a9ZAo9EgIyMDLVrc/tVx5coV7Ny5E1u3boWDg4Nen7FHjx44cuSIfj8QIiJqFhwBJGpGGo0GLVu21Pv8wMBA3Z9tbW3h4+MDSZIwa9Ys3fHWrVujV69e+P333+95/p2jgPv27avzvRwcHPDKK6/c97EXXnhBV/4AwNfXFwAwbdo0XfmrPq7VapGfn6/X5wMAuVwOjUaj9/lERGR4LIBEzaisrAxyuVzv8x944IEa37u6usLR0RHt2rW753hRUdF9X+Oll15Cjx496r0WsEuXLrXuTXi/HMDta/jud7y2LPcjl8tRVlam9/lERGR4LIBEzUir1TZoA2hbW1u9jgGotdxVjwKePHkS+/fvr/W96iqmtb1nQ7Pcj729PcrLy/U+n4iIDI8FkKgZ2dvbQ6vVGv19p02bhh49eiAmJsbk9gXUarV6Xy9IRETNg4tAiJqRo6OjkOvdqkcBZ86cafT3ro9Go4Gjo6PoGEREVo0jgETNSC6XG2WD5ft56aWX8OCDD+LkyZNC3r82Go2mQddFEhGR4bEAEjUjT09PnD9/Xsh7t2jRAlFRUULeuy45OTn3LCYhIiLjkkl6XCCkVqvh6uqKkpISuLi4GCMXkUWIjo5GQkICLl++rPdm0JZMkiR06NABYWFhiImJER2HiMiiNKSvcQSQqBkpFApcuXIFFy5cEB3FJOTl5aGwsNAo90YmIqLasQASNSMfHx8A4K3P/qf651D9cyEiIjFYAImakbu7Ozp27MgC+D8qlQqdOnWCu7u76ChERFaNBZCoGclkMigUChbA/1GpVJz+JSIyASyARM3Mx8cHx48fF7IhtCkpLy/H8ePHOf1LRGQCWACJmtmUKVNw7do17N27V3QUofbu3YuioiJMmTJFdBQiIqvHbWCIjGDkyJGorKxEenq66CjC+Pn5wc7ODocOHRIdhYjIInEbGCITExYWhiNHjiAzM1N0FCFOnTqFo0ePIiwsTHQUIiICCyCRUUyYMAGdOnXC1q1bRUcRYuvWrejcuTPGjx8vOgoREYEFkMgo7OzsEBwcjB07dkCtVouOY1RqtRo7duxAcHAw7OzsRMchIiKwABIZTVBQEDQaDbZt2yY6ilGlpKSgrKwMQUFBoqMQEdH/sAASGYmHhwcCAwMRHR2N3Nxc0XGMIjc3F0uXLkVgYCC6dOkiOg4REf0PVwETGZFarYa3tzd69uyJAwcOQCaTiY7UbCRJwujRo5GTk4PMzEz+7iAiamZcBUxkolxcXJCSkoKDBw8iKSlJdJxmlZiYiEOHDiElJYXlj4jIxLAAEhnZ2LFjERQUhIiICIudCs7NzUVkZCSCg4MxZswY0XGIiOgunAImEsCSp4I59UtEJAangIlM3J1TwdHR0aLjGNSSJUs49UtEZOJYAIkEeeSRR9CjRw+sXLkSGzZsEB3HIOLi4rBq1SrExsZy6peIyISxABIJUFJSgieeeAI5OTkAgPDwcLNfFJKUlISIiAgsXrwYERERouMQEVEdWACJjOzatWsYPXo0vv/+ewCAq6srJk+ejJCQELMdCYyLi0NISAjmzZuHFStWiI5DRET1aCE6AJE1uXLlCsaMGYNff/0VANC2bVscOHAAgwYNQo8ePRAeHo6ioiIsX77cLBaGSJKEJUuWYNWqVVi8eDFWrFhhFrmJiKwdCyCRkVy8eBGPP/44Tp8+DQDo2LEjDh48iH79+gEAVq1ahdatW0OpVOLYsWPYtm0bunbtKjJynXJzczFr1iwcOnQI69atQ2RkpOhIRESkJ04BExlBXl4e/P39deWvS5cuSE9P15W/apGRkUhNTcXZs2fh7e2NxMRE6LFTk1FJkoSEhAT0798f586dQ2pqKssfEZGZYQEkamZ//PEH/P39dQs+vLy8kJ6ejp49e973/DFjxiArKwsBAQGYPXs2xowZgz///NOYkWuVm5uL0aNHIzQ0FAEBAcjKyuJqXyIiM8QCSNSMzp49Cz8/P90dP3r06IH09HR07969zue5uLggMTGxxmjghg0boFarjZD6Xmq1Ghs2bKgx6peYmMh9/oiIzBQLIFEzycrKgr+/P/Lz8wEAffr0QXp6Ojw9PfV+jerRwJdeeglKpRJdunRBWFgYMjMzmyt2DZmZmQgNDYW7uzuUSiVeeukljvoREVkAFkCiZnDixAmMGDECly9fBgAMHDgQaWlp6Ny5c4Nfy8XFBQkJCcjNzcWiRYuwb98+DBgwAP7+/vjkk0+g1WoNml2r1WLXrl145JFHMGDAAHz66aeIiIjAn3/+iYSEBI76ERFZAN4LmMjAjh8/jieeeALFxcUAgCFDhuDrr79GmzZtDPL6FRUV2L9/P+Lj43H48GG0adMGQ4cOhUKh0H15enrqtR2LJEnIy8uDSqXSfR0/fhxFRUWwsbFBVVUV/P398d133xkkOxERNZ+G9DUWQCIDOnr0KP7+97/j+vXrAG7f7u3f//43XF1dm+X9srOz8emnnyIjIwMqlQqXLl0CALRr1w4KhQI9evSAXC6HXC6Hvb09tFotNBoNNBoNcnJyoFKpUFhYCADo1KkTFAoFfHx88MILL2DSpEk4e/YsAOD06dPo3bt3s3wGIiIyDBZAIgEOHjyIZ599FqWlpQCAkSNH4vPPP4eTk5NR3l+SJBQUFNQYzcvLy4NGo0FZWRnKy8vh4OAAR0dHyOVyeHp66kYMfXx84O7uXuP13nnnHSxatAgAMH/+fGzcuNEon4OIiBqHBZDIyP7zn/9g4sSJKC8vBwCMGzcO//rXvyCXywUna7xr166hS5cuKCsrQ+vWrZGfn4+WLVuKjkVERLVoSF/jIhCiJtq3bx/Gjx+vK3/PPvss9u/fb9blDwDatGmDKVOmAACKi4uxe/duwYmIiMhQWACJmmD37t14/vnnUVFRAQB44YUX8Nlnn8HBwUFwMsMIDQ3V/Xnr1q0CkxARkSGxABI10gcffICAgABUVlYCAKZPn46PP/4YdnZ2gpMZztChQzF48GAAwM8//wyVSiU4ERERGQILIFEjJCYmYubMmaiqqgIABAUFYfv27WjRooXgZIYlk8kwe/Zs3fcJCQkC0xARkaGwABI10KZNm2qUorlz5yIxMRE2Npb5r1NAQACcnZ0BAB9//DFKSkoEJyIioqayzL+xiJrJ2rVrsWDBAt33SqUSmzZt0mvTZXPl5OSEGTNmAABKS0vx4YcfCk5ERERNxQJIpAdJkrBs2TK8+eabumNLly7F2rVrLbr8Vbt7GliP3aOIiMiEsQAS1UOSJLzxxhuIiYnRHVuzZg2WLVtmFeUPALy9vfHoo48CuH33kSNHjghORERETcECSFQHSZKwYMECrFu3Tnds48aNeOONNwSmEoNbwhARWQ4WQKJaVFVVISQkBO+++67uWEJCAubPny8wlTjPPfcc2rVrBwD45z//ib/++ktwIiIiaiwWQKL7uHXrFmbOnInk5GQAgI2NDbZv346QkBDBycRxcHDAq6++CgCoqKjAP/7xD8GJiIiosVgAie5SUVGBgIAA7NixAwBga2uLjz/+GC+//LLgZOLdWYATExN1+yASEZF5YQEkukN5eTleeOEF7NmzBwBgZ2eHPXv26O6Ja+26d++OcePGAQByc3PxzTffCE5ERESNwQJI9D8ajQYTJkzA/v37AQCOjo7Yv38/Jk6cKDiZaeFiECIi88cCSATgxo0beOqpp/D1118DAFq2bImvvvoKTz75pOBkpuepp56Ch4cHAOCrr77Cf//7X8GJiIiooVgAyeqVlJTgiSeewOHDhwEAzs7O+OabbzBq1CjByUxTixYtEBQUBOD2SunqhTJERGQ+WADJql27dg1jxozB999/DwBo3bo1vv32W92mx3R/gYGBsLW1BQCkpKSgoqJCcCIiImoIFkCyWleuXMGoUaPw888/AwDatm2LQ4cOYejQoYKTmT53d3dMmDABAHDp0iXddZNERGQeWADJKl28eBEjRozAr7/+CgDo2LEjvvvuOwwePFhwMvNx5/2BuRiEiMi8sACS1cnLy4O/vz+ys7MBAB4eHkhPT0e/fv0EJzMvo0aNwkMPPQQAOHToEM6cOSM4ERER6YsFkKzKH3/8AX9/f+Tk5AAAvLy8kJ6ejp49ewpOZn5sbGxqjAImJiYKTENERA3BAkhW4+zZs/Dz80Nubi4A4KGHHkJ6ejq6desmNpgZe/nll+Hg4AAA2L59OzQajeBERESkDxZAsgr/93//B39/f+Tn5wMA+vbti++++w6enp6Ck5m3tm3b6u6SUlRUhN27dwtORERE+mABJIt34sQJjBgxApcvXwYADBw4EGlpaejcubPgZJbhzmnghIQEgUmIiEhfLIBk0Y4fP45Ro0ahsLAQADBkyBAcOnQI7du3F5zMcgwbNgwDBw4EcPvnfeLECcGJiIioPiyAZLGOHj2KMWPGoLi4GADwyCOP4MCBA2jTpo3YYBZGJpPVuD8wRwGJiEwfCyBZpIMHD2LcuHG4fv06AGDkyJH45ptv4OrqKjiZZQoICICTkxMAYOfOnVCr1YITERFRXVgAyeL85z//wVNPPYXS0lIAwBNPPIGvvvpKV1DI8JydnTF9+nQAwM2bN7Fjxw7BiYiIqC4sgGRR9u3bh/Hjx6O8vBwAMH78eOzbtw9yuVxwMst392IQSZIEpiEiorqwAJLF2L17N55//nlUVFQAACZPnow9e/bo9qmj5jVgwAA88sgjAICsrCx8//33ghMREVFtWADJInzwwQcICAhAZWUlAGD69OnYuXMn7OzsBCezLncuBuH9gYmITBcLIJm9xMREzJw5E1VVVQCAoKAgbN++HS1atBCczPo8//zzaNu2LQDgs88+w5UrVwQnIiKi+2EBJLO2adOmGteezZ07F4mJibCx4T/aIjg6OuKVV14BAGi1Wrz//vuCExER0f3wb0kyW2vXrsWCBQt03yuVSmzatAkymUxcKEJISIjuz4mJibqRWSIiMh0sgGR2JEnCsmXL8Oabb+qOLV26FGvXrmX5MwE9evTA2LFjAQC///47Dhw4IDgRERHdjQWQzIokSXjjjTcQExOjO7Z27VosW7aM5c+E3Dktz8UgRESmhwWQzEZVVRXmz5+PdevW6Y5t3LgRr7/+usBUdD/PPPMMunTpAgD44osvkJeXJzgRERHdiQWQzEJVVRVmz56NzZs3644lJCRg/vz5AlNRbVq0aIGgoCAAt/+/S0lJEZyIiIjuxAJIJu/WrVuYOXMmkpOTAQA2NjbYvn17jcUGZHoCAwNha2sLAEhOTtZt0E1EROKxAJJJq6ioQEBAgO7esra2tvj444/x8ssvC05G9enSpQueffZZAMDFixfx+eefC05ERETVWADJZJWXl+OFF17Anj17AAB2dnbYs2cPpkyZIjgZ6evOO4MkJCQITEJERHdiASSTpNFoMGHCBOzfvx8A4ODggH379mHixImCk1FDPP7443jwwQcBAN9++y3OnTsnOBEREQEA75VlAs6dO4fr16+LjmEySktLsXDhQmRkZAAAWrZsic8//xyPP/644GTUUDY2Npg9ezYiIyMB3N4Yev369YJTERGRTJIkqb6T1Go1XF1dUVJSAhcXF2Pkshrnzp1Dz549RccwWa1atcLXX3+NRx99VHQUaqTCwkJ4eHigvLwcbdq0wYULFyCXy0XHIiKyOA3paxwBFKx65O+jjz5Cnz59BKcxHadPn8a0adMQHx/P8mfm2rVrhxdeeAEfffQRrl27hj179mDGjBmiYxERWTUWQBPRp08fPPzww6JjmBxvb2/REcgAQkND8dFHHwG4vRiEBZCISCwuAiGiZjd8+HD0798fAHDs2DH8+uuvghMREVk3FkAianYymazGljC8PzARkVgsgERkFNOmTYOTkxMAYOfOnVz5TkQkEAsgERmFs7MzXnrpJQDAjRs3dNcEEhGR8bEAEpHR3D0NrMcuVERE1AxYAInIaAYOHIjhw4cDADIzM3Hs2DHBiYiIrBMLIBEZ1ezZs3V/5mIQIiIxWACJyKgmT56MNm3aAAA+/fRTFBYWCk5ERGR9WACJyKgcHR3xyiuvAAC0Wi22b98uNhARkRViASQiowsJCdH9OSEhAVVVVQLTEBFZHxZAIjK6hx56CKNHjwYAnD9/Ht9++63gRERE1oUFkIiEuHNLmISEBIFJiIisDwsgEQnxzDPPoHPnzgCAzz//HPn5+YITERFZDxZAIhLCzs4OQUFBAIDKykokJycLTkREZD1YAIlImKCgINjY3P41lJycjFu3bglORERkHVgAiUgYDw8PPPPMMwCAgoICfPHFFzh37hz27t0LjUYjOB0RkeViASQioe5cDBIYGIiePXviueeeq3HHECIiMiwWQCIS5sqVK/j+++9ha2sLALh27ZrusTNnzoiKRURk8VqIDkBE1kmSJAwbNgy///77fR9v27atkRMREVkPjgASkRBarRbFxcW1Pt6uXTvjhSEisjIsgEQkhIODA3bv3g1nZ+f7Ps4RQCKi5sMCSETCjB49GkeOHIG7u/s9j3EEkIio+bAAEpFQAwcOxI8//oj+/fvXOF5RUSEoERGR5eMiECISztPTE0eOHMHw4cNx+vRp3bG7SZKE/Px8qFQq3VdeXh40Gg3Kysqg1Wphb28PR0dHyOVyeHp6QqFQQKFQwMfHB+7u7pDJZMb+eEREJocF0IKlpaVh5MiRAICMjAwoFIoaj8+cOROfffYZbty4ISIeUQ2urq44ceIEZs+eDScnJ7z66qsAgOzsbOzevRsZGRlQqVS4fPkyAKB9+/ZQKBTw9/dHy5YtIZfLYW9vD61WC41Gg9LSUpw/fx4JCQm4cuUKAKBjx466MjhlyhT07dtX2OclIhKJBdBKLFu2DF988YXoGER1cnBwwPvvv4+Kiv/X3r0HR1nfexz/bDCBxZALIpeEGGKBcNXUMM1Yi4WKKKMCFtQkrVgLAYkFIpcc5wBpIqWeIYoXMCQI53C8EBTbijq0pCgIXgfCpTDQAGo4wQglSrJQcj37nD8oOcTshmyyu89e3q8ZZuI+++x+N1766e+3n+dp1ObNm1VQUKCdO3eqZ8+eSklJUUZGRvOKXv/+/du1mmcYhk6dOtVi1XD16tV66qmnNGbMGGVmZmry5MkKDQ31wicEAN9AAAwCSUlJeu+997Rv3z7dcsstLp1rGIbq6upktVo9NB3w/06dOqW1a9fq5Zdf1unTp3X77bdr06ZNuv/++xUWFtah17RYLIqLi1NcXJwmT54s6dIlaP74xz+qoKBADz74oPr166eMjAxlZGSof//+bvxEAOCbKIH4ua+//lrTp09XTEyMunbtqoSEBM2ePVsNDQ3Nz5kzZ46io6OVm5t71dcbMGCA7r33Xm3btk2jRo2S1WpVUVGRdu7cKYvFojfffFN5eXmKjY1Vjx49NHXqVNXU1Ki+vl5ZWVnq3bu3wsPD9eijj6q+vt6DnxyBxGaz6bHHHtOAAQP03HPP6ec//7kOHTqkDz/8UA899FCHw58zYWFhSk1N1a5du/S3v/1NkydP1sqVKzVgwAA99thjstlsbn0/APA1rAD6scrKSv3oRz9SdXW1Zs6cqSFDhujrr7/WW2+9pYsXLzY/LyIiQk888YRycnLatQpYVlamtLQ0zZo1SxkZGUpMTGw+9vTTT8tqterJJ5/UiRMntGrVKoWGhiokJETnzp1Tbm6uPvvsM23YsEEJCQnKycnx2OdHYCgpKdGMGTN07tw55efna/r06YqIiPDa+48cOVIFBQX6j//4D61fv145OTnaunWr1q1bp/Hjx3ttDgDwKqMdampqDElGTU1Ne54OF5SWlhqSjNLSUpfPnTZtmhESEmLs2bOn1TG73W7s2LHDkGRs3rzZqK6uNqKjo42JEyc2P+eRRx4xrr322hbnxcfHG5KMv/zlLy0ev/xaI0aMMBoaGpofT0tLMywWizFhwoQWz7/11luN+Ph4lz/TZZ35vcA/1NTUGBkZGYYkY9y4cUZ5ebnZIxmGYRhfffWVcccddxiSjIyMDP67B8BvuJLX2AL2U3a7XW+//bbuu+8+jRo1qtXx7385PjIyUllZWXrnnXe0f//+Nl87ISFBd911l8Nj06ZNa/Fl+ZSUFBmG0dzYvPLxiooKNTU1tfcjIYiUlJRoxIgRKi4uVmFhoUpKShQfH2/2WJIufQ3ir3/9qwoLC1VcXKwRI0aopKTE7LEAwK0IgH7q7NmzstlsGjFiRLvPmTdvnqKioq76XcCEhASnx2644YYWfx0ZGSmp9TXbIiMjZbfbVVNT0+75EBzy8/N11113KTExUYcPH9asWbN87tp8FotFs2bN0qFDhzR48GDdddddys/PN3ssAHAbAmAQae8qYFuN3y5durj0uGEYrg2JgGUYhv793/9d2dnZWrJkiU+t+jlzeTVwyZIlys7O1uLFi/lnGkBAoATip66//npFRETo8OHDLp2XlZWl559/Xnl5eYqKivLMcMD3GIahefPmadWqVVq5cqWeeOIJs0dqN4vFomXLlik6OloLFizQhQsX9Pzzz/vcqiUAuIIVQD8VEhKiyZMn691339XevXtbHXe2SnF5FXDLli06cOCAh6cELlmyZIlWrVqloqIivwp/V5o/f76Kior04osvaunSpWaPAwCdwgqgH/v973+vkpIS/fSnP9XMmTM1dOhQffPNN9q8ebM++ugjp+fNmzdPzz33nA4ePKhrr73WixO77uzZszIMg9UWP5afn6/f//73evbZZzVz5kyzx+mUmTNn6vz581q4cKEiIyO1aNEis0cCgA4hAPqx2NhYff7551q6dKlef/112Ww2xcbGasKECerevbvT86KiopSVlaW8vDwvTtsxd999t8LDwzV48ODmP4mJic0/e/N6cXBdSUlJ83f+5s+fb/Y4brFgwQKdO3dO2dnZSkpK0p133mn2SADgMovRjm8022w2RUZGqqamhv/BdbN9+/YpOTlZpaWlLt+mLZBd/r1cTZ8+fVoEwss/33jjjW6/ewRcc7mlnpiYqJKSkoBaxTUMQ+PGjdPx48d1+PBh/rsIwCe4ktdYAYRPu+2223T69Gl99dVXstvtrY6fOXNGZ86c0a5du1o8HhISooSEhBbh8HJAjImJUUgIX3/1tIULF+rcuXNat25dQIU/6VIxZP369Ro5cqQWLVqkoqIis0cCAJcQAOHTXnzxRd1yyy1qaGjQl19+qWPHjqmsrEzHjh1r/nP69OlW59ntdn3xxRf64osvtHXr1hbHunfvrkGDBrXaTh48eLCio6O99dECWklJiV5++WUVFhb6/KVeOmrAgAHKz8/X7NmzNXXqVLaCAfgVAiD8QlhYmIYMGaIhQ4a0OlZTU6Pjx483B8IrA+KFCxdaPf/ixYs6ePCgDh482OpYr169HG4p/+AHP1C3bt088tkCjc1m04wZMzRu3Di/L31czaxZs7R582ZNnz6drWAAfoUACL8XGRmpUaNGtbolnmEYOn36dItAePnnL7/80uFt6qqqqlRVVaWPP/64xeMWi0Xx8fEOt5Tj4uLYUr5CdnZ2wG79ft+VW8HZ2dkqLCw0eyQAaBcCIAKWxWJRv3791K9fP40ZM6bFscbGRpWXlzvcUv76669bvZZhGCovL1d5ebm2bdvW4li3bt00cOBAh1vKvXr18uRH9DmnTp3SunXrlJ+fH7Bbv983YMAA5eXlKTs7W0uXLlVsbKzZIwHAVREAEZRCQ0M1aNAgDRo0SPfcc0+LYxcuXHC4pVxWViabzdbqterq6nT48GGHd2Xp2bOnw0vYDBw4sM1L9firl19+WVarVdOnTzd7FK+aMWOGcnJy9PLLL1/1XtsA4AsIgMD3hIeH64c//KF++MMftnjcMAydPXvW4ZbyiRMn1NjY2Oq1vvvuO3322Wf67LPPWh2Li4tzuKUcHx/v9N7KvqyxsVFr167Vww8/HHTfhYuIiNDDDz+stWvXavHixQoNDTV7JABoEwEQaCeLxaLevXurd+/eGj16dItjTU1N+p//+Z9W28llZWWqqKhw+HoVFRWqqKjQ9u3bWzweFhamH/zgBw63lHv37u2z36t7++23dfr0ac2ePdvsUUwxe/ZsFRYWasuWLZo6darZ4wBAmwiAgBtcc801uvHGG3XjjTdqwoQJLY5dvHhRx48f1/Hjx1utHp47d67VazU0NOjo0aM6evRoq2ORkZEOt5QHDRqk8PBwj32+9igoKNDo0aM1cuRIU+cwy0033aSf/OQnKigoIAAC8HkEQMDDunfvrptvvlk333xzq2NVVVWtVgyPHTum48ePq76+vtXza2pqtGfPHu3Zs6fVsZiYmFYrhoMHD1ZCQkKHtyTtdrs++ugjJSQkKC4uzunzjhw5op07d6q4uLhD7xMoMjMzlZ6erqNHj2ro0KFmjwMAThEAARP16tVLvXr10o9//OMWj9vtdlVUVDjcUj558qQc3cGxsrJSlZWV2rFjR4vHL69OOrqXcr9+/drcUi4oKNCcOXMUFham5cuXa/78+Q4vefPGG2+oZ8+e+vnPf97B30RgmDJliqKjo/XGG29QBgHg0wiAgA8KCQlRfHy84uPjNX78+BbH6urq9MUXXzgMh1VVVa1eq6mpqfk53xceHt5qxTAxMVGDBg1SZGRk8yVvGhoatGjRIm3dulX//d//3Wo1cO/evUpJSQn6+y+HhYUpJSVFe/fuNXsUAGgTARDwM926ddPw4cM1fPjwVse+++675kvYfD8g1tbWtnr+hQsXtG/fPu3bt6/VsT59+rS67M2OHTs0cuRIrVmzRmlpaZIutaNLS0uVkZHhpk/Y0s6dOzV27FhJl4JmcnJyi+O/+tWv9NZbbzm864sZkpOTtX79erPHAIA2EQCBANKzZ0+lpKQoJSWlxeN2u11ff/21w9vlffXVV7Lb7a1e68yZMw7fo6amRunp6crPz9fevXv1zTff6MyZM62CmSfk5ubq3Xff9fj7dEZycrKWL1+uyspKxcTEmD0OADhEAASCQEhIiOLi4hQXF6c77rijxbH6+np9+eWXrcLhkSNH9O233zp9zf3792v79u3NK4ueDoBJSUl67733tG/fPt1yyy0unWsYhurq6mS1Wj003f+7/HvYu3evJk6c6PH3A4CO4AamQJDr2rWrhg4dqkmTJmnRokVat26ddu3apQ0bNrR5Xq9evfSTn/xEpaWluv7669W/f3+X3vfkyZPKzMxUYmKirFarrrvuOj3wwAMqLy93+Pw5c+YoOjq6XeWKAQMG6N5779W2bds0atQoWa1WFRUVaefOnbJYLHrzzTeVl5en2NhY9ejRQ1OnTlVNTY3q6+uVlZWl3r17Kzw8XI8++qjDNnZb4uLi1KtXL5WWlrp0HgB4EyuAABxytPo3fPhwTZkyRVOnTtWIESNksVhUWlqq5ORkly9QvWfPHn3yySdKTU1V//79VV5erjVr1mjMmDE6cuRIq1vlRURE6IknnlBOTk67VgHLysqUlpamWbNmKSMjQ4mJic3Hnn76aVmtVj355JM6ceKEVq1apdDQUIWEhOjcuXPKzc3VZ599pg0bNighIUE5OTnt/lwWi0XJyckEQAA+jQAIwKG7775bY8eO1T//+U9NnDhRU6ZM0ZAhQ1o9r6KiQrfffrvLr3/PPfe0umDyfffdp1tvvVV/+MMf9PDDD7c6Z+7cuXruueeUl5enLVu2tPn6J06c0F/+8hfdddddzY/t3LlT0qVm9Icffth8fcSzZ89q06ZNuvvuu7V161ZJl67pd+LECf3nf/6nSwFQkgYOHKjdu3e7dA4AeBNbwAAc6tOnjz744AN9/vnnWrx4scPwJ0m1tbWtVuva48rv4zU2Nurbb7/VwIEDFRUV5bCVLF26E0pWVpbeeecd7d+/v83XT0hIaBH+rjRt2rQWF8dOSUmRYRj69a9/3eJ5KSkpqqioUFNTU3s/lqRLn81R6xoAfAUBEECndLRcUVtbq5ycHMXFxalr167q1auXrr/+elVXV6umpsbpefPmzVNUVNRVvwuYkJDg9NgNN9zQ4q8jIyMlqdX1DSMjI2W329ucxxGr1aq6ujqXzgEAb2ILGECnNDQ0dOgC0HPmzNF//dd/KSsrS7feeqsiIyNlsViUmprq8LI0l11eBczNzW1zFbCtUNqlSxeXHnd055W2hIWFuVweAQBvIgAC6JSwsDA1NDS4fN5bb72lRx55RM8++2zzY3V1daqurr7quVlZWXr++eeVl5enqKgol9/b0xoaGtS1a1ezxwAAp9gCBtAp3bp169D33bp06dJqZW3VqlX63//936uee3kVcMuWLTpw4IDL7+1ptbW16tatm9ljAIBTrAAC6BSr1aqLFy+6fN69996rV199VZGRkRo2bJg+/fRTbd++Xdddd127zp83b56ee+45HTx4UNdee63L7+9JtbW1XrnoNAB0FCuAADolLi5OX3zxhcvnvfDCC5o2bZpef/11LViwQN988422b9+u8PDwdp0fFRWlrKwsl9/XG06cONGqUAIAvsRitOPbzTabTZGRkaqpqVFERIQ35goa+/bta75orKu3twpk/F78R05OjgoLC3XmzBmXLwYdiAzDUO/evZWZmam8vDyzxwEQRFzJa6wAAuiU5ORknT17VqdOnTJ7FJ9QUVGhqqoqj98bGQA6gwAIoFNGjRolSdz67F8u/x4u/14AwBdRAvERR48eNXsEn8Lvw3/ExMSoT58+Ki0t1eTJk80ex3SlpaXq27evYmJizB4FAJwiAJqsR48ekqRf/vKXJk/imy7/fuC7LBZL8/c1cSkAsv0LwNcRAE02aNAgHTt2TOfPn3fbay5btkxvv/22JOnpp5/W+PHj3fba3tSjRw8NGjTI7DHQDqNGjdLq1as7fFeQQFFfX6/PP/9cc+fONXsUAGgTLeAAU19fr759+6q6ulrXXnut/vGPf6h79+5mj4UAd+TIEQ0fPlzFxcVKTU01exzTFBcXKz09XUeOHNHQoUPNHgdAkKEFHMS2bdvWfCutSZMmEf7gFcOGDdOYMWNUUFBg9iimKigo0NixYwl/AHweATDAFBcXN/+cnp5u4iQINpmZmdq9e7cOHTpk9iim+Nvf/qaPPvpImZmZZo8CAFdFAAwg//znP/XOO+9Iknr27Kk777zT5IkQTCZPnqy+fftqzZo1Zo9iijVr1qhfv36aNGmS2aMAwFURAAPIO++803xP1qlTpwb1l/HhfaGhoZo5c6ZeffVV2Ww2s8fxKpvNpldffVUzZ85UaGio2eMAwFURAAPIxo0bm39OS0szcRIEq4yMDNXW1mr9+vVmj+JV69atU11dnTIyMsweBQDahQAYIL777jtt27ZN0qUL844ePdrkiRCM+vfvrxkzZignJ0fl5eVmj+MV5eXl+u1vf6sZM2YoNjbW7HEAoF0IgAHiD3/4gxobGyVJqamp6tKli8kTIVitWLFC0dHRmjFjhtpxlSm/ZhiGpk+frp49e2rFihVmjwMA7UYADBBXtn/Z/oWZIiIitG7dOr3//vtau3at2eN4VFFRkT744AOtW7eOa6QC8CtcCDoAVFZWqn///jIMQwMHDtSxY8dksVjMHgtBbubMmSouLtahQ4c0YMAAs8dxu/Lyco0cOVLp6ekqKioyexwA4ELQweaNN95o3mpLS0sj/MEnPPPMMwG7FXzl1m9+fr7Z4wCAywiAAYDtX/iiK7eCc3JyzB7HrZYuXcrWLwC/RgD0cydOnNCePXskSUlJSdyCCj5l/PjxWrFihX73u99p5cqVZo/jFs8++6yWL1+u/Px8LrYOwG9dY/YA6JxNmzY1/8zqH3zRokWLVF1drQULFig8PFwzZ840e6QOW7t2rRYuXKjFixdr4cKFZo8DAB1GAPRjhmG02P5NTU01cRrAud/97nc6f/68Zs2apQsXLmj+/Plmj+SyZ599VgsXLtTcuXO1bNkys8cBgE4hAPqxQ4cO6ciRI5Kk2267TTfccIPJEwGOWSwWvfDCC+rRo4cWLFigc+fO6amnnvKLwpJhGFq6dKmWL1+uxYsXa9myZX4xNwC0hQDox7j1G/yJxWLR8uXLFRUVpezsbH366adav3694uPjzR7NqfLyck2fPl0ffPCBVqxYoUWLFpk9EgC4BSUQP2UYRvP3/7p06aIHHnjA5ImA9lm0aJFKSkp07NgxjRgxQkVFRT53mRjDMFRYWKiRI0fq+PHjKikpIfwBCCgEQD/16aef6uTJk5KkcePGqXfv3iZPBLTfnXfeqcOHDys9PV2PPfaY7rzzzuZ/ns1WXl6ucePGafbs2UpPT9fhw4dp+wIIOARAP8W1/+DvIiIiVFRU1GI1cOXKlbLZbKbMY7PZtHLlyharfkVFRVznD0BAIgD6oaamJr355puSpK5du+r+++83eSKg4y6vBv7iF79Qdna2YmNjlZmZqUOHDnnl/Q8dOqTZs2crJiZG2dnZ+sUvfsGqH4CARwD0Qx988IH+8Y9/SJLuueceVijg9yIiIlRYWKjy8nLNnz9fb7/9tm666Sbdfvvt2rRpkxoaGtz6fg0NDSouLtbo0aN10003acuWLVq4cKFOnjypwsJC/p0CEPBoAfshtn8RqPr376+8vDwtWbJEW7ZsUUFBgdLS0tSzZ0/96Ec/UnJycvOfuLi4dl2OxTAMVVRUqLS0tPnP559/rnPnzmns2LHavHmzJk2apNDQUC98QgDwDRajHfU7m82myMhI1dTU8P+MTVZXV6c+ffrIZrOpR48eOnPmjKxWq9ljAR5z5MgRvfnmm9q7d69KS0t1+vRpSVKvXr2UnJysgQMHymq1ymq1KiwsTA0NDaqtrVVtba1OnDih0tJSVVVVSZL69u2r5ORkjRo1Sg8++KCGDRtm5kcDALdyJa+xAuhn/vznPzd/Sf7+++8n/CHgDRs2TLm5uZIureZVVla2WM3bvXu3amtrVVdXp/r6enXt2lXdunWT1WpVXFycMjMzm0NfTEyMuR8GAHwEAdDPsP2LYGaxWBQbG6vY2FhNnDjR7HEAwG9RAvEjNptN7777rqRL21933HGHyRMBAAB/RAD0I1u2bFFdXZ0k6YEHHuBL6wAAoEMIgH7kyu3f9PR0EycBAAD+jADoJ6qqqvTXv/5VkhQXF6cf//jHJk8EAAD8FQHQT7z11ltqamqSJKWmpiokhL91AACgY0gRfmLjxo3NP9P+BQAAnUEA9AMVFRXavXu3JCkxMVFJSUnmDgQAAPwaAdAPvPHGG80/p6Wltev2VwAAAM4QAP0A7V8AAOBOBEAfd+zYMe3bt0+SlJycrEGDBpk8EQAA8HcEQB/Hrd8AAIC7EQB9mGEYze1fi8Wihx56yOSJAABAICAA+rD9+/fr2LFjkqTbb79d/fv3N3kiAAAQCAiAPoztXwAA4AkEQB9lt9u1adMmSdI111yjqVOnmjwRAAAIFARAH/Xxxx/r1KlTkqTx48fruuuuM3kiAAAQKAiAPurKW79x7T8AAOBOBEAf1NjYqM2bN0uSrFarJk2aZPJEAAAgkBAAfdD27dv17bffSpLuu+8+hYeHmzwRAAAIJARAH0T7FwAAeBIB0MfU1tbqT3/6kyQpMjJSEyZMMHkiAAAQaAiAPua9997ThQsXJElTpkxR165dTZ4IAAAEGgKgj2H7FwAAeBoB0IfU1NRo69atkqQ+ffpo7NixJk8EAAACEQHQh/zpT39SfX29JOnBBx9Uly5dTJ4IAAAEIgKgD7ly+5eLPwMAAE8hAPqIM2fOaPv27ZKkhIQEpaSkmDwRAAAIVARAH7F582bZ7XZJUmpqqiwWi8kTAQCAQEUAdBPDMHT06FEZhtGh82n/AgAAbyEAuskrr7yiYcOG6ZVXXnH53JMnT+qTTz6RJA0fPlwjR45093gAAADNCIBuUF1drUWLFqlbt27Kzs5WdXW1S+dv2rSp+WfKHwAAwNMIgG6wdOlS1dbWavfu3bp48aJycnJcOv/K7d/U1FR3jwcAANACAbCTDhw4oIKCAuXl5WnUqFHKzc3VSy+9pIMHD7br/CNHjjQ/NyUlRTfeeKMnxwUAACAAdobdbtfjjz+uoUOHas6cOZKkuXPnasiQIXr88cebW71tofwBAAC8jQDYCa+88oo++eQTrV69WqGhoZKk0NBQrV69Wh9//LFeffVVh+ft27dPGzdu1OnTp5sDYEhIiB588EGvzQ4AAIKXxWjHdUtsNpsiIyNVU1OjiIgIb8zl86qrqzV48GCNGzdOGzdubHU8PT1d77//vsrKyhQVFdX8eFVVlWJiYtTY2KiQkJDmVcKf/vSn2rlzp5emBwAAgcaVvMYKYAddLn4888wzDo8/88wzDgshVVVVamxslKQWW8Qff/yxpkyZoq+++spzQwMAAIgA2CFXFj9iYmIcPicmJsZhISQ+Pt7h85uamvTHP/5Rc+fO9cjMAAAAlxEAXeSo+OGMo0KI1WpV3759nZ5zyy23uHVeAACA7yMAushR8cMZZ4WQhIQEh8//1a9+5fI1BAEAAFxFAHRBdXW1srOzlZaWpjFjxrTrnLFjxyotLa3FHUIcbQPPmjVL69evV5cuXdw4MQAAQGsEQBdcrfjhzPcLIRaLpcXxOXPmaM2aNQoJ4W8HAADwPBJHO7Wn+OHM9wshSUlJzcceeughvfDCC61CIQAAgKdwHcB2sNvtGj16tGpqarR///6rfvfPkcbGRiUlJSk6Oloffvih8vLyZLVa9eSTTxL+AABAp7mS167x0kx+7XLxY8eOHR0Kf9L/F0J+9rOf6bXXXtNTTz3l5ikBAADahxXAq7jaHT9c5ewOIQAAAJ3BnUDcqKPFD2ec3SEEAADAWwiAbehM8cMZZ3cIAQAA8Ba2gJ1wR/HDmSsLIbt27eLyLwAAoNPYAnYDV+744SpndwgBAADwBlYAHXB38cMZCiEAAMBdWAHsJHcXP5yhEAIAAMxAAPweTxQ/nKEQAgAAzMAW8BU8WfxwhkIIAABwB7aAO8iTxQ9nKIQAAABvYwXwX7xV/HCGQggAAOgMVgA7wFvFD2cohAAAAG8hAMq7xQ9nriyEHDhwwJQZAABAcAj6LWAzih/OUAgBAAAdxRawC8wofjhDIQQAAHhDUK8Aml38cIZCCAAAcBUrgO1kdvHDGQohAADAk4I2APpC8cMZCiEAAMCTgnIL2JeKH85QCAEAAK5gC/gqfKn44QyFEAAA4ClBtwLoq8UPZyiEAACA9mAFsA2+WvxwhkIIAABwt6AKgL5c/HCGQggAAHC3oNkC9ofihzMUQgAAwNWwBeyAPxQ/nKEQAgAA3CkoAmB1dbWys7OVlpamMWPGuOU1c3NzZbFYVFVV5fD4iBEj3PZekjR27FilpaUpOztb1dXVbntdAAAQfIIiAPpb8cMZCiEAAMAdAj4A+mPxwxkKIQAAwB0COgDa7XY9/vjjGjp0qObMmWP2OG4xd+5cDRkyRL/5zW9kt9vNHgcAAPihgA6A/lz8cIZCCAAA6KyADYCeKH74CgohAACgMwI2AAZK8cMZCiEAAKCjAjIA+krxw2KxeOy1KYQAAICOCsgA+NprryksLEyPPfaYx96jW7dukqTa2lqHxy9evNj8HE+ZPXu2wsLC9Nprr3n0fQAAQGAJyAD4y1/+Ug0NDSosLPTYe8THx0uSysrKWh27ePGiKioqmp/jKWvWrFFDQ4Mefvhhj74PAAAILAEZAJOSkpSZmanf/va3qqys9Mh73HHHHQoLC9OaNWtaXY5l7dq1ampq0oQJEzzy3pJUWVmp3NxcPf7447r55ps99j4AACDwWAzDMK72JFduLuwrqqurNXjwYI0bN04bN270yHssX75cS5Ys0W233aaJEyeqe/fu+uSTT1RcXKzx48frz3/+s0JCPJOx09PT9f7776usrExRUVEeeQ8AAOA/XMlrARsAJWnDhg169NFHtWPHDo9dCub111/X6tWrdejQITU1NSkhIUFpaWn6t3/7N3Xt2tUj77ljxw797Gc/04YNG/TII4945D0AAIB/IQD+i91u1+jRo1VdXa0DBw4ExMWgGxsblZSUpOjoaO3atctjK4wAAMC/uJLXAjo9hISE6KWXXtLf//53rVq1yuxx3OLFF1/U3//+d7300kuEPwAA0CEBnyC8UQjxFoofAADAHQI+AErSsmXLZLVatXDhQrNH6ZSFCxeqe/fueuqpp8weBQAA+LGgCIBRUVFasWKFiouLtXPnTrPH6ZAdO3aouLhYK1asoPULAAA6JaBLIFfy50IIxQ8AAHA1lEAc8OdCCMUPAADgTkGVJvyxEELxAwAAuFtQBUDJ/wohFD8AAIC7BV0A9KdCCMUPAADgCUFTArmSPxRCKH4AAABXUAK5Cn8ohFD8AAAAnhK0ycKXCyEUPwAAgCcFbQCUfLcQQvEDAAB4UlAHQF8shFD8AAAAnhaUJZAr+VIhhOIHAADoKEogLvClQgjFDwAA4A2kDPlGIYTiBwAA8BYC4L+YXQih+AEAALyFAPgvZhZCKH4AAABvCvoSyJXMKIRQ/AAAAO5ACaSDzCiEUPwAAADeRuL4Hm8WQih+AAAAMxAAHfBWIYTiBwAAMAMB0AFvFEIofgAAALNQAnHCk4UQih8AAMDdKIG4gScLIRQ/AACAmUgfbfBEIYTiBwAAMBsB8CrcXQih+AEAAMxGALwKdxZCKH4AAABfQAmkHdxRCKH4AQAAPIkSiJu5oxBC8QMAAPgKkkg7daYQQvEDAAD4EgKgCzpaCKH4AQAAfAkB0AUdKYRQ/AAAAL6GEoiLXCmEUPwAAADeQgnEg1wphFD8AAAAvohU0gHtKYRQ/AAAAL6KANhBVyuEUPwAAAC+igDYQW0VQih+AAAAX0YJpBMcFUIofgAAADNQAvESR4UQih8AAMDXkVA66cpCyN69eyl+AAAAn8cWsBtUV1dr8ODBOn/+vCIiIlRWVsZ3/wAAgFexBexlUVFRys/PV11dHcUPAADg864xe4BAMW3aNKWkpCgxMdHsUQAAANpEAHQTi8WiIUOGmD0GAADAVbEFDAAAEGQIgAAAAEGGAAgAABBkCIAAAABBhgAIAAAQZAiAAAAAQYYACAAAEGQIgAAAAEGGAAgAABBkCIAAAABBhgAIAAAQZAiAAAAAQYYACAAAEGQIgAAAAEGGAAgAABBkCIAAAABBhgAIAAAQZAiAAAAAQYYACAAAEGQIgAAAAEGGAAgAABBkCIAAAABBhgAIAAAQZAiAAAAAQYYACAAAEGQIgAAAAEGGAAgAABBkrmnPkwzDkCTZbDaPDgMAAICOuZzTLue2trQrAJ4/f16SFBcX14mxAAAA4Gnnz59XZGRkm8+xGO2IiXa7XZWVlerRo4csFovbBgQAAIB7GIah8+fPKyYmRiEhbX/Lr10BEAAAAIGDEggAAECQIQACAAAEGQIgAABAkCEAAgAABBkCIAAAQJAhAAIAAAQZAiAAAECQ+T/Gm0OtMLuIUwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "double_model = frame_model_A.make_terminal().prepend(frame_model_A)\n", - "draw_frame_model(double_model, figsize=(8, 12))" - ] - }, - { - "cell_type": "markdown", - "id": "95361006", - "metadata": {}, - "source": [ - "## repeat()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "3a9bdddc", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.713616Z", - "iopub.status.busy": "2024-07-11T15:30:51.713374Z", - "iopub.status.idle": "2024-07-11T15:30:51.888086Z", - "shell.execute_reply": "2024-07-11T15:30:51.887557Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAV+CAYAAADm8o/EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8iElEQVR4nOzdeVyU5cI+8GtAlnEBQVFAUEwFRVx+Dslp0dRc8riXaa5pbIK5oECLiCIuBaKmxm7Hci8zKPUUnhSXNN8YNfHghoWCqGkiozkwLM/vD1/mlVhkGeaZ5fp+Pnxe55nhmWt4O3h53899PxJBEAQQERERkdEwETsAEREREWkXCyARERGRkWEBJCIiIjIyLIBERERERoYFkIiIiMjIsAASERERGRkWQCIiIiIjwwJIREREZGSa1eVF5eXlyM/PR6tWrSCRSJo6ExERERHVkyAIePjwIRwdHWFiUvsYX50KYH5+PpydnTUSjoiIiIiaTm5uLpycnGp9TZ0KYKtWrdQntLKyanwyIiIiItIohUIBZ2dndW+rTZ0KYMW0r5WVFQsgERERkQ6ry+V6XARCREREZGRYAImIiIiMDAsgERERkZFhASQiIiIyMiyAREREREaGBZCIiIjIyLAAEhERERkZFkAiIiIiI8MCSERERGRkWACJiIiIjAwLIBEREZGRYQEkIiIiMjIsgERERERGhgWQiIiIyMiwABIREREZGRZAIiIiIiPDAkhERERkZFgAiYiIiIwMCyARERGRkWEBJCIiIjIyLIBERERERoYFkIiIiMjIsAASERERGRkWQCIiIiIjwwJIREREZGRYAImIiIiMDAsgERERkZFhASQiIiIyMiyAREREREaGBZCIiIjIyLAAEhERERkZFkAiIiIiI8MCSERERGRkWACJiIiIjAwLIBEREZGRYQEkIiIiMjIsgERERERGhgWQiIiIyMiwABIREREZGRZAIiIiIiPDAkhERERkZFgAiYiIiIwMCyARERGRkWEBJCIiIjIyLIBERERERoYFkIiIiMjIsAASERERGRkWQCIiIiIjwwJIREREZGRYAImIiIiMDAsgERERkZFhASQiIiIyMiyAREREREaGBZCIiIjIyLAAEhERERkZFkAiIiIiI8MCSERERGRkWACJiIiIjAwLIBEREZGRYQEkIiIiMjIsgERERERGhgWQiIiIyMiwABIREREZGRZAIiIiIiPDAkhERERkZFgAiYiIiIwMCyARERGRkWEBJCIiIjIyLIBERERERoYFkIiIiMjIsAASERERGRkWQCIiIiIjwwJIREREZGRYAImIiIiMDAsgERERkZFhASQiIiIyMiyAREREREaGBZCIiIjIyLAAEhERERkZFkAiIiIiI8MCSERERGRkWACJiIiIjEwzsQMQERERaZogCLh58ybkcrn6Kzc3F0qlEkVFRVCpVDA3N4elpSWkUimcnZ0hk8kgk8ng6ekJR0dHSCQSsT9Gk2EBJCIiIoOQlZWFPXv2ICMjA3K5HHfu3AEA2NnZQSaTYeDAgWjevDmkUinMzc2hUqmgVCrx+PFjXLt2DfHx8bh79y4AoH379uoyOHnyZLi7u4v50TROIgiC8KwXKRQKWFtbo7CwEFZWVtrIRURERPRMJSUlSElJQWxsLNLT02FrawsvLy/1aJ5MJoOTk1OdRvMEQUBeXl6lUcPTp0/j/v37GDRoEAIDAzF+/HiYmZlp4ZPVX336GgsgERER6Z28vDwkJiYiKSkJt2/fxsCBAxEYGIgJEybA3NxcY++jUqmwb98+xMbG4vjx43BwcICvry98fX3h5OSksffRBBZAIiIiMkgKhQKhoaFITk6GVCrFzJkzERAQAA8PjyZ/78zMTMTFxWHbtm1QKpXw8fFBVFSUznQjFkAiIiIyOGlpafDx8UFBQQFWrFgBb29vUXqJQqHAli1bEB4eDhsbGyQnJ2P48OFaz1Fdrrr2NW4DQ0RERDpNoVDAz88PI0aMgJubGy5cuICgoCDRBqWsrKwQFBSEzMxMuLq6YsSIEfDz84NCoRAlT0OwABIREZHOSktLg4eHB3bt2oX4+HikpaWhU6dOYscCALi4uODQoUOIj4/Hrl274OHhgbS0NLFj1QkLIBEREemk6OjoSqN+/v7+Orc3n0Qigb+/f6XRwOjoaLFjPRMLIBEREekUQRDw4YcfIjQ0FGFhYTo16leTitHAsLAwhIaGYsmSJajDMgvRcCNoIiIi0hmCIGDBggXYtGkT1q1bh6CgILEj1ZlEIkFkZCRsbGywePFiPHr0CBs2bNC5UUuABZCIiIh0SFhYGDZt2oSEhAT4+fmJHadBFi1ahJYtW8Lf3x+tWrXCypUrxY5UBQsgERER6YTo6GisXr0aMTExelv+Kvj5+eHhw4cIDg6GtbU1QkJCxI5UCQsgERERiS4tLU19zd+iRYvEjqMRixcvRkFBAUJDQ9G3b18MGzZM7Ehq3AiaiIiIRKVQKODh4QE3NzekpaXp5DVzDSUIAoYOHYqrV6/iwoULTdqjuBE0ERER6Y3g4GAUFBQgOTnZoMof8GRhyJYtW1BQUKBT08AsgERERCSatLQ0JCUlYe3atTq/1UtDubi4IDo6GomJiTh06JDYcQBwCpiIiIhEYshTv3+njalgTgETERGRzgsNDTXYqd+/e3oqODQ0VOw4LIBERESkfXl5eUhOTsaKFSsMdur371xcXBAREYHk5GTcvHlT1CwsgERERKR1SUlJkEql8Pb2FjuKVvn4+MDS0hJJSUmi5mABJCIiIq0qKSlBYmIiZsyYYXRrC6ysrDBjxgwkJiaipKREtBwsgERERKRVKSkpuH37NgICAsSOIoqAgADcunULqampomXgKmAiIiLSqsGDB6OsrAzHjh0TO4poBgwYADMzMxw+fFhj5+QqYCIiItJJWVlZSE9PR2BgoNhRRBUYGIgjR47g4sWLorw/CyARERFpzZ49e2Bra4vXX39d7CiieuONN2BjY4M9e/aI8v4sgERERKQ1GRkZ8PLygrm5OZYvXw6JRIJ79+6JHUvrzM3N4eXlhYyMDFHenwWQiIiItEIQBMjlcshksnp9n4uLCyQSCebNm1flufT0dEgkEuzdu1dTMTViy5Yt6NGjBywtLdGtWzds2rSpymtkMhnkcrkI6VgAiYiISEvy8/Nx586dehfACklJScjPz9dwKs1LSEiAj48PevbsiU2bNuGFF17A/Pnz8fHHH1d6nUwmw+3bt0X5TCyAREREpBUV050NKYA9e/ZEWVkZPvroowa9919//dWg76svpVKJJUuWYNSoUdi7dy98fX3xxRdfYNq0aYiMjERBQYH6tRU/BzGmgVkAiYiISCvkcjns7Ozg5ORU6fi9e/cwadIkWFlZoU2bNliwYAGKiooqvcbFxQUzZ86s0yhgxbWFWVlZmDp1KmxsbPDyyy+rzzN69Gikp6fD09MTUqkUvXr1Qnp6OgBg37596NWrFywtLSGTyXD27Nl6fcYjR47gzz//rLLKee7cufjrr79w4MAB9TFnZ2e0bdtWlGlgFkAiIiLSiorr/yQSSaXjkyZNQlFREdasWYN//vOf2LhxI/z8/Kp8/5IlS1BaWlrnUcA333wTjx8/xurVq+Hr66s+np2djalTp2LMmDFYs2YNCgoKMGbMGOzYsQNBQUGYPn06IiIicO3aNUyaNAnl5eV1/owVhdHT07PScZlMBhMTk0qFUiKRiHYdYDOtvyMREREZpdzcXAwcOLDK8c6dO6vvijF37lxYWVkhNjYWwcHB6N27t/p1zz33HGbMmIGkpCR88MEHcHBwqPX9+vTpg507d1Y5fvnyZZw8eRIvvPACAMDd3R0jRoyAr68vLl26hI4dOwIAbGxs4O/vj2PHjmHQoEF1+oy3bt2Cqakp2rVrV+m4ubk52rRpU2X0smvXrjh+/Hidzq1JHAEkIiIirVAqlWjevHmV43Pnzq30uGK178GDB6u8NiwsrM6jgHPmzKn2uLu7u7r8AYCXlxcAYMiQIery9/Tx33777ZnvVUGpVMLc3Lza5ywtLaFUKisdk0qlVY5pAwsgERERaUVRURGkUmmV4926dav0uEuXLjAxMUFOTk6V11aMAiYmJuLWrVu1vl/nzp2rPf50yQMAa2trAE+uyavu+NMLN55FKpVCpVJV+1x1n18qlVa53lEbWACJiIhIK1QqVY2jY0/7+zWCf1dxLeDft1X5u+rKJgCYmprW67ggCLW+z9McHBxQVlaGP/74o9JxlUqFP//8E46OjpWOm5ubo7i4uM7n1xQWQCIiItIKc3PzakfHrl69WulxdnY2ysvL4eLiUu15unTpgunTpyMhIeGZo4Da1rdvXwBVt3bJyMhAeXm5+vkKKpUKFhYWWkr3f1gAiYiISCuquwYOAD799NNKjyvumjFy5MgazxUWFoaSkhJERUVpNmQjDRkyBLa2toiLi6t0PC4uDs2bN8eoUaMqHVcqlbC0tNRmRABcBUxERERaIpVK8fjx4yrHf//9d4wdOxavvfYaTp06he3bt2Pq1Kno06dPjeeqGAX8/PPPmzJyvUmlUkRGRmLu3Ll48803MWLECBw/fhzbt2/HqlWrYGtrW+n1SqWyxqnqpsQRQCIiItIKZ2dnXLt2rcrxPXv2wMLCAu+//z4OHDiAd999F1u2bHnm+cLCwmq8bk9MgYGBSExMRGZmJubOnYuffvoJ69evxwcffFDltdnZ2VUWn2iDRKjDlY0KhQLW1tYoLCyElZWVNnIRERGRgQkPD0d8fDzu3LnzzIUexkAQBLRr1w6BgYGIiIho9Pnq09c4AkhERERaIZPJcPfuXeTl5YkdRSfk5ubi3r17Dbo3cmPxGkAiIiLSiorbo8nlclGmPRtDpVLh/v37tb7G2tq6XtfzVdwC7u+3jdMGjgASERGRVjg6OqJ9+/ai3Pu2sU6ePAkHB4dav/bs2VOvc8rlctjb21fZG1AbOAJIREREWiGRSCCTyfSyAPbp0weHDh2q9TU9e/as1znlcrko078ACyARERFpkaenJzZv3lznu4LoChsbGwwdOlRj5ysuLsbp06cxf/58jZ2zPjgFTERERFozefJk3L9/H/v27RM7iqj27duHgoICTJ48WZT35zYwREREpFWDBw9GWVkZjh07JnYU0QwYMABmZmY4fPiwxs7JbWCIiIhIZwUGBuL48ePIzMwUO4oozp8/jxMnTiAwMFC0DLwGkIh02tWrV/Hw4UOxY+icVq1aoVu3bmLHIGqQ8ePHw97eHnFxcYiNjRU7jtbFxcXBwcEB48aNEy0DCyAR6ayrV6/C1dVV7Bg668qVKyyBpJfMzMzg5+eHdevW4aOPPjKqy8sUCgW2bduG4OBgmJmZiZaDBZCIdFbFyN/27dvRo0cPkdPojosXL2L69OkcGSW95uvri1WrVmHLli0ICgoSO47WJCcno6ioCL6+vqLmYAEkIp3Xo0cP9OvXT+wYRKRBTk5O8PHxQXh4OCZMmAAXFxexIzW5nJwcLFu2DD4+PujQoYOoWbgIhIiIiEQRFRUFGxsb+Pj4oA6bkug1QRDg7e0NW1tbREVFiR2HBZCIiIjE0axZM/y///f/8OOPPyIxMVHsOE0qISEBhw8fRnJysk5c88gCSERERFp35swZyGQyfPvttwCAoKAg5OTkiBuqieTk5CAkJAR+fn4YNmyY2HEAsAAS1UgQBFy8eNHgpyWIiLSprKwMa9asgZeXFy5dugQAsLS0RIsWLQxyKvjpqd/o6Gix46ixABLV4IsvvoC7uzu++OILsaMQERmEnJwcDBo0CB9++CFKS0sBAP369cPZs2exY8cO/PjjjwgPDxc5pWYtXbpUp6Z+K7AAElXjwYMHCAkJgaWlJUJDQ/HgwQOxIxER6S1BELBt2zb07t0bJ06cAACYmJjgww8/xKlTp9C9e3cMHz4cUVFRWLlyJdatWydyYs2IiYnBqlWrEB0drTNTvxVYAImqsXTpUiiVShw/fhyPHz82uH+REhFpy/379zF58mTMnDlTvXeli4sLjh49ilWrVsHc3Fz92pCQEHz44YdYvHix3i8KSUxMRHBwMJYsWYLg4GCx41TBAkj0N+fOnUNsbCwiIiLg6emJ5cuX49NPP8Wvv/4qdjQiIr3yn//8B7169cJXX32lPvb222/j119/xcsvv1zt96xcuRLz5s2Dv7+/3o4ExsTEwN/fH/Pnz0dkZKTYcarFAkj0lPLycsydOxc9evTAvHnzAADz589H9+7dMXfuXJSXl4uckIhI9xUVFSEoKAjDhg1Dfn4+AMDGxgZfffUVtm7dWuu1cBKJBJ988ol6JHDp0qV6szBEEASEhYWpR/42bNgAiUQidqxq8U4gRE/54osvcPLkSRw5ckR9j0YzMzNs3rwZQ4YMwbZt2/D222+LnJKISHf9+uuvmD59Oi5cuKA+NmzYMPzrX/+q890vJBIJVq1ahdatWyM0NBSnTp3Cli1b0KlTp6aK3Wg5OTnw9vbG4cOHERUVhZCQELEj1YojgET/68GDBwgNDcWUKVMwaNCgSs8NHjwYU6ZM4YIQIqIalJeXY+3atejfv7+6/FlYWGDDhg34/vvvG3Trs5CQEKSlpeHKlSvw8PBAQkKCzo0GCoKA+Ph49OrVC1evXkVaWprOlz+ABZBIrWLhx9q1a6t9fu3atVwQQkRUjdzcXAwdOhQhISFQqVQAgD59+iAjIwMLFiyAiUnD68awYcNw4cIFTJ06FXPmzMGwYcNw/fp1TUVvlJycHAwdOhQBAQGYOnUqLly4oHOrfWvCAkiEygs/HB0dq32No6MjF4QQEf3N7t270bt3bxw5cgTAk+nbkJAQnD59Gh4eHhp5DysrKyQkJFQaDVy3bh0UCoVGzl9fCoUC69atqzTql5CQoFP7/D0LCyAZveoWftSEC0KIiJ548OABpk2bhilTpqgvjXF2dlZfA2dhYaHx96wYDZw2bRpCQ0PRoUMHBAYGIjMzU+PvVZ3MzEwEBATA0dERoaGhmDZtml6N+j2NBZCMXsXCj82bN6sXftSkYkHITz/9hG3btmkpIRGRbklPT0fv3r2xc+dO9bGpU6fi/PnzVa6h1jQrKyvEx8cjJycHixYtQkpKCnr37o2BAwdi9+7d6iloTVGpVNi1axcGDBiA3r17IzU1FcHBwbh+/Tri4+P1atTvaSyAZNRqW/hRE0NZEKJrF1ITke4rLi5GaGgohgwZgtzcXACAtbU1du7ciR07dqB169Zay+Lk5ISIiAhcv34dX331FZo1a4YpU6bAwcEBI0eORFhYGL755hvcuHGjzr/vBEHAjRs38M033yAsLAwjR46Evb09pk6dCjMzM3z11Ve4fv06li9f3qBFLbqE28CQUXvWwo+arF27Fm5ubggPD8fGjRubKJ32PP3LUVf3rCIicf33v//FtGnTKl0DPWjQIHz++efo2LGjaLnMzMwwceJETJw4EVlZWfjyyy+RkZGBLVu2YNWqVQCAtm3bQiaToWvXrpBKpZBKpTA3N4dKpYJSqYRSqUR2djbkcjnu3bsHALC3t4dMJsP8+fMxadIkuLu7i/YZmwILIBmtioUf0dHRNS78qEnFgpDQ0FB4e3ujT58+TZSy6Txd9Cr+/HQRrPgzCyGRcSsvL8emTZvw3nvvobi4GMCT0rV69WosWrSoUSt8Nc3d3R3Lly8H8OR3WH5+PuRyufrr+PHjUCqVKCoqQnFxMSwsLGBpaQmpVApnZ2cEBgZCJpPB09Oz3n8v6BsWQDJK9Vn4UZP58+fjs88+w9y5c3Hs2DGd+iXYUH8vhYIgVCqCgiCwEBIZkfz8fMyaNQuHDh1SH+vZsyd27Nih8//wlUgk6NChAzp06ICxY8eKHUfn6P/fWEQNUJ+FHzUxhgUhEolE/fW0p4shERmmvXv3olevXpXK34IFC/DLL7/ofPmjZ2MBJKPTkIUfNTGUBSF1VVEEqyuFRGQYFAoFZs2ahTfffBP3798H8OSyl7S0NGzYsAFSqVTkhKQJLIBkdBq68KMmvEMIERmKEydOoE+fPvj888/VxyZOnIjMzEy93OuOasYCSEalLnf8qC/eIYSI9J1KpcKSJUvwyiuvICcnBwDQqlUrfP755/jyyy9ha2srbkDSOBZAMhqaWPhRE94hhIj01aVLl/Diiy9i9erV6t9fL730En799VfMnDmTl3sYKBZAMhqaWPhRE2NYEKJP0tPT1dcpyuXyKs/PmjULLVu2FCFZzR48eAA/Pz/Y2dmhRYsWGDx4MM6cOSN2LDJggiAgLi4O/fr1U//vpFmzZli9ejWOHj2Kzp07i5yQmhILIBkFTS78qImxLQjRFxV7gumy8vJyjBo1Cjt37sS7776LqKgo/PHHHxg0aBCuXr0qdjwyQLdv38bo0aMRGBgIpVIJAHBzc8PPP/+MDz74AKampiInpKbGAkhGQdMLP2rCBSG6pW/fvti/f3+DRtIEQVD/xdjU9u7di5MnT2Lr1q1YtmwZ5s6di/T0dJiammLZsmVayUDGIzU1Fb169cLBgwfVx+bOnYszZ85AJpOJmIy0iQWQDF5TLPyoCReEaM/Nmzfh7e0NR0dHWFhYoHPnzggICKh0I/h58+bBxsamTqOALi4uGD16NH744Qd4enpCKpUiISFBPZ385ZdfIiIiAh06dECrVq0wceJEFBYWori4GAsXLkS7du3QsmVLzJ49W323hLrau3cv2rdvj9dff119zM7ODpMmTUJqamq9z0eNIwgC8vLykJqaivDwcIwaNQq9e/dGt27d4OzsjPbt28PZ2RndunVD7969MWrUKISHhyM1NRU3b97U2T0yHz16BF9fX4wfP159u7P27dvjwIED2Lx5M5o3by5yQtIm3gmEDFpTLvyoiSHeIUTX5Ofno3///urr5rp3746bN29i7969ePz4sfp1VlZWCAoKQnh4OM6cOYN+/frVet7Lly9jypQp8Pf3h6+vL9zc3NTPrVmzBlKpFO+//z6ys7OxadMmmJmZwcTEBAUFBVi+fDl+/vlnbN26FZ07d67XKPDZs2fRr1+/Kv+t9O/fH4mJibhy5Qp69epV5/NR/WVlZWHPnj3IyMiAXC7HnTt3ADwp4jKZDAMHDkTz5s2r3EP28ePHuHbtGuLj43H37l0AT0pVxe3EJk+erBP3kP35558xY8YMZGdnq4+NGzcOSUlJsLOzEzEZiUaog8LCQgGAUFhYWJeXE+mMf/3rXwIA4ciRI1p938OHDwsAhK1bt2r1fQ2NXC4XAAhyubzS8ZkzZwomJibCL7/8UuV7ysvLhSNHjggAhK+++kp48OCBYGNjI4wdO1b9mrffflto0aJFpe/r1KmTAED4/vvvKx2vOJeHh4egUqnUx6dMmSJIJBJh5MiRlV7/wgsvCJ06darX52zRooXwzjvvVDl+4MCBajPV9HOh+lGpVMKXX34pDBo0SAAg2NraCiNHjhTCwsKEb775Rrhx44ZQXl5ep3OVl5cLN27cEL755hshLCxMGDlypGBraysAEAYNGiR8+eWXlf770ZaSkhJh2bJlgqmpqQBAACC0aNFCSE5OrvNnI/1Rn77GoQkyWNpY+FETLghpOuXl5UhJScGYMWPg6elZ5fm/b1lhbW2NhQsX4ttvv8XZs2drPXfnzp0xYsSIap+bOXNmpdXjXl5eEAQB77zzTqXXeXl5ITc3F6WlpXX9SFAqlbCwsKhy3NLSUv08aU5eXh7Cw8PRsWNHTJo0CeXl5di9ezdu3bqFgwcPIjIyEuPHj4ezs3Odt0CRSCRwdnbG+PHjERkZiYMHD+LWrVvYtWsXysrKMGnSJHTq1AnLli1DXl5eE3/CJ7Kzs/Hyyy8jIiICZWVlAJ7893nu3Dl4e3tzexcjxwJIBktbCz9qwgUhTePu3btQKBTw8PCo8/csWLAArVu3fua1gLVte9GxY8dKj62trQEAzs7OVY6Xl5ejsLCwzvmkUmm11/kVFRWpn6fGUygUmDNnDlxcXLB+/Xq8/vrryMzMxNGjRzF58mSYm5tr9P3Mzc3x1ltv4dixYzh//jzGjx+PdevWwcXFBXPmzIFCodDo+1UQBAHJycno27cvTp8+DQAwNTXF8uXLceLECXTt2rVJ3pf0CwsgGSRtLvyoydMLQs6dOydKBnqirqOAtRWtmrbFqOm4UI+FAA4ODrh161aV4xXHxPpv2JCkpaXBw8MDO3bsQHR0NG7evIlPP/20Xv+QaIxevXohNjYWN2/eRHR0NHbs2AEPDw+kpaVp9H3u3r2L8ePHw9fXF3/99RcAoGvXrvjpp5+wbNkyNGvGS//pCRZAMjhiLPyoScUdQt59913eIURD7OzsYGVlhQsXLtTr+xYuXIjWrVsjIiKiiZI1XN++fXHmzJkq/42cPn0azZs3h6urq0jJ9J9CoYCfnx9GjBgBNzc3XLhwAUFBQbCyshIlT8XCpMzMTLi6umLEiBHw8/Or92hgYWFhle85ePAgevXqhW+//VZ9zNfXF2fPnoWXl5dG8pPhYAEkg9OUd/yoL94hRPNMTEwwfvx4fPfdd8jIyKjyfE0jbxWjgKmpqTo3Ijtx4kTcuXMH+/btUx+7d+8evvrqK4wZM6ba6wPp2SpG/Xbt2oX4+HikpaWhU6dOYscC8GTboUOHDiE+Ph67du2q12hgRkYGnJyc8Nxzz+HcuXN4/Pgx5s6di1GjRqlXL7dt2xapqalITEzUubvekG5gASSDIubCj5pwQYjmrV69Gu3atcMrr7yCoKAgJCYmIiIiAh4eHrVee7dgwQJYW1vr3B6NEydOxD/+8Q/Mnj0bK1asQGxsLAYNGoSysjKdHLHUB9HR0ZVG/fz9/XVu0YNEIoG/v3+l0cDo6Ohav0cQBMybNw+PHj3Cn3/+iddffx19+/ZFbGys+jX//Oc/kZmZibFjxzb1RyA9xosByKCIvfCjJmvXroWbmxvCw8OxceNGsePorMLCQly6dAkXL17EpUuXcOrUqWpf16FDB5w+fRpLly7Fjh07oFAo0KFDB4wcObLWzWxbt26NhQsX6lypMjU1xcGDBxESEoKNGzdCqVTi+eefx9atWyvtRUjPJggClixZgjVr1iAsLAwrVqzQueL3dxWjgeHh4ep/KK5cubLa3CkpKfj555/Vj3///Xf1n6VSKWJiYjBnzhyd/8ykAzS9rwyRWM6ePSuYmJgIMTExYkep1tq1awUTExPh7NmzYkcRVXl5uZCbmyukpaUJGzduFAICAoTBgwcLDg4O6n3K/v7F/e4qq20fwPLycuHBgwdGucdbeXm5MG/ePAGAsG7dOrHjNEhMTIwAQJg/f36V/x+WlJQIbm5u1f5vpGvXrsKlS5dESk26oj59jSOAZBB0aeFHTSruEPLuu+8axR1CVCoVrl27ph7Nq/i/ly5dwqNHj8SOZzDKyspw/vx5HDt2DMePH8fx48fxxx9/YNq0adi+fbvY8bQqLCwMmzZtQkJCAvz8/MSO0yCLFi1Cy5Yt4e/vj1atWmHlypXq57Zs2YLLly9X+32PHj1CmzZttBWTDAALIBmEioUfR44cEX3hR00qFoQMGTIE27Ztw9tvvy12JI2omLat+KooetnZ2erNZ+vCzs4OPXr0QPfu3dX/t6ysDKNHj27C9E2rsLDwmZs429vbN/j8o0aNQkFBQbV7CB46dKjB59VH0dHRWL16NWJiYvS2/FXw8/PDw4cPERwcDGtra4SEhODhw4cICgqq8Xtu376N7du3Y+HChdoLSnqNBZD0ni4u/KjJ0wtCxo0bh9atW4sdqU4EQUB+fn6V0byLFy9Wu39dTUxMTNC5c+dKJa/iq7rRizNnzmjyY2jdggUL8Pnnn9f6GqEe+wX+3e3bt2t8zpi2jklLS0NoaCjCwsKwaNEiseNoxOLFi1FQUIDQ0FD1NkG1/WOiefPm1d4Zh6gmEqEOv30UCgWsra1RWFgo2t5JRDWZN28etm7disuXL+vFhrn5+flwc3PD7NmzdW5BSElJSY3Ttg8fPqzzeaRSKdzc3CoVvR49eqBbt27q25vVxZkzZyCTySCXy9GvX7+GfCRRZWVlIT8/v9bXDB06tN7nrfi5PEvHjh3x0ksv4eWXX8ZLL70EDw+PGjeu1lcVd4Vxc3NDWlqaQS1+EAQBQ4cOxdWrV/HVV19h4MCBUKlUcHBwgEwmg6urq/qrT58+sLW1FTsyiaw+fY0jgKTXKu74ER0drRflD/i/O4SEhobinXfeQd++fRt8rt9++009PbRz5060bdu2Tt+nUCiqTNlevHgR165dq9c9bNu2bVtl2rZHjx7o2LGjwV/jWBfu7u5wd3dvsvPPmjULn3/+eY2jiDdu3MCNGzewa9cuAE82IX7hhRfUpbB///5o0aJFk+XThuDgYBQUFCA5Odmgyh/wZJuYLVu2oFevXvjss8+gVCohCILBlXgSB0cASW+Vl5djwIABKCwsxNmzZ3X22r/qlJSUoG/fvrCxsWnQghBBELB9+3bMnTtXPTL38ccfIzQ0tNJr8vPzq5S8S5cuPXNU6mkSiQQuLi7o0aNHpZLn5uZW58LZUPo+AthUnv655OXlYdq0aZUW1kgkErz88svIyMioddrQ1NQU/fr1w0svvaT+cnBw0MZH0Ii0tDSMGDEC8fHx8Pf3FztOk4mPj0dAQADS0tIwbNgwseOQDuMIIBkFfVj4UZPGLAh58OABAgICsHv37krHDx48iLKysgZP21paWtY4bVvbPXJJXGPHjsXJkycxduxY5OTkAHhya7ljx46hpKQE586dw4kTJ/DTTz/hp59+qnTdYFlZGX755Rf88ssv2LBhAwDgueeeU08Zv/TSS+jRo4dOjuYqFAr4+Phg6NCher/o41n8/f3x1VdfwdvbGxcuXOBADGmGpveVIdKGgoICwc7OTpgyZUqdXr9s2TIBgHD37t1qn+/Zs6fwyiuv1CtDVlaWMGLECKFFixaCjY2NMH36dOGPP/6o1zmmTJkitGvXTigoKKjT67/++muhbdu2Ne6XV5evNm3aCC+//LLg4+MjxMTECAcOHBB+++03obS0tF7ZtaG2/e6MWXU/lz/++EMYOXKk0LJlS2H37t3Vfl95ebmQnZ0tfP7554Kvr6/g7u7+zP9ebGxshFGjRglr1qwRjh07JiiVSm19zFr5+/sLLVu2FHJycsSOohW///670LJlS8Hf31/sKKTDuA8gGTyx7/iRl5eHgQMHwtraGqtXr8ajR4+wdu1aZGZm4n/+539gbm5ep/PU5w4h//nPf/DGG2/U6bwV07Z/H83r3r17k0/bkjjs7OzUo8A1XSMmkUjQpUsXdOnSBTNnzgQA3L9/HydPnsRPP/2EEydO4Jdffqm0rUxBQQEOHDiAAwcOAADMzc0hk8nU1xG++OKLsLOza/oP+JS8vDwkJycjOjpaZ+7t29RcXFwQERGB0NBQLF26FB06dBA7Euk5FkDSO7qw8GP16tX466+/IJfL0bFjRwBA//79MWzYMGzdurXOU1L1WRBy48aNZ55v8+bNePnll9GtW7dab4lGhqu+CwRsbW0xevRo9X6LxcXFkMvl6kL4008/4c8//1S/XqVS4dSpUzh16pT6H2Bubm6VVht369atSRdkJCUlQSqVwtvbu8neQxf5+PggPDwcSUlJWL58udhxSM/p3oUdRLXQlTt+fP311xg9erS6/AFPtvNwdXXFl19+Wa9zzZ8/H927d8e7776L8vLyGl/3zjvv4IMPPoCrq2uNf8l3794dffr0YfmjBrOwsMCLL76IkJAQpKam4u7du7h06RKSk5Mxe/ZsdOvWrcr3XL58GZ999hneeecduLm5oX379pgwYQLWrl2Ln3/+GSqVSmP5SkpKkJiYiBkzZhjdtXBWVlaYMWMGEhMTUVJSInYc0nMsgKRXKhZ+bN68WbSFHzdv3sQff/xR7aar/fv3x9mzZ+t1vooFIT/99BO2bdtW62tXr16Ny5cv4+7du/jiiy8wYcIE9QKNZs2awcnJqV7vTfQsEokEbm5u8Pb2xmeffYYrV67gzp072LdvHxYvXox//OMfVf63ePfuXaSkpCAkJAQvvPACrK2t8corr+DDDz/EgQMHUFBQ0OA8KSkpuH37NgICAhr70fRSQEAAbt26hdTUVLGjkJ7jFDDpDV2540fFnS+q2y7DwcEB9+/fR3FxMSwsLOp8zvreIcTGxgYzZszAjBkz8PjxY5w4cQLt27eHm5tbvT4LUUO0a9cOEyZMwIQJEwAASqUSv/zyi3rK+OTJk3jw4IH69UVFRTh27BiOHTumPtazZ89Kq407d+5cp2nj2NhYDBgwAL169dL459IHvXv3xssvv4zY2FhMnDhR7Dikx1gASW+IvfCjQsW+atUVvIq7XCiVynoVQKB+C0Ke1rx5cwwfPrxe70WkSVKpFAMHDsTAgQMBPLlUIysrq9J1hL///nul7/nvf/+L//73v0hISADw5B9PT19H2LdvXzRrVvmvqKysLKSnp6s3tjZWgYGBmDp1Ki5evIgePXqIHYf0FAsg6QVtLPyo60XrFVOuT6+UrFBUVFTpNfWhyTuEEInJxMQEHh4e8PDwUG/QnJ+fr96L8MSJEzh37hzKysrU33Pr1i3s3bsXe/fuBQC0aNECXl5e6kL4j3/8A3v27IGtrS1ef/11UT6XrnjjjTdgY2ODPXv2cDEINRgLIOmF7du3w9zcHHPmzGnQ9z89Mledx48f1/ketRVTvxVTwU+7desWbG1t6z36VyEgIABhYWHYvn07CyAZFEdHR7z55pt48803AQCPHj3C6dOn1aXw1KlTlTYu/+uvv3D48GEcPnwYwJNS2bp1a3h5edV5myVDZW5uDi8vL2RkZIgdhfQYF4GQXpg+fTpUKhXi4+Mb9P0Ve4Vdvny5ynOPHz9Gbm5unfcT69ChA+zs7Kr95fs///M/jSpucXFxUKlUmDFjRoPPQaQPWrZsiVdffRXh4eH44YcfUFBQgLNnz2LTpk146623qixoKi8vh0KhgEwma9D75eTkQCKRQCKR4Ouvv67y/PLlyyGRSHDv3r0Gnb8pFBcX47333oOjoyOkUim8vLxw6NAhAFDfCpCooVgASS/07dsXgYGBWLZsWb3uY1vh1Vdfhbm5OeLi4qpstZKYmIjS0lKMHDmyzud74403sH//fuTm5qqP/fjjj7hy5Yp6hKO+8vPzsXz5csydOxd9+vRp0DmI9JWpqSn69u2Ld999F7t27UJubi6uX7+OnTt3IjAwEO7u7igtLW1wAXzaihUrIAiCBlI3rVmzZmHdunWYNm0aPvnkE5iamuKf//wnTpw4AZlMhtu3bzfo9yERAN4KjvRHfW//9ncrV64UAAgvvfSS8PHHHwubNm0SpkyZIgAQhg8fLpSVldX5XDdu3BDatGkjdOnSRdi4caOwevVqwcbGRujVq5dQVFTUoHz1vS2cMeCt4KpnjD+XlJQUAYBw48aNBn3/77//LgAQ+vbtKwAQvv7660rPP+t2kRX++uuvBr1/fZ0+fVoAIERHR6uPKZVKoUuXLsILL7wgXL9+XQAgpKamaiUP6Yf69DWOAJLeaN26NaKiorBr1y6kp6fX+/uXLFmC7du3o6ysDCtWrEBwcDDOnj2LiIgIfPvtt/W64b2zszOOHj2KLl264P3330dUVBT++c9/4tChQw26/u/IkSPYtWsXoqKinrkFDJExksvlaN68OTp27IgrV65g+vTpsLa2hp2dHZYuXQpBEJCbm4tx48bBysoK9vb2iImJqXKet956C66urnUaBRw0aBA8PDwgl8sxcOBANG/eHB9++KF6Onnt2rX49NNP8dxzz6lX4+fm5kIQBERGRsLJyQlSqRTjxo3D/fv36/V59+7dC1NT00p3FbK0tIS3tzdOnToFAGjbti2nganBuAiE9MrMmTORlJSEuXPn4ty5c/XeDHratGmYNm2aRrL07NkTP/zwQ6PPU1JSgnfffRcvvfQSr/0jqoFcLoeDgwOuXbuGyZMno0ePHvjoo49w4MABrFy5Era2tkhISMCQIUPw8ccfY8eOHQgODsbzzz+v3p4GeDLVHBYWhpkzZ+Kbb7555oriP//8EyNHjsRbb72F6dOno3379urnduzYAZVKhXnz5uH+/fuIiorCpEmTMGTIEKSnp+O9995DdnY2Nm3ahODgYHz22Wd1/rxnz56Fq6trlbud9O/fHwDw66+/8jpAahQWQNIrJiYm+PTTTyGTybBp0yYsWrRI7EiNtnHjRly6dAlnzpyp1ygkkTHJzc2Fra0trl27hv79+6v3D/Tz84OLiwsWL16MNWvW4L333gMATJkyBY6Ojvjss88qFUAAmDp1KiIjI7FixQpMmDCh1i2gbt++jfj4ePV2NsCTBSXAk7sCXb16FdbW1gCAsrIyrFmzBkqlEhkZGep9DO/evYsdO3YgLi6uzjMEt27dqnGzeeDJNcNdu3bF8ePH63Q+or/j3zakdxq7IKQ2d+/exe3bt2v8qu80zrNw4QdR3SiVSvWIv4+Pj/q4qakpPD09IQgCvL291cdbt24NNzc3/Pbbb1XOVTEK+OuvvyIlJaXW97WwsMDs2bOrfe7NN99Ulz8A8PLyAvBk14KnN7H28vKCSqXCzZs3n/1B/1dNm8k/vaWVVCqtcWsromdhASS9FBkZCalUiuDgYI2e9/nnn4eDg0ONX5regDY4OBjNmzfHihUrNHpeIkNTVFSkLlUdO3as9Jy1tTUsLS3Rtm3bKsdruu/wtGnT0LVr12deC9ihQ4ca9x2sLgfw5Brh6o7X5x7IUqn0mZvNS6VS9WOi+uIUMOmligUhs2fPhp+fn8buDbxjx45a/0VtY2OjkfcB/m/hx9atW7nwg+gZVCoVTE1NAUD9f59W3TEANZa7ilHAWbNmITU1tcb3re2uPjW9Z32zVMfBwaHaEcOKDegdHR1x9+7daksiUV2wAJLeauyCkOq89NJLGkj2bFz4QVQ/5ubmlW4dpwnTp0/HypUrERERgbFjx2r03I3Vt29fHDlyBAqFotJCkNOnT6uf/+WXXxp81yEiTgGT3qpYEHLp0iVs2rRJ7Dj1UrHw49NPP+XCD6I6sLS0RGlpqUbPWTEKeO7cOXz77bcaPXdjTZw4EWVlZUhMTFQfKy4uxr/+9S94eXnB2dkZSqWyzrewJPo7/s1Deq0pF4Q0FS78IKo/qVSKkpISjZ932rRp6NKlC86dO6fxczeGl5cX3nzzTXzwwQcIDQ1FYmIihgwZgpycHERFRQH4v4UgRA3BKWDSe5GRkdizZw+Cg4Oxc+dOseM8Exd+1N/FixfFjqBTjPHn4ezsXO29vBurWbNmCAsLq3Glr5i++OILLF26FNu2bUNBQQF69+6N/fv3q7e1yc7OrrLghKiuJEIdrkpVKBSwtrZGYWFhlU0piXTB1q1bMXv2bBw5ckRjC0KawpEjRzBkyBBs3boVb7/9tthxdN7Vq1fh6uoqdgyddeXKFXTr1k3sGFoRHh6O+Ph43Llzp9Z9+4yFIAho164dAgMDERERIXYc0hH16WssgGQQysvLMWDAADx48EBjC0I0raSkBH379oWNjQ2OHTvGa//q6OrVq3j48KHYMerk8ePHGDx4MEpLS2Fvb4/9+/c3WVlp1aqV0ZQ/AEhNTcX48eNx48YNjnoBuHHjBjp16oTU1FSdW8BC4qlPX+MUMBkEfbhDCO/40TD6VnKGDBmCtLQ03L59G+bm5ujVq5fYkQyCp6cngCe3hNPnAvjo0SM8evSo1tfY2dnVuJVMhYpbwFX8XIjqi38LkcHQ5QUhXPhhPEaPHq3+8/79+0VMYlgcHR3Rvn17vb/37dq1a2vdbN7BwQG5ubnPPI9cLoe9vT0cHR21kJoMEaeAyaA8ePAArq6uGDp0qE4tCJk6dSp+/PFHXL58mZs+G7jffvsNXbp0AfBkX8kTJ06InMhwjBo1CoIg4ODBg2JHabDffvut2tvTPe3ll19+5vYuI0eOhKmpKf+RQZVwCpiMVlPdIaQxeMcP4/Lcc8+hR48euHjxIk6dOoU///wTbdq0ETuWQfD09MTmzZuhUqlqvD2brnvuuefw3HPPNeocxcXFOH36NObPn6+hVGSMOAVMBmfmzJl48cUXMXfu3CbZN6w+eMcP4zRq1CgATxYnff/99yKnMRyTJ0/G/fv3sW/fPrGjiGrfvn0oKCjA5MmTxY5CeowFkAyOLt0hhHf8ME68DrBpuLu7Y9CgQYiNjRU7iqhiY2MxePBg9OjRQ+wopMf4NxIZJF1YEMKFH8brxRdfVE/3f//99xq/hZkxCwwMxPHjx5GZmSl2FFGcP38eJ06cQGBgoNhRSM+xAJLBioyMhFQqRXBwsCjvzzt+GC8zMzOMGDECwJOFSSdPnhQ5keEYP3487O3tERcXJ3YUUcTFxcHBwQHjxo0TOwrpORZAMlgVC0J27dqF9PR0rb53xcKPqKgoLvwwUk9PAx84cEDEJIbFzMwMfn5+2LZtGxQKhdhxtEqhUGDbtm3w8/PTyc3uSb9wGxgyaGLcIYR3/CAAuHfvHtq1awdBEODu7o7//ve/YkcyGHl5eXBxcUF0dDSCgoLEjqM169atQ2hoKK5fv44OHTqIHYd0UH36Gv9mIoMmxoIQLvwgAGjbti1eeOEFAEBWVhZ+//13kRMZDicnJ/j4+CA8PBw5OTlix9GKnJwcLFu2DD4+Pix/pBH824kMnjYXhHDhBz2tYjsYgNPAmhYVFQUbGxv4+PigDhNZek0QBHh7e8PW1hZRUVFixyEDwQJIRkFbC0K48IOexu1gmo6VlRWSk5Px448/IjExUew4TSohIQGHDx9GcnIyL8MijWEBJKOgjQUhXPhBf9erVy84OTkBePLfx6NHj0ROZFiGDx8OX19fBAcHG+xUcE5ODkJCQuDn54dhw4aJHYcMCBeBkNFoygUhXPhBNQkICEB8fDwAICUlhdt3aJhCoYCHhwdcXV1x6NAhSCQSsSNpjCAIGDp0KLKzs5GZmcm/f+mZuAiEqBpNuSCECz+oJtwOpmk9PRUcHh4udhyNWrp0Kad+qcnwbyoyKk2xIIQLP6g2gwcPhqWlJYAnBdDQFyyIYfjw4YiKisLKlSuxbt06seNoRExMDFatWoXo6GhO/VKTYAEko6PpBSFc+EG1ad68OV599VUAT/6xcO7cOXEDGaiQkBB8+OGHWLx4sd4vCklMTERwcDCWLFki2p2MyPCxAJLR0eSCEC78oLp4ejsYrgZuOitXrsS8efPg7++vtyOBMTEx8Pf3x/z58xEZGSl2HDJgXARCRkkTC0K48IPq6saNG+jUqRMAoH///jh9+rTIiQzXgwcP0K1bN9y7dw9hYWFYsWKFXiwMEQQBS5cuxapVq7BkyRJERkbqRW7SLVwEQvQMmlgQwoUfVFcdO3ZEr169AAC//PIL7ty5I3Iiw1RaWorJkyfj3r17AJ6MCA4bNgzXr18XOVntcnJyMHToUKxatUp9LSPLHzU1/q1FRqsxC0K48IPqq2I1sCAI+Pe//y1yGsMjCALmz5+PtLQ0AECbNm2wdetWXLlyBR4eHkhISNC5BTiCICA+Ph69evXC1atXkZaWhpCQELFjkZFgASSj1tAFIVz4QfXF7WCa1saNGxEXFwcAMDMzwzfffIO3334bFy5cwNSpUzFnzhydGg2sGPULCAjA1KlTceHCBa72Ja1iASSj1pAFIVz4QQ3h5eWFNm3aAAB++OEHqFQqkRMZjgMHDmDRokXqx8nJyRgwYACAJ/sEJiQkIC0tTT0auG7dOigUClGyKhQKrFu3rtKoX0JCAq+vJ+0T6qCwsFAAIBQWFtbl5UR6paysTHjxxRcFd3d3QaVS1fpalUoluLu7Cy+99JJQVlampYRkKKZPny4AEAAIP/74o9hxDMK5c+eEli1bqn+uS5YsqfG1hYWFgr+/v2Bqaiq0bNlSCAgIEM6fP6+VnOfPnxfmzJkjtGjRQjA1NRX8/f35dyppXH36GkcAyejVZ0EIF35QY3A7GM26desWRo8erb7H8ptvvlnrZRlWVlaIj49HTk4OFi1ahJSUFPTu3RsDBw7E7t27NT4qq1KpsGvXLgwYMAC9e/dGamoqgoODcf36dcTHx3PUj0TFbWCI/te8efOwdetWXL58GY6OjlWez8/Ph5ubG2bPno2NGzeKkJD0XUFBAezs7FBWVgZXV1dcvnxZ7Eh66/Hjx3jllVeQkZEB4Mn2Ounp6ZBKpXU+R0lJCVJTUxEbG4sjR47A1tYW/fv3h0wmU385OzvXaUWuIAjIzc2FXC5Xf50+fRoFBQUYPHgwAgMDMW7cOI3eg5zo7+rT11gAif7XgwcP4OrqiqFDh2Lnzp1Vnp86dSp+/PFHXL58mdf+UYO98sorOHbsGADg8uXLcHV1FTmR/ikvL8ekSZPw9ddfA3iyzc7p06dhb2/f4HNmZWXhyy+/REZGBuRyOW7fvg0AaNu2LWQyGbp27QqpVAqpVApzc3OoVCoolUoolUpkZ2dDLpert5+xt7eHTCaDp6cnJk2aBHd398Z/aKI6qE9fa6alTEQ6r2JByOzZs+Hn54dBgwapn6tY+LF161aWP2qU0aNHqwvggQMHWAAbICwsTF3+WrZsie+++65R5Q8A3N3dsXz5cgBPRvPy8/MrjeYdP34cSqUSRUVFKC4uhoWFBSwtLSGVSuHs7IzAwEB16atuBoFI13AEkOgp1d0hhHf8IE3KyspCz549AQCvvvoq/vOf/4icSL9s3boVs2fPBvDk+t3vvvsO//znP0VORaQbeCcQogaqbkEIF36QJvXo0QOdO3cGABw9elS07Uj00dGjR+Hn56d+vH79epY/ogbi32ZEf/P0HUIyMjJ4xw/SKIlEot4UurS0FIcOHRI5kX64evUqXn/9dZSUlAAAAgMDMW/ePJFTEekvFkCialTcIWTAgAG84wdpHLeDqZ/79+9j9OjRuH//PgDgtddewyeffML75RI1AgsgUTVat26N6OhoFBUV8Y4fpHGvvPIKWrRoAQA4ePAgysvLRU6ku1QqFSZOnIgrV64AAHr27Indu3ejWTOuYSRqDBZAohrMnDkTFy9exMyZM8WOQgbG0tISQ4cOBQD88ccf6r3sqDJBEBAYGIgjR44AANq1a4f9+/fD2tpa5GRE+o8FkKgGEokE3bt35zQTNYmK6wABTgPXZO3atdiyZQsAwMLCAikpKXBxcRE3FJGBYAEkIhLB06tXDxw4IGIS3ZSSkoL33ntP/Xjr1q144YUXRExEZFhYAImIRODo6Ih+/foBAM6cOYP8/HyRE+mOM2fOYNq0aajYpjYiIgJvvfWWyKmIDAsLIBGRSJ6eBj548KCISXTHzZs3MWbMGDx+/BgAMG3aNCxdulTkVESGhwWQiEgk3A6mskePHmHMmDHq0dAXX3wRycnJvA6XqAmwABIRicTT0xPt2rUDABw6dAhFRUUiJxJPWVkZpk+fjrNnzwIAOnfujJSUFFhaWoqcjMgwsQASEYnExMREvRjk8ePHOHr0qMiJxPP+++8jNTUVAGBlZYX9+/fDzs5O5FREhosFkIhIRNwOBkhKSsLatWsBAKampti7dy/c3d1FTkVk2FgAiYhENGzYMJiZmQF4sh1MxcpXY/Hjjz8iMDBQ/Xjz5s0YNmyYiImIjAMLIBGRiKysrDBw4EAAwO+//46LFy+KnEh7Ll26hDfeeAOlpaUAgIULF2LOnDkipyIyDiyAREQie3oa2Fg2hb537x5Gjx6NwsJCAE9+BhXTwETU9FgAiYhEZmzbwRQXF2PChAm4du0aAKB3797YuXMnTE1NRU5GZDxYAImIRNatWze4uroCAH766ScUFBSInKjpCIIAX19fnDhxAgBgb2+P/fv3o1WrViInIzIuLIBERDqgYhSwrKwMP/zwg8hpms7q1auxbds2AIBUKsW3334LZ2dnkVMRGR8WQCIiHWAM28F8+eWXCAsLUz/+4osv8Pzzz4uYiMh4sQASEemAl19+WT0N+u9//xtlZWUiJ9Ks06dP4+2331Y/Xr16NSZOnChiIiLjxgJIRKQDzM3NMWLECADA/fv38fPPP4ucSHOuX7+OcePGqW919/bbb+P9998XORWRcWMBJCLSEYa4HYxCocCYMWNw584dAMDAgQORmJgIiUQicjIi48YCSESkI0aOHKkuRoZwHWBpaSmmTJmCzMxMAEDXrl2xb98+mJubi5yMiFgAiYh0RLt27dC/f38AQGZmJm7cuCFyosZZvHgxDh48CABo3bo19u/fjzZt2oiciogAFkAiIp3y9KbQBw4cQGlpKRQKhYiJGiY2NhYbN24EADRr1gz79u2Dm5ubyKmIqAILIBGRDnn6OsDIyEi0a9cO1tbW2Lx5s4ip6ueHH37A/Pnz1Y/j4+MxePBgERMR0d+xABIR6QBBEPCvf/0L8+bNUx+7deuW+q4g+rI59H//+19MmjRJvY1NSEgIvL29RU5FRH/XTOwAREQE/Pzzz3jnnXdqfL5Lly5aTNMwf/zxB0aPHq2esh4/fjw++ugjkVMRUXU4AkhEpAOcnZ1hYWFR4/O9e/fWYpr6Kyoqwvjx45GTkwMA6NevH7Zv3w4TE/41Q6SL+L9MIiId4OTkhD179sDU1LTa53W5AAqCgHfeeQenTp0CADg6OuLbb79FixYtRE5GRDVhASQi0hHjxo3DZ599VuW4RCKBu7u7CInqJiIiArt27QIANG/eHN999x06dOggcioiqg0LIBGRDpk5c6Z6+5QKbdq0QfPmzUVKVLudO3ciIiICwJOiunPnTvTr10/kVET0LCyAREQ6Zt68eQgKClI/btu2rYhp/k9JSQlWrlyJjRs3oqSkBCdPnsTs2bPVz0dFRWHcuHEiJiSiuuIqYCIiHRQTE4OCggIcPXoUSUlJYscBAGzZsgVLly4FAOzduxdZWVlQqVQAAB8fHyxevFjMeERUDyyAREQ6SCKR4F//+lelY4Ig4ObNm5DL5eqv3NxcKJVKFBUVQaVSwdzcHJaWlpBKpXB2doZMJoNMJoOnpyccHR3V9xpuiO+//1795+PHj6v/PGTIEMTGxjbq3ESkXSyAREQ6LCsrC3v27EFGRgbkcjnu3LkDALCzs4NMJsPAgQPRvHlzSKVSmJubQ6VSQalU4vHjx7h27Rri4+Nx9+5dAED79u3VZXDy5Mn1WlhSXl5eqfRVMDU1RUhICMzMzDTzgYlIKySCIAjPepFCoYC1tTUKCwthZWWljVxEREarpKQEKSkpiI2NRXp6OmxtbeHl5aUezZPJZHBycqrTiJsgCMjLy6s0anj69Gncv38fgwYNQmBgIMaPH//MApeZmVnjVjQWFhb46aefIJPJGvR5iUgz6tPXOAJIRKQj8vLykJiYiKSkJNy+fRsDBw7E7t27MWHCBJibmzfonBKJBM7OznB2dsb48eMBACqVCvv27UNsbCwmTZoEBwcH+Pr6wtfXF05OTtWe59ixYzW+R3FxMQ4dOsQCSKRHuAqYiEhkCoUCc+bMgYuLC9avX4/XX38dmZmZOHr0KCZPntzg8lcTc3NzvPXWWzh27BjOnz+P8ePHY926dXBxccGcOXPUt3J72u7du2s839ixY+Hn56fRjETUtDgFTEQkorS0NPj4+KCgoAArVqyAt7e3KL9nFQoFtmzZgvDwcNjY2CA5ORnDhw9XP29paYni4mL141atWmH27NmYO3cuXF1dtZ6XiKqqT1/jCCARkQgUCgX8/PwwYsQIuLm54cKFCwgKChLtH9lWVlYICgpCZmYmXF1dMWLECPj5+alHAzt37gwAsLa2xqZNm3Dz5k188sknLH9EeoojgEREWvb0qN/atWvh5+enU1uoCIKAxMREBAcHq0cDhw4diitXrsDV1RUmJhw7INJFHAEkItJR0dHRlUb9/P39dar8AU8Wjvj7+1caDYyJiUH37t1Z/ogMBP+XTESkBYIg4MMPP0RoaCjCwsKQlpaGTp06iR2rVi4uLjh06BDCwsIQGhqKJUuWoA6TRkSkB7gNDBFRExMEAQsWLMCmTZuwbt26Svf51XUSiQSRkZGwsbHB4sWL8ejRI2zYsEHnRi2JqH5YAImImlhYWBg2bdqEhIQEvd0uZdGiRWjZsiX8/f3RqlUrrFy5UuxIRNQILIBERE0oOjoaq1evRkxMjN6Wvwp+fn54+PAhgoODYW1tjZCQELEjEVEDsQASETWRtLQ09TV/ixYtEjuORixevBgFBQUIDQ1F3759MWzYMLEjEVEDcBsYIqImoFAo4OHhATc3N6SlpRnUNXOCIGDo0KG4evUqLly4wL8XiHQEt4EhIhJZcHAwCgoKkJycbFDlD3iyMGTLli0oKCjgNDCRnmIBJCLSsLS0NCQlJWHt2rU6v9VLQ7m4uCA6OhqJiYk4dOiQ2HGIqJ44BUxEpEGGPPX7d5wKJtItnAImIhJJaGiowU79/t3TU8GhoaFixyGiemABJCLSkLy8PCQnJ2PFihUGO/X7dy4uLoiIiEBycjJu3rwpdhwiqiMWQCIiDUlKSoJUKoW3t7fYUbTKx8cHlpaWSEpKEjsKEdURCyARkQaUlJQgMTERM2bMMLpr4aysrDBjxgwkJiaipKRE7DhEVAcsgEREGpCSkoLbt28jICBA7CiiCAgIwK1bt5Camip2FCKqA64CJiLSgMGDB6OsrAzHjh0TO4poBgwYADMzMxw+fFjsKERGiauAiYi0KCsrC+np6QgMDBQ7iqgCAwNx5MgRXLx4UewoRPQMLIBERI20Z88e2Nra4vXXXxc7iqjeeOMN2NjYYM+ePWJHIaJnYAEkImqkjIwMeHl5wdzcXOwoojI3N4eXlxcyMjLEjkJEz8ACSETUCIIgQC6XQyaT1ev70tPTIZFIIJFIIJfLqzw/a9YstGzZUlMxNeLBgwfw8/ODnZ0dWrRogcGDB+PMmTOVXiOTyar9PESkW1gAiYgaIT8/H3fu3Kl3AXza8uXLNReoiZSXl2PUqFHYuXMn3n33XURFReGPP/7AoEGDcPXqVfXrZDIZbt++jfz8fBHTEtGzsAASETVCxXRnQwtg3759sX///iojaXUhCAKUSmWD3re+9u7di5MnT2Lr1q1YtmwZ5s6di/T0dJiammLZsmXq11X8HDgNTKTbWACJiBpBLpfDzs4OTk5OAIDr168jMDAQbm5ukEqlaNOmDd58803k5ORU+/3z5s2DjY1NnUYBXVxcMHr0aPzwww/w9PSEVCpFQkKCejr5yy+/REREBDp06IBWrVph4sSJKCwsRHFxMRYuXIh27dqhZcuWmD17NoqLi+v1Offu3Yv27dtXWuhiZ2eHSZMmITU1VX0+Z2dntG3bltPARDqumdgBiIj0WcX1fxKJBADwyy+/4OTJk3jrrbfg5OSEnJwcxMXFYdCgQcjKykLz5s0rfb+VlRWCgoIQHh6OM2fOoF+/frW+3+XLlzFlyhT4+/vD19cXbm5u6ufWrFkDqVSK999/H9nZ2di0aRPMzMxgYmKCgoICLF++HD///DO2bt2Kzp07Izw8vM6f8+zZs+jXrx9MTCqPG/Tv3x+JiYm4cuUKevXqBYlEwusAifQACyARUSPk5uZi4MCB6sejRo3CxIkTK71mzJgxeOGFF/D1119jxowZVc4xf/58rF+/HhEREc+8k0Z2dja+//57jBgxQn0sPT0dAFBaWoqjR4/CzMwMAHD37l3s3r0br732Gg4ePAjgyV592dnZ+Oyzz+pVAG/dulXpc1ZwcHAA8ORayF69egEAunbtiuPHj9f53ESkfZwCJiJqBKVSWWlUTyqVqv9cUlKCP//8E127dkXr1q1rvM7P2toaCxcuxLfffouzZ8/W+n6dO3euVP6eNnPmTHX5AwAvLy8IgoB33nmn0uu8vLyQm5uL0tLSZ36+CkqlEhYWFlWOW1paqp+vIJVKtXZtIhE1DAsgEVEjFBUVVSp9SqUS4eHhcHZ2hoWFBdq2bQs7Ozs8ePAAhYWFNZ5nwYIFaN269TOvBezcuXONz3Xs2LHSY2trawBPrsv7+/Hy8vJa8/ydVCqt9rrBoqIi9fNPv7biOBHpJk4BExE1gkqlqrQB9Lx58/Cvf/0LCxcuxAsvvABra2tIJBK89dZbKC8vr/E8FaOAy5cvr3UU8Omi9Xempqb1Ol6HW8GrOTg44NatW1WOVxxzdHRUHzM3N6/3IhMi0i4WQCKiRjA3N4dKpVI/3rt3L95++23ExMSojxUVFeHBgwfPPNfChQuxYcMGREREoHXr1k2QtuH69u2L48ePo7y8vNJCkNOnT6N58+ZwdXVVH1OpVNVOFxOR7uAUMBFRI1haWla63s3U1LTKyNqmTZtQVlb2zHNVjAKmpqbi3Llzmo7aKBMnTsSdO3ewb98+9bF79+7hq6++wpgxYyoVPqVSqb42kIh0E0cAiYgaQSqV4vHjx+rHo0ePxrZt22BtbQ13d3ecOnUK//nPf9CmTZs6nW/BggVYv349fv31V7Ro0aKpYtfbxIkT8Y9//AOzZ89GVlYW2rZti9jYWJSVlSEiIqLSa5VKZa1T1UQkPo4AEhE1grOzM65du6Z+/Mknn2DmzJnYsWMHFi9ejFu3buE///lPne/r27p1ayxcuLCJ0jacqakpDh48iMmTJ2Pjxo0ICQlB27Ztcfjw4Up7EQJPtqr5+8ITItItEqEOVwErFApYW1ujsLAQVlZW2shFRKQXwsPDER8fjzt37qg3gzZmgiCgXbt2CAwMrDIySERNqz59jSOARESNIJPJcPfuXeTl5YkdRSfk5ubi3r17Db43MhFpB68BJCJqBE9PTwBPbgmnj9OehYWFz9y02d7evs7nq7gFXMXPhYh0EwsgEVEjODo6on379pDL5Rg/frzYceptwYIF+Pzzz2t9TX32C5TL5bC3t6+0LyAR6R4WQCKiRpBIJJDJZOqRL30TGhqK6dOna+x8crmc079EeoAFkIiokTw9PbF58+YqdwXRB+7u7nB3d9fIuYqLi3H69GnMnz9fI+cjoqbDRSBERI00efJk3L9/v9ImycZo3759KCgowOTJk8WOQkTPwG1giIg0YPDgwSgrK8OxY8fEjiKaAQMGwMzMDIcPHxY7CpFR4jYwRERaFhgYiOPHjyMzM1PsKKI4f/48Tpw4gcDAQLGjEFEdsAASEWnA+PHjYW9vj7i4OLGjiCIuLg4ODg4YN26c2FGIqA5YAImINMDMzAx+fn7Ytm0bFAqF2HG0SqFQYNu2bfDz84OZmZnYcYioDlgAiYg0xNfXF0qlElu2bBE7ilYlJyejqKgIvr6+YkchojpiASQi0hAnJyf4+PggPDwcOTk5YsfRipycHCxbtgw+Pj7o0KGD2HGIqI64CpiISIMUCgU8PDzg6uqKQ4cOQSKRiB2pyQiCgKFDhyI7OxuZmZn8+4FIZFwFTEQkEisrKyQnJ+PHH39EYmKi2HGaVEJCAg4fPozk5GSWPyI9wwJIRKRhw4cPh6+vL4KDgw12KjgnJwchISHw8/PDsGHDxI5DRPXEKWAioiZgyFPBnPol0k2cAiYiEtnTU8Hh4eFix9GopUuXcuqXSM+xABIRNZHhw4cjKioKK1euxLp168SOoxExMTFYtWoVoqOjOfVLpMeaiR2AiMiQhYSE4MGDB1i8eDFatmwJPz8/sSM1WGJiIoKDg7FkyRIEBweLHYeIGoEFkIioia1cuRIPHz6Ev78/Hj16hEWLFokdqd5iYmIQHByM+fPnIzIyUuw4RNRILIBERE1MIpHgk08+QatWrbB48WIUFBRgxYoVerEwRBAELF26FKtWrcKSJUsQGRmpF7mJqHYsgEREWiCRSLBq1Sq0bt0aoaGhOHXqFLZs2YJOnTqJHa1GOTk58Pb2xuHDhxEVFYWQkBCxIxGRhnARCBGRFoWEhCAtLQ1XrlyBh4cHEhISUIfduLRKEATEx8ejV69euHr1KtLS0lj+iAwMCyARkZYNGzYMFy5cwNSpUzFnzhwMGzYM169fFzsWgCejfkOHDkVAQACmTp2KCxcucLUvkQFiASQiEoGVlRUSEhIqjQauW7cOCoVClDwKhQLr1q2rNOqXkJDAff6IDBQLIBGRiCpGA6dNm4bQ0FB06NABgYGByMzM1Mr7Z2ZmIiAgAI6OjggNDcW0adM46kdkBFgAiYhEZmVlhfj4eOTk5GDRokVISUlB79698dJLL2H37t1QqVQafT+VSoVdu3ZhwIAB6N27N1JTUxEcHIzr168jPj6eo35ERoD3AiYi0jElJSXYtWsXvL29UVpaCmtra7zwwguQyWTqL2dn5zptxyIIAnJzcyGXy9Vfp0+fRkFBAQYPHozAwECMGzcOZmZmWvhkRNSU6tPXuA0MEZGOMTMzg4WFBUpLSwEAbm5uMDU1xZYtW7Bq1SoAQNu2bSGTydC1a1dIpVJIpVKYm5tDpVJBqVRCqVQiOzsbcrkc9+7dAwDY29tDJpNh/vz5mDRpEtzd3UX7jEQkLhZAIiIdlJKSov7zRx99hMGDB0MQBOTn51cazTt+/DiUSiWKiopQXFwMCwsLWFpaQiqVwtnZGYGBgZDJZPD09ISjo6N4H4iIdAqngImIdExxcTHs7Ozw8OFD2NjY4I8//kCzZvz3OhHVrj59jYtAiIh0THp6Oh4+fAgAGD16NMsfEWkcCyARkY55evp3/PjxouUgIsPFAkhEpEPKy8uRmpoKALC0tMSIESNETkREhogFkIhIh2RkZODWrVsAnmwS3aJFC5ETEZEhYgEkItIhnP4lIm1gASQi0iEVBdDExARjxowRNwwRGSwWQCIiHXH58mVcvHgRAPDSSy/Bzs5O5EREZKhYAImIdETF4g+A079E1LRYAImIdMTT1/+NGzdOvCBEZPBYAImIdMCtW7fw888/AwA8PDzQpUsXkRMRkSFjASQi0gHfffcdKu7MyelfImpqLIBERDqA278QkTaxABIRiUyhUODHH38EADg5OaFfv34iJyIiQ8cCSEQksu+//x4qlQrAk9E/iUQiciIiMnQsgEREIuP0LxFpGwsgEZGIVCoVDh48CABo3bo1Bg4cKHIiIjIGLIBERCI6evQoCgsLAQCjRo2CmZmZyImIyBiwABIRiYjTv0QkBhZAIiKRlJeXq2//ZmFhgREjRoiciIiMBQsgEZFI5HI5bt68CQAYOnQoWrVqJXIiIjIWLIBERCLh9C8RiYUFkIhIJBUFUCKRYMyYMeKGISKjwgJIRCSCK1euICsrCwDw4osvon379iInIiJjwgJIRCSCisUfAKd/iUj7WACJiETw9PV/48aNEy8IERklFkAiIi27c+cOTp06BQBwd3dHt27dRE5ERMaGBZCISMu+++47CIIAgNO/RCQOFkAiIi3j9i9EJDYWQCIiLXr48CH+85//AAA6dOgAmUwmciIiMkYsgEREWvTDDz+guLgYwJPFHyYm/DVMRNrH3zxERFrE1b9EpAtYAImItKSkpAT79+8HAFhbW2PQoEHiBiIio8UCSESkJUePHkVhYSEAYNSoUTA3Nxc5EREZKxZAIiIt4fQvEekKFkAiIi0QBEF9+zdzc3O89tprIiciImPGAkhEpAVnzpxBXl4eAODVV1+FlZWVyImIyJixABIRaQE3fyYiXcICSESkBRUFUCKRYOzYseKGISKjxwJIRNTEsrOzceHCBQDAP/7xD9jb24uciIiMHQsgEVETq1j8AXD6l4h0AwsgEVET4/YvRKRrWACJiJrQH3/8gZ9++gkA0L17d7i5uYmciIiIBZCIqEnt378fgiAA4PQvEekOFkAioibE7V+ISBexABIRNZFHjx4hLS0NAODg4IDnn39e5ERERE+wABIRNZG0tDQUFxcDeLL4w8SEv3KJSDfwtxERURPh9C8R6SoWQCKiJlBSUoL9+/cDAKysrDB48GCRExER/R8WQCKiJnD8+HEUFBQAAEaOHAlzc3ORExER/R8WQCKiJsDpXyLSZSyAREQaJgiC+vZvZmZmGDlypMiJiIgqYwEkItKwc+fO4caNGwCAIUOGwNraWuRERESVsQASEWkYp3+JSNexABIRadjTBXDs2LHiBSEiqgELIBGRBv322284f/48AMDLywuOjo4iJyIiqooFkIhIAxQKBcrLy9WLP4And/8gItJFzcQOQESk71atWoWwsDDY29tDIpGoj/P6PyLSVRwBJCJqpAMHDgAAbt++jVu3bgEATExMsHz5chw7dkzMaERE1WIBJCJqJBcXlyrHysvL8eWXX2LQoEHIy8vTfigiolqwABIRNVKPHj1qfE4qlcLS0lKLaYiIno0FkIiokdzd3as9bmZmhr1796Jt27ZaTkREVDsWQCKiRqquAJqammLPnj28DRwR6SQWQCKiRuratWul1b8SiQTbtm3DhAkTRExFRFQzFkAiokYyMzNDy5Yt1Y/j4+MxZcoUERMREdWO+wASkVETBAE3b96EXC5Xf+Xm5kKpVKKoqAgqlQrm5uawtLSEVCqFs7MzZDIZZDIZPD094ejoCIlEgrVr1yIiIgKzZs2Cn5+f2B+LiKhWLIBEZHSysrKwZ88eZGRkQC6X486dOwAAOzs7yGQyDBw4EM2bN4dUKoW5uTlUKhWUSiUeP36Ma9euIT4+Hnfv3gUAtG/fXl0GDx06VOOCECIiXSIRBEF41osUCgWsra1RWFgIKysrbeQiItKokpISpKSkIDY2Funp6bC1tYWXl5d6NE8mk8HJyanStXw1EQQBeXl5lUYNT58+jfv372PQoEEIDAzE+PHjYWZmpoVPRkT0RH36GgsgERm0vLw8JCYmIikpCbdv38bAgQMRGBiICRMmwNzcXGPvo1KpsG/fPsTGxuL48eNwcHCAr68vfH194eTkpLH3ISKqCQsgERk9hUKB0NBQJCcnQyqVYubMmQgICICHh0eTv3dmZibi4uKwbds2KJVK+Pj4ICoqir8/iahJsQASkVFLS0uDj48PCgoKsGLFCnh7e4vyu0uhUGDLli0IDw+HjY0NkpOTMXz4cK3nICLjUJ++xm1giMhgKBQK+Pn5YcSIEXBzc8OFCxcQFBQk2j9craysEBQUhMzMTLi6umLEiBHw8/ODQqEQJQ8RUQUWQCIyCGlpafDw8MCuXbsQHx+PtLQ0dOrUSexYAAAXFxccOnQI8fHx2LVrFzw8PJCWliZ2LCIyYiyARKT3oqOjK436+fv712k1rzZJJBL4+/tXGg2Mjo4WOxYRGSkWQCLSW4Ig4MMPP0RoaCjCwsJ0atSvJhWjgWFhYQgNDcWSJUtQh0uxiYg0ihtBE5FeEgQBCxYswKZNm7Bu3ToEBQWJHanOJBIJIiMjYWNjg8WLF+PRo0fYsGGDzo1aEpHhYgEkIr0UFhaGTZs2ISEhQW9vvbZo0SK0bNkS/v7+aNWqFVauXCl2JCIyEiyARKR3oqOjsXr1asTExOht+avg5+eHhw8fIjg4GNbW1ggJCRE7EhEZARZAItIraWlp6mv+Fi1aJHYcjVi8eDEKCgoQGhqKvn37YtiwYWJHIiIDx42giUhvKBQKeHh4wM3NDWlpaQZ1zZwgCBg6dCiuXr2KCxcu8HctEdUbN4ImIoMUHByMgoICJCcnG1T5A54sDNmyZQsKCgo4DUxETY4FkIj0QlpaGpKSkrB27Vqd3+qloVxcXBAdHY3ExEQcOnRI7DhEZMA4BUxEOs+Qp37/jlPBRNRQnAImIoMSGhpqsFO/f/f0VHBoaKjYcYjIQLEAEpFOy8vLQ3JyMlasWGGwU79/5+LigoiICCQnJ+PmzZtixyEiA8QCSEQ6LSkpCVKpFN7e3mJH0SofHx9YWloiKSlJ7ChEZIBYAIlIZ5WUlCAxMREzZswwumvhrKysMGPGDCQmJqKkpETsOERkYFgAiUhnpaSk4Pbt2wgICBA7iigCAgJw69YtpKamih2FiAwMVwETkc4aPHgwysrKcOzYMbGjiGbAgAEwMzPD4cOHxY5CRDqOq4CJSO9lZWUhPT0dgYGBYkcRVWBgII4cOYKLFy+KHYWIDAgLIBHppD179sDW1havv/662FFE9cYbb8DGxgZ79uwROwoRGRAWQCLSSRkZGfDy8oK5ubnYUURlbm4OLy8vZGRkiB2FiAwICyAR6RxBECCXyyGTyQAAy5cvh0Qiwb1790ROJg6ZTAa5XC52DCIyICyARKRz8vPzcefOHXUBrCsXFxdIJBLMmzevynPp6emQSCTYu3evpmI2WlxcHN5880107NgREokEs2bNqvZ1MpkMt2/fRn5+vnYDEpHBYgEkIp1TMd1Z3wJYISkpSS/K0scff4zDhw+jZ8+eaNasWY2vq/g5cBqYiDSFBZCIdI5cLoednR2cnJzq/b09e/ZEWVkZPvroowa9919//dWg72uIo0eP4t69e/j3v/8NCwuLGl/n7OyMtm3bchqYiDSGBZCIdE7F9X8SiaTS8Xv37mHSpEmwsrJCmzZtsGDBAhQVFVV6jYuLC2bOnFmnUcCKawuzsrIwdepU2NjY4OWXX1afZ/To0UhPT4enpyekUil69eqF9PR0AMC+ffvQq1cvWFpaQiaT4ezZs/X+nJ06daryGasjkUh4HSARaRQLIBHpnNzcXHTp0qXK8UmTJqGoqAhr1qzBP//5T2zcuBF+fn5VXrdkyRKUlpbWeRTwzTffxOPHj7F69Wr4+vqqj2dnZ2Pq1KkYM2YM1qxZg4KCAowZMwY7duxAUFAQpk+fjoiICFy7dg2TJk1CeXl5wz/0M3Tt2hW5ublNdn4iMi41X3RCRCQSpVKJ5s2bVzneuXNn9W3R5s6dCysrK8TGxiI4OBi9e/dWv+65557DjBkzkJSUhA8++AAODg61vl+fPn2wc+fOKscvX76MkydP4oUXXgAAuLu7Y8SIEfD19cWlS5fQsWNHAICNjQ38/f1x7NgxDBo0qKEfu1ZSqRRKpbJJzk1ExocjgESkc4qKiiCVSqscnzt3bqXHFat9Dx48WOW1YWFhdR4FnDNnTrXH3d3d1eUPALy8vAAAQ4YMUZe/p4//9ttvz3yvhpJKpVWmu4mIGooFkIh0jkqlqnYD6G7dulV63KVLF5iYmCAnJ6fKaytGARMTE3Hr1q1a369z587VHn+65AGAtbU1gCeLMqo7XlBQUOv7NIa5uTmKi4ub7PxEZFxYAIlI55ibm0OlUj3zdc9aQFFxLeDHH39c6+uqG20EAFNT03odFwSh1vdpDJVKVetKYSKi+mABJCKdY2lpWe31blevXq30ODs7G+Xl5XBxcan2PF26dMH06dORkJDwzFFAXadUKmFpaSl2DCIyECyARKRzpFIpHj9+XOX4p59+Wunxpk2bAAAjR46s8VxhYWEoKSlBVFSUZkNqmVKprHGkkoiovrgKmIh0jrOzM65du1bl+O+//46xY8fitddew6lTp7B9+3ZMnToVffr0qfFcFaOAn3/+eVNGbpDvvvsOv/76KwCgpKQE58+fx8qVKwEAY8eOrbSyOTs7u8q1h0REDcUCSEQ6RyaTIT4+HoIgVLrOb8+ePQgPD8f777+PZs2a4d1330V0dPQzzxcWFobt27ejrKysKWPX29dff12pmJ49e1a9obSTk5O6AAqCALlcjsDAQFFyEpHhkQh1uGpZoVDA2toahYWFsLKy0kYuIjJiqampGD9+PG7cuMFRLwA3btxAp06dkJqairFjx4odh4h0VH36Gq8BJCKd4+npCQC89dn/qvg5VPxciIgai1PARKRzHB0d0b59e8jlcowfP17sOPWiUqlw//79Wl9jbW1drwUdcrkc9vb2cHR0bGw8IiIALIBEpIMkEglkMplejgCePHkSgwcPrvU1//rXvzBr1qw6n1Mul0MmkzUyGRHR/2EBJCKd5Onpic2bN9d4VxBd1adPHxw6dKjW1/Ts2bPO5ysuLsbp06cxf/78xkYjIlLjIhAi0klZWVno2bMndu3ahbfeekvsOKLZtWsXpk6diqysLPTo0UPsOESkw+rT11gAiUhnDR48GGVlZTh27JjYUUQzYMAAmJmZ4fDhw2JHISIdx1XARGQQAgMDcfz4cWRmZoodRRTnz5/HiRMnuP8fEWkcCyAR6azx48fD3t4ecXFxYkcRRVxcHBwcHDBu3DixoxCRgWEBJCKdZWZmBj8/P2zbtg0KhULsOFqlUCiwbds2+Pn5wczMTOw4RGRgWACJSKf5+vpCqVRiy5YtYkfRquTkZBQVFcHX11fsKERkgFgAiUinOTk5wcfHB+Hh4cjJyRE7jlbk5ORg2bJl8PHxQYcOHcSOQ0QGiKuAiUjnKRQKeHh4wNXVFYcOHYJEIhE7UpMRBAFDhw5FdnY2MjMz+TuXiOqMq4CJyKBYWVkhOTkZP/74IxITE8WO06QSEhJw+PBhJCcns/wRUZNhASQivTB8+HD4+voiODjYYKeCc3JyEBISAj8/PwwbNkzsOERkwDgFTER6w5Cngjn1S0SNxSlgIjJIT08Fh4eHix1Ho5YuXcqpXyLSGhZAItIrw4cPR1RUFFauXIl169aJHUcjYmJisGrVKkRHR3Pql4i0opnYAYiI6iskJAQPHjzA4sWL0bJlS/j5+YkdqcESExMRHByMJUuWIDg4WOw4RGQkWACJSC+tXLkSDx8+hL+/Px49eoRFixaJHaneYmJiEBwcjPnz5yMyMlLsOERkRFgAiUgvSSQSfPLJJ2jVqhUWL16MgoICrFixQi8WhgiCgKVLl2LVqlVYsmQJIiMj9SI3ERkOFkAi0lsSiQSrVq1C69atERoailOnTmHLli3o1KmT2NFqlJOTA29vbxw+fBhRUVEICQkROxIRGSEuAiEivRcSEoK0tDRcuXIFHh4eSEhIQB12uNIqQRAQHx+PXr164erVq0hLS2P5IyLRsAASkUEYNmwYLly4gKlTp2LOnDkYNmwYrl+/LnYsAE9G/YYOHYqAgABMnToVFy5c4GpfIhIVCyARGQwrKyskJCRUGg1ct24dFAqFKHkUCgXWrVtXadQvISGB+/wRkehYAInI4FSMBjo7OyM4OBj29vYIDAxEZmamVt4/MzMTAQEBcHR0RGhoKKZNm8ZRPyLSKSyARGSQHjx4gOzsbAiCgLKyMnzzzTfo3bs3Bg4ciN27d0OlUmn0/VQqFXbt2oUBAwagd+/eSE1NRXBwMK5fv474+HiO+hGRTuEqYCIySB999BFKSkoAAMHBwVi+fDlSU1MRGxuLKVOmwNbWFv3794dMJlN/OTs712k7FkEQkJubC7lcrv46ffo0CgoKMHjwYHz11VcYN24czMzMmvpjEhE1iESow1K5+txcmIhIbHl5eejSpQtUKhVatmyJnJwctGnTRv18VlYWvvzyS2RkZEAul+P27dsAgLZt20Imk6Fr166QSqWQSqUwNzeHSqWCUqmEUqlEdnY25HI57t27BwCwt7eHTCaDp6cnJk2aBHd3d1E+MxFRffoaRwCJyOB8/PHH6ined999t1L5AwB3d3csX74cwJPRvPz8/EqjecePH4dSqURRURGKi4thYWEBS0tLSKVSODs7IzAwUF36HB0dtf3xiIgajSOARGRQ8vPz8dxzz6G4uBjNmzdHTk4O7OzsxI5FRNTk6tPXuAiEiAxKVFQUiouLAQBz585l+SMiqgZHAInIYNy6dQvPPfccioqKIJVK8fvvv6N9+/ZixyIi0gqOABKRUVq7di2KiooAAAEBASx/REQ14AggERmEO3fuoHPnzlAqlbC0tMTvv/8Oe3t7sWMREWkNRwCJyOisXbsWSqUSAODv78/yR0RUC44AEpHeu3v3LlxcXPD48WNYWFjgt99+4/YsRGR0OAJIREYlJiYGjx8/BgD4+fmx/BERPQNHAIlIr927dw8uLi7466+/YG5ujmvXrsHJyUnsWEREWscRQCIyGuvXr8dff/0FAPDx8WH5IyKqAxZAItJb9+/fx6ZNmwAAZmZmeO+990RORESkH1gAiUhvbdiwAQ8fPgQAvPPOO+jYsaPIiYiI9AOvASQivVRQUAAXFxcoFAo0a9YM2dnZ6NSpk9ixiIhEw2sAicjgbdy4EQqFAgAwa9Yslj8ionpgASQivVNYWIgNGzYAAExNTfHhhx+KG4iISM+wABKR3tm0aRMePHgAAJg5cyY6d+4sbiAiIj3DAkhEekWhUGDdunUAnoz+LVmyRORERET6hwWQiPTK5s2bUVBQAACYPn06unTpInIiIiL9wwJIRHrj4cOHiImJAQCYmJhw9I+IqIFYAIlIb8TGxuL+/fsAgKlTp6Jbt24iJyIi0k8sgESkF/766y+sXbsWACCRSDj6R0TUCCyARKQX4uLicO/ePQDAW2+9he7du4uciIhIf7EAEpHOe/z4MaKjowE8Gf0LCwsTORERkX5jASQinZeQkIA//vgDAPDmm2/C3d1d5ERERPqNBZCIdJpSqURUVJT68dKlS0VMQ0RkGFgAiUinJSUl4fbt2wCAN954Ax4eHiInIiLSfyyARKSzioqK8PHHH6sfh4eHi5iGiMhwsAASkc5KTk5Gfn4+AGDChAno3bu3yImIiAwDCyAR6aTi4mJ89NFH6se89o+ISHNYAIlIJ3322We4efMmAGDs2LH4f//v/4mciIjIcLAAEpHOUalUWLNmjfoxr/0jItIsFkAi0jlbt25Fbm4uAGDUqFGQyWQiJyIiMiwsgESkU0pKSrB69Wr1Y47+ERFpHgsgEemUL774AtevXwcAvPbaa+jfv7/IiYiIDA8LIBHpjJKSEqxatUr9eNmyZSKmISIyXCyARKQzduzYgd9//x0AMHz4cPzjH/8QORERkWFiASQinVBaWoqVK1eqH/PaPyKipsMCSEQ6YdeuXbh27RoA4NVXX8VLL70kciIiIsPFAkhEoisrK+PoHxGRFrEAEpHodu/ejStXrgAABg0ahIEDB4qciIjIsLEAEpGoOPpHRKR9LIBEJKqvvvoKly5dAgAMGDAAgwYNEjcQEZERYAEkItGUl5cjMjJS/XjZsmWQSCQiJiIiMg4sgEQkmq+//hpZWVkAgBdffBFDhgwRORERkXFgASQiUXD0j4hIPCyARCSKlJQUZGZmAgC8vLwwbNgwkRMRERkPFkAi0rry8nKsWLFC/Zijf0RE2sUCSERa99133+HXX38FADz//PN47bXXRE5ERGRcWACJSKsEQUBERIT6cXh4OEf/iIi0jAWQiLTqwIEDOHv2LACgX79+GDVqlMiJiIiMDwsgEWkNR/+IiHRDM7EDEJFhy8rKQlxcHF588UW0atUKGRkZAIC+ffti7NixIqcjIjJOLIBE1KTmzZuHw4cPY/PmzbC0tFQf5+gfEZF4OAVMRE3q9u3b6j8XFRUBAMzNzVFQUIDS0lKxYhERGTUWQCJqUtWN8qlUKnh7e8PHx0eERERExAJIRE2qtmneCxcuaDEJERFVYAEkoiZVUwF0cnJCYmKiltMQERHAAkhETeyvv/6qcuy1117D2bNn0a9fPxESERERVwETEQRBwM2bNyGXy9Vfubm5UCqVKCoqgkqlgrm5OSwtLSGVSuHs7AyZTAaZTAZPT084OjrWONJ3//599Z8lEglWrVqF9957DyYm/PcnEZFYWACJjFRWVhb27NmDjIwMyOVy3LlzBwBgZ2cHmUyGgQMHonnz5pBKpTA3N4dKpYJSqcTjx49x7do1xMfH4+7duwCA9u3bq8vg5MmT4e7urn6fjh074sGDBzAzM8O///1vvPrqq6J8XiIi+j8SQRCEZ71IoVDA2toahYWFsLKy0kYuImoCJSUlSElJQWxsLNLT02FrawsvLy/1aJ5MJoOTk1Od9ucTBAF5eXmVRg1Pnz6N+/fvY9CgQQgMDMT48eNRWlqKzz//HOPGjYODg4MWPiURkXGqT19jASQyAnl5eUhMTERSUhJu376NgQMHIjAwEBMmTIC5ubnG3kelUmHfvn2IjY3F8ePH4eDgAF9fX/j6+sLJyUlj70NERFWxABIRgCf/2w0NDUVycjKkUilmzpyJgIAAeHh4NPl7Z2ZmIi4uDtu2bYNSqYSPjw+ioqL4O4SIqImwABIR0tLS4OPjg4KCAqxYsQLe3t6i/O9XoVBgy5YtCA8Ph42NDZKTkzF8+HCt5yAiMnT16WtchkdkYBQKBfz8/DBixAi4ubnhwoULCAoKEu0fb1ZWVggKCkJmZiZcXV0xYsQI+Pn5QaFQiJKHiIhYAIkMSlpaGjw8PLBr1y7Ex8cjLS0NnTp1EjsWAMDFxQWHDh1CfHw8du3aBQ8PD6SlpYkdi4jIKLEAEhmI6OjoSqN+/v7+dVrNq00SiQT+/v6VRgOjo6PFjkVEZHRYAIn0nCAI+PDDDxEaGoqwsDCdGvWrScVoYFhYGEJDQ7FkyRLU4XJkIiLSEG4ETaTHBEHAggULsGnTJqxbtw5BQUFiR6oziUSCyMhI2NjYYPHixXj06BE2bNigc6OWRESGiAWQSI+FhYVh06ZNSEhIgJ+fn9hxGmTRokVo2bIl/P390apVK6xcuVLsSEREBo8FkEhPRUdHY/Xq1YiJidHb8lfBz88PDx8+RHBwMKytrRESEiJ2JCIig8YCSKSH0tLS1Nf8LVq0SOw4GrF48WIUFBQgNDQUffv2xbBhw8SORERksLgRNJGeUSgU8PDwgJubG9LS0gzqmjlBEDB06FBcvXoVFy5c4O8bIqJ64EbQRAYsODgYBQUFSE5ONqjyBzxZGLJlyxYUFBRwGpiIqAmxABLpkbS0NCQlJWHt2rU6v9VLQ7m4uCA6OhqJiYk4dOiQ2HGIiAwSp4CJ9IQhT/3+HaeCiYjqj1PARAYoNDTUYKd+/+7pqeDQ0FCx4xARGRwWQCI9kJeXh+TkZKxYscJgp37/zsXFBREREUhOTsbNmzfFjkNEZFBYAIn0QFJSEqRSKby9vcWOolU+Pj6wtLREUlKS2FGIiAwKCyCRjispKUFiYiJmzJhhdNfCWVlZYcaMGUhMTERJSYnYcYiIDAYLIJGOS0lJwe3btxEQECB2FFEEBATg1q1bSE1NFTsKEZHB4CpgIh03ePBglJWV4dixY2JHEc2AAQNgZmaGw4cPix2FiEhncRUwkYHIyspCeno6AgMDxY4iqsDAQBw5cgQXL14UOwoRkUFgASTSYXv27IGtrS1ef/11saOI6o033oCNjQ327NkjdhQiIoPAAkikwzIyMuDl5QVzc3Oxo4jK3NwcXl5eyMjIEDsKEZFBYAEk0lGCIEAul0MmkzXo+3NyciCRSCCRSPD1119XeX758uWQSCS4d+9eY6NqxKNHj7Bs2TK89tprsLW1hUQiwdatW9XPy2QyyOVy8QISERkQFkAiHZWfn487d+40uAA+bcWKFajDei9R3bt3DytWrMDFixfRp0+fKs/LZDLcvn0b+fn5IqQjIjIsLIBEOqpiurOxBbBv3744f/48vvnmmwZ9/+PHjxv1/nXl4OCAW7du4fr164iOjq7yfMXPgdPARESNxwJIpKPkcjmaN2+Ojh074sqVK5g+fTqsra1hZ2eHpUuXQhAE5ObmYty4cbCysoK9vT1iYmKqnOett96Cq6trnUYBBw0aBA8PD8jlcgwcOBDNmzfHhx9+qJ5OXrt2LT799FM899xzaN68OYYPH47c3FwIgoDIyEg4OTlBKpVi3LhxuH//fr0+r4WFBezt7Wt83tnZGW3btuU0MBGRBrAAEukouVwOBwcHAMDkyZNRXl6Ojz76CF5eXli5ciU2bNiAYcOGoUOHDvj444/RtWtXBAcHV9kv0NTUFGFhYfj111/rNAr4559/YuTIkejbty82bNiAwYMHq5/bsWMHYmNjMW/ePCxevBhHjx7FpEmTEBYWhu+//x7vvfce/Pz88N133yE4OFijPw+JRMLrAImINKSZ2AGIqHq5ubmwtbXFtWvX0L9/fyQkJAAA/Pz84OLigsWLF2PNmjV47733AABTpkyBo6MjPvvsMwwcOLDSuaZOnYrIyEisWLECEyZMgEQiqfF9b9++jfj4ePj7+6uP5eTkAABu3ryJq1evwtraGgBQVlaGNWvWQKlUIiMjA82aPfmVcvfuXezYsQNxcXGwsLDQ2M+ka9euOH78uMbOR0RkrDgCSKSjlEolzMzMAAA+Pj7q46ampvD09IQgCPD29lYfb926Ndzc3PDbb79VOdfTo4ApKSm1vq+FhQVmz55d7XNvvvmmuvwBgJeXFwBg+vTp6vJXcVylUuHmzZvP/qD1IJVKoVQqNXpOIiJjxAJIpKOKiorUpapjx46VnrO2toalpSXatm1b5XhBQUG155s2bRq6du36zGsBO3ToUOO+g9XlAJ5cn1fd8ZqyNJRUKkVRUZFGz0lEZIxYAIl0lEqlgqmpKQCo/+/TqjsGoMZyVzEKeO7cOaSmptb4vlKptMbnanrP+mZpKHNzcxQXF2v0nERExogFkEhHmZubo6ysTKPnnD59Orp27YqIiAid3xewOiqVSqPXFBIRGSsuAiHSUZaWligtLdXoOStGAWfNmqXR82qLUqmEpaWl2DGIiPQeCyCRjpJKpSgpKdH4eadNm4bIyEicO3dO4+durM2bN+PBgwfqu3189913yMvLAwDMmzcPSqWy1ilqIiKqGxZAIh3l7OyMy5cva/y8zZo1Q1hYWI0rfcW0du1aXL9+Xf1437592LdvH4An09fZ2dlVFpwQEVH9SYQ6XAikUChgbW2NwsJCWFlZaSMXkdELDw9HfHw87ty5U+u+fcZCEAS0a9cOgYGBiIiIEDsOEZHOqU9f4yIQIh0lk8lw9+5d9RSoscvNzcW9e/cafW9kIiLiFDCRzvL09ATw5JZw+jzt+ejRIzx69KjW19jZ2dW4lUyFilvAVfxciIio4TgCSKSjHB0d0b59e72/9+3atWvh4OBQ61dubu4zzyOXy2Fvbw9HR0ctpCYiMmwcASTSURKJBDKZTO8L4MyZM/Hyyy/X+hp7e/tnnkcul3P6l4hIQ1gAiXSYp6cnNm/eDJVKVePt2XTdc889h+eee65R5yguLsbp06cxf/58DaUiIjJunAIm0mGTJ0/G/fv31VuhGKt9+/ahoKAAkydPFjsKEZFBYAEk0mGdOnWCu7s7Pv30U7GjiCo2NhaDBw9Gjx49xI5CRGQQWACJdNDNmzfxwQcfwNnZGVlZWThx4gQyMzPFjiWK8+fP48SJEwgMDBQ7ChGRwWABJNIhGRkZmDZtGlxcXPDRRx+hoKAAwJO7d8TFxYmcThxxcXFwcHDAuHHjxI5CRGQwWACJRFZWVoZ9+/ZhwIABeP7557Fz506UlpYCAMzMzDBjxgx4e3tj27ZtUCgUIqfVLoVCgW3btsHPzw9mZmZixyEiMhgsgEQiUSgU2LBhA7p164Y33ngDJ06cUD/Xpk0bLFmyBDk5Ofjiiy8QFhYGpVKJLVu2iJhY+5KTk1FUVARfX1+xoxARGRRuA0OkZTk5Odi4cSO2bNlSZUSvR48eWLhwIaZPn47mzZurjzs5OcHHxwfh4eGYMGECXFxctJxa+3JycrBs2TL4+PigQ4cOYschIjIoEkEQhGe9qD43FyaiqgRBwMmTJ7F+/Xp88803KC8vr/T88OHDERQUhOHDh8PEpPqBeYVCAQ8PD7i6uuLQoUOQSCTaiC4KQRAwdOhQZGdnIzMzk793iIjqoD59jSOARE2opKQEe/fuxfr16/HLL79Ues7CwgIzZszAwoUL0bNnz2eey8rKCsnJyRgxYgQSExPh7+/fVLFFl5CQgMOHDyMtLY3lj4ioCXAEUA9cvXoVDx8+FDuGzmnVqhW6desmdoxqFRQUIDExEZs3b0ZeXl6l59q3b4+5c+dizpw5sLOzq/e5/fz8sGvXLmRmZhrkVHBOTg569eqFqVOnIiEhQew4RER6oz59jQVQx129ehWurq5ix9BZV65c0akSeOXKFXzyySfYunUrHj9+XOm5Pn36ICgoCG+99RYsLCwa/B6GPBXMqV8ioobjFLABqRj52759O++C8JSLFy9i+vTpOjEyKggCjhw5gvXr1+PAgQN4+t9UEokEo0ePRlBQEAYNGqSRsvb0VHB4eDgiIyMbfU5dsXTpUk79EhFpAQugnujRowf69esndgx6SnFxMXbt2oUNGzbg119/rfRc8+bNMXv2bCxYsKBJRiiHDx+OqKgohIaGwsbGBosWLdL4e2hbTEwMVq1ahejoaAwbNkzsOEREBo0FkKie7t69i7i4OMTGxuLOnTuVnnNycsK8efPg6+sLGxubJs0REhKCBw8eYPHixWjZsiX8/Pya9P2aUmJiIoKDg7FkyRIEBweLHYeIyOCxABLV0YULF7BhwwZs374dxcXFlZ7r378/goKC8MYbb2j1jhUrV67Ew4cP4e/vj0ePHunlSGBMTAyCg4Mxf/58g5rOJiLSZSyARLUoLy/HDz/8gPXr1+PQoUOVnjMxMcHrr7+OoKAgvPDCC6IsxpBIJPjkk0/QqlUrLF68GAUFBVixYoVeLAwRBAFLly7FqlWrsGTJEkRGRupFbiIiQ8ACSFSNx48fY9u2bdiwYQMuXbpU6TkrKyv4+Phg3rx5OrENi0QiwapVq9C6dWuEhobi1KlT2LJlCzp16iR2tBrl5OTA29sbhw8fRlRUFEJCQsSORERkVHgvYKKn5OfnY8mSJejYsSPmzJlTqfx17twZGzZsQF5eHmJiYnSi/D0tJCQEaWlpuHLlCjw8PJCQkIA67PKkVYIgID4+Hr169cLVq1eRlpbG8kdEJAIWQCIAZ86cwYwZM+Di4oLVq1fjzz//VD83YMAA7Nu3D1evXsWCBQvQqlUrEZPWbtiwYbhw4QKmTp2KOXPmYNiwYbh+/brYsQA8GfUbOnQoAgICMHXqVFy4cIGrfYmIRMICSEarrKwMKSkpeOWVVyCTybB9+3aUlJQAAJo1a4Zp06YhIyMDx44dw4QJE2Bqaipy4rqxsrJCQkJCpdHAdevWQaFQiJJHoVBg3bp1lUb9EhISuM8fEZGIWADJ6Dx8+BAbN26Em5sbJkyYgGPHjqmfs7W1xQcffICcnBxs374dMplMxKSNUzEaOG3aNISGhqJDhw4IDAxEZmamVt4/MzMTAQEBcHR0RGhoKKZNm8ZRPyIiHcECSEbj+vXrCA4OhrOzMxYsWIBr166pn3Nzc0NcXBxyc3OxevVqdOjQQcSkmmNlZYX4+Hjk5ORg0aJFSElJQe/evTFw4EDs3r0bKpVKo++nUqmwa9cuDBgwAL1790ZqaiqCg4Nx/fp1xMfHc9SPiEhHcBUwGbxTp05h/fr12LdvH8rKyio9N3ToUAQFBeG1116DiYnh/nvIyckJERERCAsLQ2pqKmJjYzFlyhTY2tqif//+kMlk6i9nZ+c6bcciCAJyc3Mhl8vVX6dPn0ZBQQEGDx6Mr776CuPGjdPqvohERFQ3LICk15RKJWbNmoW8vDxs3boVTk5OAIDS0lJ8/fXXWL9+PU6fPl3peywsLDBt2jQsXLgQvXr1EiO2aMzMzDBx4kRMnDgRWVlZ+PLLL5GRkYEtW7Zg1apVAIDWrVvj+eefh6urK6RSKaRSKczNzaFSqaBUKqFUKpGdnQ25XI579+4BAOzt7SGTyTB//nxMmjQJ7u7uYn5MIiJ6BhZA0msRERHqDZpDQ0MRGxuLpKQkbNq0Cbm5uZVe265dOwQGBiIgIADt2rUTI65OcXd3x/LlywE8Gc27cuUKunfvjgcPHuDMmTO4c+cOlEolioqKUFxcDAsLC1haWkIqlcLZ2RmBgYGQyWTw9PSEo6OjuB+GiIjqhQWQ9NrTd+fYs2cPUlJSoFQqK72mV69eCAoKwpQpU2BpaantiHpBIpGoV0ADwKhRo/D555+LmIiIiJoSCyAZjPLy8krlb9SoUQgKCsKQIUN4i7E6yMnJUf9Z1za5JiIizWIBJIPj6+uL4OBguLq6ih1Fr7AAEhEZD8Nd9khGq2/fvix/DcACSERkPFgAyeA8fV0g1R0LIBGR8eAUMOm17t27o7y8HI8ePcLDhw9haWmJ6dOnix1LL1UUQBMTE/V2OkREZJhYAEmv7dixA/369RM7hkGoKIBOTk7cvJmIyMBxCpiI8PDhQ/z5558AgM6dO4uchoiImhoLIBHh+vXr6j/z+j8iIsPHAkhEXABCRGRkWACJiAWQiMjIsAASEQsgEZGRYQE0UOnp6ZBIJJBIJJDL5VWenzVrFlq2bClCsurdunUL77//PgYPHoxWrVpBIpEgPT1d7FhGgwWQiMi4sAAageXLl4sd4ZkuX76Mjz/+GDdv3kSvXr3EjmN0Kgqgqakp9wAkIjICLIAGrm/fvti/fz/OnDlT7+8VBAFKpbIJUlUlk8nw559/4sqVK1i0aJFW3pP+z9N7ADZrxu1BiYgMHQugHrt58ya8vb3h6OgICwsLdO7cGQEBAVCpVOrXzJs3DzY2NnUaBXRxccHo0aPxww8/wNPTE1KpFAkJCerp5C+//BIRERHo0KEDWrVqhYkTJ6KwsBDFxcVYuHAh2rVrh5YtW2L27NkoLi6u12dp1aoVbG1t6/sjIA14eg9ATv8SERkH/lNfT+Xn56N///548OAB/Pz80L17d9y8eRN79+7F48eP1a+zsrJCUFAQwsPDcebMmWfeNePy5cuYMmUK/P394evrCzc3N/Vza9asgVQqxfvvv4/s7Gxs2rQJZmZmMDExQUFBAZYvX46ff/4ZW7duRefOnREeHt5kn580h9f/EREZHxZAPfXBBx/g9u3bOH36NDw9PdXHV6xYAUEQKr12/vz5WL9+PSIiIpCamlrrebOzs/H9999jxIgR6mMVizFKS0tx9OhR9W3C7t69i927d+O1117DwYMHAQCBgYHIzs7GZ599xgKoJ1gAiYiMD6eA9VB5eTlSUlIwZsyYSuWvgkQiqfTY2toaCxcuxLfffouzZ8/Weu7OnTtXKn9PmzlzZqV7xHp5eUEQBLzzzjuVXufl5YXc3FyUlpbW9SORiFgAiYiMDwugHrp79y4UCgU8PDzq/D0LFixA69atn3ktYG33ge3YsWOlx9bW1gAAZ2fnKsfLy8tRWFhY53wkHhZAIiLjwwJoJOo6CiiVSmt8ztTUtF7H/z4VTbqJBZCIyPiwAOohOzs7WFlZ4cKFC/X6voULF6J169aIiIhoomSkj7gHIBGR8WEB1EMmJiYYP348vvvuO2RkZFR5vqaRt4pRwNTUVJw7d66JU5K+4B6ARETGh7/t9dTq1auRlpaGV155BX5+fujRowdu3bqFr776CidOnKjx+xYsWID169fj119/RYsWLbSY+NlWrlwJAPjvf/8LANi2bZv6s4SFhYmWy5ApFArcv38fAKd/iYiMCQugnurQoQNOnz6NpUuXYseOHVAoFOjQoQNGjhyJ5s2b1/h9rVu3xsKFC3VyGnjp0qWVHn/22WfqP7MANo3r16+r/8wCSERkPCRCHa7UVygUsLa2RmFhIaysrLSRi/7XmTNnIJPJIJfLn7mJszHhz0UzvvvuO4wdOxYAsGzZMr24bzQREVWvPn2N1wASGTGuACYiMk6cAqYmVVhYCKVSWetr7O3ttZSG/o4FkIjIOLEAUpNasGABPv/881pfw/0CxcMCSERknFgAqUmFhoZi+vTpYsegGnAPQCIi48QCSE3K3d0d7u7uYsegGlQUQGdnZ+4BSERkRLgIhMhIcQ9AIiLjxQJIZKS4ByARkfFiASQyUk8vAOnUqZN4QYiISOtYAImM1NMFsHPnzuIFISIirWMBJDJS3AKGiMh4sQASGSkWQCIi48UCSGSknt4DsEOHDuKGISIirWIBJDJS3AOQiMh4sQASGSHuAUhEZNxYAImMEPcAJCIybiyAREaIC0CIiIwbCyCREWIBJCIybiyAREaIBZCIyLixABIZod9//139ZxZAIiLjwwJIZIS4ByARkXFjASS9dvjwYbEj6CXuAUhEZNxYAEmvhYSE4L333kNpaanYUfRGYWEhCgoKAHD6l4jIWLEAkt6LiorCiBEj8Mcff4gdRS/8//buPK6qOv/j+PuqINcFxNQUNbXMBdGcYPLXomnjktNmjWlqaqaA4K5IUyKJS4uoWW6AWJaZozWmM/1aMJfRfpbzk7Iwd2cwlzRN4GpeBOH+/nC4P1BAwAvnLq/n48Ej7jnnnvO5Vvjm+z2f72ENQAAAARAurXr16pKuTgUHBwdr165dBlfk/OgABgAQAOHSEhMT1bhxY0nSiRMn1LVrVyUkJMhmsxlcmfMiAAIACIBwab/73e/07bffqmvXrpKk3NxcRUREaMSIEbJarQZX55wIgAAAAiBcXpMmTbR582ZNmjTJvu3dd9/Vfffdp3/9618GVuacCIAAAAIg3IKXl5cWLFigNWvWqFatWpKkPXv2KCQkRJ999pnB1TkX1gAEALAAmIvYv3+/0SU4lZL+PJ555hl17NhRTz31lA4dOqSMjAw98sgjevnllzV9+nRVq8bvPKwBCADgp7+Tq1u3riTp2WefNbgS51Tw51NYhw4d9M9//lPPPfecNmzYIJvNphkzZuif//ynVq1apfr16xtQqXNgDUAAgEQAdHp33nmnDh06pAsXLpR4TGZmpvr372//i/31119Xz549q6pEw9StW1d33nlnsfv8/Py0fv16zZ07Vy+99JLy8/P16aefKiQkRH/961/1u9/9roqrdQ6sAQgAkAiALqGkkFNg+PDh9vDXr18/TZ06VSaTqSpKc2omk0kvvPCCQkJC9Mwzz+jcuXP697//rfvuu08JCQkaPny40SVWORpAAAASTSAu74svvtB7770n6eqo15IlSwh/1/jDH/6g1NRU/f73v5ckZWdn67nnnlNkZKQuX75scHVViwAIAJAIgC7t4sWLCgsLs7+eP3++AgICDKzIed12223asWOHwsPD7duWLVumBx98UCdOnDCwsqpx6NAh7d69u0jzTKtWrQysCABgJAKgC5s2bZp++uknSdJDDz2k559/3uCKnFvNmjWVkJCgt99+WzVr1pQk7dq1S3fffbe2bNlicHWV55NPPlHbtm31+9//XgkJCfbtcXFxeuGFF3T69GkDqwMAGIEA6KJ27typRYsWSZLMZrOSkpKY+i2jESNGaOfOnfYp0LNnz6pXr16aO3euWz5C7siRI8Vu37Jli+bOnasXX3yxiisCABiNAOiCLl++rFGjRtnDyqxZs3THHXcYXJVrufvuu5WamqqHH35YkpSfn68XXnhB/fv3l8ViMbg6x3rkkUdK3c+9gADgeQiALmjOnDn2e7l+//vfa8KECQZX5Jrq16+vTz75RLGxsfZt69ev1z333KN9+/YZWJlj3XnnnfYGmGvdcccdioqKquKKAABGIwC6mB9++EGvvvqqJKlGjRpasWIFT3O4CdWrV1dcXJz+/ve/q169epKkgwcP6p577tG6deuMLc6BBg8efN02k8mkd955R7Vr1zagIgCAkQiALuTKlSsaOXKkrly5Ikl68cUX1bFjR4Orcg+PPvqodu/erbvuukuS9Ntvv2ngwIGaMmWK/c/blQ0cOPC6x+CNHz9eXbt2NagiAICRCIAu5M0339Tu3bslSe3bt9e0adMMrsi93HHHHdq5c6eGDh1q37ZgwQL17NnT5TtlmzRpUmRB8UaNGmnOnDkGVgQAMBIB0EUcPXpU06dPl3R16m7FihX2pUzgOLVq1dK7776rpUuXysvLS5L0j3/8Q8HBwdq5c6fB1d2cIUOG2L9fsmQJU78A4MEIgC7AZrMpNDRUVqtVkjRu3Djde++9BlflvkwmkyIiIrR9+3Y1bdpUknTq1Ck9+OCDWrx4scsuFTN9+nStWrVKX3zxhfr37290OQAAA5lsZfjbzGKxyM/PT1lZWfL19a2KulBIcnKyQkNDJUktWrTQ3r17VadOHYOr8gy//PKLBg4cqG3bttm3DRkyRImJiYygAQCcSnnyGgHQyZ06dUqBgYHKysqSdPXZv7179za4Ks9y5coVvfTSS4qPj7dv69ixo9avX6/WrVsbWNnV0eGTJ08qNTXV/nX8+HFZrVZlZ2crJydH3t7e8vHxkdlsVvPmzRUcHKzg4GCFhIQoICCABcQBwE0QAN2EzWbTk08+qY0bN0qShg8frpUrVxpblAf76KOPNGLECF28eFGS5Ofnp1WrVumxxx6r0jr27duntWvXavfu3UpNTdWZM2ckSQ0bNlRwcLDuuOMO1apVS2azWd7e3srJyZHVatWlS5d09OhRpaam6uzZs5KkW2+91R4GBw4cqMDAwCr9LAAAxyEAuokPP/xQAwYMkHS1a3P//v2qX7++wVV5tgMHDujJJ5/UgQMH7NumTZumuLg4Va9evdKum5ubqw0bNmjp0qXatm2b6tevry5duthH84KDg9WsWbMyjebZbDadOHGiyKjhrl27dP78eXXv3l2RkZHq16+fvQkGAOAaCIBu4Ndff1VgYKB++eUXSdK6dev09NNPG1wVJOnChQt6/vnn9dFHH9m39e7dWx988IFuueUWh17rxIkTSkpK0vLly3X69Gl169ZNkZGRevLJJ+Xt7e2w6+Tk5Gj9+vVaunSpduzYoSZNmig0NFShoaFq1qyZw64DAKg85clrdAE7qSlTptjDX79+/ejadCJ169bVunXrNG/ePPuoX0pKioKDg+3rNB48eFD9+/fXG2+8UaFrWCwWjR49Wi1bttQbb7yhp556SmlpafrHP/6hgQMHOjT8SZK3t7eeeeYZbd++XT/88IP69eunBQsWqGXLlho9erTbPR8ZADwdI4BO6IsvvtDDDz8s6ep9Zvv27VNAQIDBVaE427Zt08CBA+1hvWbNmnr99de1cOFCpaenS5J27NihBx54oMznTElJ0ahRo5SRkaGZM2dq5MiRhvx/Z7FYtGLFCsXGxsrf31/Jyck0IAGAE2ME0IVdvHhR4eHh9tfz5s0j/Dmx7t2769tvv7Wvy3j58mVNnDjRHv4k2Z/dfCMWi0VhYWHq06eP2rZtq71792rSpEmG/dLl6+urSZMmKS0tTW3atFGfPn0UFhbGaCAAuAECoJOZNm2ajh07Jknq0aOHRo4caXBFuJGmTZtq27ZtGjt2bLH7P/30U+3Zs6fUc6SkpCgoKEhr1qxRQkKCUlJS1KJFi0qotvxatmypTZs2KSEhQWvWrFFQUJBSUlKMLgsAcBMIgE7k66+/1qJFiyRJZrNZSUlJrNHmIry9ve3T9sV57bXXStwXHx9fZNQvPDzc6f69m0wmhYeHFxkNLLwuIgDAtRAAncTly5c1cuRI+2PGZs2aZfgiwyi7/Pz8IlP311q3bp0OHjxYZJvNZtNLL72k6OhoxcTEONWoX0kKRgNjYmIUHR2tadOmueyj8QDAk9UwugBcNWfOHO3fv1+SFBISogkTJhhcEcqrtM5cm82m4cOH65tvvrG/njBhghYtWqQFCxZo0qRJVVXmTTOZTJo1a5b8/f01ZcoUXbx4UQsXLnS6UUsAQMkIgE7ghx9+sDcK1KhRQytWrFCNGvyrcSXVqlXTN998ow8++ECpqanavXu3Dh48WGR07OTJk/bvY2JitGjRIiUmJiosLMyIkm/a5MmTVadOHYWHh6tu3bqaPXu20SUBAMqIlGGwK1euaOTIkbpy5Yok6cUXX1SnTp0MrgoV0ahRI02cONH++sKFC/ruu+/00Ucf6fvvv9fcuXMlXb3n75VXXtH8+fNdNvwVCAsL04ULFxQVFSU/Pz9NnTrV6JIAAGXAOoAGmz9/vqKioiRJ7du313fffaeaNWsaXBUqS0pKivr06aOYmBjNmjXL6HIcJiYmRnPmzFFKSop69epldDkA4JF4FJyLOHr0qDp27Cir1SqTyaSvvvpK9913n9FloZJYLBYFBQWpbdu2SklJcat75mw2m3r27KnDhw9r7969/JwAAAOwELQLsNlsCg0NldVqlSSNHTuW8OfmoqKilJGRoeTkZLcKf9LVxpAVK1YoIyODaWAAcAEEQIOsWLFCW7dulSTddttteuWVVwyuCJUpJSVFy5cv17x585x+qZeKatmypeLj45WUlKRNmzYZXQ4AoBQePQVss9l04MABtWvXrkpHZE6dOqXAwEBlZWVJkj7//HP16dOnyq6PquXOU7/XYioYAIzDFHAZvffeewoMDNR7771XZde02WyKjIy0h79hw4YR/txcdHS02079XqvwVHB0dLTR5QAASuCxI4CZmZlq06aNLly4IF9fXx08eFD16tWr9Ot++OGHGjBggKSry4bs27dPt9xyS6VfF8Y4ceKEfWrUlRZ7vlkLFixQdHS0jh07pqZNmxpdDgB4BEYAy2D69OmyWq3asWOHLl26pNjY2Eq/5vnz5zV27Fj768WLFxP+3Nzy5ctlNps1cuRIo0upUqNGjZKPj4+WL19udCkAgGJ4ZADcs2ePli5dqri4OIWEhGjGjBlasmSJvv/++0q97uTJk/XLL79Ikp544gn179+/Uq8HY+Xm5iopKUlDhw51m5HzsvL19dXQoUOVlJSk3Nxco8sBAFzD46aA8/Pz1bVrV2VlZem7776Tl5eXcnNz1blzZ/n7+2v79u2qVs3xufiLL77Qww8/LEny8/PTvn37FBAQ4PDrwHkUTPf/8MMP6tixo9HlVLkffvhBd911lz788EN+2QGAKsAUcCnee+897dy5U4sXL5aXl5ckycvLS4sXL9b//M//aNWqVQ6/5sWLFxUeHm5/PW/ePMKfB1i6dKm6du3qkeFPkjp16qQHHnhAS5cuNboUAMA1PCoAZmZmKjo6WoMGDVL37t2L7OvRo4cGDRqk6OhoZWZmOvS606ZN07Fjx+zX8bT7wTzRvn37tG3bNkVGRhpdiqEiIyO1detW7d+/3+hSAACFeFQALGj8mDdvXrH7582b5/CGkK+//lqLFi2SJJnNZiUlJbn9UiCQ1q5dq/r16+upp54yuhRD/elPf5K/v7/Wrl1rdCkAgEI8JgAWbvwoafo1ICDAoQ0hly9f1siRI1Vwm+XMmTPVunXrmz4vnN/u3bvVpUsXeXt7G12Koby9vdWlSxft3r3b6FIAAIV4RADMz8/XmDFj1L59e40bN67UY8ePH6927dppzJgxys/PL9d1bDabFixYoNmzZyszM1Nz5syxT32FhIRo4sSJFf0IcCE2m02pqakKDg4u1/u2bdsmk8kkk8mk1NTU6/Y/99xzqlOnjqPKvGk///yz/vznP6tHjx6qW7euTCaTtm3bdt1xwcHBxX4eAIBxPCIAFtf4UZKbaQj58ssvNWXKFE2fPl1t2rTRnDlzJEk1atTQihUrVKNGjQp/BriOU6dO6cyZM+UOgIXNmDHDcQVVkoMHD+r111/XyZMnS210CQ4O1unTp3Xq1KkqrA4AUBq3D4ClNX6UpKINIT/88IP9+7Nnz9pHEMeOHatOnTqVp2y4sILpzooGwM6dO+uTTz7Rt99+W+732mw2Wa3WCl23vIKDg/Xrr7/q0KFDmjx5cqnHSWIaGACciNsHwBs1fpSkIg0hJ06cKHb7u+++qw0bNpTr+nBdqampatiwoZo1ayZJOnbsmCIjI9W2bVuZzWbdcsstevrpp5Wenl7s+8eNGyd/f/8yjQK2bNlSjz76qL744guFhITIbDYrMTHRPp28bt06xcXFqWnTpqpbt6769++vrKwsXb58WRMnTlSjRo1Up04djRgxQpcvXy7X56xbt67q169/w+OaN2+uBg0aMA0MAE7EreckCxo/4uPjy73uXkFDSHR0tEaOHKm77rrrhu85fvx4sdszMjI0aNAgXbx4UdWrVy9XHXA9Bff/FXR7/+///q927typZ555Rs2aNVN6erqWLVum7t27a9++fapVq1aR9/v6+mrSpEmKjY3Vt99+q7vvvrvU6x08eFCDBg1SeHi4QkND1bZtW/u+V199VWazWX/+85915MgRLVq0SF5eXqpWrZoyMjI0Y8YMffPNN1q5cqVatWpVKY9ENJlM3AcIAM7GVgZZWVk2SbasrKyyHO4U8vLybPfdd5+tQ4cOtpycnAqdIycnxxYYGGi7//77bXl5eTc8vkuXLjZJxX7df//9tvz8/ArVAdfSsWNH25gxY+yvL126dN0xX3/9tU2S7b333rNv27p1q02S7cMPP7RlZmba/P39bY8//rh9//Dhw221a9cucp4WLVrYJNk+//zzItsLzhUUFFTkv/9BgwbZTCaTrW/fvkWOv/fee20tWrSo0Oe12Wy2Dz/80CbJtnXr1mL3jxkzxtapU6cKnx8AcGPlyWtuOwVcnsaPkpS3IeTgwYPXbfPx8VFcXJw2bdrE+n8ewmq1FhnVM5vN9u9zc3P166+/qnXr1qpXr16J9/n5+flp4sSJ+tvf/qbvvvuu1Ou1atVKffr0KXbfsGHDivz336VLF9lsNj3//PNFjuvSpYuOHz+uK1eu3PDzVYTZbK6yexMBADfmlgGwIo0fJSlrQ0h+fv51+//0pz/pwIEDio2NLRIC4N6ys7OL/Pu2Wq2KjY1V8+bNVbNmTTVo0EANGzZUZmamsrKySjzPhAkTVK9evRveC9iqVasS9912221FXvv5+Um6el/etdvz8/NLredmmM1mZWdnV8q5AQDl55YBsKKNHyUpS0OIyWSyj/r4+/tr06ZN+uijj9SiRQuH1ADXkZOTU2QB6HHjxmnOnDkaMGCA1q1bp5SUFG3atEm33HJLqWtNlnUUsLRfLkq657Sk7bb/LFruaN7e3uVuMgEAVB63awK5mcaPkpSlIcRkMunw4cPavHmzBg4c6PFPgPBk3t7eysnJsb/+6KOPNHz4cM2fP9++LTs7u0xLDE2cOFELFy5UXFyc6tWrVwnVVo2cnBzVrFnT6DIAAP/hViOA5XniR3mV5QkhAQEBGjp0KOHPw/n4+BS536169erXjawtWrRIeXl5NzxXwSjgxo0btWfPHkeXWmWsVqt8fHyMLgMA8B9uNQJY0PixdevWCjd+lKSgIeShhx7SqlWrNHz4cIeeH+7DbDbr0qVL9tePPvqoVq1aJT8/PwUGBurrr7/Wl19+qVtuuaVM55swYYLeeOMNff/996pdu3ZllV0hs2fPliT9+OOPkqRVq1bpq6++kiTFxMTYj7NardwHCwBOxG0CoCMbP0pSuCHkiSeecOkpOVSe5s2b6+jRo/bXb775pqpXr67Vq1crOztb999/v7788ssSO3evVa9ePU2cOFFxcXGVVXKFTZ8+vcjrt99+2/594QB45MiR6xpPAADGMdnKcNe3xWKRn5+fsrKy5OvrWxV1ldu4ceO0cuVKHTx40GH3/hXn1KlTatu2rUaMGKG33nqr0q4D1xUbG6uEhASdOXOGpX90tbGkUaNGioyMdMoQCwDuojx5zS3uASxo/IiLi6vU8Cf9f0PIkiVL9P3331fqteCagoODdfbs2RIfDehpjh8/rnPnzlX42cgAAMdz+RHA/Px8de3aVVlZWfruu+8cfu9fcXJzc9W5c2f5+/tr+/btqlbNLXI0HOTkyZNq1qyZPv74Y/Xr18/ocsotKyvrhos2N27cuMzn+/jjj/XUU0/p5MmTlf4LGgB4Mo8aAXTEEz/Kq7xPCIFnCQgI0K233uqyz76dMGGCmjRpUupXeaSmpqpx48aEPwBwIi49ApiZmak2bdqoZ8+e+uCDD6r8+oMHD9bmzZt18OBBGkJQxCOPPCKbzaZPP/3U6FLKbd++fTp16lSpx/Ts2bPM5+vbt6+qV6+uTz755GZLAwCUojx5zaW7gB39xI/ymjdvntq2bavY2FgaQlBESEiIFi9efN1TQVxBYGCgAgMDHXKuy5cva9euXRo/frxDzgcAcAyXnQKuysaPkhRuCHHlRXrheAMHDtT58+e1fv16o0sx1Pr165WRkaGBAwcaXQoAoBCXnAI2ovGjJDSEoCQ9evRQXl6etm/fbnQphunatau8vLy0ZcsWo0sBALfn9k0gRjR+lISGEJQkMjJSO3bsUFpamtGlGOKHH37QV199pcjISKNLAQBcw+VGAI1u/CgJDSG4Vm5urm677TY9+eSTWrp0qdHlVLmIiAht3LhRx44dM/wXNQDwBG49Amh040dJ5s2bp0uXLik2NtboUuAkvLy8FBYWplWrVslisRhdTpWyWCxatWqVwsLCCH8A4IRcKgA6Q+NHSWgIQXFCQ0NltVq1YsUKo0upUsnJycrOzlZoaKjRpQAAiuEyU8DO1PhREhpCUJzRo0dr9erVSktLU8uWLY0up9Klp6erY8eOGjJkiBISEowuBwA8hltOATtT40dJaAhBcebOnSt/f3+NGjVKZfh9y6XZbDaNHDlS9evX19y5c40uBwBQApcIgJmZmYqOjtagQYPUvXt3o8spVY8ePTRo0CBFR0crMzPT6HLgBHx9fZWcnKzNmzcrKSnJ6HIqVWJiorZs2aLk5GTDG8YAACVziQDorI0fJaEhBNfq3bu3QkNDFRUVpfT0dKPLqRTp6emaOnWqwsLC1KtXL6PLAQCUwukDoDM3fpSEhhAUZ968eW47FVx46jc+Pt7ocgAAN+DUATA/P19jxoxR+/btNW7cOKPLKZfx48erXbt2Gjt2rPLz840uB06g8FSwu40OT58+nalfAHAhTh0AXaHxoyQ0hKA4vXv31ty5czV79mwtWLDA6HIcYv78+ZozZ47i4+OZ+gUAF+G0AbC8jR8zZsyQyWTSuXPnit0fFBRUrgaSf/7zn4qMjFRwcLC8vLxkMpnK/N4CNISgOFOnTtVLL72kKVOmuHxTSFJSkqKiojRt2jRFRUUZXQ4AoIycNgAa3fjx6aefKjk5WSaTSbfffnuFz0NDCIoze/ZsjRs3TuHh4S47Ejh//nyFh4dr/PjxmjVrltHlAADKwSkDoDM0fkRERCgrK0u7d+++qWktGkJQHJPJpDfffNM+Ejh9+nSXaQyx2WyKiYmxj/wtXLiwQiPkAADjOF0AdJbGj1tvvVVms9kh56IhBMUxmUyaM2eO/Z7AXr166dixY0aXVar09HT17NmzSN2EPwBwPU4XAF258aMkNISgNFOnTlVKSooOHTqkoKAgJSYmOt1ooM1mU0JCgjp27KjDhw8rJSVFU6dONbosAEAFOVUAdKUnfpQXDSEoTa9evbR3714NHjxYo0ePdqrRwIJRv4iICA0ePFh79+6l2xcAXJxTBUCjGz8qGw0hKI2vr68SExOLjAYuWLBAFovFkHosFosWLFhQZNQvMTGRdf4AwA04TQCsisYPo+9VoiEEZVEwGjhkyBBFR0eradOmioyMVFpaWpVcPy0tTREREQoICFB0dLSGDBnCqB8AuBmnCYDvv/++vL29NXr06Aq938fHR5JktVqL3X/p0iX7MUaKiIiQt7e33n//faNLgRPz9fVVQkKC0tPTNXnyZG3YsEGdOnVSt27d9Je//EU5OTkOvV5OTo7WrFmjrl27qlOnTtq4caOioqJ07NgxJSQkMOoHAG7GaQLgs88+q5ycHCUkJFTo/S1atJAkHTx48Lp9ly5d0vHjx+3HGGnZsmXKycnR0KFDjS4FLqBZs2aKi4vTsWPH9OGHH6pGjRoaNGiQmjRpor59+yomJkYff/yxfvrppzI3jthsNv3000/6+OOPFRMTo759+6px48YaPHiwvLy89OGHH+rYsWOaMWOGmjZtWsmfEABgBJOtDH9rWCwW+fn5KSsrq1JHAsaNG6eVK1fq4MGD5Z4G/uWXX9S8eXM9+uij+vDDD1Wt2v9n24ULF2rSpEnasGGDnnjiiXLXNXbsWC1ZsuSmOzNPnTqltm3basSIEXrrrbdu6lzwXPv27dO6deu0e/dupaam6vTp05KkBg0aKDg4WK1bt5bZbJbZbJa3t7dycnJktVpltVp15MgR7dq1y96I1LhxYwUHByskJEQDBgxQYGCggZ8MAHAzypPXnCoAZmZmqk2bNurZs6c++OCDcr9/zpw5iomJ0f3336/HH39ctWrV0s6dO7VmzRr17t1bn332WZFgWJpjx47Zl2z55JNPtGvXLvvTDlq0aFGhEbzBgwdr8+bNOnjwoOrVq1fu9wPXstlsOnXqlFJTU+1fx48fl9VqVXZ2ti5fvqyaNWvKx8dHZrNZzZs31759+/Tvf/9bknT69GndeuutBn8KAIAjlCuv2cogKyvLJsmWlZVVlsNvyjvvvGOTZNu6dWuF3v/+++/b/uu//stWu3ZtW82aNW3t2rWzxcXF2bKzs8t1nq1bt9okFfv14IMPlruuLVu22CTZVq5cWe73Ao40efJk+3/LKSkpRpcDAHCQ8uQ1pxoBlK4+CaRr167KzMzUnj173GIx6NzcXHXu3Fn+/v7avn17mUchgcrw7rvv6rnnnpN0dWmiKVOmGFsQAMAhypPXnC6JVKtWTUuWLNGBAwe0aNEio8txiLfeeksHDhzQkiVLCH8wXKdOnezf//DDDwZWAgAwitONABa4mYaQ0pw9e1Z5eXkl7vf29lb9+vUddj0aP+BssrOzVadOHeXl5alz58767rvvjC4JAOAALtsEUtjNNoSUpGXLlqU+YuvBBx/Utm3bHHY9Gj/gjDp06KB9+/bJ29tbFy9edItbLQDA05Unr9WooprKrV69epo7d65GjBihsLAwhz0bePXq1SUuFi1J/v7+DrmOJG3dulVr1qzRypUrCX9wKp06ddK+ffuUk5OjQ4cOqUOHDkaXBACoQk47Aii5dkMIjR9wZq+++qpeeuklSdIHH3ygQYMGGVwRAOBmuXQTSGGu3BBC4wecGY0gAODZnD6ZdO7cWZGRkXr55Zd16tQpo8spk1OnTmnGjBkaM2aM7rrrLqPLAa5TOAB+//33BlYCADCC0wdASZo1a5bMZrOioqKMLqVMoqKiVKtWLc2cOdPoUoBiNWvWzH5fKiOAAOB5XCIAFjSErFmzxqEdupWhoPFj7ty5NH7AaZlMJvso4MmTJ/Xrr78aXBEAoCq5RACUpGHDhum+++7TmDFjlJuba3Q5xcrNzdXYsWN1//33V+hZwUBVKjwNnJaWZmAlAICq5jIB0BUaQmj8gCuhEQQAPJdLpRRnbgih8QOuhgAIAJ7LpQKg5LwNITR+wNV06NBBJpNJEgEQADyNywVAZ2wIofEDrqhOnTq64447JEl79+4t9RnZAAD34nIBUHKuhhAaP+DKCqaBrVarjh49anA1AICq4pIB0JkaQmj8gCvjPkAA8Ewum1icoSGExg+4OgIgAHgmlw2AkvENITR+wNURAAHAM7l0ADSyIYTGD7iDVq1aqXbt2pIIgADgSUw2m812o4MsFov8/PyUlZUlX1/fqqirzPLz89W1a1dlZmZqz5498vLyqvRr5ubmqnPnzvL399f27du59w8u7d5779U333wjSU75/zgAoGzKk9dcPrkY0RBC4wfcSeFp4L179xpYCQCgqrhFeqnKhhAaP+BuuA8QADyPWwRAqeoaQmj8gLshAAKA53GbAFgVDSE0fsAddezY0f49ARAAPIPLN4EUVpkNITR+wJ21aNFCP/30k+rWrausrCz7M4IBAK7Do5pACqvMhhAaP+DOCqaBL1y4oGPHjhlcDQCgsrldkqmMhhAaP+DuuA8QADyL2wVAyfENITR+wN0RAAHAs7hlAHRkQwiNH/AEBEAA8Cxu1QRSmCMaQmj8gKe4cuWK6tSpo8uXL6tt27Y6cOCA0SUBAMrJY5tACnNEQwiNH/AUNWrUUIcOHSRJhw8f1qVLlwyuCABQmdw61dxMQwiNH/A0Bf+d5+fn68cffzS4GgBAZXLrAChVvCGExg94msL3AaalpRlYCQCgsrl9AKxIQwiNH/BENIIAgOdw2yaQwsrTEELjBzzV2bNn1ahRI0lSjx49tGXLFoMrAgCUB00g1yhPQwiNH/BUDRs2VJMmTSRdHQEsw++GAAAX5TEJpywNITR+wNMVTAP/+uuv+vnnnw2uBgBQWTwmAEo3bgih8QOejvsAAcAzeFQALK0hhMYPoGgA/P777w2sBABQmTwqAErSsGHDdN9992nMmDHKzc2VdLXxY+zYsbr//vs1dOhQgysEjMMIIAB4Bo8LgMU1hND4AVzVrl071ahRQxIBEADcmUemncINIbt376bxA/gPb29vtW/fXpJ04MABXb582eCKAACVwSMDoPT/DSFdu3al8QMopGAa+MqVKzpw4IDB1QAAKoPHBsB69eopPj5e2dnZNH4AhXAfIAC4vxpGF2CkYcOGqUuXLmrbtq3RpQBOgwAIAO7PowOgyWRSu3btjC4DcCoEQABwfx47BQygeE2aNNEtt9wiiQAIAO6KAAigCJPJZB8FPH36tH755ReDKwIAOBoBEMB1Ck8Dp6WlGVgJAKAyEAABXIf7AAHAvREAAVyHAAgA7o0ACOA6gYGB9sciEgABwP0QAAFcp1atWrrzzjslST/++KOuXLlicEUAAEciAAIoVsE08OXLl3X48GGDqwEAOBIBEECxuA8QANwXARBAse666y779wRAAHAvBEAAxWIEEADcFwEQQLFuu+02+fr6SiIAAoC7IQACKFbhR8L99NNPWrRokaZNm6bt27cbXBkA4GaZbDab7UYHWSwW+fn5KSsryz4iAMB9ffrpp3r77bf15ZdfKisrq8g+Hx8f/fbbb/Z1AgEAzqE8ea1GFdUEwEVkZWWpX79+ys3NLXa/j4+PyvB7IwDAifErPIAi6tSpo4CAgBL39+nTR9WrV6/CigAAjkYABFBE9erVtWrVqhJD3iOPPFLFFQEAHI0ACOA6Xbt21axZs67bbjKZ9PDDDxtQEQDAkQiAAIr1wgsvqE+fPkW2de7cWQ0bNjSoIgCAoxAAARSrWrVqeu+991SnTh37tsKLQwMAXBcBEECJGjVqpOXLl0u6GggnTJhgcEUAAEdgHUAAN5SRkaHq1avz/z8AODHWAQTgUPXq1dPJkye1detWpaamKjU1VcePH5fValV2drZycnLk7e0tHx8fmc1mNW/eXMHBwQoODlZISIgCAgJkMpmM/hgAgP8gAAIo1r59+7R27Vrt3r1bqampOnPmjCSpYcOGCg4OVrdu3VSrVi2ZzWZ5e3srJydHVqtVly5d0tGjR5WQkKCzZ89Kkm699VZ7GBw4cKACAwON/GgA4PGYAgZgl5ubqw0bNmjp0qXatm2b6tevry5duthH84KDg9WsWbMyjebZbDadOHHCPmKYmpqqXbt26fz58+revbsiIyPVr18/eXl5VcEnAwD3V568RgAEoBMnTigpKUnLly/X6dOn1a1bN0VGRurJJ5+Ut7e3w66Tk5Oj9evXa+nSpdqxY4eaNGmi0NBQhYaGqlmzZg67DgB4IgIggDKxWCyKjo5WcnKyzGazhg0bpoiICAUFBVX6tdPS0rRs2TKtWrVKVqtVo0aN0ty5c/kZAwAVRAAEcEMpKSkaNWqUMjIyNHPmTI0cOdKQ/78tFotWrFih2NhY+fv7Kzk5Wb17967yOgDA1ZUnr7EOIOBhLBaLwsLC1KdPH7Vt21Z79+7VpEmTDPvlztfXV5MmTVJaWpratGmjPn36KCwsTBaLxZB6AMATEAABD5KSkqKgoCCtWbNGCQkJSklJUYsWLYwuS5LUsmVLbdq0SQkJCVqzZo2CgoKUkpJidFkA4JYIgICHiI+PLzLqFx4e7nRr85lMJoWHhxcZDYyPjze6LABwOwRAwM3ZbDa99NJLio6OVkxMjFON+pWkYDQwJiZG0dHRmjZtmspwuzIAoIxYCBpwYzabTRMmTNCiRYu0YMECTZo0yeiSysxkMmnWrFny9/fXlClTdPHiRS1cuNDpRi0BwBURAAE3FhMTo0WLFikxMVFhYWFGl1MhkydPVp06dRQeHq66detq9uzZRpcEAC6PAAi4qfj4eL3yyiuaP3++y4a/AmFhYbpw4YKioqLk5+enqVOnGl0SALg0AiDghlJSUuz3/E2ePNnochxiypQpysjIUHR0tDp37qxevXoZXRIAuCwWggbcjMViUVBQkNq2bauUlBS3umfOZrOpZ8+eOnz4sPbu3cvPIwAohIWgAQ8WFRWljIwMJScnu1X4k642hqxYsUIZGRlMAwPATSAAAm4kJSVFy5cv17x585x+qZeKatmypeLj45WUlKRNmzYZXQ4AuCSmgAE34c5Tv9diKhgArscUMOCBoqOj3Xbq91qFp4Kjo6ONLgcAXA4BEHADJ06cUHJysmbOnOm2U7/XatmypeLi4pScnKyTJ08aXQ4AuBQCIOAGli9fLrPZrJEjRxpdSpUaNWqUfHx8tHz5cqNLAQCXQgAEXFxubq6SkpI0dOhQj7sXztfXV0OHDlVSUpJyc3ONLgcAXAYBEHBxGzZs0OnTpxUREWF0KYaIiIjQzz//rI0bNxpdCgC4DLqAARfXo0cP5eXlafv27UaXYpiuXbvKy8tLW7ZsMboUADAMXcCAh9i3b5+2bdumyMhIo0sxVGRkpLZu3ar9+/cbXQoAuAQCIODC1q5dq/r16+upp54yuhRD/elPf5K/v7/Wrl1rdCkA4BIIgIAL2717t7p06SJvb2/NmDFDJpNJ586dM7qsKuft7a0uXbpo9+7dRpcCAC6BAAi4KJvNptTUVAUHB5frfS1btpTJZNK4ceOu27dt2zaZTCZ99NFHjirzphw/flxxcXG655575O/vrwYNGqh79+768ssvrzs2ODhYqampBlQJAK6HAAi4qFOnTunMmTPlDoAFli9frlOnTjm4KsfauHGjXn/9dbVu3VqzZ8/W9OnTdeHCBfXq1UvvvPNOkWODg4N1+vRpp/9MAOAMCICAiyqY7qxIAOzQoYPy8vL02muvVejav/32W4XeV149evTQTz/9pA8++EBjxozRhAkTtHPnTrVr106xsbFFji34c2AaGABujAAIuKjU1FQ1bNhQzZo1K7L93LlzGjBggHx9fXXLLbdowoQJys7OLnJMy5YtNWzYsDKNAhbcW7hv3z4NHjxY/v7+euCBB+znefTRR7Vt2zaFhITIbDarY8eO2rZtmyRp/fr16tixo3x8fBQcHKzvvvuuXJ+xQ4cOatCgQZFtNWvW1B//+EedOHFCFy5csG9v3ry5GjRowDQwAJQBARBwUQX3/5lMpiLbBwwYoOzsbL366qv64x//qLfeekthYWHXvX/atGm6cuVKmUcBn376aV26dEmvvPKKQkND7duPHDmiwYMH67HHHtOrr76qjIwMPfbYY1q9erUmTZqkZ599VnFxcTp69KgGDBig/Pz8m/vgkk6fPq1atWqpVq1a9m0mk4n7AAGgjGoYXQCAijl+/Li6det23fZWrVrZn4oxZswY+fr6aunSpYqKilKnTp3sx91+++0aOnSoli9frhdffFFNmjQp9Xp33XWXPvjgg+u2Hzx4UDt37tS9994rSQoMDFSfPn0UGhqqAwcO6LbbbpMk+fv7Kzw8XNu3b1f37t0r+rF15MgRrV+/Xk8//bSqV69eZF/r1q21Y8eOCp8bADwFI4CAi7JarUVGwAqMGTOmyOuCbt9PP/30umNjYmLKPAo4evToYrcHBgbaw58kdenSRZL00EMP2cNf4e3/+te/bnitkly6dElPP/20zGZzsTWbzWZZrdYKnx8APAUBEHBR2dnZMpvN122/8847i7y+4447VK1aNaWnp193bMEoYFJSkn7++edSr9eqVatitxcOeZLk5+cn6eo9ecVtz8jIKPU6JcnLy9Mzzzyjffv26aOPPlJAQMB1x5jN5uvudwQAXI8ACLionJwceXt73/C4a+8RvFbBvYCvv/56qccVFzYlXTcNe6PtZXj8eLFCQ0P1ySefaOXKlXrooYeKPcbb21uXL1+u0PkBwJMQAAEX5e3trZycnOu2Hz58uMjrI0eOKD8/Xy1btiz2PHfccYeeffZZJSYm3nAU0ChTp07VO++8ozfeeEODBg0q8bicnBzVrFmzCisDANdEAARclI+PT7H3uy1ZsqTI60WLFkmS+vbtW+K5YmJilJubq7lz5zq2SAeIj4/XvHnz9NJLL2nChAmlHmu1WuXj41NFlQGA66ILGHBRZrNZly5dum77v//9bz3++ON6+OGH9fXXX+v999/X4MGDddddd5V4roJRwHfffbcySy63jz/+WNHR0brzzjvVvn17vf/++0X29+rVS7feeqv9tdVqLXGqGgDw/wiAgItq3ry5jh49et32tWvXKjY2Vn/+859Vo0YNjR07VvHx8Tc8X0xMjN5//33l5eVVRrkV8v3330u6Oq09dOjQ6/Zv3bq1SAA8cuTIdc0nAIDrmWxluCPbYrHIz89PWVlZ8vX1rYq6ANxAbGysEhISdObMmRs2engCm82mRo0aKTIyUnFxcUaXAwBVrjx5jXsAARcVHByss2fP6sSJE0aX4hSOHz+uc+fOVejZyADgaZgCBlxUSEiIpKuPhHO1ac+cnBydP3++1GP8/PzKdT9fwSPgCv5cAAAlYwQQcFEBAQG69dZbXfLZtzt37lSTJk1K/Vq7dm25zpmamqrGjRsXu0A0AKAoRgABF2UymRQcHOySAfCuu+7Spk2bSj2mQ4cO5Tpnamoq078AUEYEQMCFhYSEaPHixWV+Koiz8Pf3V8+ePR12vsuXL2vXrl0aP368w84JAO6MKWDAhQ0cOFDnz5/X+vXrjS7FUOvXr1dGRoYGDhxodCkA4BJYBgZwcT169FBeXp62b99udCmG6dq1q7y8vLRlyxajSwEAw7AMDOBBIiMjtWPHDqWlpRldiiF++OEHffXVV4qMjDS6FABwGQRAwMX169dPjRs31rJly4wuxRDLli1TkyZN9MQTTxhdCgC4DAIg4OK8vLwUFhamVatWyWKxGF1OlbJYLFq1apXCwsLk5eVldDkA4DIIgIAbCA0NldVq1YoVK4wupUolJycrOztboaGhRpcCAC6FAAi4gWbNmmnUqFGKjY1Venq60eVUifT0dL388ssaNWqUmjZtanQ5AOBS6AIG3ITFYlFQUJDatGmjTZs2yWQyGV1SpbHZbOrZs6eOHDmitLQ0fi4BgOgCBjySr6+vkpOTtXnzZiUlJRldTqVKTEzUli1blJycTPgDgAogAAJupHfv3goNDVVUVJTbTgWnp6dr6tSpCgsLU69evYwuBwBcElPAgJtx56lgpn4BoGRMAQMerPBUcGxsrNHlONT06dOZ+gUAByAAAm6od+/emjt3rmbPnq0FCxYYXY5DzJ8/X3PmzFF8fDxTvwBwk2oYXQCAyjF16lRlZmZqypQpqlOnjsLCwowuqcKSkpIUFRWladOmKSoqyuhyAMDlEQABNzZ79mxduHBB4eHhunjxoiZPnmx0SeU2f/58RUVFafz48Zo1a5bR5QCAWyAAAm7MZDLpzTffVN26dTVlyhRlZGRo5syZLtEYYrPZNH36dM2ZM0fTpk3TrFmzXKJuAHAFBEDAzZlMJs2ZM0f16tVTdHS0vv76a61YsUItWrQwurQSpaena+TIkdqyZYvmzp2rqVOnGl0SALgVmkAADzF16lSlpKTo0KFDCgoKUmJiosqwClSVstlsSkhIUMeOHXX48GGlpKQQ/gCgEhAAAQ/Sq1cv7d27V4MHD9bo0aPVq1cvHTt2zOiyJF0d9evZs6ciIiI0ePBg7d27l25fAKgkBEDAw/j6+ioxMbHIaOCCBQtksVgMqcdisWjBggVFRv0SExNZ5w8AKhEBEPBQBaOBQ4YMUXR0tJo2barIyEilpaVVyfXT0tIUERGhgIAARUdHa8iQIYz6AUAVIQACHszX11cJCQlKT0/X5MmTtWHDBnXq1EndunXTX/7yF+Xk5Dj0ejk5OVqzZo26du2qTp06aePGjYqKitKxY8eUkJDAqB8AVBGeBQzALjc3Vxs3btTSpUu1detW1a9fX/fcc4+Cg4PtX82bNy/Tciw2m03Hjx9Xamqq/WvXrl3KyMhQjx49FBkZqSeeeEJeXl5V8MkAwP2VJ68RAAEUa9++fVq3bp12796t1NRUnT59WpLUoEEDBQcHq3Xr1jKbzTKbzfL29lZOTo6sVqusVquOHDmi1NRUnTt3TpLUuHFjBQcHKyQkRAMGDFBgYKCRHw0A3BIBEIBD2Ww2nTp1qsho3vHjx2W1WpWdnS2LxaJLly5Jkpo2baoOHTrYRwxDQkIUEBBg8CcAAPdHAARQpVatWqVhw4ZJkhYvXqwxY8YYXBEAeJ7y5DWaQADctHr16tm/z8jIMK4QAECZEAAB3DR/f3/79wRAAHB+BEAAN61wAMzMzDSuEABAmRAAAdw0poABwLUQAAHcNKaAAcC1EAAB3LSCtQAlpoABwBUQAAHcNJPJZJ8GZgQQAJwfARCAQxRMAxMAAcD5EQABOERBALRYLMrLyzO4GgBAaQiAAByicCdwVlaWcYUAAG6IAAjAIegEBgDXQQAE4BAsBg0AroMACMAhWAwaAFwHARCAQzAFDACugwAIwCGYAgYA10EABOAQTAEDgOsgAAJwCKaAAcB1EAABOARTwADgOgiAAByCKWAAcB0EQAAOwRQwALgOAiAAh/D19ZXJZJJEAAQAZ0cABOAQ1apVs08Dcw8gADg3AiAAhykIgIwAAoBzIwACcJiC+wAzMjJks9kMrgYAUBICIACHKQiAeXl5+u233wyuBgBQEgIgAIdhKRgAcA0EQAAOw1IwAOAaCIAAHIangQCAayAAAnAYpoABwDUQAAE4DFPAAOAaCIAAHIYpYABwDQRAAA7DFDAAuAYCIACHYQoYAFwDARCAwxAAAcA1EAABOEzhKWDuAQQA50UABOAwjAACgGsgAAJwGC8vL9WuXVsSI4AA4MwIgAAcqmAamBFAAHBeBEAADlUwDUwABADnRQAE4FAFAdBqtery5csGVwMAKA4BEIBD0QkMAM6PAAjAoegEBgDnRwAE4FAEQABwfgRAAA7FFDAAOD8CIACHYgQQAJwfARCAQxEAAcD5EQABOBRTwADg/AiAAByKEUAAcH4EQAAORQAEAOdHAATgUIWngAmAAOCcCIAAHKrwCCD3AAKAcyIAAnCoWrVqycvLSxIjgADgrAiAABzKZDLZp4EJgADgnAiAAByuYBqYKWAAcE4EQAAOVxAAs7KylJeXZ3A1AIBrEQABOFzhTuCsrCzjCgEAFIsACMDh6AQGAOdGAATgcCwGDQDOjQAIwOFYDBoAnBsBEIDDMQIIAM6thtEFAHAvv/76qy5fvmx/vWnTJmVkZCgkJER33323gZUBAAqYbDab7UYHWSwW+fn5KSsrS76+vlVRFwAXNGzYMK1atarYfV5eXjp8+LBatGhRxVUBgGcoT15jChiAQ+Tn52v9+vUl7s/Nza3CagAApSEAAnCIatWqafjw4SXu79GjB6N/AOAkCIAAHGbmzJlFGkAKGzt2bBVXAwAoCQEQgMPccsstmj179nXbmzVrpscff9yAigAAxSEAAnCosLAwdezYsci20aNHq0YNFh0AAGdBAATgUDVq1NBbb71lf20ymRQaGmpgRQCAaxEAAThc9+7ddf/990uS+vbtq0aNGhlcEQCgMOZkAFSKr776Srm5ufLy8jK6FADANQiAABzCZrPp5MmTSk1NtX8dP35cVqtV2dnZysnJkbe3t3x8fGQ2m9W8eXMFBwcrODhYISEhCggIkMlkMvpjAIBHIAACqLB9+/Zp7dq12r17t1JTU3XmzBlJUsOGDRUcHKxu3bqpVq1aMpvN8vb2Vk5OjqxWqy5duqSjR48qISFBZ8+elSTdeuut9jA4cOBABQYGGvnRAMCt8Sg4AOWSm5urDRs2aOnSpdq2bZvq16+vLl262EfzgoOD1axZszKN5tlsNp04caLIqOGuXbt0/vx5de/eXZGRkerXrx/TyABQBuXJawRAAGVy4sQJJSUlafny5Tp9+rS6deumyMhIPfnkk/L29nbYdXJycrR+/XotXbpUO3bsUJMmTRQaGqrQ0FA1a9bMYdcBAHdDAATgMBaLRdHR0UpOTpbZbNawYcMUERGhoKCgSr92Wlqali1bplWrVslqtWrUqFGaO3cuP4cAoBgEQAAOkZKSolGjRikjI0MzZ87UyJEjDfkZYLFYtGLFCsXGxsrf31/Jycnq3bt3ldcBAM6sPHmNdQABXMdisSgsLEx9+vRR27ZttXfvXk2aNMmwXwB9fX01adIkpaWlqU2bNurTp4/CwsJksVgMqQcAXB0BEEARKSkpCgoK0po1a5SQkKCUlBS1aNHC6LIkSS1bttSmTZuUkJCgNWvWKCgoSCkpKUaXBQAuhwAIwC4+Pr7IqF94eLjTrc1nMpkUHh5eZDQwPj7e6LIAwKUQAAHIZrPppZdeUnR0tGJiYpxq1K8kBaOBMTExio6O1rRp01SGW5oBAGIhaMDj2Ww2TZgwQYsWLdKCBQs0adIko0sqM5PJpFmzZsnf319TpkzRxYsXtXDhQqcbtQQAZ0MABDxcTEyMFi1apMTERIWFhRldToVMnjxZderUUXh4uOrWravZs2cbXRIAODUCIODB4uPj9corr2j+/PkuG/4KhIWF6cKFC4qKipKfn5+mTp1qdEkA4LQIgICHSklJsd/zN3nyZKPLcYgpU6YoIyND0dHR6ty5s3r16mV0SQDglFgIGvBAFotFQUFBatu2rVJSUtzqnjmbzaaePXvq8OHD2rt3Lz+zAHgMFoIGUKqoqChlZGQoOTnZrcKfdLUxZMWKFcrIyGAaGABKQAAEPExKSoqWL1+uefPmOf1SLxXVsmVLxcfHKykpSZs2bTK6HABwOkwBAx7Enad+r8VUMABPwxQwgGJFR0e77dTvtQpPBUdHRxtdDgA4FQIg4CFOnDih5ORkzZw5022nfq/VsmVLxcXFKTk5WSdPnjS6HABwGgRAwEMsX75cZrNZI0eONLqUKjVq1Cj5+Pho+fLlRpcCAE6DAAh4gNzcXCUlJWno0KEedy+cr6+vhg4dqqSkJOXm5hpdDgA4BQIg4AE2bNig06dPKyIiwuhSDBEREaGff/5ZGzduNLoUAHAKdAEDHqBHjx7Ky8vT9u3bjS7FMF27dpWXl5e2bNlidCkAUCnoAgZgt2/fPm3btk2RkZFGl2KoyMhIbd26Vfv37ze6FAAwHAEQcHNr165V/fr19dRTTxldiqH+9Kc/yd/fX2vXrjW6FAAwHAEQcHO7d+9Wly5d5O3tbXQphvL29laXLl20e/duo0sBAMMRAAE3ZrPZlJqaquDg4Aq9Pz09XSaTSSaTSX/961+v2z9jxgyZTCadO3fuZkt1iP/93//V2LFj1aFDB9WuXVu33XabBgwYoEOHDkmSgoODlZqaanCVAGA8AiDgxk6dOqUzZ85UOAAWNnPmTJWhZ8xQr7/+uv7617/qD3/4g958802FhYVp+/btuvvuu7V3714FBwfr9OnTOnXqlNGlAoChCICAGyuY7rzZANi5c2f98MMP+vjjjyv0/kuXLt3U9ctq8uTJOnbsmN566y2NGjVKMTEx2rFjh65cuaLXXnvN/ufANDAAT0cABNxYamqqatWqpdtuu02HDh3Ss88+Kz8/PzVs2FDTp0+XzWbT8ePH9cQTT8jX11eNGzfW/PnzrzvPM888ozZt2pRpFLB79+4KCgpSamqqunXrplq1aumll16yTyfPmzdPS5Ys0e23365atWqpd+/eOn78uGw2m2bNmqVmzZrJbDbriSee0Pnz58v1ee+7777r7nW888471aFDB+3fv1/NmzdXgwYNmAYG4PEIgIAbS01NVZMmTSRJAwcOVH5+vl577TV16dJFs2fP1sKFC9WrVy81bdpUr7/+ulq3bq2oqKjr1gusXr26YmJi9P3335dpFPDXX39V37591blzZy1cuFA9evSw71u9erWWLl2qcePGacqUKfrHP/6hAQMGKCYmRp9//rleeOEFhYWF6e9//7uioqJu+s/AZrPpzJkzatCggUwmE/cBAoCkGkYXAKDyHD9+XPXr19fRo0d1zz33KDExUZIUFhamli1basqUKXr11Vf1wgsvSJIGDRqkgIAAvf322+rWrVuRcw0ePFizZs3SzJkz9eSTT8pkMpV43dOnTyshIUHh4eH2benp6ZKkkydP6vDhw/Lz85Mk5eXl6dVXX5XVatXu3btVo8bVH0tnz57V6tWrtWzZMtWsWbPCfwarV6/WyZMnNXPmTElS69attWPHjgqfDwDcASOAgBuzWq3y8vKSJI0aNcq+vXr16goJCZHNZtPIkSPt2+vVq6e2bdvqX//613XnKjwKuGHDhlKvW7NmTY0YMaLYfU8//bQ9/ElSly5dJEnPPvusPfwVbM/JydHJkydv/EFLcODAAY0ZM0b33nuvhg8fLkkym82yWq0VPicAuAMCIODGsrOz7aHqtttuK7LPz89PPj4+atCgwXXbMzIyij3fkCFD1Lp16xveC9i0adMS1x0srg5Jat68ebHbS6rlRk6fPq1HHnlEfn5++uijj1S9enVJVwNgdnZ2hc4JAO6CAAi4sZycHHvwKfhnYcVtk1RiuCsYBdyzZ482btxY4nXNZnOJ+0q6ZnlrKU1WVpb69u2rzMxMff755woICLDv8/b21uXLl8t9TgBwJwRAwI15e3srLy/Poed89tln1bp1a8XFxTnluoDZ2dl67LHHdOjQIX3yyScKDAwssj8nJ+em7ikEAHdAEwjgxnx8fHTlyhWHnrNgFPC5555z6HkdIS8vTwMHDtTXX3+tjRs36t57773uGKvVKh8fHwOqAwDnQQAE3JjZbFZubq7DzztkyBDNmjVLe/bscfi5b8aUKVP0t7/9TY899pjOnz+v999/v8j+Z599VlartdQpagDwBARAwI01b95cBw8edPh5a9SooZiYmBI7fY1SEEj//ve/6+9///t1+5999lkdOXLkuoYTAPA0JlsZbuKxWCzy8/NTVlaWfH19q6IuAA4QGxurhIQEnTlzptR1+zyFzWZTo0aNFBkZqbi4OKPLAQCHKk9eowkEcGPBwcE6e/asTpw4YXQpTuH48eM6d+7cTT8bGQBcHVPAgBsLCQmRdPWRcK487Xnx4kVdvHix1GMaNmxY4lIyBQoeAVfw5wIAnooRQMCNBQQE6NZbb3X5Z9/OmzdPTZo0KfXr+PHjNzxPamqqGjduXGRdQADwRIwAAm7MZDIpODjY5QPgsGHD9MADD5R6TOPGjW94ntTUVKZ/AUAEQMDthYSEaPHixcrJySnx8WzO7vbbb9ftt99+U+e4fPmydu3apfHjxzuoKgBwXUwBA25u4MCBOn/+vNavX290KYZav369MjIyNHDgQKNLAQDDsQwM4AF69OihvLw8bd++3ehSDNO1a1d5eXlpy5YtRpcCAJWCZWAAFBEZGakdO3YoLS3N6FIM8cMPP+irr75SZGSk0aUAgFMgAAIeoF+/fmrcuLGWLVtmdCmGWLZsmZo0aaInnnjC6FIAwCkQAAEP4OXlpbCwMK1atUoWi8XocqqUxWLRqlWrFBYWJi8vL6PLAQCnQAAEPERoaKisVqtWrFhhdClVKjk5WdnZ2QoNDTW6FABwGgRAwEM0a9ZMo0aNUmxsrNLT040up0qkp6fr5Zdf1qhRo9S0aVOjywEAp0EXMOBBLBaLgoKC1KZNG23atEkmk8nokiqNzWZTz549deTIEaWlpfGzC4DbowsYQLF8fX2VnJyszZs3KykpyehyKlViYqK2bNmi5ORkwh8AXIMACHiY3r17KzQ0VFFRUW47FZyenq6pU6cqLCxMvXr1MrocAHA6TAEDHsidp4KZ+gXgqZgCBlCqwlPBsbGxRpfjUNOnT2fqFwBugAAIeKjevXtr7ty5mj17thYsWGB0OQ4xf/58zZkzR/Hx8Uz9AkApahhdAADjTJ06VZmZmZoyZYrq1KmjsLAwo0uqsKSkJEVFRWnatGmKiooyuhwAcGoEQMDDzZ49WxcuXFB4eLguXryoyZMnG11Suc2fP19RUVEaP368Zs2aZXQ5AOD0CICAhzOZTHrzzTdVt25dTZkyRRkZGZo5c6ZLNIbYbDZNnz5dc+bM0bRp0zRr1iyXqBsAjEYABCCTyaQ5c+aoXr16io6O1tdff60VK1aoRYsWRpdWovT0dI0cOVJbtmzR3LlzNXXqVKNLAgCXQRMIALupU6cqJSVFhw4dUlBQkBITE1WGlaKqlM1mU0JCgjp27KjDhw8rJSWF8AcA5UQABFBEr169tHfvXg0ePFijR49Wr169dOzYMaPLknR11K9Hjx6KiIjQ4MGDtXfvXrp9AaACCIAAruPr66vExMQio4ELFiyQxWIxpB6LxaIFCxYoMDBQX331lWrUqKHJkyezzh8AVBABEECJCkYDhwwZoujoaDVp0kSRkZFKS0urkuunpaUpIiJCAQEBio6OVrt27ZSXl6crV64oMjLS6aanAcBVEAABlMrX11cJCQlKTEzUpUuXtHz5cnXq1EndunXTX/7yF+Xk5Dj0ejk5OVqzZo26du2qTp06aePGjYqKitKxY8f01VdfqWXLlpKkLVu26IMPPnDotQHAU/AsYABl0rNnT23evFmS9OKLL+qbb77R1q1bVb9+fd1zzz0KDg62fzVv3rxMy7HYbDYdP35cqamp9q9du3YpIyNDPXr0UGRkpJ544gl5eXnZ3/Ppp5/qkUcekSQ1atRIBw4ckL+/f+V8aABwIeXJawRAADf0448/KigoSJLUunVrHTx4UNWqVdO+ffu0bt067d69W6mpqTp9+rQkqUGDBgoODlbr1q1lNptlNpvl7e2tnJwcWa1WWa1WHTlyRKmpqTp37pwkqXHjxgoODlZISIgGDBigwMDAEuvp37+//vrXv0qSRo8erWXLllXynwAAOD8CIACHGj16tBITEyVJCxcu1IQJE647xmaz6dSpU0VG844fPy6r1ars7GxdvnxZNWvWlI+Pj8xms5o3b24fMQwJCVFAQECZ6zlx4oTat2+vixcvymQyaefOnfqv//ovh31eAHBFBEAADpORkaFmzZrp0qVLqlOnjk6cOCE/Pz+jy9LChQs1adIkSdJdd92l3bt3q0YN1rYH4LnKk9doAgFQqrfffluXLl2SJD333HNOEf4kaezYsercubMk6fvvv9eiRYuMLQgAXAgjgABKlJeXpzvvvFP//ve/JUkHDhxQ27ZtDa7q/+3atUv33nuvbDabateurf3796t58+ZGlwUAhmAEEIBD/Pd//7c9/PXp08epwp8kdenSRaNHj5Yk/fbbb5o4caKxBQGAiyAAAijRW2+9Zf9+3LhxBlZSsldeeUWNGjWSJK1fv16ffPKJwRUBgPMjAAIo1r59++zr/t1xxx3q27evwRUVr169enrjjTfsr8eOHWu/ZxEAUDwCIIBiFW6qGDdunKpVc94fF4MGDdIf/vAHSdKxY8c0a9YsgysCAOdGEwiA62RmZqpp06a6dOmSateurZMnTzpN929JDh06pI4dOyonJ0c1atTQnj171KFDB6PLAoAqQxMIgJvirEu/lKZNmzZ68cUXJUlXrlzR6NGjlZ+fb3BVAOCcCIAAisjLy9PixYvtr8eOHWtgNeXz5z//Wa1bt5YkffXVV3r33XcNrggAnBMBEEARn376qX3pl969e6tdu3YGV1R2Pj4+Wrp0qf311KlT7c8aBgD8PwIggCJcYemX0vTq1UuDBg2SJP3666964YUXDK4IAJwPTSAA7Pbt22dvnLjjjjt06NAhp+7+Lcnp06fVrl07ZWVlSZK2b9+url27GlwVAFQumkAAVMi19/65YviTpMaNG+uVV16xv46IiFBOTo6BFQGAc3HNn+4AHC4zM9PeNFG7dm2NGDHC4IpuTnh4uH7/+99Lkn788ccii0UDgKcjAAKQJL3zzjv2pV+GDx/uEku/lKZ69epKSEiwj2LGxcUpPT3d2KIAwEkQAAG49NIvpbn77rvtn8VqtWrs2LEqw23PAOD2CIAA9Nlnn+lf//qXpKtdtO3btze4IseZNWuWmjRpIkn67//+b23YsMHYggDACRAAARRZ+mX8+PEGVuJ4vr6+evPNN+2vx48frwsXLhhYEQAYjwAIeLj9+/dr06ZNkqTbb79dffv2Nbgix+vfv78efvhhSdKJEyc0Y8YMYwsCAIMRAAEPd+29f9WrVzewmsphMpm0ePFi+fj4SJLefPNN7dmzx9iiAMBABEDAg2VlZdmXfqlVq5bLL/1SmjvuuEMxMTGSrja9jB49Wvn5+QZXBQDGIAACHuydd97Rb7/9Junq0i/16tUztqBKFhUVZX+28a5du5SUlGRwRQBgDAIg4KHy8/PdcumX0tSsWVPLli2zv37xxRd15swZAysCAGMQAAEP9dlnn+no0aOSpJ49eyowMNDgiqpG9+7dNWzYMElXn34SFRVlcEUAUPUIgICHcuelX25k3rx58vf3lyS9//772rJli8EVAUDVIgACHujAgQNKSUmRJLVq1Up//OMfDa6oajVs2FBz5861v46IiNDly5cNrAgAqhYBEPBAnrD0y408//zzuu+++yRJhw4dKhIIAcDdmWxleDCmxWKRn5+fsrKy5OvrWxV1AagkWVlZatasmS5evKhatWrp5MmTbt/9W5K0tDT97ne/U15enmrWrKm9e/eqdevWRpcFABVSnrzGCCDgYVauXKmLFy9KkoYNG+ax4U+SOnbsqMmTJ0uSLl++rDFjxqgMvxMDgMsjAAIeJD8/X4sWLbK/HjdunIHVOIeXX35Zt912myQpJSVF69atM7giAKh8BEDAgxRe+uUPf/iDxyz9UpratWsXCcUTJ05UVlaWgRUBQOUjAAIepHDQ8bSlX0rz+OOP64knnpAknT59WtOmTTO4IgCoXDSBAB7i4MGD9segtWrVSocPH/bI7t+S/PTTT2rfvr0uXbokk8mkXbt26fe//73RZQFAmdEEAuA6hZd+GTNmDOHvGrfddpvi4uIkSTabTeHh4bpy5YrBVQFA5SAAAh4gKytLK1eulCTVqlVLzz//vLEFOakJEyaoY8eOkqTvvvtOS5cuNbgiAKgcBEDAAxRe+mXo0KH2x6ChKC8vLyUkJNhfx8TE6OTJkwZWBACVgwAIuLn8/Pwi078s/VK6++67T6GhoZKkCxcuaNKkSQZXBACORwAE3Nznn3+uI0eOSLq69EuHDh0Mrsj5vfbaa2rQoIEk6cMPP9Rnn31mcEUA4FgEQMDNvfXWW/bvGf0rm/r162v+/Pn212PGjJHVajWwIgBwLAIg4MYOHjyoL774QpLUsmVLPfroowZX5DqGDh2qBx98UJL073//W3PmzDG4IgBwHAIg4MZY+qXiTCaTli1bJi8vL0nS3LlztX//foOrAgDHIAACbspisRRZ+mXkyJHGFuSC2rdvr+joaElSbm6uIiIiVIa18wHA6REAATfF0i+OMW3aNN1+++2SpH/84x9atWqVJOns2bM6ffq0kaUBQIURAAE3lJ+fX+S5v2PHjjWwGtdmNpu1ZMkS++tJkyZpzJgxatKkiVq0aKEff/zRwOoAoGIIgIAb+uKLL+xLvzz00EMKCgoyuCLX9vDDD6t///6SpPPnz2vp0qXKy8tTTk6OvckGAFwJARBwQ4WXfhk/fryBlbiHY8eOKTMzs9h9Z86cqdpiAMABahhdAADHOnTokD7//HNJLP3iCHl5eerevbvS09OL3f/LL79UbUEA4ACMAAJuhqVfHO/ChQsl7mMEEIArYgQQcCMWi0XvvPOOpKvNC88//7zBFbm+6tWrKyUlRSNGjNAPP/xw3f7jx4+X+Vw2m00nT55Uamqq/ev48eOyWq3Kzs5WTk6OvL295ePjI7PZrObNmys4OFjBwcEKCQlRQECATCaTIz8eAA9FAATcyLvvvltk6Zf69esbXJF7uPvuu5Wamqo333xTL7/8sn777Tf7vqNHj5b63n379mnt2rXavXu3UlNT7SOGDRs2VHBwsLp166ZatWrJbDbL29tbOTk5slqtunTpko4ePaqEhASdPXtWknTrrbfaw+DAgQMVGBhYeR8agFsz2cqwqqnFYpGfn5+ysrLk6+tbFXUBKKf8/Hy1a9dOhw8fliSlpaXR/VsJfvrpJ0VEROjTTz+VJHl5eSknJ6fIMbm5udqwYYOWLl2qbdu2qX79+urSpYt9NC84OFjNmjUr02iezWbTiRMniowa7tq1S+fPn1f37t0VGRmpfv362Z9YAsBzlSevMQIIuLA9e/bokUceka+vr7p162YPfz169CD8VZLbbrtN//3f/61FixbpzTffVHh4uH3fiRMnlJSUpOXLl+v06dPq1q2b/vKXv+jJJ5+Ut7d3ha5nMpnUvHlzNW/eXP369ZMk5eTkaP369Vq6dKkGDBigJk2aKDQ0VKGhoWrWrJkjPiYAN8cIIODCpk+frtmzZ1+3/a233tK4ceMMqMgzWSwWRUdHKzk5WWazWcOGDVNERESVhPC0tDQtW7ZMq1atktVq1ahRozR37lx+VgMeqDx5jS5gwIWVNKo0fvx4DRgwQFartYor8jwpKSkKCgrS6tWrFR8fr5MnT2rJkiVVNgLbsWNHLV26VCdPnlR8fLxWr16toKAgpaSkVMn1AbgmAiDgwvz8/Erc9+GHH+qbb76pwmo8i8ViUVhYmPr06aO2bdtq7969mjRpkmEjb76+vpo0aZLS0tLUpk0b9enTR2FhYbJYLIbUA8C5EQABF1ZaAOzQoYP+67/+qwqr8RwFo35r1qxRQkKCUlJS1KJFC6PLknR18e9NmzYpISFBa9asYTQQQLEIgIALq1evXrHbe/bsqa+++kpms7lqC/IA8fHxRUb9wsPDnW5tPpPJpPDw8CKjgfHx8UaXBcCJ0AUMj3b48OFSn/Lg7H7++efrtj311FN64YUX9K9//avC561bt67uvPPOmynN7dhsNk2bNk2vvvqqYmJiNHPmTKcLftcqGA2MjY1VdHS0MjMzNXv2bKevG0DlIwDCYx0+fFht2rQxugyHW79+vdavX3/T5zl06BAh8D9sNpsmTJigRYsWacGCBZo0aZLRJZWZyWTSrFmz5O/vrylTpujixYtauHAhIRDwcARAeKyCkb/3339f7du3N7ga57F//349++yzLj0y6mgxMTFatGiREhMTFRYWZnQ5FTJ58mTVqVNH4eHhqlu3brHLBwHwHARAeLz27dvr7rvvNroMOKn4+Hi98sormj9/vsuGvwJhYWG6cOGCoqKi5Ofnp6lTpxpdEgCDEAABoAQpKSmKjo5WTEyMJk+ebHQ5DjFlyhRlZGQoOjpanTt3Vq9evYwuCYAB6AIGgGJYLBaNGjVKPXv21MyZM40ux6FmzZqlhx56SCNHjmSdQMBDEQABoBhRUVHKyMhQcnKy2zVMmEwmrVixQhkZGUwDAx6KAAgA10hJSdHy5cs1b948p1ng2dFatmyp+Ph4JSUladOmTUaXA6CKEQABoJDCU7+u3vRxI+Hh4UwFAx6KAAgAhURHR7vt1O+1Ck8FR0dHG10OgCpEAASA/zhx4oSSk5M1c+ZMt536vVbLli0VFxen5ORknTx50uhyAFQRAiAA/Mfy5ctlNps1cuRIo0upUqNGjZKPj4+WL19udCkAqggBEAAk5ebmKikpSUOHDpWvr6/R5VQpX19fDR06VElJScrNzTW6HABVgAAIAJI2bNig06dPKyIiwuhSDBEREaGff/5ZGzduNLoUAFWAAAgAkpYuXaquXbuqY8eORpdiiE6dOumBBx7Q0qVLjS4FQBUgAALwePv27dO2bdsUGRlpdCmGioyM1NatW7V//36jSwFQyQiAADze2rVrVb9+fT311FNGl2KoP/3pT/L399fatWuNLgVAJSMAAvB4u3fvVpcuXeTt7W10KYby9vZWly5dtHv3bqNLAVDJCIAAPJrNZlNqaqqCg4PL9b5t27bJZDLJZDIpNTX1uv3PPfec6tSp46gyb9rmzZv1/PPPq02bNqpVq5Zuv/12jRo1Sj///HOR44KDg4v9PADcCwEQgEc7deqUzpw5U+4AWNiMGTMcV1AleeGFF7Rt2zY9+eSTeuutt/TMM89o3bp1+t3vfqfTp0/bjwsODtbp06d16tQpA6sFUNlqGF0AABipYLqzogGwc+fO+uSTT/Ttt9/q7rvvLtd7bTabsrOzZTabK3Tt8liwYIEeeOABVav2/7/3P/zww3rwwQe1ePFizZ49W9L//zns3r1bjz/+eKXXBcAYjAAC8Gipqalq2LChmjVrJkk6duyYIiMj1bZtW5nNZt1yyy16+umnlZ6eXuz7x40bJ39//zKNArZs2VKPPvqovvjiC4WEhMhsNisxMdE+nbxu3TrFxcWpadOmqlu3rvr376+srCxdvnxZEydOVKNGjVSnTh2NGDFCly9fLtfn7NatW5HwV7Ctfv36Rbp+mzdvrgYNGjANDLg5RgABeLSC+/9MJpMk6X//93+1c+dOPfPMM2rWrJnS09O1bNkyde/eXfv27VOtWrWKvN/X11eTJk1SbGxsmUYBDx48qEGDBik8PFyhoaFq27atfd+rr74qs9msP//5zzpy5IgWLVokLy8vVatWTRkZGZoxY4a++eYbrVy5Uq1atVJsbOxNffaLFy/q4sWLatCggX2byWTiPkDAAxAAAXi048ePq1u3bvbXjzzyiPr371/kmMcee0z33nuv/vrXv2ro0KHXnWP8+PF64403FBcXd8MnaRw5ckSff/65+vTpY9+2bds2SdKVK1f0j3/8Q15eXpKks2fP6i9/+Ysefvhhffrpp5KurtV35MgRvf322zcdABcuXKicnBwNHDiwyPbWrVtrx44dN3VuAM6NKWAAHs1qtRYZ1St8P15ubq5+/fVXtW7dWvXq1dO3335b7Dn8/Pw0ceJE/e1vf9N3331X6vVatWpVJPwVNmzYMHv4k6QuXbrIZrPp+eefL3Jcly5ddPz4cV25cuWGn68k27dvV1xcnAYMGKCHHnqoyD6z2Syr1VrhcwNwfgRAAG7p1KlT6tChg1q1aqXp06eXeA/ftU0YVqtVsbGxat68uWrWrKkGDRqoYcOGyszMVFZWVonXmzBhgurVq3fDewFbtWpV4r7bbrutyGs/Pz9JV+/Lu3Z7fn5+qfWU5sCBA3ryyScVFBSk5OTk6/abzWZlZ2dX6NwAXAMBEIBb+vLLL7Vv3z6lp6dr9uzZuv3229W3b19t2LBBubm59uNycnKKLAA9btw4zZkzRwMGDNC6deuUkpKiTZs26ZZbblF+fn6J1yvrKGBpHb/Vq1cv13abzVbiuUpy/Phx9e7dW35+fvr0009Vt27d647x9vYud5MJANfCPYAA3M7ly5evG8Gy2Wz6/PPP9fnnn8vHx0fDhw9XQkKCvL29lZOTYz/uo48+0vDhwzV//nz7tuzsbGVmZt7wuhMnTtTChQsVFxenevXqOerjOMyvv/6q3r176/Lly9q8ebOaNGlS7HE5OTmqWbNmFVcHoCoRAIFy2rZtm3r06CHp6lpp164f99xzz+mjjz7SxYsXjSjvOps3b9bq1av11Vdf6cSJE2rcuLEeeughzZo1q8QA4GxycnJ07tw5/fLLLzp79myJ/yz43mKxlHq+7OxsJSYmas6cOfLx8Slyv1v16tWvG1lbtGiR8vLyblhnwSjgjBkzdNddd1Xsw1aS3377TX/84x918uRJbd26VXfeeWeJx1qtVvn4+FRhdQCqGgEQuAkzZszQ3//+d6PLKNULL7yg8+fP6+mnn9add96pf/3rX1q8eLE++eQT7dmzR40bN67ymnJzc3Xu3LlSw1zhUFeW0bfyatiwoerVqyez2axLly7Ztz/66KNatWqV/Pz8FBgYqK+//lpffvmlbrnlljKdd8KECXrjjTf0/fffq3bt2g6vu6KGDBmif/7zn3r++ee1f//+Imv/1alTR/369bO/tlqtVbI4NQDjEACBCnK3J0DcjCtXrtgDXVlCXUZGxk1fszj+/v5q2LChGjVqJF9fX/vSKYWZzWZNnTpVMTExql69upo3b66jR4/a97/55puqXr26Vq9erezsbN1///368ssvS+zcvVa9evU0ceJExcXFOexzOcKePXskSW+//bbefvvtIvtatGhRJAAeOXLkusYTAO7FZCvDXcQWi0V+fn7KysqSr69vVdQFVLpvv/3WvuDttQHu5MmTio2N1WeffaZff/1VAQEBevjhh/Xmm29q586d6tGjh1asWKGoqCg98MAD+tvf/mZ/b3FTwC1btlRQUJDGjRunadOmae/evXrttdfUuXNn9ejRQ2vXrtX+/fuVlJQki8WiPn36aMWKFfLx8dELL7ygDz74QJcuXdLTTz+thIQEh9yfdcstt6h79+7661//Wuyfy6ZNm9S4ceMyhbrz58/fdD3F8fPzU6NGjeyhrrR/NmjQoMgSKvn5+fL29i4ydfunP/1Jb7zxRpFwExsbq4SEBJ05c8a+GLQns9lsatSokSIjI50uxAIoXXnyGiOAwDVOnTqle+65R5mZmQoLC1O7du108uRJffTRR0WmCt3tCRDX6tWr101dozi+vr5lCnONGjVSgwYNinTnlle1atXUs2dPffHFF7r99tu1ePFi9e3b97rjgoODdfbsWZ04cYJRL13tEj537lyFn40MwDUQAIFrvPjiizp9+rR27dqlkJAQ+/aZM2de1xzgbk+AKK+6desWCW6lhbqGDRtWeWfpxo0btWfPHnXu3LnEaxf8O05NTXXJAJiVlXXDRZvLc59nwSPgCv+3D8D9EACBQvLz87VhwwY99thjxf4FeO0UYUHX58svv6zvvvtOv/vd70o8d3mfALFmzZpinwDx1ltv6cqVK6pRo2L/+5b2BIjCunbtqtatW5ca7py9U7RmzZrq0qVLqccEBATo1ltvVWpqapH74FzFhAkT9O6775Z6THnWC0xNTVXjxo0VEBBws6UBcGIEQKCQs2fPymKxKCgoqMzvKej6nDFjRqmjgI5+AkRZu1ILu9ETIApbuHBhuZtbXJHJZLLfC+qKoqOj9eyzzzrsfKmpqUz/Ah6AAAjcpMJrv7n6EyA8VUhIiBYvXnzdU0FcQWBgoAIDAx1yrsuXL2vXrl0aP368Q84HwHnxKDigkIYNG8rX11d79+4t1/smTpyoevXqOW3XZOEnQHzxxRcuswB0VRk4cKDOnz+v9evXG12KodavX6+MjIybvjcUgPMjAAKFVKtWTf369dPf//537d69+7r9JY28FYwCFjQdOJPCT4D49NNPS30ChKcKDAxU9+7dtXTpUqNLMdTSpUvVo0cPtW/f3uhSAFQypoCBa7zyyitKSUnRgw8+qLCwMLVv314///yzPvzwQ3311Vclvs8dngDhySIjIzVgwAClpaWpY8eORpdT5X744Qd99dVX+vDDD40uBUAVIAAC12jatKl27dql6dOna/Xq1bJYLGratKn69u2rWrVqlfg+d3gChCfr16+fGjdurGXLlnnkSOCyZcvUpEkTPfHEE0aXAqAK8CQQeKzSngTiyTz5z+Xll1/WggULdPLkSY/6WWexWBQQEKCoqCjNmDHD6HIAVFB58hr3AALAf4SGhspqtWrFihVGl1KlkpOTlZ2drdDQUKNLAVBFmAIGXJSjnwABqVmzZho1apRiY2P15JNPqmXLlkaXVOnS09P18ssva9SoUWratKnR5QCoIowAAi5qwoQJatKkSalfKL+5c+fK399fo0aNqtB6i67EZrNp5MiRql+/vubOnWt0OQCqECOAgIty9BMgcJWvr6+Sk5PVp08fJSUlKTw83OiSKk1iYqK2bNmilJQUj7rnEQABEHBZjnwCBIrq3bu3QkNDFRUVpT59+rjlVHB6erqmTp2qsLAw9erVy+hyAFQxpoABoBjz5s1z26ngwlO/8fHxRpcDwAAEQAAoRsFU8ObNmxUbG2t0OQ41ffp0bdmyRcnJyUz9Ah6KAAgAJejdu7fmzp2r2bNna8GCBUaX4xDz58/XnDlzFB8fz9Qv4MG4BxAASjF16lRlZmZqypQpqlOnjsLCwowuqcKSkpIUFRWladOmKSoqyuhyABiIAAgANzB79mxduHBB4eHhunjxoiZPnmx0SeU2f/58RUVFafz48Zo1a5bR5QAwGAEQAG7AZDLpzTffVN26dTVlyhRlZGRo5syZMplMRpd2QzabTdOnT9ecOXM0bdo0zZo1yyXqBlC5CIAAUAYmk0lz5sxRvXr1FB0dra+//lorVqxQixYtjC6tROnp6Ro5cqS2bNmiuXPnaurUqUaXBMBJ0AQCAOUwdepUpaSk6NChQwoKClJiYqLTLRNjs9mUkJCgjh076vDhw0pJSSH8ASiCAAgA5dSrVy/t3btXgwcP1ujRo9WrVy8dO3bM6LIkXR3169mzpyIiIjR48GDt3buXbl8A1yEAAkAF+Pr6KjExscho4IIFC2SxWAypx2KxaMGCBUVG/RITE1nnD0CxCIAAcBMKRgOHDBmi6OhoNW3aVJGRkUpLS6uS66elpSkiIkIBAQGKjo7WkCFDGPUDcEMEQAC4Sb6+vkpISFB6eromT56sDRs2qFOnTurWrZv+8pe/KCcnx6HXy8nJ0Zo1a9S1a1d16tRJGzduVFRUlI4dO6aEhARG/QDcEF3AAOAgzZo1U1xcnGJiYrRx40YtXbpUgwYNUv369XXPPfcoODjY/tW8efMyLcdis9l0/Phxpaam2r927dqljIwM9ejRQx9++KGeeOIJeXl5VcEnBOAuCIAA4GBeXl7q37+/+vfvr3379mndunXavXu3VqxYoTlz5kiSGjRooODgYLVu3Vpms1lms1ne3t7KycmR1WqV1WrVkSNHlJqaqnPnzkmSGjdurODgYI0fP14DBgxQYGCgkR8TgAsjAAJAJQoMDNSMGTMkXR3NO3XqVJHRvB07dshqtSo7O1uXL19WzZo15ePjI7PZrObNmysyMlLBwcEKCQlRQECAsR8GgNsgAAJAFTGZTGratKmaNm2qxx9/3OhyAHgwmkAAAAA8DAEQAADAwxAAAQAAPAwBEAAAwMMQAAEAADwMARAAAMDDEAABAAA8DOsAwuPt37/f6BKcCn8eAOD+CIDwWHXr1pUkPfvsswZX4pwK/nwAAO6HAAiPdeedd+rQoUO6cOGC0aVIkj744APNnz9fkjRnzhw9/PDDhtVSt25d3XnnnYZdHwBQuQiA8GjOFHK+/fZb+/eNGjXS3XffbWA1AAB3RhMI4CTq1Klj//7ixYsGVgIAcHcEQMBJ1K5d2/79b7/9ZmAlAAB3RwAEnAQjgACAqkIABJxE4QDICCAAoDIRAAEnUXgKmBFAAEBlIgACToIpYABAVSEAAk6CJhAAQFUhAAJOghFAAEBVIQACTsLb21s1alxdm50RQABAZSIAAk7CZDLZp4EZAQQAVCYCIOBECqaBCYAAgMpEAAScSMEIIFPAAIDKRAAEnAgjgACAqkAABJxIQQC8cuWKcnJyDK4GAOCuCICAE+FpIACAqkAABJwIawECAKoCARBwIjwNBABQFQiAgBNhBBAAUBUIgIATKRwAGQEEAFQWAiDgRGgCAQBUBQIg4ESYAgYAVAUCIOBEaAIBAFQFAiDgRBgBBABUBQIg4ERoAgEAVAUCIOBEaAIBAFQFAiDgRJgCBgBUBQIg4ERoAgEAVAUCIOBEGAEEAFQFAiDgRGgCAQBUBQIg4ERoAgEAVAUCIOBEatasqerVq0siAAIAKg8BEHAiJpPJPgpIAAQAVBYCIOBkCu4D5B5AAEBlIQACToYACACobARAwMkwBQwAqGwEQMDJFIwA5ubmKicnx+BqAADuiAAIOBmeBgIAqGwEQMDJ8DQQAEBlIwACToYACACobARAwMkwBQwAqGwEQMDJMAIIAKhsBEDAyfA8YABAZSMAAk6m8AggU8AAgMpAAAScDFPAAIDKRgAEnAxNIACAykYABJwMI4AAgMpGAAScDE0gAIDKRgAEnAxNIACAykYABJwMU8AAgMpGAAScDFPAAIDKRgAEnAxTwACAykYABJwMI4AAgMpGAAScjI+Pj6pVu/q/5m+//Sabzab9+/fLZrMZXBkAwF0QAAEnYzKZ7NPAFy9e1HvvvafAwEC99957BlcGAHAXJlsZhhUsFov8/PyUlZUlX1/fqqgL8GgBAQH6+eefFRAQoNzcXF24cEG+vr46ePCg6tWrZ3R5AAAnVJ68xggg4IQKRgB//fVXWa1W7dixQ5cuXVJsbKzBlQEA3AEBEHBCBY0gOTk5iouLU0hIiGbMmKElS5bo+++/N7g6AICrYwoYcBKnT5/WkCFD9OOPP+qXX35RtWrV1Lp1a6WlpcnLy0u5ubnq3Lmz/P39tX37dnujCAAAElPAgEv6+OOPtWXLFp05c0Y2m015eXlKSEiQl5eXJMnLy0uLFy/W//zP/2jVqlUGVwsAcGUEQMBJPPTQQ6pevbokqXr16nrmmWfUvXv3Isf06NFDgwYNUnR0tDIzM6u+SACAWyAAAk6ibdu2CgsLkyR5e3tr/vz5xR43b948GkIAADeFAAg4kf79+8tkMmn27NkKCAgo9piAgAAaQgAAN4UmEMBJ5Ofnq2vXrsrIyND3339vv/evODSEAACuRRMI4ILee+897dy5U0uXLi01/Ek0hAAAbg4jgIATyMzMVJs2bdSzZ0998MEHZX7f4MGDtXnzZp4QAgBgBBBwNdOnT5fVatW8efPK9T4aQgAAFUEABAy2Z88eLV26VHFxcSU2fpSEhhAAQEUwBQwYqKDxIysrS999990N7/0rDg0hAACJKWDAZRQ0fixevLhC4U+iIQQAUH6MAAIGqWjjR0loCAEAz8YIIOACKtr4URIaQgAAZUUABAxwM40fJaEhBABQVkwBA1XMEY0fJaEhBAA8F1PAgBNzRONHSWgIAQCUBSOAQBVydONHSWgIAQDPwwgg4KQc3fhREhpCAAClIQACVaQyGj9KQkMIAKA0TAEDVaAyGz9KQkMIAHgWpoABJ1OZjR8loSEEAFASRgCBSlZVjR8loSEEADwDI4CAE6mqxo+S0BACALgWARCoRFXZ+FGSwg0he/bsMaQGAIBzYQoYqCRGNH6UhIYQAHB/TAEDTsCIxo+S0BACACiMEUCgEhjd+FESGkIAwH0xAggYzOjGj5LQEAIAkAiAgMM5Q+NHSWgIAQBITAEDDuVMjR8loSEEANwTU8CAQZyp8aMkNIQAABgBBBzEWRs/SkJDCAC4F0YAAQM4a+NHSWgIAQDPRQAEHMCZGz9KQkMIAHgupoCBm+QKjR8loSEEANwHU8BAFXKFxo+S0BACAJ6JAAjchMzMTEVHR2vQoEHq3r37DY+fMWOGTCaTzp07V+z+oKCgMp1HujryuHLlSj3++ONq3ry5ateuraCgIM2ePVvZ2dll/gw9evTQoEGDFB0drczMzDK/DwDgugiAwE0wsvHj0qVLGjFihM6ePavRo0dr4cKFuueee/Tyyy+rb9++KsPdHXY0hACAZ6lhdAGAqypo/IiPjzek8cPb21v/8z//o/vuu8++LTQ0VC1bttTLL7+szZs3q2fPnmU6V0FDSHR0tJ5//nl17ty5kqoGADgDRgCBCsjPz9eYMWPUvn17jRs3zpAavL29i4S/Ak8++aQkaf/+/eU63/jx49WuXTuNHTtW+fn5DqkRAOCcCIBABThz48fp06clSQ0aNCjX+2gIAQDPQQAEyqm8jR9Vbe7cufL19VXfvn3L/V4aQgDAMxAAgXJy5id+vPLKK/ryyy/12muvVfjxbjSEAID7IwAC5VAVT/wwmUwVet/atWsVExOjkSNHKiIiosLX5wkhAOD+CIBAObz//vvy9vbW6NGjK/R+Hx8fSZLVai12/6VLl+zHlMemTZs0bNgwPfLII0pISKhQbYVFRETI29tb77///k2fCwDgfAiAQDk8++yzysnJqXDIatGihSTp4MGD1+27dOmSjh8/bj+mrHbt2qUnn3xSISEhWrdunWrUuPnVnZYtW6acnBwNHTr0ps8FAHA+BECgHDp37qzIyEi9/PLLOnXqVLnf/4c//EHe3t5atmzZdUutJCUl6cqVK+Vq3ti/f78eeeQRtWzZUp988onMZnO5a7rWqVOnNGPGDI0ZM0Z33XXXTZ8PAOB8TLYyPC6gPA8XBtxdZmam2rRpo549e+qDDz4o9/vnzJmjmJgY3X///Xr88cdVq1Yt7dy5U2vWrFHv3r312WefqVq1G/9uduHCBXXo0EEnT57UK6+8oqZNmxbZf8cdd+jee+8td32DBw/W5s2bdfDgwQo3kgAAql558hoBEKiAlStXasSIEdq6dWuFloJZvXq1Fi9erLS0NF25ckWtWrXSoEGD9MILL6hmzZplOkd6erpatWpV4v7hw4dr5cqV5apr69ateuihh7Ry5UoNHz68XO8FABiLAAhUsvz8fHXt2lWZmZnas2eP0y0GXRG5ubnq3Lmz/P39tX379jKNQgIAnEd58ho/4YEKqFatmpYsWaIDBw5o0aJFRpfjEG+99ZYOHDigJUuWEP4AwM0xAgjchHHjxmnlypU6ePCgQ9cFPHv2rPLy8krc7+3trfr16zvseqdOnVLbtm01YsQIvfXWWw47LwCg6jAFDFSRm20IKUnLli117NixEvc/+OCD2rZtm8OuR+MHALi+8uS1m18wDPBg9erV09y5czVixAiFhYU57NnAq1evLnGxaEny9/d3yHWkq40fa9as0cqVKwl/AOAhGAEEbpIrN4TQ+AEA7oMmEKAKuXJDCI0fAOCZ+IkPOMDNPiHECDzxAwA8FwEQcJBZs2bJbDYrKirK6FLKJCoqSrVq1dLMmTONLgUAUMUIgICDFDSErFmzxqEdupWhoPFj7ty5NH4AgAeiCQRwIFdoCKHxAwDcE00ggEFcoSGExg8AAD/9AQdz5oYQGj8AABIBEKgUztoQQuMHAEAiAAKVwhkbQmj8AAAUoAkEqCTO1BBC4wcAuD+aQAAn4EwNITR+AAAK428CoBI5Q0MIjR8AgGsRAIFKZnRDCI0fAIBrEQCBSmZkQwiNHwCA4tAEAlQBIxpCaPwAAM9CEwjgZIxoCKHxAwBQEv5WAKpIVTaE0PgBACgNARCoQlXVEELjBwCgNARAoApVRUMIjR8AgBuhCQSoYpXZEELjBwB4LppAACdWmQ0hNH4AAMqCvyEAA1RGQwiNHwCAsiIAAgZxdEMIjR8AgLIiAAIGcWRDCI0fAIDyoAkEMJAjGkJo/AAASDSBAC7DEQ0hNH4AAMqLvy0Ag91MQwiNHwCAiiAAAk6gog0hNH4AACqCAAg4gYo0hND4AQCoKJpAACdRnoYQGj8AANeiCQRwQeVpCKHxAwBwM/ibA3AiZWkIofEDAHCzCICAk7lRQwiNHwCAm0UABJxMaQ0hNH4AAByBJhDACRXXEELjBwCgNDSBAC6uuIYQGj8AAI7C3yKAkyrcELJ7924aPwAADsMUMODEMjMz1aZNG124cEG+vr46ePAg9/4BAIrFFDDgJurVq6f4+HhlZ2fT+AEAcJgaRhcAoHTDhg1Tly5d1LZtW6NLAQC4CQIg4ORMJpPatWtndBkAADfCFDAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHIQACAAB4GAIgAACAhyEAAgAAeBgCIAAAgIchAAIAAHgYAiAAAICHqVGWg2w2myTJYrFUajEAAAComIKcVpDbSlOmAHjhwgVJUvPmzW+iLAAAAFS2CxcuyM/Pr9RjTLYyxMT8/HydOnVKdevWlclkcliBAAAAcAybzaYLFy4oICBA1aqVfpdfmQIgAAAA3AdNIAAAAB6GAAgAAOBhCIAAAAAehgAIAADgYQiAAAAAHoYACAAA4GEIgAAAAB7m/wCdEqv2LoD2ZQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "repeat_model = frame_model_A.repeat({\"bNrm\": {\"Rfree\": [1.01, 1.03, 1.02]}})\n", - "draw_frame_model(repeat_model, figsize=(8, 18))" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "50fa976b", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.889734Z", - "iopub.status.busy": "2024-07-11T15:30:51.889503Z", - "iopub.status.idle": "2024-07-11T15:30:51.892886Z", - "shell.execute_reply": "2024-07-11T15:30:51.892371Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "1.03" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "repeat_model.frames.var(\"bNrm_1\").context[\"Rfree\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "46df498f", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.894391Z", - "iopub.status.busy": "2024-07-11T15:30:51.894167Z", - "iopub.status.idle": "2024-07-11T15:30:51.897423Z", - "shell.execute_reply": "2024-07-11T15:30:51.896932Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{}" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "repeat_model.frames.var(\"aNrm_2\").children" - ] - }, - { - "cell_type": "markdown", - "id": "ee7f196c", - "metadata": {}, - "source": [ - "## Trying again at a solver ...." - ] - }, - { - "cell_type": "markdown", - "id": "7ec1ea98", - "metadata": {}, - "source": [ - "- [ ] Create grid of state values with a 'forward simulation' with dummy strategies\n", - "- [ ] For each control variable, backwards:\n", - " - [ ] Create objective function $f$ summing:\n", - " - [ ] Direct rewards of (a, s)\n", - " - [ ] Weighted expected value of (a,s)\n", - " - [ ] Over a grid of state values in the control variable's scope:\n", - " - [ ] Find optimal a* for s given $f$\n", - " - [ ] Using (s, a*) pairs:\n", - " - [ ] Interpolate\n", - " - [ ] Into a decision rule\n", - "- [ ] When all the decision rules are done, forward simulate.\n" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "e60e0e50", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.898853Z", - "iopub.status.busy": "2024-07-11T15:30:51.898617Z", - "iopub.status.idle": "2024-07-11T15:30:51.900929Z", - "shell.execute_reply": "2024-07-11T15:30:51.900473Z" - } - }, - "outputs": [], - "source": [ - "model = frame_model_A" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "7a49ded9", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.902413Z", - "iopub.status.busy": "2024-07-11T15:30:51.902194Z", - "iopub.status.idle": "2024-07-11T15:30:51.905422Z", - "shell.execute_reply": "2024-07-11T15:30:51.904956Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "FrameSet([(('bNrm',),\n", - " <, target:('bNrm',), scope:('aNrm',)>),\n", - " (('mNrm',),\n", - " <, target:('mNrm',), scope:('bNrm', 'TranShk')>),\n", - " (('cNrm',),\n", - " <, target:('cNrm',), scope:('mNrm',)>),\n", - " (('U',),\n", - " <, target:('U',), scope:('cNrm', 'CRRA')>),\n", - " (('aNrm',),\n", - " <, target:('aNrm',), scope:('mNrm', 'cNrm')>)])" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.frames" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "id": "901d1782", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.906890Z", - "iopub.status.busy": "2024-07-11T15:30:51.906641Z", - "iopub.status.idle": "2024-07-11T15:30:51.909165Z", - "shell.execute_reply": "2024-07-11T15:30:51.908709Z" - } - }, - "outputs": [], - "source": [ - "def make_decision_rule(control_frame: Frame):\n", - " # get scope\n", - " scope = control_frame.scope\n", - "\n", - " # get objective function\n", - "\n", - " # get grid over the scope\n", - "\n", - " # get optimal action for each scope point given objective\n", - "\n", - " # interpolate from (s, a*) into decision rule" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "id": "6a9a5c88", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.910602Z", - "iopub.status.busy": "2024-07-11T15:30:51.910379Z", - "iopub.status.idle": "2024-07-11T15:30:51.913029Z", - "shell.execute_reply": "2024-07-11T15:30:51.912554Z" - } - }, - "outputs": [], - "source": [ - "def create_value_function_from_reward_transition(transition, local_context):\n", - " def value_function(**parent_state):\n", - " inputs = parent_state.copy()\n", - " inputs.update(local_context)\n", - "\n", - " return transition(**inputs)\n", - "\n", - " return value_function" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "id": "3642e854", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.914439Z", - "iopub.status.busy": "2024-07-11T15:30:51.914211Z", - "iopub.status.idle": "2024-07-11T15:30:51.917103Z", - "shell.execute_reply": "2024-07-11T15:30:51.916633Z" - } - }, - "outputs": [], - "source": [ - "for f in range(len(model.frames) - 1, 0, -1):\n", - " frame = model.frames.iloc(f)\n", - "\n", - " if frame.reward:\n", - " frame.value = create_value_function_from_reward_transition(\n", - " frame.transition,\n", - " frame.context,\n", - " )\n", - "\n", - " elif frame.control:\n", - " pass\n", - "\n", - " elif len(frame.children) == 0:\n", - " # terminal chance node\n", - "\n", - " pass\n", - "\n", - " else:\n", - " # intermediate state node\n", - " pass" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "id": "8ede194b", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.918470Z", - "iopub.status.busy": "2024-07-11T15:30:51.918237Z", - "iopub.status.idle": "2024-07-11T15:30:51.921307Z", - "shell.execute_reply": "2024-07-11T15:30:51.920849Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "{'CRRA': 2.0}" - ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.frames.iloc(3).context" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "id": "858c0834", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.922729Z", - "iopub.status.busy": "2024-07-11T15:30:51.922511Z", - "iopub.status.idle": "2024-07-11T15:30:51.925671Z", - "shell.execute_reply": "2024-07-11T15:30:51.925173Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "(-0.5,)" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model.frames.iloc(3).value(cNrm=2)" - ] - }, - { - "cell_type": "markdown", - "id": "be0911b8", - "metadata": {}, - "source": [ - "### pycid rules in parallel..." - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "id": "761360bc", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.927137Z", - "iopub.status.busy": "2024-07-11T15:30:51.926918Z", - "iopub.status.idle": "2024-07-11T15:30:51.930143Z", - "shell.execute_reply": "2024-07-11T15:30:51.929678Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\ndef impute_random_decision(self, d: str) -> None:\\n \"\"\"Impute a random policy to the given decision node\"\"\"\\n try:\\n domain = self.model.domain[d]\\n except KeyError:\\n raise ValueError(f\"can\\'t figure out domain for {d}, did you forget to specify DecisionDomain?\")\\n else:\\n self.model[d] = StochasticFunctionCPD(\\n d, lambda **pv: {outcome: 1 / len(domain) for outcome in domain}, self, domain, label=\"random_decision\"\\n )\\n'" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "'''\n", - "def impute_random_decision(self, d: str) -> None:\n", - " \"\"\"Impute a random policy to the given decision node\"\"\"\n", - " try:\n", - " domain = self.model.domain[d]\n", - " except KeyError:\n", - " raise ValueError(f\"can't figure out domain for {d}, did you forget to specify DecisionDomain?\")\n", - " else:\n", - " self.model[d] = StochasticFunctionCPD(\n", - " d, lambda **pv: {outcome: 1 / len(domain) for outcome in domain}, self, domain, label=\"random_decision\"\n", - " )\n", - "'''" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "id": "31bb749a", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.931505Z", - "iopub.status.busy": "2024-07-11T15:30:51.931287Z", - "iopub.status.idle": "2024-07-11T15:30:51.934495Z", - "shell.execute_reply": "2024-07-11T15:30:51.934002Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\ndef expected_utility(\\n self, context: Dict[str, Outcome], intervention: Dict[str, Outcome] = None, agent: AgentLabel = 0\\n ) -> float:\\n \"\"\"Compute the expected utility of an agent for a given context and optional intervention\\n For example:\\n cid = get_minimal_cid()\\n out = self.expected_utility({\\'D\\':1}) #TODO: give example that uses context\\n Parameters\\n ----------\\n context: Node values to condition upon. A dictionary mapping of node => value.\\n intervention: Interventions to apply. A dictionary mapping node => value.\\n agent: Evaluate the utility of this agent.\\n \"\"\"\\n return sum(self.expected_value(self.agent_utilities[agent], context, intervention=intervention))\\n'" - ] - }, - "execution_count": 22, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "'''\n", - "def expected_utility(\n", - " self, context: Dict[str, Outcome], intervention: Dict[str, Outcome] = None, agent: AgentLabel = 0\n", - " ) -> float:\n", - " \"\"\"Compute the expected utility of an agent for a given context and optional intervention\n", - " For example:\n", - " cid = get_minimal_cid()\n", - " out = self.expected_utility({'D':1}) #TODO: give example that uses context\n", - " Parameters\n", - " ----------\n", - " context: Node values to condition upon. A dictionary mapping of node => value.\n", - " intervention: Interventions to apply. A dictionary mapping node => value.\n", - " agent: Evaluate the utility of this agent.\n", - " \"\"\"\n", - " return sum(self.expected_value(self.agent_utilities[agent], context, intervention=intervention))\n", - "'''" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "id": "471405c0", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.935939Z", - "iopub.status.busy": "2024-07-11T15:30:51.935712Z", - "iopub.status.idle": "2024-07-11T15:30:51.938973Z", - "shell.execute_reply": "2024-07-11T15:30:51.938494Z" - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "'\\ndef impute_optimal_decision(self, decision: str) -> None:\\n \"\"\"Impute an optimal policy to the given decision node\"\"\"\\n # self.add_cpds(random.choice(self.optimal_pure_decision_rules(d)))\\n self.impute_random_decision(decision)\\n domain = self.model.domain[decision]\\n utility_nodes = self.agent_utilities[self.decision_agent[decision]]\\n descendant_utility_nodes = list(set(utility_nodes).intersection(nx.descendants(self, decision)))\\n copy = self.copy() # using a copy \"freezes\" the policy so it doesn\\'t adapt to future interventions\\n\\n @lru_cache(maxsize=1000)\\n def opt_policy(**parent_values: Outcome) -> Outcome:\\n eu = {}\\n for d in domain:\\n parent_values[decision] = d\\n eu[d] = sum(copy.expected_value(descendant_utility_nodes, parent_values))\\n return max(eu, key=eu.get) # type: ignore\\n\\n self.add_cpds(StochasticFunctionCPD(decision, opt_policy, self, domain=domain, label=\"opt\"))\\n'" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "'''\n", - "def impute_optimal_decision(self, decision: str) -> None:\n", - " \"\"\"Impute an optimal policy to the given decision node\"\"\"\n", - " # self.add_cpds(random.choice(self.optimal_pure_decision_rules(d)))\n", - " self.impute_random_decision(decision)\n", - " domain = self.model.domain[decision]\n", - " utility_nodes = self.agent_utilities[self.decision_agent[decision]]\n", - " descendant_utility_nodes = list(set(utility_nodes).intersection(nx.descendants(self, decision)))\n", - " copy = self.copy() # using a copy \"freezes\" the policy so it doesn't adapt to future interventions\n", - "\n", - " @lru_cache(maxsize=1000)\n", - " def opt_policy(**parent_values: Outcome) -> Outcome:\n", - " eu = {}\n", - " for d in domain:\n", - " parent_values[decision] = d\n", - " eu[d] = sum(copy.expected_value(descendant_utility_nodes, parent_values))\n", - " return max(eu, key=eu.get) # type: ignore\n", - "\n", - " self.add_cpds(StochasticFunctionCPD(decision, opt_policy, self, domain=domain, label=\"opt\"))\n", - "'''" - ] - }, - { - "cell_type": "markdown", - "id": "b47198b3", - "metadata": {}, - "source": [ - "## Forward simulating the model" - ] - }, - { - "cell_type": "code", - "execution_count": 24, - "id": "2bef5647", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.940409Z", - "iopub.status.busy": "2024-07-11T15:30:51.940195Z", - "iopub.status.idle": "2024-07-11T15:30:51.942681Z", - "shell.execute_reply": "2024-07-11T15:30:51.942229Z" - } - }, - "outputs": [], - "source": [ - "frame_agent_A = FrameAgentType(\n", - " frame_model_A,\n", - " T_sim=5000,\n", - " AgentCount=200,\n", - " read_shocks=True,\n", - " cycles=0,\n", - ")\n", - "\n", - "# frame_agent_A.solve()\n", - "# frame_agent_A.track_vars += [\n", - "# \"mNrm\",\n", - "# \"cNrm\",\n", - "# \"aNrm\",\n", - "# \"bNrm\",\n", - "# 'U'\n", - "# ]\n", - "\n", - "# Doesn't work yet.\n", - "# frame_agent_A.initialize_sim()\n", - "# frame_agent_A.simulate()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "d178e201", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.944028Z", - "iopub.status.busy": "2024-07-11T15:30:51.943861Z", - "iopub.status.idle": "2024-07-11T15:30:51.946140Z", - "shell.execute_reply": "2024-07-11T15:30:51.945674Z" - } - }, - "outputs": [], - "source": [ - "## TODO: Forward simulate" - ] - }, - { - "cell_type": "markdown", - "id": "634a4b6c", - "metadata": {}, - "source": [ - "## Progressively more complex models" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "id": "641517a2", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.947724Z", - "iopub.status.busy": "2024-07-11T15:30:51.947322Z", - "iopub.status.idle": "2024-07-11T15:30:51.954930Z", - "shell.execute_reply": "2024-07-11T15:30:51.954460Z" - } - }, - "outputs": [], - "source": [ - "# maybe replace reference to init_portfolio to self.parameters?\n", - "frame_model_B = FrameModel(\n", - " [\n", - " # TODO : make an aggegrate value\n", - " Frame(\n", - " (\"PermShk\"),\n", - " None,\n", - " default={\n", - " \"PermShk\": 1.0,\n", - " }, # maybe this is unnecessary because the shock gets sampled at t = 0\n", - " # this is discretized before it's sampled\n", - " transition=IndexDistribution(\n", - " Lognormal.from_mean_std,\n", - " {\n", - " \"mean\": init_parameters[\"PermGroFac\"],\n", - " \"std\": init_parameters[\"PermShkStd\"],\n", - " },\n", - " ).discretize(\n", - " init_parameters[\"PermShkCount\"],\n", - " method=\"equiprobable\",\n", - " tail_N=0,\n", - " ),\n", - " ),\n", - " Frame(\n", - " (\"TranShk\"),\n", - " None,\n", - " default={\n", - " \"TranShk\": 1.0,\n", - " }, # maybe this is unnecessary because the shock gets sampled at t = 0\n", - " transition=IndexDistribution(\n", - " MeanOneLogNormal,\n", - " {\"sigma\": init_parameters[\"TranShkStd\"]},\n", - " ).discretize(\n", - " init_parameters[\"TranShkCount\"],\n", - " method=\"equiprobable\",\n", - " tail_N=0,\n", - " ),\n", - " ),\n", - " Frame(\n", - " (\"Rport\"),\n", - " (\"Share\", \"Risky\", \"Rfree\"),\n", - " transition=lambda Share, Risky, Rfree: (\n", - " Share * Risky + (1.0 - Share) * Rfree,\n", - " ),\n", - " ),\n", - " Frame(\n", - " (\"bNrm\",),\n", - " (\"aNrm\", \"Rport\", \"PermShk\"),\n", - " transition=lambda aNrm, Rport, PermShk: (Rport / PermShk) * aNrm,\n", - " ),\n", - " Frame(\n", - " (\"mNrm\",),\n", - " (\"bNrm\", \"TranShk\"),\n", - " transition=lambda bNrm, TranShk: (bNrm + TranShk,),\n", - " ),\n", - " Frame((\"cNrm\"), (\"Adjust\", \"mNrm\", \"Share\"), control=True),\n", - " Frame(\n", - " (\"U\"),\n", - " (\n", - " \"cNrm\",\n", - " \"CRRA\",\n", - " ), ## Note CRRA here is a parameter not a state var transition = lambda self, cNrm, CRRA : (CRRAutility(cNrm, CRRA),),\n", - " reward=True,\n", - " ),\n", - " Frame(\n", - " (\"aNrm\"),\n", - " (\"mNrm\", \"cNrm\"),\n", - " default={\"aNrm\": birth_aNrmNow},\n", - " transition=lambda mNrm, cNrm: (mNrm - cNrm,),\n", - " ),\n", - " ],\n", - " init_parameters,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "id": "06c92f23", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:51.956337Z", - "iopub.status.busy": "2024-07-11T15:30:51.956106Z", - "iopub.status.idle": "2024-07-11T15:30:52.071764Z", - "shell.execute_reply": "2024-07-11T15:30:52.071259Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAJ8CAYAAABunRBBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACPGElEQVR4nOzdd1gUZ/s24Gvpi0gTGyVib1jBktgL8DOJscYWa1hAMcaGpIjGnkTUmNgQFyV2Y4nGxCgqojGWCGrEYDcYECUWYFXKUub7w9f53CAKuOzsstd5HBxvZmZn5959E7l8nrmfkQmCIICIiIiIjIaJ1AUQERERkW4xABIREREZGQZAIiIiIiPDAEhERERkZBgAiYiIiIwMAyARERGRkWEAJCIiIjIyDIBERERERsasJC8qLCxEamoqKleuDJlMVt41EREREVEpCYKAR48ewdnZGSYmLx/jK1EATE1NhZubm1aKIyIiIqLyk5ycDFdX15e+pkQBsHLlyuIb2travn5lRERERKRVKpUKbm5uYm57mRIFwGfTvra2tgyARERERHqsJLfrsQmEiIiIyMgwABIREREZGQZAIiIiIiPDAEhERERkZBgAiYiIiIwMAyARERGRkWEAJCIiIjIyDIBERERERoYBkIiIiMjIMAASERERGRkGQCIiIiIjwwBIREREZGQYAImIiIiMDAMgERERkZFhACQiIiIyMmZSF0BERESkTYIg4Pbt24iPjxd/kpOTkZ2djZycHKjValhYWMDKygpyuRxubm7w9PSEp6cnvLy84OzsDJlMJvXHKFcMgERERGTwEhMTsW3bNsTFxSE+Ph5paWkAACcnJ3h6eqJz586wtraGXC6HhYUF1Go1srOzkZWVhWvXrmHFihV4+PAhAKBq1apo06YNvLy8MHjwYDRp0kTKj1YuZIIgCK96kUqlgp2dHTIzM2Fra6uLuoiIiIheKi8vD7t378bKlSsRGxsLR0dHtG3bFl5eXuKInqura4lG8wRBQEpKijhieObMGZw6dQqZmZlo27YtgoOD0bdvX5ibm+vgk5VNafIaAyAREREZlJSUFERERGDNmjW4e/cuOnXqhPHjx6Nfv36wsLDQ2nXUajV27dqF7777DidPnoSjoyPGjRuHsWPHwtXVVWvX0RYGQCIiIqpwVCoVQkJCoFQqIZfLMXLkSIwbNw4eHh7lfu2EhASsWrUKUVFRyM3NxbBhw7BixQq9ykUMgERERFShREdHQ6FQID09HXPmzIGfn58kmUSlUiEyMhLTp0+Hubk5oqKi0K9fP53X8SKlyWtcBoaIiIj0lkqlQkBAAHx9fdGgQQNcvHgRkydPlmxAytbWFpMnT0ZiYiJat26N/v374+2334ZKpZKknrJiACQiIiK9FB0dDQ8PD2zZsgXh4eE4ePAgatWqJXVZAAB3d3fExMQgPDwcsbGxcHNzw48//ih1WSXGAEhERER6JywsTGPULzAwUO/W5pPJZAgMDNQYDfT395e6rBJhACQiIiK9IQgCPv/8c4SEhCA0NFSvRv2K82w0MDQ0FEqlEj169EAJWiwkxYWgiYiISC8IgoCJEydi2bJlWLJkCSZPnix1SSUmk8kwd+5cODg4YOrUqWjbti1Onz4NExP9HGvTz6qIiIjI6ISGhmLZsmVYvXq1QYW/502ZMgWrV69GXFwc2rdvr7cjgQyAREREJLmwsDAsWLAAixcvRkBAgNTlvJaAgAAsWrQIZ86cQc+ePaUu54UYAImIiEhS0dHR4j1/U6ZMkbocrZg6dSqmT5+OmJgYvWwM4ULQREREJBmVSgUPDw80aNAABw8e1LtO39chCAK6d++O3377DTt27EDfvn3L9XpcCJqIiIgMQnBwMNLT0xEZGVmhwh/wtDFk3bp1sLS0xPDhw/VqsWgGQCIiIpJEdHQ01qxZg0WLFun9Ui9l5e7ujsWLF+PJkycYOnSo1OWIOAVMREREOleRp37/SxAE9OjRA8eOHSvXqWBOARMREZFeCwkJqbBTv/8lk8mwdu1avZoKZgAkIiIinUpJSYFSqcScOXMq7NTvf7m7u2Pu3LnIysrC+PHjpS6HAZCIiIh0a82aNZDL5fDz85O6FJ1SKBSQy+XYtGkTbt++LWktDIBERESkM3l5eYiIiMCIESOMrq/A1tYWI0eOhJmZGcLDwyWthQGQiIiIdGb37t24e/cuxo0bJ3Upkhg3bhzy8vKwfPly5OXlSVYHAyARERHpzMqVK9GxY0c0a9ZM6lIk0bx5c3To0AEqlQp79uyRrA4GQCIiItKJxMRExMbG6kUThJTGjx+PwsJChIWFSVYDAyARERHpxLZt2+Do6Ij+/ftLXYqkBgwYAHt7e/zxxx+4dOmSJDUwABIREZFOxMXFoW3btrCwsJC6FElZWFigffv2sLCwwLZt2ySpgQGQiIiIyp0gCIiPj4eXl1epzouKioJMJhN/zMzM4OLigtGjR0u6lEpiYiL69u0LmUyGuLi4V77e3d0d7777rrjt6ekJMzOzEp1bHhgAiYiIqNylpqYiLS0N8+bNE8OclZUVGjRogI8++ghpaWkvPX/OnDnYsGEDwsPD0atXL2zcuBFdunRBTk6O1mstLCzE+vXr0a5dOzg6OqJy5cpo0KABRo4ciVOnTgF4GgBfp4nD09MTWVlZ+OOPP7RVdqmYSXJVIiIiMirPj3TNmTMHtWvXRk5ODo4fP45Vq1Zh3759uHjxIqytrV94fq9evcTRQ4VCAScnJ3z99df46aefMGjQIK3W+vHHH2PFihXo06cPPvjgA5iZmeHKlSv49ddf8cYbb6Bt27avfQ1PT08AwL1795CamgpnZ+fXfs/S4AggERERlbv4+HjY2NgAeBrmhg8fDoVCgaioKEyaNAl///13qUbUOnXqBAC4ceOGuK9WrVp49913ER0djZYtW8LKygpNmjTBrl27ipx/8+ZNvP/++3B0dIS1tTXat2+PX375BWlpaVi5ciX8/f0xadIkTJw4URwFfPLkCRYsWIDvvvsO77//vvhebdq0gUwmQ2xsbInrd3Nzg5OTEwBIMg3MAEhERETlLj4+Hu7u7i881r17dwDA33//DQDYuHEjPD09IZfLxSVj7t69q3HOpEmTAAAqlQqdO3eGtbU10tPTkZiYCF9fXzg6OuKdd97B9evXMWDAAHh6eiI5ORmCIOCTTz5B/fr1sWPHDjg5OWH69OnIycnBe++9h3Xr1kEQBHTo0EG81ty5c/HLL78gODgYCxYsgI+PDz7++GPx+IwZM/B///d/GDBgACpVqoR+/frh3r17L/0+ZDIZatSoAQD46quvSv5FagkDIBEREZW75ORkVKtW7YXHno3iValSBfPnz8fIkSNRv359LFmyBD4+PgCeTvveuHEDKSkp2LlzJ27dugUAiIiIQMuWLbF06VJYWVmJITI9PR2XL1/G7NmzYWNjg3PnzmHQoEEIDQ3Fhg0bUFhYiIEDB+L69eu4ceMGjh8/jlq1amHlypUAgO3bt4v3F+bk5ODEiROYPHkyPv30UzRp0kQcgQSAn3/+GWq1GrNnz8a4ceOwd+9efPTRRy/9PiIiInDx4kVYWVnB0dHxNb7ZMhJKIDMzUwAgZGZmluTlRERERBrq1asn9OrVSwAgHDp0SLh3756QnJwsbN26VahSpYogl8uFpKQkwdTUVJg/f7543rp16wQARX6srKwEAEJ4eLj42lq1agnVq1cXAAhVq1YVMjIyBEEQhE8++UQ8r0WLFkKDBg2Etm3bCoIgCEOHDhUsLCyEnJwc4csvvxQACL179xYACDY2NgIAwcfHR7h06ZLG59m+fbv4nj179hQKCwvFY5MnTxZMTU3F6z+r7Z133hEEQRC+/fZbQSaTCR06dBCqVKkiNG/eXCvfcWnyGkcAiYiIqNzl5OTA3NwcANCzZ09UrVoVbm5uGDJkCGxsbPDjjz9i165dKCwsxKBBg3D//n3cv38fjx49AgBUr14drVq1wo4dO/D2228jLy8P5ubmGDNmjMZ1atWqBQB4//33YWdnBwBo0KCBeHz48OG4desWGjZsCABo164d1Go1bt++jcaNGwMA/P39sXz5ctSsWRMAEB0djcaNG6NHjx4vXHomICAAMplM3O7UqRMKCgrEUcrnLVy4EBMnTsTXX3+N7t27o6CgANnZ2WX7Ul8Du4CJiIio3KnVapiZPY0dK1asQIMGDWBmZobq1aujYcOGMDExwZ49eyAIAurXr1/k/LS0NFSvXh0DBgxA37594eDggKysLKjV6hcuLP3GG2+8sA43NzeN7WchMT09XdxnYmKC8ePHo2nTpujWrRtCQkKQkJCAX3/9FUOGDMFvv/320ms5ODgUeU8AOHr0KH755Rd88sknmDZtGubNm4eCgoJyWcrmVTgCSEREROXOwsIC+fn5AIC2bduiZ8+e6Nq1Kxo3bgwTk6dxpLCwEDKZDPv378fBgwdx8OBBBAcHAwCWL1+O1atXAwBMTU1Rp04dFBQUYPny5RrXeTbqZmpqKu67evWq+M+mpqaoVasWrly5onGeIAi4fPkygP8/ivhMmzZtsG/fPnTp0gXHjx/HrVu3NEb8nr/Wf9/zeU2bNkXDhg2xYcMG/P3332Iozs3NfdlXVy4YAImIiKjcWVlZIS8v76WvqVu3LgRBQO3atdGzZ0/07NkTTZs2BfB0qrZ9+/bia+3t7SGXy7F06VKNEbT/LiitUqmwfv161KtXT9z39ttv448//sDJkyfFfdnZ2YiIiIC7uzuaNGnywvqerUN4584dVKpUqYSf/P9zcnLCoUOHYG5ujh49euDevXswMzODpaVlqd/rdTEAEhERUbmTy+WvHOnq378/TE1NMXv27CKjZ4Ig4MGDBxr7qlSpgrS0NERFRYn7ateuDQDYt28fli5dio4dOyItLQ3+/v7iaz799FNUr14dvXr1wo8//gjgaZfx33//jRkzZogjgc9Tq9U4fPgwTExMUK9ePbRs2VIcufz555+xdetW/Pvvv6/8HlxdXXHo0CFkZ2dj27Zt4hNRdI0BkIiIiMqdm5vbKx/3VrduXcybNw+bN29Gx44dERYWhiNHjgAABgwYgHXr1mm83tbWFnXr1sWiRYtQUFAA4P8HwMuXL+PTTz9FXl4etm3bpvH0jurVq+PEiRPw9vbGoUOHAADm5ubYu3cvmjdvDg8PD/Ts2RObNm0CAOzevRtt27bF+fPn8fHHH8PJyQk1atTAyJEjAQDz5s3D0KFDkZiYWKLvol69eoiOjsbjx4+RkZHxwnsYyxsDIBEREZU7T09PJCUlvfJ1n376KXbu3AkTExPMnj0bO3fuRKNGjfDee+/hvffe03itTCbD9evXcf369SL34U2ZMgU5OTm4dOkSBg4cWOQ6derUwfbt27FixQoAQFRUFN555x00bNgQS5cuhZmZGfbv3w9zc3P89NNPsLa2xpo1a7BkyRLxPbp06QIAOHXqFARBQNeuXUv8fXh4eMDa2hp5eXm4c+eOzjuBZcJ/x1hfQKVSwc7ODpmZmbC1tdVFXURERFSB7NmzB3379sU///xTpBNXW9zd3eHh4YGff/65XN5fm/755x/UqlULlStXxuTJkzF79uzXfs/S5DWOABIREVG5e9ZAER8fL3El+uHZ9/Do0SN4enrq/PoMgERERFTunJ2dUbVqVQbA/4mPjxcfAfcsHOsSF4ImIiKicieTydCmTRucOXOm3K5RknsM9UV8fDyqVKkCCwsLODs76/z6HAEkIiIinfDy8sKpU6egVqulLkVSubm5OH36NAoLCyWZ/gUYAImIiEhHBg8ejMzMTOzatUvqUiS1a9cupKen4969e5JM/wLsAiYiIiIdateuHczMzPD7779LXYpkOnXqhPT0dPz1119ITExE48aNtfK+7AImIiIivRQcHIwTJ04gISFB6lIkceHCBRw/fhwFBQXo1q2b1sJfaTEAEhERkc707dsXDg4OWLVqldSlSGLVqlWoWrUqLl++jKCgIMnqYAAkIiIinTE3N0dQUBCioqKgUqmkLkenVCoVNmzYgDfeeAM1a9ZEnz59JKuFAZCIiIh0auzYscjNzUVkZKTUpeiUUqlETk4OEhMTERAQAHNzc8lqYQAkIiIinXJ1dcWwYcMwffp0g1q773UkJSXhiy++QNu2baFWq+Hv7y9pPQyAREREpHMrVqyAubk5xowZgxIsSGLQBEGAn58f7OzscOHCBSgUCri4uEhaEwMgERER6ZytrS2ioqIQGxuLiIgIqcspV6tXr0ZMTAyqVq2KKlWqYOHChVKXxHUAiYiISDpvv/02YmNjkZiYCHd3d6nL0bqkpCQ0a9YMLVu2xPHjxxEdHQ1vb+9yuRbXASQiIiKDsHXr1go7Ffz81O+5c+cQEBBQbuGvtBgAiYiISDLPTwXPnDlT6nK0asaMGRpTv2FhYVKXJGIAJCIiIkn169cPCoUC8+bNw5IlS6QuRysWL16M+fPno0ePHjh//jyUSqVe3UZnJnUBRERERGvWrMHNmzcxdepU2NjYICAgQOqSyiwiIgLBwcHo0aMHDh8+jLCwML2Z+n2GI4BERESkFw4dOgQvLy8EBgYa7Ejg4sWLERgYiO7du+Pw4cOYPn06goODpS6rCAZAIiIi0gsymQynT5+Gl5cXpk6dihkzZhhMY4ggCAgNDRVH/mJiYvDxxx9j7ty5Upf2QgyAREREpDdMTEzwxx9/oHv37pg3bx569OiBW7duSV3WSyUlJaFnz56YP3++xsjf0qVLIZPJpC7vhRgAiYiISK/IZDIcPnwYCoUCx44dQ5MmTbB69Wq9Gw0UBAHh4eFo1qwZLl++jJYtWyImJgYLFy7EvHnz9Db8AQyAREREpKfWrFmDHTt2AADGjh2Lnj176s1o4LNRv3HjxqFly5bIzMzEgwcPEB0djWnTpkld3isxABIREZHe6tu3L95++20AwNGjR9GkSRMsWbIEKpVKknpUKhWWLFmiMep3/PhxfPDBB7h48aLedfsWhwGQiIiI9NaRI0fEUcCCggLk5OQgODgYzs7OCAoKQkJCgk7qSEhIwLhx4+Ds7IyQkBA0a9ZMY9Rv9erVerXO36swABIREZFeysvLQ2BgoMa+n3/+GcOGDUNWVhaUSiWaN2+OTp06YevWrVCr1Vq9vlqtxpYtW9CpUyc0b94cO3fuRKNGjWBhYYE//vgDw4cPN6hRv+fJhBLcUVmahwsTERERaUNYWBhCQkLE7ZEjR+L7778HAKSkpCA8PBwrVqyASqVCYWEhHBwc0K5dO3h6eoo/bm5uJWrGEAQBycnJiI+PF39Onz6N9PR0NG3aFAUFBbh8+TJq1qyJgIAA+Pv7w8XFpdw+e1mUJq8xABIREZHeSUlJQf369ZGTkwMAqFy5Mm7cuIGqVatqvC4vLw979uxBWFgY/vjjD1hYWMDMzAxZWVkAACcnJ3h6eqJevXqQy+WQy+WwsLCAWq1GdnY2srOzcf36dcTHx+P+/fsAAEdHR1SpUgWFhYW4d+8eVCoVunXrhqCgIPTp0wfm5ua6/TJKiAGQiIiIDNqAAQOwa9cucTsiIgL+/v4vPScxMRE//PADzpw5gzNnzuDevXsAAEtLS1hbW8PExAQFBQUoKCiAmZkZzMzMYGpqCisrK5iamuLff//Fo0ePAAA1atSAp6cnvLy8MGjQIDRp0qT8PqyWMAASERGRwYqOjoavr6+43aZNG5w6dQomJiVvXRAEAampqRpTusnJycjOzkZOTg5yc3NhaWkJKysryOVyuLm5idPGXl5ecHZ2Lo+PVq4YAImIiMgg5ebmolGjRkhKSgLwdFHoc+fOoUWLFtIWZgBKk9fYBUxERER6Y+HChWL4A4BJkyYx/JUDjgASERGRXvj777/RqFEjcTmXatWq4fr166hcubLElRkGjgASERGRwRk/frzGWn4rV65k+CsnDIBEREQkub179+LXX38Vt3v27In+/ftLWFHFxgBIREREksrKysLYsWPFbXNzc6xevbpECzhT2TAAEhERkaQWLFiA1NRUcXvmzJmoU6eOhBVVfGwCISIiIslcu3YNTZo0QX5+PgDA3d0dly9fhqWlpcSVGR42gRAREZHeEwQBAQEBYvgDgMjISIY/HWAAJCIiIkns3LkTsbGx4vbgwYPRvXt36QoyIgyAREREpHOPHz9GUFCQuG1tbY1vv/1WwoqMCwMgERER6dwXX3yBe/fuidthYWGoXr26hBUZFwZAIiIi0qm//voLS5cuFbebNWuGwMBA6QoyQgyAREREpDOCIMDPzw+FhYXivqioKJiamkpYlfFhACQiIiKd2bJlC06fPi1ujxs3Dq1bt5awIuPEdQCJiIhIJzIzM1G7dm2kp6cDABwcHPD333/Dzs5O4soqBq4DSERERHrn888/F8MfAKxatYrhTyIMgERERFTu/vzzT6xatUrc7tixIwYNGiRhRcaNAZCIiIjKVWFhIUaPHo1nd52Zmppi7dq1kMlkEldmvBgAiYiIqFytW7cO58+fF7c/++wz1K9fX7qCiE0gREREVH4ePnyIWrVq4fHjxwAAZ2dn3LhxA1ZWVhJXVvGwCYSIiIj0wtSpU8XwBzxd84/hT3oMgERERFQuzpw5g6ioKHG7d+/e8Pb2lq4gEjEAEhERkdYVFBRg5MiR4ralpSXCw8MlrIiexwBIREREWhceHo7Lly+L21999RWcnZ0lrIiexyYQIiIi0qp79+6hVq1ayM7OBgDUr18fly5d4vN+yxmbQIiIiEgyH330kRj+AGDjxo0Mf3qGAZCIiIi05vfff8cPP/wgbo8aNQpt27aVsCJ6EQZAIiIi0or8/HwMHz5c3LaxscHSpUulK4iKxQBIREREWvHNN98gKSlJ3F65ciXs7e0lq4eKxyYQIiIiem137tyBu7s71Go1AMDT0xNnzpzh8351iE0gREREpFP+/v5i+JPJZNi4cSPDnx5jACQiIqLXEhMTg19++UXcnjRpEho1aiRhRfQqnAImIiKiMlOr1ahduzZSU1MBAE5OTvjnn38gl8slrsz4cAqYiIiIdOLLL78Uwx8AREVFMfwZAAZAIiIiKpPk5GTMmzdP3O7evTveeecdCSuikmIAJCIiojIZNWoU8vPzAQDm5ub4/vvvJa6ISooBkIiIiEpt3759OHLkiLg9c+ZMuLq6SlgRlQabQIiIiKhUcnJy4Obmhvv37wMA3NzccPPmTZiZmUlcmXFjEwgRERGVmxkzZojhDwC2bt3K8GdgGACJiIioxP7++29888034vaAAQPw1ltvSVgRlQUDIBEREZXY0KFDUVBQAACwsrJCRESExBVRWTAAEhERUYns2LEDp0+fFre/+eYbODo6SlgRlRWbQIiIiOiVsrKy4OLigoyMDABAo0aNkJiYyOf96hE2gRAREZFWBQcHi+FPJpNh+/btDH8GjAGQiIiIXurq1asIDw8Xt/38/ODh4SFhRfS6GACJiIioWIIgYODAgXh2x5itrS2WLl0qbVH02hgAiYiIqFgbNmxAQkKCuK1UKlGpUiUJKyJtYAAkIiKiF3r8+DGCgoLE7TZt2uD999+XsCLSFgZAIiIiAvB0unffvn3Yvn07BEFAUFAQnjx5AgAwMTHB9u3bJa6QtIXPbSEiIiIAwE8//YS+ffsCABwdHfHw4UPxWHBwMGrVqiVRZaRtHAEkIiIiAMDu3bvFf34+/FWpUgXz5s2ToCIqLwyAREREBAC4c+fOC/dnZmZizZo1Oq6GyhMDIBEREQEA7t2798L9+fn5GD9+PG7cuKHjiqi8MAASERERAM1p3xfJz8/XUSVU3tgEQkREpOcEQcDt27cRHx8v/iQnJyM7Oxs5OTlQq9WwsLCAlZUV5HI53Nzc4OnpCU9PT3h5ecHZ2blEj20rLgBaW1tDqVSiYcOG2v5oJBEGQCIiIj2UmJiIbdu2IS4uDvHx8UhLSwPwtCHDy8sLnTt3hrW1NeRyOSwsLKBWq5GdnY2srCxcv34dK1euxIMHDwAA1atXF8Pg4MGD0aRJkxde89GjR0X2DRw4EOvWrYONjU35fVjSOZnw7NkuL6FSqWBnZ4fMzEzY2trqoi4iIiKjk5eXh927d2PlypWIjY2Fvb092rdvDy8vL3FEz9XVtUSjeYIgICUlRRwxjIuLw6lTp5CRkYGuXbsiKCgIffv2hbm5uXiOiYmJ+Mg3Jycn7N27F+3bty+3z0vaVZq8xgBIREQksZSUFERERGDNmjW4e/cuOnTogAkTJqBfv36wsLDQ2nXUajV27dqFZcuW4cSJE6hZsyb8/f3h7+8PV1dXfPnll5g/fz7+7//+D9u2bYOpqanWrk3ljwGQiIjIAKhUKoSEhECpVMLKygqjRo3CuHHj4OHhUe7XTkhIwKpVq7B+/Xrk5ORAoVBg4cKF/D1vwBgAiYiI9Fx0dDT8/PyQnp6OuXPnws/PT5LfsSqVCpGRkQgNDYWjoyMiIyPh4+Oj8zro9ZUmr3EZGCIiIh1SqVQICAiAr68v6tevj7/++guTJ0+WbIDF1tYWkydPxl9//YV69erB19cXAQEBUKlUktRDusEASEREpCPR0dFo2rQpNm3ahPDwcBw+fFhvnq/r7u6OmJgYhIeHY9OmTWjatCmio6OlLovKCQMgERGRDoSFhYmjfomJiQgMDCxRN68uyWQyBAYGaowGhoWFSV0WlQMGQCIionIkCAI+//xzhISEIDQ0VK9G/YrzbDQwNDQUISEhmD59OkrQMkAGhAtBExERlRNBEPDxxx9j+fLlWLJkCSZPnix1SSUmk8kwd+5cODg4YOrUqXj06BG+/fZbvRu1pLJhACQiIion06dPx/Lly7F69WoEBARIXU6ZTJkyBTY2NggMDETlypUxf/58qUsiLWAAJCIiKgdhYWH48ssvsXjxYoMNf88EBATg0aNHCA4Ohr29PaZNmyZ1SfSaGACJiIi0LDo6Wrznb8qUKVKXoxVTp05Feno6QkJC0LJlS3h7e0tdEr0GLgRNRESkRSqVCvXr10fTpk1x+PDhCnXPnCAI6NatGy5duoRr164xE+gZLgRNREQkkY8//hiPHz/GunXrKlT4A542hkRFReHx48eYOHGi1OXQa2AAJCIi0pLo6Gh8//33WLJkid4v9VJW7u7uWLx4MaKionDw4EGpy6Ey4hQwERGRFlTkqd//4lSwfuIUMBERkY5NmjSpwk79/tfzU8GTJk2SuhwqAwZAIiKi15SSkoLvv/8e8+bNq7BTv//l7u6OuXPn4vvvv8ft27elLodKiQGQiIjoNS1evBiWlpbw8/OTuhSdUigUsLCwwOLFi6UuhUqJAZCIiOg15OXlYe3atRg9erTR3Qtna2uL0aNHIzIyEnl5eVKXQ6XAAEhERPQaduzYAZVKhXHjxkldiiTGjRsHlUqFnTt3Sl0KlQK7gImIiF6Dh4cH7Ozs8Pvvv0tdimTeeustPHr0CAkJCVKXYtTYBUxERKQDiYmJ+OuvvzBhwgSpS5HUhAkTcPHiRVy6dEnqUqiEGACJiIjKaPny5bC1tUX//v2lLkVSAwYMQOXKlbF8+XKpS6ESYgAkIiIqo0OHDuHNN9+EhYVFiV4/a9YsyGQy3L9/v5wr0y0LCwu8+eabOHTokNSlUAkxABIREZWBIAi4ffs22rRpo/X3dnd3h0wme+HUcmxsLGQyGXbs2PHa1+natSs8PDxe+bqSXLNNmzZISUl57ZpINxgAiYiIyuD27dvIysrCvHnzIJPJXvkTGxtb6musWbMGqamppT7v3r17mDhxIho1agS5XI5q1aqhbdu2+OSTT/D48eNSv19JeHp6Iisrq0z1ku6ZSV0AERGRIYqOjgYALF26FFWqVBH3r1+/HgcPHsSGDRs0Xt+4ceNShcCmTZviypUr+Oqrr/Ddd9+V+LyHDx/Cy8sLmZmZ8PPzQ6NGjfDgwQNcuHABq1atwrhx42BjY1Pi9yspT09PAE+/l9GjR2v9/Um7OAJIRERUBgcOHICDgwM+/vhjDB8+XPxp0KABAGjsGz58OKpXry6ee//+fQwYMAC2traoUqUKJk6ciJycHI33d3d3x8iRI0s0Cvjs3sLExET06NED//zzD6pVq4bFixdj/vz5OH78OAICAlC3bl00btwYzZo1E8OoSqVCs2bNYGVlBU9PT5w7d65M34ebmxvs7e2xf//+Mp1PusUASEREVAbnzp1DmzZtIJPJXvnaZ/faPQtyTZo0wblz5/Dll1+iWbNm+O677+Do6AhLS0vUrVsXmZmZEAQB06dPR35+Pr766ivxPZKSkgAAH3zwAVxcXLBw4ULxOu+//z4yMjIgk8kwceJEcf/169cxbNgw9O3bF19++SXS09PRu3dvpKWl4e7du/D29oaLiwvOnj2LNm3a4KuvvnrlZ8rNzcW7774LOzs7nDhxAjKZDG3atMHZs2dL+U2SFBgAiYiIyuD+/fuoX79+iV//4MEDbNq0CQDQvHlzfPPNNxg/fjwcHBxQt25dZGdnY9q0afD09ERGRgYuX76MOnXqYMSIEVizZg1yc3ORnp6OkJAQAMDIkSPRqFEjfPLJJ7h27RoAoEWLFggICIAgCBrTvFeuXMHOnTvxxRdfYNKkSVi7di0eP36Mq1evwsHBATt27EDv3r0xbNgwFBQU4LPPPsOvv/5a7GfJzs5G7969ceLECRw6dAhvvfUWAKBBgwYVrsO5omIAJCIiKgO1Wg1ra+sSv/7u3bvo1q0bAGDhwoXo06cPAGDz5s34+eefAQA2Njb44YcfYGNjg6SkJOTm5iI0NBT5+flITk5GamoqFAoFAMDX1xe//voratSoIU7bjh07Fh9++CGqVq2K0aNHo3Hjxnjw4AFcXFzQpEkTsZZ27doBAOzt7fHvv/9i/vz5WLp0qRgubW1tERkZ+cLP8fjxY/Tq1Qvnzp1DTEyMRhe0XC6HWq0u8XdC0mEAJCIiKoOCggLI5fISv97S0hKtWrUCAI2RQ7lcjrp168LExATXrl3D/fv3YWVlhcLCQo1RwDt37sDa2hre3t7iuRYWFmjbti3S09MBALVr10b16tXx559/YuzYsUhPT8fjx49x+/ZtVKtWDXPnzoUgCLCzsxNrsrGxwfDhwwFA3O/q6oqbN28W+QyZmZnw8fHB5cuXERsbi5YtW2ocl8vlKCwsLPF3QtJhACQiIiqDwsLCEi8ADQAuLi4wNTUtsv+vv/7CwIEDUVhYiLVr16Jq1ariNGpmZiYAYPr06RAEAZaWlkXuOXRwcEB2djYAiIG0Zs2aWLVqFe7cuQMXFxc0bdoUVatWxcyZMzVG9mQyGVxdXYu8p1wuF0Pl8yZNmoQzZ87g0KFDaNq0aZHjFhYWKCgoKPF3QtJhACQiIioDmUxWqunO50cLn92zl5GRgS5duiA+Ph7A0/v6Dh48CAcHBwAQR9Pq1q2LatWqISMjA3fu3ClVjWZmZnB3d8exY8dgYmIi3of4zItCKfB0oev/6tOnDwRBwFdfffXCkT61Wl2iphiSHgMgERFRGZiYmIgjb6W1YsUKAE+fsPHgwQPxPropU6agZ8+eMDEp+uu5Vq1aEARBo+u3NOrUqQMHB4dSBcj/6tu3L9auXYvNmzdj/PjxRY5nZ2e/sHbSP1wImoiIqAxMTEyQlZVVpnP//vtvvPfee3BxcQEA7N69G8OGDUOLFi2gVquhUqmKnCOXy2Fvb4/z58+/9L1Pnz4NDw8PVKpUSWP/H3/8gQcPHqBDhw5lqvmZkSNHQqVSYcKECbC1tcXXX38tHmMANBz8f4mIiKgMTE1Ncf369TKdu23bNlhaWmLjxo2QyWSoXLmyuDRM+/btiz3Pycmp2CnbZzZs2ABXV1d8+OGHWLFiBR4/fozExET4+PjAysoKn3/+eZlqft5HH32E+fPnY+HChViwYIG4/9q1a6+sj/QDAyAREVEZVKtWDWfOnHnhvXLFmTVrFgRBQOPGjbF9+3Y8evQIx48fR9OmTTF79mwsWrQI3t7e4rIw/2VpaYn8/HwIgoCBAweK++3t7SEIApycnBAYGAh/f3/8+eefmDlzJjIzM5GTkwMfHx+cOHFCXAJGEIQi6xi6u7tDEAR4eHi88rN8/vnnCAkJwfTp07FixQoIgoAzZ85oPPGE9JdMKMG/uSqVCnZ2dsjMzIStra0u6iIiItJrgwcPxg8//IB//vkHbm5uUpcjuX/++Qe1atXC4MGDsXXrVqnLMUqlyWscASQiIioDX19fABA7eI3ds+/h2fdC+o0BkIiIqAx8fHxgZmbGAPg/8fHxMDMzYwA0EAyAREREZeDi4gIzMzPExcVJXYpeiIuLg5mZGZydnaUuhUqAAZCIiKgMnj1F4+TJk0b//Nvc3FycPHmS90IaEAZAIiKiMvL29kZmZiZ27doldSmS2rVrF1QqlcZzikm/MQASERGV0UcffQQTExPxyR7GasWKFTAxMcFHH30kdSlUQgyAREREZdSkSRM0atQIx48fR0JCgtTlSOLChQv4/fff0bhxYzRu3FjqcqiEGACJiIheQ2hoKExNTbFq1SqpS5HEqlWrYGZmhtDQUKlLoVLgQtBERESvIS8vDw4ODhAEAXfu3DGq35MqlQo1a9aEiYkJHj58CHNzc6lLMmpcCJqIiEhHzM3N4e/vj+zsbERGRkpdjk4plUpkZ2fD39+f4c/AcASQiIjoNaWkpOCNN96AtbU1Ll68CHd3d6lLKndJSUnw8PBAVlYWkpOT4eLiInVJRo8jgERERDrk6uqK0aNHQ61WQ6FQoARjKwZNEAT4+flBrVZj9OjRDH8GiAGQiIhIC5YuXQp7e3scPnwYERERUpdTrlavXo2YmBjY29tj6dKlUpdDZcAASEREpAW2trbYuHEjAGDq1KlISkqStqBykpSUhODgYADApk2beGuYgWIAJCIi0hIfHx+MGjWqwk4F/3fql0/+MFwMgERERFr03XffiVPBM2fOlLocrZoxY4Y49fvtt99KXQ69BgZAIiIiLXp+KnjevHlYsmSJxBVpx+LFizF//nwAnPqtCBgAiYiItMzHxwcLFy4E8PR+QENvComIiBDv+wsLC+PUbwXAAEhERFQOpk2bhs8++wwAEBgYaLAjgYsXL0ZgYCAA4PPPPxeDIBk2BkAiIqJyMn/+fHz00UcAno4Ezpgxw2AaQwRBQGhoqBj4JkyYgHnz5klcFWkLAyAREVE5kclk+O677/D5558DeHpPoLe3N27duiVxZS+XlJSEnj17ivf8TZ8+Hd9++y1kMpnElZG2MAASERGVI5lMhvnz54v3BJ48eRIeHh5YvXq13o0GCoKA8PBwNGvWDKdOnQIALFy4EPPmzWP4q2AYAImIiHTgo48+gouLC3JycpCdnY2xY8fq1Wjgs1G/cePGIScnBw4ODoiOjsa0adOkLo3KAQMgERGRDsycORO3b99GYWEhCgoKAPz/0cAlS5ZApVJJUpdKpcKSJUs0Rv0+/PBDJCYmstu3AmMAJCIiKmcnTpzA4sWLxW0LCwsolUo4ODggJycH06ZNg4uLC4KCgpCQkKCTmhISEjBu3Dg4Oztj2rRpGqN+q1ev5jp/FRwDIBERUTnKzs7GqFGjNO73++qrr+Dn54fExET4+fkBAHJzc7Fx40Y0b94cnTt3xtatW6FWq7Vai1qtxpYtW9CpUyc0b94cGzduFK/xrB6O+hkHmVCCO1BVKhXs7OyQmZnJvxEQERGVwtSpUzXWAOzUqRNiY2NhYvL/x2BSUlKwZs0aRERE4O7du3BwcEB6ejocHR3Rtm1beHp6ij9ubm4lasgQBAHJycmIj48Xf06fPo309HTx/WvUqIHAwED4+/vDxcWlXD4/6U5p8hoDIBERUTk5fvw4OnfuLI7+yeVyXLx4EXXq1Hnh6/Py8rBnzx6sXLkSR44cgZWVFWxtbZGTkyPeI+jk5ARPT0/Uq1cPcrkccrkcFhYWUKvVyM7ORnZ2Nq5fv474+Hjcv38fwNPH01lZWUGlUiEnJwfdunVDUFAQ+vTpA3Nzc918GVTuGACJiIgklpWVhWbNmuHmzZvivvDwcPGpGq+SmJiIH374AXFxcYiLi0NaWhqApyGycuXKACA2lBQUFMDU1BSmpqYwMTGBIAh4/PgxsrOzAQA1atSAp6cnvLy8MGjQIDRp0kTLn5b0AQMgERGRxCZPnoylS5eK297e3jhw4ECZ1tMTBAGpqaka07nJycnIzs5GTk4OcnNzYWlpCSsrK8jlcri5uYlTxl5eXnB2dtbiJyN9xQBIREQkod9++w1dunQRp35tbGxw6dIluLq6SlwZVWSlyWvsAiYiItKiJ0+eYOTIkRpdvytXrmT4I73CAEhERKRFn332GZKSksTtPn36YPjw4dIVRPQCDIBERERacvToUSxbtkzcdnBwwOrVq/kcXdI7DIBERERa8OTJE4waNUpjX0REBKpXry5RRUTFYwAkIiLSgk8++QS3bt0St4cMGYKBAwdKWBFR8RgAiYiIXtORI0ewYsUKcdvJyUljm0jfMAASERG9hsePH2PkyJEa+6KiouDo6ChRRUSvxgBIRET0GkJCQpCSkiJuf/jhh3jnnXckrIjo1RgAiYiIyigmJgarVq0St2vWrIlvvvlGwoqISoYBkIiIqAwePXqEESNGaOzbuHEjn5hFBoEBkIiIqAyCg4ORmpoqbn/00Ufo3r27hBURlRwDIBERUSkdOnQIERER4ra7uzu+/vprCSsiKh0GQCIiolJQqVQaXb8ymQybNm2CtbW1hFURlQ4DIBERUSlMmTIFd+7cEbenTZuGt956S8KKiEqPAZCIiKiEoqOjERkZKW7Xr18fc+bMkbAiorJhACQiIiqBzMxMjalfExMTbN26FZaWlhJWRVQ2DIBEREQlMGnSJKSlpYnbM2fOROvWrSWsiKjsGACJiIheYf/+/YiKihK3PTw88Pnnn0tXENFrYgAkIiJ6if9O/ZqZmWHr1q0wNzeXsCqi18MASERE9BITJkzAvXv3xO0FCxagadOmElZE9PoYAImIiIqxb98+bNiwQdz28vLClClTJKyISDsYAImIiF4gIyNDY+rXwsICW7ZsgampqYRVEWkHAyAREdELjB8/Hg8ePBC3lyxZgnr16klYEZH2MAASERH9xy+//ILNmzeL2x07dsS4ceMkrIhIuxgAiYiInpOeno4RI0aI21ZWVti0aRNMTPgrkyoO/ttMRET0nLFjxyI9PV3cXrFiBd544w0JKyLSPgZAIiKi/9m7dy9++OEHcbtHjx4YM2aMhBURlQ8GQCIiIgAPHz7U6PqtVKkSNmzYAJlMJmFVROWDAZCIiAhAQEAAMjIyxG2lUomaNWtKVxBROWIAJCIio7d7927s3LlT3H733XcxZMgQCSsiKl8MgEREZNQePHiAUaNGidu2trZYt26dhBURlT8GQCIiMmp+fn5QqVTi9vr16+Hk5CRhRUTljwGQiIiM1s6dO7Fnzx5xe9CgQejTp4+EFRHpBgMgEREZpfv372ss8eLo6IiIiAgJKyLSHQZAIiIySqNHj8ajR4/E7a1bt8LOzk7Cioh0hwGQiIiMzvbt2/HLL7+I26NGjYK3t7eEFRHpFgMgEREZlXv37mlM/VarVg3Lly+XsCIi3WMAJCIiozJixAg8efJE3N6xYwdsbGwkrIhI9xgAiYjIaGzZsgUHDhwQt8eNG4dOnTpJWBGRNGSCIAivepFKpYKdnR0yMzNha2uri7qIiIi06t9//0Xt2rWRlZUFAHB2dsaNGzdgZWUlcWVE2lGavMYRQCIiqvAEQcDQoUPF8Ac8ffwbwx8ZKwZAIiKq8DZu3IiYmBhxe8qUKWjTpo2EFRFJi1PARERUoaWlpaF27drIzs4GALi7u+PKlSuwsLCQuDIi7eIUMBEREZ5O/Q4aNEgMfzKZDD/99BPDHxk9BkAiIqqwoqKicOzYMXF7+vTpaNasmYQVEekHTgETEVGFdPfuXbi7uyM3NxcAUL9+fVy6dAmmpqYSV0ZUPjgFTERERk0QBAwYMEAMf6ampvj5558Z/oj+hwGQiIgqHKVSiRMnTojbc+bMQYMGDSSsiEi/cAqYiIgqlDt37sDd3R1qtRoA0LRpU1y4cAEmJhzzoIqNU8BERGSUBEFA3759xfBnZmaGn3/+meGP6D/4XwQRERm0UaNGQS6Xw9vbG99++y3++OMP8VhYWBjc3d2lK45IT3EKmIiIDFZmZibs7e1feKx169aIi4uDTCbTbVFEEuEUMBERGYW///77hftlMhm2b9/O8EdUDAZAIiIyWJcuXXrhfkEQ0KJFC6SkpOi4IiLDYCZ1AUREVLEIgoDbt28jPj5e/ElOTkZ2djZycnKgVqthYWEBKysryOVyuLm5wdPTE56envDy8oKzs3OJR+7OnTtX7LHHjx/jk08+waZNm7T10YgqDAZAIiJ6bYmJidi2bRvi4uIQHx+PtLQ0AEDVqlXh6emJzp07w9raGnK5HBYWFlCr1cjOzkZWVhZu3LiB8PBw3Lt3DwBQvXp1MQwOHjwYTZo0eel1iyOTyfDBBx9o94MSVRBsAiEiojLJy8vD7t27sXLlSsTGxsLR0RHt2rUTR/M8PT3h6upaotE8QRCQkpKiMWp4+vRpPHz4EF27dkVQUBD69u0Lc3NzjfNq1Kghhs3ntWrVCps3b0ajRo209nmJ9F1p8hoDIBERlUpKSgoiIiKwZs0a3L17F507d0ZQUBD69esHCwsLrV1HrVZj165dWLlyJX777TfUrFkT/v7+8Pf3h6urKwDA3Nwc+fn54jk1atTA2rVr0atXL63VQWQo2AVMRERap1KpMHbsWLi7u+Obb75B//79kZCQgKNHj2Lw4MFaDX8AYGFhgSFDhuDYsWO4cOEC+vbtiyVLlsDd3R1jx46FSqXCm2++CeDpdO/8+fNx+/Zthj+iEuAIIBERvVJ0dDQUCgXS09MxZ84c+Pn5SfL7QKVSITIyEjNnzoSDgwOUSiXefPNNyOVymJnxtnYybhwBJCIirVCpVAgICICvry8aNmyIixcvYvLkyZINBtja2mLy5MlISEhAgwYN4Ovri6lTpyIrK0uSeogMFQMgERG9UHR0NDw8PLBlyxaEh4cjOjoatWrVkrosAIC7uzsOHjyI8PBwbNmyBR4eHoiOjpa6LCKDwQBIRERFhIWFaYz6BQYG6t1TNWQyGQIDAzVGA8PCwqQui8ggMAASEZFIEAR8/vnnCAkJQWhoqF6N+hXn2WhgaGgoQkJCMH36dJTg9nYio8Y7ZomICMDT8Ddx4kQsW7YMS5YsweTJk6UuqcRkMhnmzp0LBwcHTJ06FY8fP8bSpUv1btSSSF8wABIREQAgNDQUy5Ytw+rVqxEQECB1OWUyZcoU2NjYIDAwEJUrV8a8efOkLolILzEAEhERwsLCsGDBAixevNhgw98zAQEBePToEYKDg2FnZ4dp06ZJXRKR3mEAJCIyctHR0eI9f1OmTJG6HK2YOnUq0tPTERISgpYtW8Lb21vqkoj0CheCJiIyYiqVCh4eHmjYsCGio6Mr1D1zgiCgZ8+euHbtGi5evMjfX1ThcSFoIiIqkeDgYKSnp0OpVFao8Ac8bQyJjIxEeno6p4GJ/oMBkIjISEVHR2PNmjVYtGiR3i/1Ulbu7u4ICwtDREQEDh48KHU5RHqDU8BEREaoIk/9/hengslYcAqYiIheKiQkpMJO/f7X81PBISEhUpdDpBcYAImIjExKSgqUSiXmzJlTYad+/8vd3R2zZ8+GUqnE7du3pS6HSHIMgERERmbNmjWQy+Xw8/OTuhSdUigUsLKywpo1a6QuhUhyDIBEREYkLy8PERERGDFihNHdC2dra4sRI0YgIiICeXl5UpdDJCkGQCIiI7J7927cvXsX48aNk7oUSYwbNw537tzBnj17pC6FSFLsAiYiMiLdunVDQUEBjh07JnUpkunUqRPMzc0RExMjdSlEWsUuYCIiKiIxMRGxsbEICgqSuhRJBQUF4ciRI7h06ZLUpRBJhgGQiMhIbNu2DY6Ojujfv7/UpUhqwIABcHBwwLZt26QuhUgyDIBEREYiLi4O7dq1g4WFhdSlSMrCwgLt2rVDXFyc1KUQSYYBkIjICAiCgPj4eHh6epbbNZKSkiCTySCTybBz584ix2fNmgWZTIb79++XWw0l5enpifj4eKnLIJIMAyARkRFITU1FWlpauQbA582ZMwcl6DGUjKenJ+7evYvU1FSpSyGSBAMgEZEReDbdqYsA2LJlS1y4cAE//vhjmc7PysrSckVFPfseOA1MxooBkIjICMTHx6Nq1apwdXV96eueTdNevXoVw4cPh52dHapWrYoZM2ZAEAQkJyejT58+sLW1RY0aNbB48eIi7zFkyBA0aNCgRKOAXbt2hYeHB+Lj49G5c2dYW1vj888/F6eTFy1ahBUrVqBOnTqwtraGj48PkpOTIQgC5s6dC1dXV8jlcvTp0wcPHz4s8ffh5uYGJycnTgOT0WIAJCIyAs/u/5PJZCV6/eDBg1FYWIivvvoK7dq1w7x587B06VJ4e3vDxcUFX3/9NerVq4fg4OAiawqampoiNDQUf/75Z4lGAR88eIBevXqhZcuWWLp0Kbp16yYe27RpE1auXIkJEyZg6tSpOHr0KAYNGoTQ0FDs378fn3zyCQICArB3714EBweX+PuQyWS8D5CMmpnUBRARUflLTk5G586dS/z6tm3bYvXq1QCAgIAAuLu7Y+rUqfjyyy/xySefAACGDh0KZ2dnrF27tsh7Dxs2DHPnzsWcOXPQr1+/lwbPu3fvIjw8HIGBgeK+pKQkAMDt27dx7do12NnZAQAKCgrw5ZdfIjs7G3FxcTAze/pr7N69e9i0aRNWrVoFS0vLEn3GevXq4bfffivZF0JUwXAEkIjICGRnZ8Pa2rrEr1coFOI/m5qawsvLC4IgwM/PT9xvb2+Phg0b4ubNm0XOf34UcPfu3S+9lqWlJcaMGfPCY++//74Y/gCgXbt2AIDhw4eL4e/ZfrVajdu3b5fo8wGAXC5HdnZ2iV9PVJEwABIRGYGcnBzI5fISv/6NN97Q2Lazs4OVlRWcnJyK7E9PT3/he3zwwQeoV6/eK+8FdHFxKXZtwhfVATy9h+9F+4ur5UXkcjlycnJK/HqiioQBkIjICKjV6lItAG1qalqifQCKDXfPRgHPnz+PPXv2FHutlwXT4q5Z2lpexMLCArm5uSV+PVFFwgBIRGQELCwsoFardX7d4cOHo169epg9e7berQuoVqtLfL8gUUXDJhAiIiNgZWUlyf1uz0YBR48erfNrv0p2djasrKykLoNIEhwBJCIyAnK5XCcLLL/IBx98gLp16+L8+fOSXL842dnZpbovkqgiYQAkIjICbm5uuHHjhiTXNjMzQ2hoqCTXfpnr168XaSYhMhYyoQQ3ZahUKtjZ2SEzMxO2tra6qIuIiLRo5syZCA8PR1paWokXg67IBEFAtWrVEBQUhNmzZ0tdDpFWlCavcQSQiMgIeHp64t69e0hJSZG6FL2QnJyM+/fv6+TZyET6iAGQiMgIeHl5AQAfffY/z76HZ98LkbFhACQiMgLOzs6oXr06A+D/xMfHo0aNGnB2dpa6FCJJMAASERkBmUwGT09PBsD/iY+P5/QvGTUGQCIiI+Hl5YXTp09LsiC0PsnNzcXp06c5/UtGjQGQiKiCEwQBp06dwpUrV/Dw4UPs2rVL6pIktWvXLqSnp2Pw4MFSl0IkGS4DQ0RUQd2/fx8bN26EUqnEX3/9BQAwMTHBm2++iePHj0tcnXQ6deoEc3NzxMTESF0KkVaVJq/xUXBERBVIYWEhDh8+DKVSid27dxeZ7q1UqRJ+//13JCQkoFmzZhJVKZ0LFy7g+PHj2L59u9SlEEmKU8BERBVAcnIy5s6di7p168LHxwc//PCDRvjr2LEjoqKi8M8//6BGjRpYtWqVhNVKZ9WqVahZsyb69OkjdSlEkuIIIBGRgVKr1fj555+hVCpx4MABFBYWahyvWrUqRo0aBT8/PzRq1EjcHxAQgCVLluCrr74yqtt6VCoVNmzYgODgYJibm0tdDpGkOAJIRGRgLl++jGnTpsHV1RUDBgzAr7/+KoY/mUyGXr16YefOnUhJSUFYWJhG+AMAf39/ZGdnIzIyUoryJaNUKpGTkwN/f3+pSyGSHEcAiYgMwJMnT7B9+3ZERka+sIGjVq1a8PPzw+jRo+Hm5vbS93J1dYVCocDMmTPRr18/uLu7l1PV+iMpKQlffPEFFAoFXFxcpC6HSHLsAiYi0lOCICA+Ph5KpRKbN2/Go0ePNI5bWFigb9++UCgU6NGjB0xMSj6po1Kp4OHhgQYNGuDgwYOQyWTaLl9vCIKAnj174vr160hISODvMaqw2AVMRGTAHj58iE2bNkGpVOLChQtFjjdt2hQKhQLDhw+Hk5NTma5ha2sLpVIJX19fREREIDAw8HXL1lurV69GTEwMoqOjGf6I/ocjgEREeqCwsBCxsbGIjIzEzp07kZubq3G8UqVKGDp0KPz8/NCuXTutjdgFBARgy5YtSEhIqJBTwUlJSWjWrBmGDRuG1atXS10OUbkqTV5jACQiklBqaiqioqIQGRmJmzdvFjnevn17KBQKDBo0CJUrV9b69SvyVDCnfsnYcAqYiEiP5eXlYd++fVAqldi3b1+R5VuqVKmCkSNHws/PD02bNi3XWp6fCp45cybmzp1brtfTpRkzZnDql6gYDIBERDpy7do1REZGIioqCmlpaRrHZDIZvL294efnhz59+sDS0lJndfn4+GDhwoUICQmBg4MDpkyZorNrl5fFixdj/vz5CAsLg7e3t9TlEOkdBkAionKUlZWFnTt3IjIyEkePHi1y3M3NDWPGjMGYMWMkvQdv2rRpyMjIwNSpU2FjY4OAgADJanldERERCA4OxvTp0xEcHCx1OUR6iQGQiKgcnDt3DkqlEps2bUJmZqbGMTMzM/Tp0wcKhQLe3t4wNTWVqEpN8+bNw6NHjxAYGIjHjx8b5Ejg4sWLERwcjI8//rhCTWcTaRsDIBGRlmRkZGDz5s1QKpU4d+5ckeONGjWCQqHAiBEjUK1aNQkqfDmZTIZvv/0WlStXxtSpU5Geno45c+YYRGOIIAiYMWMG5s+fj+nTp2Pu3LkGUTeRVBgAiYhegyAIOHbsGCIjI7F9+3bk5ORoHLe2tsagQYOgUCjw1ltv6X0okclkmD9/Puzt7RESEoKTJ08iMjIStWrVkrq0YiUlJcHPzw8xMTFYuHAhpk2bJnVJRHqPAZCIqAzu3r2L77//HpGRkbh27VqR423atIFCocCQIUMMsgN12rRpaNmyJfz8/ODh4YFFixYhICBArwKsIAhYvXo1pk2bBgcHB0RHR7Phg6iEuA4gEVEJ5efnY//+/VAqlfj5559RUFCgcdzBwQEjRoyAn58fmjdvLlGV2qVSqTBt2jRERESgR48eejMa+PyoX0BAAMLCwvj7iYweF4ImItKiGzduYO3atYiKikJqamqR4927d4dCoUC/fv1gZWUlQYXl7+DBg/Dz80N6ejpmz54NhUIhye8DlUoFpVKJL774Ag4ODoiMjOSoH9H/MAASEb2mnJwc/Pjjj1AqlYiJiSly3NnZGWPGjMGHH36IOnXqSFCh7qlUKoSEhECpVEIul2PEiBEYN24cmjVrVu7XTkhIwMqVK7Fhwwbk5ORAoVBg4cKF/J1E9BwGQCKiMrpw4QKUSiU2btyI9PR0jWOmpqbo3bs3/Pz88H//938wMzPO26hTUlKwZs0arFmzBnfu3EGnTp0QFBSE/v37w8LCQmvXUavV2LlzJ1auXInjx4+jZs2aCAgIgL+/P1xcXLR2HaKKggGQiKgUVCoVtmzZgsjISJw5c6bI8Xr16kGhUGDUqFGoUaOGBBXqp7y8POzZswcrV67EkSNH4OjoiLZt28LT01P8cXNzK1HjiCAISE5ORnx8POLj43HmzBmcOXMG6enp6NatG4KCgtCnTx+Ym5vr4JMRGSYGQCKiVxAEASdOnIBSqcQPP/yArKwsjeNWVlZ4//33oVAo0KlTJ73qftVHiYmJ+OGHHxAXF4f4+HjcvXsXAODk5ARPT0/Uq1cPcrkccrkcFhYWUKvVyM7ORnZ2Nq5fv474+Hjcv38fwNOFsgsKCtC/f3/MmTMHTZo0kfKjERmM0uQ145y/ICKj9e+//2L9+vVQKpW4cuVKkeOtW7eGn58fhg0bBnt7e90XaKCaNGmCWbNmAXgarlNTU8XRvPj4ePz222/Izs5GTk4OcnNzYWlpCSsrK8jlcri5uSEoKAienp7IysrC0KFDAQD29vYMf0TlhCOARFThFRQUIDo6GkqlEj/99BPy8/M1jtvZ2eGDDz6An58fWrduLVGVBADZ2dlwdHRETk4O3NzccOvWLY6+EpUQRwCJiPB0rbi1a9di3bp1SElJKXK8S5cuUCgU6N+/P6ytrSWokP5LLpejU6dOOHjwIJKTk3H16lU0bNhQ6rKIKhwGQCKqUHJzc7Fnzx4olUocOnQI/53kqF69OkaPHo0PP/wQDRo0kKhKehkfHx8cPHgQABAdHc0ASFQOGACJqEK4ePEiIiMjsWHDBjx48EDjmImJCd5++20oFAq8/fbb7CTVc88v7BwdHY0JEyZIWA1RxcQASEQG69GjR9i2bRsiIyNx6tSpIsfr1KkDPz8/jBo1iuvGGZBmzZqhevXqSEtLQ2xsLNRqtVbXFyQiBkAiMjCCIOD06dNQKpXYunUrnjx5onHc0tISAwYMgEKhQJcuXWBiYiJRpVRWJiYm6NmzJzZt2oTHjx/j1KlT6Ny5s9RlEVUoDIBEZBDu37+PDRs2QKlUIjExscjx5s2bQ6FQ4IMPPoCjo6MEFZI2+fj4YNOmTQCePoeYAZBIuxgAiUhvFRYW4tChQ1Aqldi9ezfy8vI0jleuXBnDhg2Dn58fvLy8uFxIBfLf+wDnzp0rYTVEFQ8DIBHpneTkZKxbtw5r167FrVu3ihzv2LEjFAoFBg4ciEqVKklQIZW3mjVrwsPDAxcvXkRcXBwePnzIkV0iLWIAJCK9oFarsXfvXiiVShw4cKDI8i1Vq1bFqFGj4Ofnh0aNGklUJemSj48PLl68iMLCQsTExGDgwIFSl0RUYfDuaCKS1KVLlxAcHAxXV1cMHDgQ+/fvF8OfTCZDr169sHPnTqSkpCAsLIzhz4g8Pw38bF1AItIOjgASkc49efIE27dvh1KpxO+//17keK1ateDn54fRo0fDzc1NggpJH3Tu3BkWFhZQq9WIjo6GIAi8z5NISxgASS9cu3YNjx49kroMvVO5cmXUr19f6jK0QhAExMXFQalUYsuWLUX+/7awsEDfvn2hUCjQo0cPLt9CsLa2RseOHRETE4OkpCTcuHED9erVk7osogqBAZAkd+3aNT6S6yWuXr1q0CHw4cOH2LhxIyIjI3HhwoUix5s2bQqFQoHhw4fDyclJggpJn/n4+CAmJgbA025gBkAi7WAAJMk9GwnauHEjGjduLHE1+uPSpUsYPny4QY6MFhYW4siRI4iMjMSuXbuQm5urcbxSpUoYOnQoFAoF2rZty2k9Kpa3tzc+/fRTAE/vAwwKCpK4IqKKgQGQ9Ebjxo3RunVrqcug13D79m1ERUUhMjISf//9d5Hjb775Jvz8/DBo0CBUrlxZggrJ0LRs2RJOTk64f/8+YmJikJ+fDzMz/uoiel38r4iIXkteXh5++eUXKJVK/PrrrygsLNQ4XqVKFYwcORJ+fn5o2rSpRFWSoXr2WLitW7dCpVLhjz/+wFtvvSV1WUQGjwGQiMrk6tWriIyMxPfff4+0tDSNYzKZDN7e3lAoFHjvvfdgaWkpUZVUEfj4+GDr1q0Ant4HyABI9PoYAImoxLKysrBz504olUocO3asyHE3NzeMGTMGY8aMgbu7u+4LpArpv4+FmzVrlnTFEFUQDIBE9Epnz56FUqnEpk2boFKpNI6ZmZmhT58+UCgU8Pb2hqmpqURVUkXl6uqKxo0b49KlS/jjjz+QkZEBe3t7qcsiMmgMgET0Qunp6di8eTMiIyNx7ty5IscbNWoEhUKBESNGoFq1ahJUSMbEx8cHly5dQkFBAY4cOYJ+/fpJXRKRQeNKq0QkEgQBsbGxGDFiBJydnfHRRx9phD9ra2uMGTMGv//+OxITEzF16lSGP9IJPhaOSLs4AkhEuHPnDr7//ntERkbi+vXrRY63bdsWfn5+GDJkCGxtbSWokIxdly5dYG5ujry8PERHR0tdDpHBYwAkMlL5+fn49ddfoVQq8csvv6CgoEDjuIODA0aMGAE/Pz80b95coiqJnrKxscFbb72Fo0eP4saNG7h58ybq1KkjdVlEBosBkMjI3LhxA2vXrsW6detw586dIsd79OgBhUKBvn37wsrKSoIKiV7Mx8cHR48eBfB0GjgwMFDiiogMF+8BJDICOTk52Lx5M7p374569ephwYIFGuHP2dkZ06dPx40bN3Do0CEMGTKE4Y/0Du8DJNIejgASVWB//vmnuHxLenq6xjFTU1P07t0bCoUCvr6+fLwW6b3WrVvD0dERDx8+xOHDh1FQUMBlh4jKiH/iE1UwmZmZ2Lp1K5RKJeLi4oocr1+/PhQKBUaOHIkaNWpIUCFR2ZiamqJHjx7Yvn07MjIyEBcXh3bt2kldFpFB4hQwkYHIzc1FVFQUTp8+XeSYIAg4fvw4Ro8ejZo1a2Ls2LEa4U8ul2PEiBE4evQorly5gpCQEIY/Mkg+Pj7iP7MbmKjsOAJIZADy8vLQp08fHDhwAFZWVrh06RLc3d2RlpaG9evXIzIyEleuXClyXuvWraFQKDB06FA+OYEqhP8+Fm7GjBkSVkNkuBgAifRcYWEhPvzwQxw4cADA04aOzz77DLm5udi7dy/y8/M1Xm9nZ4fhw4fDz88PrVq1kqJkonJTq1YtNGjQAFevXsWpU6fw6NEjVK5cWeqyiAwOAyCRnvvuu++wceNGjX1bt24t8rquXbvCz88PAwYMgFwu11V5RDrn7e2Nq1evIj8/H7Gxsejdu7fUJREZHN4DSKTnNmzYUOyxGjVq4NNPP8XVq1dx5MgRDB8+nOGPKjzeB0j0+jgCSGSg2rdvj2PHjsHc3FzqUoh0qmvXrjAzM0N+fj4DIFEZcQSQyEDFxcUhKytL6jKIdM7W1hbt27cHAFy9ehW3bt2SuCIiw8MASKTnZDLZC/dbWFgUeX4vkbF4fhqYTwUhKj0GQCI9d+bMGTx8+BCJiYk4cuQItmzZgmXLluH48eNwdHSUujwiSfCxcESvh/cAEuk5mUwGBwcHODg4oHHjxlKXQ6QXvLy8YG9vj4yMDBw6dIiPhSMqJY4AEhGRwTEzM0P37t0BAA8fPsS5c+ckrojIsDAAEhGRQeJyMERlxwBIFV5sbCxkMhlkMhni4+OLHB89ejRsbGwkqIyIXgfvAyQqOwZAMiqzZs2SugQi0pI6deqgbt26AIDff/8djx8/lrgiIsPBAEhGo2XLlvj5559x9uzZUp8rCAKys7PLoSoieh3PpoHz8vJw9OhRiashMhwMgFQh3L59G35+fnB2doalpSVq166NcePGQa1Wi6+ZMGECHBwcSjQK6O7ujnfffRcHDhyAl5cX5HI5Vq9eLU4n//DDD5g9ezZcXFxQuXJlDBw4EJmZmcjNzcWkSZNQrVo12NjYYMyYMcjNzS3HT05k3DgNTFQ2XAaGDF5qairatm2LjIwMBAQEoFGjRrh9+zZ27Nih8aQMW1tbTJ48GTNnzsTZs2fRunXrl77vlStXMHToUAQGBsLf3x8NGzYUj3355ZeQy+X49NNPcf36dSxbtgzm5uYwMTFBeno6Zs2ahVOnTiEqKgq1a9fGzJkzy+3zExmzbt26wdTUFAUFBWwEISoFBkAyeJ999hnu3r2L06dPw8vLS9w/Z84cCIKg8dqPP/4Y33zzDWbPno09e/a89H2vX7+O/fv3w9fXV9wXGxsLAMjPz8fRo0fF5/Deu3cPW7duxf/93/9h3759AICgoCBcv34da9euZQAkKif29vZo27YtTp48iUuXLiElJQWurq5Sl0Wk9zgFTAatsLAQu3fvRu/evTXC3zP/fYyanZ0dJk2ahJ9++umV64bVrl1bI/w9b+TIkWL4A4B27dpBEAR8+OGHGq9r164dkpOTkZ+fX9KPRESlxMfCEZUeAyAZtHv37kGlUsHDw6PE50ycOBH29vavvBewdu3axR574403NLbt7OwAAG5ubkX2FxYWIjMzs8T1EVHp8D5AotJjACSjU9JRQLlcXuyx4h45Vdz+/05FE5H2tG3bFra2tgCeBsDCwkKJKyLSfwyAZNCqVq0KW1tbXLx4sVTnTZo0Cfb29pg9e3Y5VUZEumJubo5u3boBAO7fv48///xT4oqI9B8DIBk0ExMT9O3bF3v37kVcXFyR48WNvD0bBdyzZw/Onz9fzlUSUXnjY+GISocBkAzeggULUK1aNXTp0gWTJ09GREQEZs+eDQ8Pj5feezdx4kTY2dlxtICoAuB9gESlwwBIBs/FxQWnT5/GwIEDsWnTJnz88cdYv349unbtCmtr62LPs7e3x6RJk3RXKBGVm3r16sHd3R0A8Ntvv2msAUpERcmEEtydrlKpYGdnh8zMTPFGWyJtOXv2LDw9PREfH//KxZmNybPvZevWrejfv7/GsjNEVFRgYCAiIiIAAGPGjEFqaiqqVq2KVatWwcbGRuLqiMpfafIaF4Im0nNDhgyBpaUlmjVrhtatW6NVq1Zo3bo1mjVr9tJOZSJjkZ+fjy1btuCvv/4S961bt0785379+qF///5SlEaktxgAiQxAbm4u4uLiNBpdTE1N0bhxY41Q2LJlS47Sk9H57LPPsGjRomKPV61aVYfVEBkGBkAiPefr64ukpCRcvXpVo6u5oKAAFy9exMWLF7F+/Xpxf7169dC6dWsxGLZq1Yq/AKlCU6vVxR6TyWRo1aqVDqshMgwMgER6bsGCBWjdujUeP36MP//8E2fPnsW5c+dw9uxZ/PXXX0UeM3f9+nVcv34dP/zwg7jPzc1NHCV89r8uLi5FHpVHZIhmzZqFw4cPa0wBP9OoUSPe/0f0AgyARAbCxsYGHTp0QIcOHcR9OTk5+Ouvv3D27FkxGP7555/IycnRODc5ORnJycn46aefxH1Vq1YVw+CzYFinTh2YmHBxADIsDg4O+PXXX/Hmm2/i9u3bGsde9IxwImIAJDJoVlZW8PT0hKenp7gvPz8fly9fFkcJz507h3PnzkGlUmmce+/ePURHR2ssmmtraytOGz8LhY0aNYKZGf+oIP3m5uaG/fv3o2PHjhrrf3JlAaIX45/qRBWMmZkZPDw84OHhgREjRgAACgsLcfPmTTEUPvu5f/++xrkqlQpHjx7F0aNHxX1WVlZo0aKFxmihh4cHLC0tdfq5iF7Fw8MDe/bsQffu3cXnAdetW1fiqoj0EwMgkREwMTFBvXr1UK9ePbz//vsAnj4m7/bt2xr3FJ47dw7Jycka5+bk5OD06dM4ffq0uM/MzAxNmzbVuKewRYsWvNeKJNelSxd89dVX+PTTT1GlShX06tVL6pKI9BIXgibJcSHoF5Pqe7l37544bfxspPD69euvPE8mk6FBgwYaobBVq1ZwdHTUQdVEmgRBEJucnv1lJz4+XvxJTk5GdnY2cnJyoFarYWFhASsrK8jlcri5uYm3Vnh5ecHZ2ZkNU2QQuBA0EZVZ1apV4ePjAx8fH3GfSqXC+fPnNUYLL126hIKCAvE1giDgypUruHLlCrZs2SLur1WrlkajSevWrVGzZk2dfiYyPpcuXcK2bdsQFxeH+Ph4pKWlAXj677enpyc6d+4Ma2tryOVyWFhYQK1WIzs7G1lZWbhx4wbCw8Nx7949AED16tXFMDh48GA0adJEyo9GpBUMgET0Sra2tujcuTM6d+4s7svOzkZCQoJGKLxw4UKRNdlu3bqFW7du4ccffxT3Va9evUgodHd35ygLvZa8vDzs3r0bK1euRGxsLBwdHdGuXTv4+/uLI3qurq4l+vdMEASkpKRojBouX74cc+bMQdeuXREUFIS+ffvyEY1ksBgAiahM5HI52rZti7Zt24r78vLycOnSJY1lac6dO4cnT55onJuWloZff/0Vv/76q7jP3t6+yLI0DRo0gKmpqc4+ExmmlJQUREREYM2aNbh79y46d+6MrVu3ol+/frCwsCjTe8pkMri5ucHNzQ19+/YF8HTB6V27dmHlypUYNGgQatasCX9/f/j7+8PV1VWLn4io/PEeQJIc7wF8sYryvRQWFuLatWsajSZnz57Fw4cPX3mutbU1WrRooREKmzZtWuZf6lSxqFQqhISEQKlUQi6XY+TIkRg3bhw8PDzK/doJCQlYtWoVNmzYgOzsbCgUCixcuJC/I0lSpclrDIAkuYoSdLStIn8vgiDgn3/+0Wg0OXfuHFJTU195rrm5OZo1a6YxWti8eXNYW1vroHLSF9HR0VAoFEhPT8ecOXPg5+cnye8nlUqFyMhIzJw5Ew4ODlAqlRr3zxLpEgMgGZSKHHRehzF+L3fv3i3Sgfz333+/8jwTExM0atRI457Cli1bwt7evvyLJp1SqVQIDg7GmjVr0LNnTyiVStSqVUvqspCUlASFQoHDhw/D398fixYt4u9L0jl2ARORQapRowZ69eqlsXZbeno6zp8/rxEKr1y5Ii70CzydZk5MTERiYiI2btwo7q9Tp06RZWmqV6+u089E2vP8qF94eDgCAgL0pnHI3d0dBw8eREREBIKDg7F//36OBpJeYwAkIr3m4OCAbt26oVu3buK+J0+e4MKFCxr3FF68eBF5eXka5968eRM3b97Ejh07xH3Ozs5FOpDd3Nz0JkjQi4WFhSEkJESvRv3+SyaTITAwEL6+vlAoFPD19cXChQsxbdo0qUsjKoIBkIgMTqVKlfDmm2/izTffFPep1Wr89ddfGvcUnj9/HtnZ2RrnpqamIjU1FT///LO4z9HRsUgorFevHkxMTHT2mejFBEHA9OnT8eWXXyI0NBRz5szR+7D+bDRw5syZCAkJQUZGBubNm6f3dZNxYQAkogrBwsICrVq1QqtWreDn5wcAKCgowNWrVzVC4dmzZ5GZmalx7sOHD3Ho0CEcOnRI3GdjY4OWLVtqBMPGjRtz3TcdEgQBEydOxLJly7BkyRJMnjxZ6pJKTCaTYe7cuXBwcMDUqVPx+PFjLF26lCGQ9AYDIBFVWKampmjcuDEaN26MDz74AMDTUPH3339rLEsTHx+Pf//9V+Pcx48f4/jx4zh+/Li4z9LSEs2bN9foQG7WrBmsrKx0+rmMRWhoKJYtW4bVq1cjICBA6nLKZMqUKbCxsUFgYCAqV66MefPmSV0SEQAGQCIyMjKZDHXq1EGdOnUwYMAAAE9D4Z07dzRGCc+dO4dbt25pnJubm4szZ87gzJkz4j5TU1M0adKkSAdy5cqVdfq5KpqwsDAsWLAAixcvNtjw90xAQAAePXqE4OBg2NnZ8Z5A0gsMgERk9GQyGZydneHs7Ix3331X3P/gwYMiy9Jcu3YNz6+eVVBQgISEBCQkJOD7778X99evX79IB7KTk5NOP5ehio6ORkhICEJDQzFlyhSpy9GKqVOnIj09HSEhIWjZsiW8vb2lLomMHNcBJMmdPHkSb731llGtd1cSxrgOoCF49OgR/vzzT43Rwr/++gsFBQWvPNfNza1Is4mzszPvC3uOSqWCh4cHGjZsiOjo6Ar13QiCgJ49e+LatWu4ePEif5+S1nEdQDIY9+7dw9ixY6Uug6jEKleujI4dO6Jjx47ivpycHFy8eFGj2eTPP/9Ebm6uxrnJyclITk7Gnj17xH3VqlUr8gzkOnXqVKjgUxrBwcFIT0+HUqmscN+BTCZDZGQkmjVrhmnTpmH16tVSl0RGjAGQJHPlyhW8/fbbuHnzptSlEL0WKysreHl5wcvLS9yXn5+Py5cva4TCc+fO4dGjRxrn/vvvvzhw4AAOHDgg7rOzsyvSgdywYUOYmVXsP7Kjo6OxZs0ahIeH6+U6f9rg7u6OsLAwjBs3DgMHDuRUMEmGU8AkidjYWPTv3x/p6eniPk51auIUcMVTWFiIGzduaNxTePbsWTx48OCV58rlcrRo0UJjtLBp06awtLTUQeXlryJP/f4Xp4KpvHAKmPTa+vXroVAoxKc21KtXD9evX5e4KqLyZ2Jigvr166N+/foYNGgQgKdhICUlReOewrNnz+L27dsa52ZnZ+PUqVM4deqUuM/c3BxNmzbVuKewRYsWqFSpkk4/lzaEhIRU2Knf/3p+KjgkJATh4eFSl0RGiAGQdEYQBMyaNQtz5swR9/Xq1QufffYZOnfuLGFlRNKRyWRwc3ODm5sb+vTpI+7/999/NZakOXv2LG7cuKFxbl5eHs6fP4/z589rvF/Dhg01po9btWoFBwcHXX2kUktJSYFSqURYWFiFnfr9L3d3d8yePRshISGYMWMGXFxcpC6JjAwDIOlEbm4uPvzwQ2zevFncFxQUhG+//RYXLlwAAFy6dEmq8vQSvw/jVq1aNfj6+sLX11fcl5mZifPnz2uEwkuXLqGwsFB8jSAIuHz5Mi5fvqzx35u7u3uRDuQaNWro9DMVZ82aNZDL5eITXIyFQqHAzJkzsWbNGsyaNUvqcsjI8B5AKnf3799Hv379xCcqyGQyLFmyBBMnToRMJsO1a9fQoEEDiavUX1evXkX9+vWlLoP0VFZWFhISEjSaTRISEqBWq195bs2aNYt0INeqVUunU7B5eXl444030K9fP6xcuVJn19UX48aNw549e3Dr1i0+ZpBeW2nyGgMglaurV6/inXfeEe/xs7a2xubNmzWmugDg2rVrRboj6emSIwx/VFpqtRqJiYka9xT++eefePLkySvPdXBwKLKAdf369WFqalqqGm7dugUXF5dXdi5v374dgwYNwoULF9CsWbNSXaMiuHDhAlq0aIHt27dj4MCBUpdDBo4BkPTCsWPH0K9fPzx8+BAAUKNGDezdu1djqQwi0o2CggJcu3ZNIxSeO3dOoxO/OJUqVULLli01RgubNGlS7IjV119/jU8//RT16tXD9u3b0bJly2Lfu1u3bigoKMCxY8fK+tEMXqdOnWBubo6YmBipSyEDxwBIktu4cSM+/PBDsdPXw8MDv/zyC9544w2JKyOiZwRBwK1bt4p0IN+9e/eV51pYWKBZs2Yao4XNmzeHXC5HkyZNxHtYLS0tsWLFihfe35eYmIimTZtiy5YtGDJkiNY/n6HYsmULhg0bhsTERDRu3FjqcsiAMQCSZARBwJw5czRuaPbx8cH27dv57w6Rgbhz506RDuSkpKRXnmdiYoKGDRu+sIFpzJgxWLFiBeRyubjviy++wPLly3Hnzh1YWFho8yMYFLVajRo1auDjjz9mMwi9FgZAkkRubi4UCgU2btwo7gsMDMSyZct4czORgXv48GGRDuQrV66gBL9CRDVr1sQvv/yCVq1aAQDeeecdCIKAffv2lVfZBqNXr14wNTXFzz//LHUpZMBKk9dMdFQTVXAPHz6Ej4+PGP5kMhnCwsKwatUqhj+iCsDR0RHdu3dHcHAwNm3ahEuXLkGlUuH333/HsmXLMGbMGLRs2RImJsX/Wrlz5w66dOkC4OlsQXx8PDw9PbVea2xsLGQyGWQyGeLj44scHz16NGxsbLR+3dfx7Kk/RLrCAEiv7fr163jzzTfFm7jlcjl27NiB4ODgCr+iP5Exs7GxwVtvvYWPPvoIa9euxblz5zBixIiXnvPsL4SpqalIS0srlwD4PEOZUvX09MTdu3eRmpoqdSlkJBgA6bX8/vvvaN++Pa5evQrg6eK1z57zS0TGJzk5uci+SpUqoUuXLhg/fjwSEhIAAHFxcQBQrgGwZcuW+Pnnn3H27NlSnysIArKzs8uhqhd79j08+16IyhsDIJXZli1b0L17d/FB9k2aNMHp06fRtm1biSsjIqmMGDECdnZ2aN68OaZNm4bDhw/jwYMHiI2NxfLly+Hs7AwAiI+PR9WqVeHq6lri97516xaCgoLQsGFDyOVyVKlSBe+//36xDSoTJkyAg4NDiUYB3d3d8e677+LAgQPw8vKCXC7H6tWrxenkH374AbNnz4aLiwsqV66MgQMHIjMzE7m5uZg0aRKqVasGGxsbjBkzBrm5uSX+TM+4ubnBycmJ08CkM3wUHJWaIAhYsGABQkNDxX3e3t7Yvn077OzsJKyMiKQ2evRojB49+pWve3b/X2luEzlz5gxOnDiBIUOGwNXVFUlJSVi1ahW6du2KxMREWFtba7ze1tYWkydPxsyZM3H27Fm0bt36pe9/5coVDB06FIGBgfD390fDhg3FY19++SXkcjk+/fRTXL9+XWxuMzExQXp6OmbNmoVTp04hKioKtWvXxsyZM0v8uYCn903zPkDSKaEEMjMzBQBCZmZmSV5OFVhubq4watQoAYD4o1AoBLVaLXVpRGRAmjVrJowfP75U52RlZRXZd/LkSQGAsH79enHfkSNHBADC9u3bhYyMDMHBwUF47733xOOjRo0SKlWqpPE+tWrVEgAI+/fv19j/7L08PDw0/pwbOnSoIJPJhF69emm8/s033xRq1apVqs/1zPjx44XmzZuX6VwiQShdXuMUMJVYeno6fH198f3334v7vv76a0RERLDTl4hKJTs7u8iI3as8v4ZgXl4eHjx4gHr16sHe3r7Y+/zs7OwwadIk/PTTTzh37txL37927drw9fV94bGRI0dq/DnXrl07CIKADz/8UON17dq1Q3JyMvLz80v6sURyuVyn9x2ScWMApBK5efMm3nzzTcTGxgIArKyssH37doSEhLDTl4hKLScnRyPQlUR2djZmzpwJNzc3WFpawsnJCVWrVkVGRgYyMzOLPW/ixImwt7d/5b2AtWvXLvbYf59i9Ox2Fzc3tyL7CwsLX1pPceRyOXJyckp9HlFZ8B5AeqUTJ06gT58+uH//PgCgatWq+Omnn9C+fXuJKyMiQ6VWq0v99I8JEyZg3bp1mDRpEt58803Y2dlBJpNhyJAhKCwsLPa8Z6OAs2bNeuko4MsCqampaan2C6VYIPsZCwuLMjWQEJUFAyC91LZt2zBq1CjxD6VGjRph3759L/2bMhHRq1hYWECtVpfqnB07dmDUqFFYvHixuC8nJwcZGRmvPHfSpElYunQpZs+eDXt7+1JWqxtqtRqWlpZSl0FGglPA9EKCIODLL7/EkCFDxPDXvXt3nDhxguGPiF6blZVVqe93MzU1LTKytmzZMhQUFLzy3GejgHv27MH58+dLdV1dyc7OhpWVldRlkJHgCCAVkZeXh7Fjx2Lt2rXivjFjxiA8PNyoH9hORNojl8uRlZVVqnPeffddbNiwAXZ2dmjSpAlOnjyJQ4cOoUqVKiU6f+LEifjmm2/w559/olKlSmUpu1xlZ2eX+r5IorLiCCBpyMjIQK9evTTC34IFCxAZGcnwR0Ra4+bmhhs3bpTqnG+//RYjR47Epk2bMHXqVNy5cweHDh0q8XN97e3tMWnSpDJUqxvXr18v0lRCVF5kQgnuVFWpVLCzs0NmZiZsbW11URdJ4O+//8Y777yDS5cuAQAsLS3x/fffY/DgwRJXRkQVzcyZMxEeHo60tDSuJICnt91Uq1YNQUFBmD17ttTlkIEqTV7jCCABAE6fPo327duL4c/JyQkxMTEMf0RULjw9PXHv3j2kpKRIXYpeSE5Oxv3798v12chEz2MAJOzYsQNdu3bFv//+CwBo2LAhTp06hbfeekviyoioovLy8gIAPvrsf559D8++F6LyxgBoxARBwMKFC/H++++Li4927doVJ0+eRN26dSWujogqMmdnZ1SvXp0B8H/i4+NRo0YNODs7S10KGQkGQCOVl5eHwMBAfPLJJ+K+kSNH4sCBA3BwcJCwMiIyBjKZDJ6engyA/xMfH8/pX9IpBkAjlJmZiXfeeQdr1qwR982dOxdRUVHs9CUinfHy8sLp06dLvSB0RZObm4vTp09z+pd0igHQyNy6dQsdOnTAwYMHATxdjX/Tpk0IDQ1lJx4R6dTgwYPx8OFD7Nq1S+pSJLVr1y6kp6ez6Y50isvAGJEzZ86gd+/eSEtLAwBUqVIFu3fvRseOHSWujIiMVbdu3VBQUIBjx45JXYpkOnXqBHNzc8TExEhdChk4LgNDRfz444/o0qWLGP7q16+PU6dOMfwRkaSCgoLw22+/ISEhQepSJHHhwgUcP34cQUFBUpdCRoYBsIITBAGLFy/GgAEDxOdudu7cGSdPnkS9evUkro6IjF3fvn1Ro0YNrFq1SupSJLFq1SrUrFkTffr0kboUMjIMgBVYfn4+goKCEBwcLD5Affjw4YiOji7xszOJiMqTubk5AgICsGHDBqhUKqnL0SmVSoUNGzYgICAA5ubmUpdDRsaoA6AgCLh06RJKcBukwVGpVOjduzfCw8PFfbNmzcL69ethaWkpYWVERJr8/f2RnZ2NyMhIqUvRKaVSiZycHPj7+0tdChkhow6A69evR5MmTbB+/XqpS9Gq5ORkdOzYEfv37wfw9G/YGzZswBdffMFOXyLSO66urlAoFJg5cyaSkpKkLkcnkpKS8MUXX0ChUMDFxUXqcsgIGW0XcEZGBho0aIBHjx7B1tYWV65cgb29vdRlvbb4+Hj07t0bd+7cAQA4Ojrixx9/ROfOnSWujIioeCqVCh4eHmjQoAEOHjxYof+yKggCevbsievXryMhIaHC/F4l6bELuARmzJiB7Oxs/Pbbb8jKysLMmTOlLum17dmzB507dxbDX7169XDy5EmGPyLSe7a2tlAqlTh8+DAiIiKkLqdcrV69GjExMVAqlQx/JBmjDIDnz5/HypUrMXv2bHh5eWHWrFlYsWIF/vzzT6lLKxNBELB06VL069cPWVlZAIAOHTrg5MmTaNCggcTVERGVjI+PD/z9/REcHFxhp4KTkpIwbdo0BAQEwNvbW+pyyIgZ3RRwYWEhOnXqhMzMTJw7dw7m5ubIy8tDy5Yt4eDggGPHjsHExHBycX5+PiZNmoQVK1aI+4YNG4bIyEhYWVlJWBkRUelV5KlgTv1SeeMU8EusX78eJ06cwPLly8W2e3Nzcyxfvhy///47NmzYIHGFJffo0SP06dNHI/zNnDkTGzduZPgjIoP0/FRwRbg153kzZszg1C/pD6EEMjMzBQBCZmZmSV6ut9LT04WqVasKQ4cOfeHxoUOHCtWqVRPS09N1W1gZJCcnCy1atBAACAAEc3Nz4fvvv5e6LCIirVi4cKEAQFi8eLHUpWjFokWLBABCWFiY1KVQBVaavGZUI4DPGj8WLVr0wuOLFi0yiIaQc+fOoV27duI9i/b29oiOjsbIkSMlroyISDumTZuGzz//HFOnTjX4ppCIiAgEBwdj+vTpCA4OlrocIgBGNAX8fOOHs7PzC1/j7Oys9w0hP//8Mzp16oTU1FQAQJ06dXDy5El07dpV2sKIiLRs3rx5mDBhAgIDA7FkyRKpyymTxYsXIzAwEGZmZvD19ZW6HCKRUTSBvKjxozj63BCybNkyTJo0CYWFhQCAN998E3v27EHVqlUlroyIqHwIgoDQ0FAsWLAAoaGhmDNnjkE0hgiCgBkzZmD+/PnivsqVK+PgwYNo166dhJVRRcYmkP94UeNHcfSxIaSgoAATJ07Exx9/LIa/wYMHIyYmhuGPiCo0mUyG+fPnY+HChZg3bx68vb1x69Ytqct6qaSkJPTs2RPz58/HggULxJG/R48ewdfXF2fPnpW4QiJU/CaQVzV+FEdfGkIePXok9O7dW2z2ACB8/vnnQkFBgaR1ERHpWnR0tODm5ibY2NgI4eHhQmFhodQlaSgsLBRWrVol2NjYCG5ubkJ0dLQgCILw5MkToVu3buKf4VWqVBEuXLggcbVUEZUmr1X4APjRRx8JNjY2wu3bt0t13u3btwUbGxthwoQJ5VTZq6WkpAitWrUS/9AwMzMT1q5dK1k9RERSy8zMFAICAgQAQo8ePYSkpCSpSxIEQRD+/vtvoXv37gIAISAgoMjvy0ePHgkdOnQQ/zyvVq2acOnSJYmqpYqKAfB/zp07J5iYmJR5GYFFixYJJiYmwvnz57Vc2audP39ecHFxEf+wsLOzEw4fPqzzOoiI9NHzo4GLFy+W7PdTZmamsHjx4iKjfsW9tm3btuKf687OzsL169d1WC1VdKXJaxW2CaQ0jR/FkaohZN++fRg8eDAeP34MAHB3d8e+ffvQuHFjnVyfiMgQqFQqhISEQKlUQi6XY8SIERg3bhyaNWtW7tdOSEjAypUrsWHDBuTk5EChUGDhwoWv/B2Znp6O7t274/z58wCAN954A8eOHUOtWrXKvWaq+EqV17SdKPXFunXrBADCkSNHXut9YmJiBABCVFSUdgp7hRUrVggmJibi3xDbt28vpKWl6eTaRESGKDk5WZg5c6ZQs2ZNAYDQqVMnYcuWLUJubq5Wr5Obmyts3rxZ6NixowBAqFmzpvDFF18IKSkppXqfe/fuCU2bNhX/nK9Tp06p34PoRYx+BDAjIwMNGjRAz549sXnz5td+v2HDhuHw4cO4cuUK7O3tX7/AFygoKMC0adPwzTffiPvef/99fP/995DL5eVyTSKiiiQvLw979uzBypUrceTIETg6OqJt27bw9PQUf9zc3Eq0jIwgCEhOTkZ8fLz4c/r0aaSnp6Nbt24ICgpCnz59yjS7BABpaWno0qULrly5AgBo0KABjh49iho1apTp/YiA0uW1ChkAJ0yYgKioKFy5cqXYRZ9LIzU1FQ0bNsSYMWPw3Xffvfb7PXz4EAEBAXBycsKSJUsgCAI++OAD7NmzR3zNp59+ivnz5+vVOoRERIYiMTERP/zwA+Li4hAfH4+7d+8CAJycnODp6Yl69epBLpdDLpfDwsICarUa2dnZyM7OxvXr1xEfH4/79+8DAGrUqAFPT094eXlh0KBBaNKkiVZqvH37Njp37oybN28CAJo2bYrY2Fg4OTlp5f3J+Bh1ADx//jw8PT0RFhaGKVOmaO19Fy9ejJCQEJw9exYtWrR4rff66KOPsGLFCgDAO++8gzt37ojrQpmamiI8PBwKheK1ayYioqejeampqRqjecnJycjOzkZOTg5yc3NhaWkJKysryOVyuLm5iSOGXl5eWhlIKM6tW7fQuXNn/PPPPwCAli1bIiYmBg4ODuV2Taq4jDYAaqPxozjaaghRqVRwcXERGzyeZ2trix07dsDb2/t1yyUiIgNx48YNdO7cWXzEZ5s2bXDo0CG9/n1L+slonwRSmid+lJa2nhCyfv36F4Y/R0dHnDhxguGPiMjI1K1bFzExMahevToA4MyZM3j77bdf+LuCSFsqTADMyMhASEgIhg4diq5du5bLNbp164ahQ4ciJCQEGRkZpT5fEARx6ve/MjMzxb/9ERGRcWnYsCEOHTqEKlWqAAB+//139O7dG1lZWRJXRhVVhQmAM2bMQHZ2NhYtWlSu11m0aBGysrIwc+bMUp976NAhXL58+YXHCgoK8Pnnn79ueUREZKA8PDxw8OBBcbWJ2NhY9OvXDzk5OdIWRhVShQiA58+fx8qVKzF79uxyvVkXAJydnTFr1iysWLECf/75Z6nO/fjjj196vF27dq9TGhERGbhWrVrhwIEDqFy5MgAgOjoagwYNglqtlrgyqmgMvgmkPBs/ilPWhpDKlStr3NNRqVIldOzYEd26dUO3bt3Qpk2bEq1PRUREFdvvv/8OX19fPHnyBAAwYMAAbN26FWZmZhJXRvrMqJpAyrPxozhlbQgJDw9H06ZNERAQgJMnTyI9PR379+/HJ598grZt2zL8ERERAKBDhw7Yu3cvrKysAAA7d+7EqFGjUFBQIHFlVFEY9Aigtp/4UVq6eEIIEREZrwMHDuC9994Tp4DHjBkDpVLJhwTQCxnNCKCuGj+K8zoNIURERK/i6+uLHTt2iFO/69atw/jx41GCsRuilzLYAKjLxo/iPN8Qcv78eUlqICKiiq13797YunUrTE1NATy9nWjy5MkMgfRaDHIKWIrGj+Jo6wkhREREL7N582YMHz5cDH6ffPIJvvzyS94/TqIKPwUsReNHcbT1hBAiIqKXGTZsGCIjI8Xtr7/+GnPmzJGwIjJkBjcCKHXjR3HYEEJERLoQHh6OcePGidtffvklPv30UwkrIn1RoUcApW78KA4bQoiISBfGjh2Lb775Rtz+7LPPsHTpUukKIoNkUAFQHxo/isOGECIi0pVJkybhq6++ErcnT56MVatWSVgRGRqDmQLWp8aP4rAhhIiIdGn27NmYNWuWuB0ZGYkPP/xQuoJIUhVyClifGj+Kw4YQIiLSpZkzZ2rc/6dQKPTq/njSXwYxAqivjR/FYUMIERHpiiAImDJlingfoKmpKbZu3YqBAwdKWxjpXIUbAdTXxo/isCGEiIh0RSaTYcmSJWJncEFBAYYOHYq9e/dKXBnpM70PgPrc+FEcNoQQEZEuyWQyLF++HGPGjAEA5OfnY+DAgThw4IDElZG+0uspYENo/CgOG0KIiEjXCgoKMHLkSPF2KSsrK+zbtw/dunWTuDLShQozBWwIjR/FYUMIERHpmqmpKb7//nsMGDAAAJCTk4N3330Xx48fl7gy0jd6GwAzMjIQEhKCoUOHomvXrlp5z1mzZkEmk+H+/fsvPO7h4aG1awFAt27dMHToUISEhCAjI0Nr70tERFQcMzMzbN68Gb179wYAZGVl4e2338Yff/whcWWkT/Q2ABpa40dx2BBCRES6ZmFhge3bt8PX1xcA8OjRI/j6+uLcuXMSV0b6Qi8DoCE2fhSHDSFERCQFS0tL7Nq1S7z/LyMjA97e3rh48aLElZE+0LsAWFhYiPHjx6Nx48aYMGGC1OVoxccff4xGjRrho48+QmFhodTlEBGRkbC2tsZPP/2EDh06AAAePHiAHj164PLlyxJXRlLTuwBoyI0fxWFDCBERScXGxgb79u1D27ZtAQD//vsvevTogRs3bkhcGUlJrwJgeTR+6As2hBARkVRsbW2xf/9+tGzZEgCQmpqK7t2749atW9IWRpLRqwBYURo/isOGECIikoqDgwMOHjyIpk2bAgD++ecfdO/eHbdv35a4MpKC3gRAfWn8kMlk5fbebAghIiIpOTk54fDhw2jYsCEA4ObNm+jevTvu3r0rcWWka3oTADdu3AgLCwuMHTu23K5hZWUFAMjOzn7h8aysLPE15WXcuHGwsLDAxo0by/U6REREL1K9enUcPnwYderUAQBcvXoVPXv2LHaNXKqY9CYADh8+HGq1GuHh4eV2jVq1agEArly5UuRYVlYWkpOTxdeUl1WrVkGtVmPEiBHleh0iIqLiuLi4ICYmBm+88QYA4K+//oK3tzfS09Mlrox0RW8CYMuWLREUFIQvvvgCqamp5XKNHj16wMLCAqtWrSqyHEtERATy8/PRq1evcrk28PSm21mzZmH8+PFo0aJFuV2HiIjoVWrVqoWYmBjxtqvz58/D19cXKpVK4spIF2SCIAivelFpHi78OjIyMtCgQQP07NlTfJC1ts2fPx+hoaHo0KED3nvvPVhbW+PEiRPYsmULfHx88Ouvv8LEpHxy8bBhw3D48GFcuXIF9vb25XINIiKi0rhy5Qq6dOmCtLQ0AECHDh2wf/9+2NjYSFwZlVZp8ppeBUAAiIqKwpgxY3DkyJFyWwpm06ZNWL58ORISEpCfn4/atWtj6NCh+OSTT2BpaVku1zxy5Ai6d++OqKgojBo1qlyuQUREVBYXL15E165d8eDBAwBA165d8csvv8Da2lriyqg0DDoAFhYWolOnTsjIyMD58+crxGLQeXl5aNmyJRwcHHDs2LFyG2EkIiIqq3PnzqF79+7iWrU+Pj7Ys2dPuTdHkvaUJq/pXRIxMTHBihUrcPnyZSxbtkzqcrTiu+++w+XLl7FixQqGPyIi0kutWrXCgQMHULlyZQBAdHQ0Bg0aBLVaLXFlVB70Mo3ooiFEV9j4QUREhqJt27b49ddfUalSJQDA3r17MWzYMOTn50tcGWmbXgZAAJg7dy7kcjmCg4OlLuW1BAcHw9raGnPmzJG6FCIiolfq0KED9u7dK0797ty5E6NGjUJBQYHElZE26W0AtLe3x8KFC7FlyxbExsZKXU6ZHDlyBFu2bMHChQvZ9UtERAajW7du2L17NywsLAAAmzdvhr+/f5El1Mhw6V0TyPMMuSGEjR9ERGTo9u7di/79+4tTwGPHjsXKlSvL9bGpVHYG3QTyPENuCGHjBxERGbrevXtj69atMDU1BQCEh4dj8uTJKMHYEek5vU8mhtgQwsYPIiKqKAYMGID169eLo37ffvstPvvsM4ZAA6f3ARAwvIYQNn4QEVFFMmzYMERGRorbX3/9NX/HGTiDCICG1BDCxg8iIqqIxowZg1WrVonbs2bNwldffSVhRfQ69LoJ5HmG0BDCxg8iIqroli5dismTJ4vbS5Ys0dgm6VSYJpDnGUJDCBs/iIioops0aZLGyN+UKVOwcuVKCSuisjColKLPDSFs/CAiImPxySefYNasWeL2+PHjsXbtWukKolIzqAAI6G9DCBs/iIjImMycOROffvqpuK1QKLBp0yYJK6LSMLgAqI8NIWz8ICIiYyOTybBgwQJMmjQJACAIAkaOHInt27dLWxiViME0gTxPnxpC2PhBRETGTBAEjB8/XuwQNjMzw86dO/Hee+9JXJnxqZBNIM/Tp4YQNn4QEZExk8lkWL58OcaMGQMAyM/Px/vvv4/9+/dLXBm9jEGOAD4zYcIEREVF4cqVK3B2dtb59VNTU9GwYUOMGTMG3333nc6vT0REpC8KCgowcuRIbN68GQBgZWWFX375Rfw9qVKpsHv3btSoUUMr1xMEAbdv30Z8fLz4k5ycjOzsbOTk5ECtVsPCwgJWVlaQy+Vwc3ODp6cnPD094eXlBWdn5wr3TOPS5DWDDoAZGRlo0KABevbsKf4Lp0vDhg3D4cOHceXKFd77R0RERi8/Px9DhgzBzp07ATwNgY6OjuLKHcHBwQgLCyvz+ycmJmLbtm2Ii4tDfHw80tLSAABVq1aFp6cn6tatC2tra8jlclhYWECtViM7OxtZWVm4ceMG4uPjce/ePQBA9erVxTA4ePBgNGnS5DU/vfSMJgACQFRUFMaMGYMjR46ga9euOrvukSNH0L17d0RFRWHUqFE6uy4REZE+U6vVGDhwIPbu3VvkWN26dXHt2rVSjbzl5eVh9+7dWLlyJWJjY+Ho6Ih27dqJo3menp5wdXUt0XsKgoCUlBSNUcPTp0/j4cOH6Nq1K4KCgtC3b1+9fNhESRhVAJSiIYSNH0RERMVLSEhAmzZtkJub+8JjHh4er3yPlJQUREREYM2aNbh79y46d+6MoKAg9OvXDxYWFlqrVa1WY9euXVi5ciV+++031KxZE/7+/vD394erq6vWrqMLFb4J5HlSNISw8YOIiOjFVCoVfH19Xxj+AODHH3985fljx46Fu7s7vvnmG/Tv3x8JCQk4evQoBg8erNXwBwAWFhYYMmQIjh07hgsXLqBv375YsmQJ3N3dMXbsWKhUKq1eT18Y/AjgM7pqCGHjBxERUfFOnz6N9u3bF3u8cePGSExMfOGx6OhoKBQKpKenY86cOfDz85Mkd6hUKkRGRmLmzJlwcHCAUqmEj4+PzusoLaMaAXxGV08I4RM/iIiIiufl5YVZs2bBycnphccvXbpUJACqVCoEBATA19cXDRs2xMWLFzF58mTJBp1sbW0xefJkJCQkoEGDBvD19UVAQECFGg2sMAFQF08I4RM/iIiIXs7U1BRffPEFUlNTsW/fPowYMQI2NjYar/ntt9/Ef46OjoaHhwe2bNmC8PBwREdHo1atWrou+4Xc3d1x8OBBhIeHY8uWLfDw8EB0dLTUZWlFhZkCBsq3IYSNH0RERGWTlZWFzZs3IywsDI6Ojjh27BjMzc0RFhaGkJAQ9OzZE0qlUm+C34skJSVBoVDg8OHDWLhwIaZNmyZ1SUUY5RQwUL4NIWz8ICIiKhtra2soFApcuXIFJ0+ehJmZGT7//HOEhIQgNDRUr0b9ivNsNDA0NBQhISGYPn06SjCGprfMpC5A21q2bImgoCB88cUXGDJkiFYaQlJTUzFr1iyMHz8eLVq00EKVRERExkkQBEycOBHLli3DkiVLMHnyZKlLKjGZTIa5c+fCwcEBU6dOxePHj7F06VKDfKJIhRzK0nZDCBs/iIiItCM0NBTLli3D6tWrDSr8PW/KlClYvXo1vvvuO8yYMUPqcsqkwo0AAv+/IWTMmDEICAh4rSeEPGv8iIqKYuMHERHRawgLC8OCBQuwePFiBAQESF3OawkICMCjR48QHBwMOzs7vbwn8GUqVBPI87TREMLGDyIiIu2Ijo6Gr68vQkNDMXfuXKnL0ZrQ0FDMnz8f0dHR8Pb2lrQWo3oU3MucP38enp6eCAsLw5QpU0p9/uLFixESEoKzZ8/y3j8iIqIyUqlU8PDwQMOGDREdHW2Q98wVRxAE9OzZE9euXcPFixclzUlG2wX8X883hKSmppbqXDZ+EBERaUdwcDDS09OhVCorVPgDnjaGREZGIj093aCmgSt0AATK3hDCxg8iIqLXFx0djTVr1mDRokV6v9RLWbm7uyMsLAwRERE4ePCg1OWUSIWeAn4mKioKY8aMwZEjR0rUEHLkyBF0794dUVFRGDVqVPkXSEREVAFV5Knf/9KHqWDeA/gfpWkIYeMHERGRdowdOxabNm3CxYsXK+zo3/OSkpLQrFkzfPDBBwgPD9f59XkP4H+U5gkhfOIHERHR60tJSYFSqcScOXOMIvwBT6eCZ8+eDaVSidu3b0tdzksZTcIpSUMIGz+IiIi0Y82aNZDL5fDz85O6FJ1SKBSwsrLCmjVrpC7lpYwmAAKvbghh4wcREdHry8vLQ0REBEaMGGGQt469DltbW4wYMQIRERHIy8uTupxiGVUAfPaEkC1btiA2Nlbj2LMnfixcuJBP/CAiInoNu3fvxt27dzFu3DipS5HEuHHjcOfOHezZs0fqUoplFE0gz3tRQwgbP4iIiLSnW7duKCgowLFjx6QuRTKdOnWCubk5YmJidHZNNoG8xIsaQtj4QUREpB2JiYmIjY1FUFCQ1KVIKigoCEeOHMGlS5ekLuWFjDLtPN8QEhcXx8YPIiIiLdm2bRscHR3Rv39/qUuR1IABA+Dg4IBt27ZJXcoLGWUABP5/Q0inTp3Y+EFERKQlcXFxaNeuHSwsLF752lmzZkEmk+H+/fs6qEy3LCws0K5dO8TFxUldygsZbQC0t7dHWFgYcnJy2PhBRESkBYIgID4+Hp6enlp9X3d3d8hkMkyYMKHIsdjYWMhkMuzYsUOr1yzOrFmz4O7uXqLXenp6Ij4+vnwLKiOjDYAAMHLkSFy6dAkjR46UuhQiIiKDl5qairS0NK0HwGfWrFlT7Fq++sjT0xN3797Vy5qNOgDKZDI0atSoQj+bkIiISFeeTXeWRwBs2rQpCgoK8NVXX5Xp/CdPnmi5old79j3o4zSwUQdAIiIi0p74+HhUrVoVrq6upTrv/v37GDRoEGxtbVGlShVMnDgROTk5Gq9xd3fHyJEjSzQK+OzewsTERAwbNgwODg7o2PH/tXd3sU3VfxzHPwX3UCOdkEVHsRgEuVjYuGijMflDxDAejIg3jmTAlbQbxZgI3aLZmCJM4gxL1AjrHBcGH7lY5AIuME6zEckSGhJGCA8Fu8ygRmK1M3QruvO/wC4sY6Mdpzvd+n4lvejJ+fV8T68++f5+v3P+N/I7L7zwgn744Qd5PB7Z7XaVlZWNPB+4o6NDZWVlKiwslNvt1tmzZ9O6lzu5XC4VFxdn5TQwARAAAJgiuf4v3Zm1yspKDQ4Oav/+/Xr++ef14YcfyufzjTmvvr5e//zzT8pdwJdfflk3b97Uu+++K6/XO3I8HA6rqqpKGzZs0P79+xWNRrVhwwZ9/vnnev3117Vlyxbt2bNHV69eVWVlpYaHh9O6nySbzZa16wAfsLoAAAAwM/T392vlypVpj1u0aNHIWzN27Nghh8OhgwcPKhAIqLy8fOS8J554Qlu3btUnn3yiN998U/Pnz5/wd5cvX64vvvhizPFLly7pxx9/1DPPPCNJKi0t1dq1a+X1enXx4kUtXLhQkjR37lxVV1erq6tLzz77rKTb3cW333475XtbsmSJuru7Uz5/qtABBAAApojH43rwwQfTHrdjx45R35O7fU+cODHm3IaGhpS7gDU1NXc9XlpaOhL+JOnpp5+WJD333HMj4e/O49euXbvntcZjt9sVj8cnPT5TCIAAAMAUg4ODstvtaY978sknR31fvHixZs2apUgkMubcZBewra1Nv/zyy4S/u2jRorsevzPkSVJRUZGk22v27nY8Go1OeJ2J2O32MesZswEBEAAAmCKRSKT0AOh7udcawuRawPfee2/C88YLo7Nnz07ruGEYE15nIvn5+RoaGpr0+EwhAAIAAFPk5+crkUikPe7KlSujvofDYQ0PD4/7wOXFixdry5YtCgaD9+wCWi2RSKigoMDqMsYgAAIAAFMUFhZOar3bxx9/POr7Rx99JElav379uGMaGhp069YtNTc3p329qRSPx1VYWGh1GWOwCxgAAJjCbrfr5s2baY/76aef9OKLL2rdunU6ffq0PvvsM1VVVWn58uXjjkl2AT/99NP7KTnj4vH4pNZFZhodQAAAYAqXy6WrV6+mPe7rr79WQUGB3njjDR0/flyvvvqqDh8+fM9xDQ0N467byxbhcHjM5pJsYDNSWNkYi8VUVFSkv/76Sw6HYyrqAgAA00xjY6NaW1v122+/8ZpV3d488sgjj8jv92vPnj0Zv146eY0OIAAAMIXb7dbvv/+un3/+2epSskJ/f79u3LiRkXcj3y8CIAAAMIXH45GkrHz1mRWS/0Pyf8kmBEAAAGAKp9OpRx99lAD4n1AopJKSEjmdTqtLGYMACAAATGGz2eR2uwmA/wmFQlk5/SsRAAEAgIk8Ho96enom9UDomWRoaEg9PT1ZOf0rEQABAICJNm3apD/++EMdHR1Wl2Kpjo4ORaNRbdq0yepS7orHwAAAAFOtWrVK//77r7q6uqwuxTIrVqxQXl6eOjs7p+yaPAYGAABYxu/3q7u7W729vVaXYolz587p1KlT8vv9VpcyLgIgAAAw1UsvvaSSkhIdOnTI6lIscejQIc2fP18bN260upRxEQABAICp8vLy5PP5dOTIEcViMavLmVKxWExHjhyRz+dTXl6e1eWMiwAIAABM5/V6FY/HU3qn70zS3t6uwcFBeb1eq0uZEAEQAACY7rHHHtO2bdvU2NioSCRidTlTIhKJ6K233tK2bdu0YMECq8uZELuAAQBARsRiMS1btkxLly7Vt99+K5vNZnVJGWMYhlavXq1wOKze3l5L8hK7gAEAgOUcDofa29v13Xffqa2tzepyMioYDKqzs1Pt7e3TollGAAQAABmzZs0aeb1eBQKBGTsVHIlEVFtbK5/Pp4qKCqvLSQlTwAAAIKNm8lRwNkz9JjEFDAAAssadU8GNjY1Wl2Oq3bt3T6up3yQCIAAAyLg1a9aoublZ+/btU0tLi9XlmOLAgQNqamrS+++/P22mfpMesLoAAACQG2pra/Xnn39q165deuihh+Tz+awuadLa2toUCARUX1+vQCBgdTlpIwACAIAps2/fPg0MDKi6ulp///23du7caXVJaTtw4IACgYBee+017d271+pyJoUACAAApozNZtMHH3ygOXPmaNeuXYpGo3rnnXemxcYQwzC0e/duNTU1qb6+Xnv37p0Wdd8NARAAAEwpm82mpqYmPfzww6qrq9Pp06d1+PBhPf7441aXNq5IJKJXXnlFnZ2dam5uVm1trdUl3Rc2gQAAAEvU1tbq5MmTunz5spYtW6ZgMKgUnk43pQzDUGtrq8rKynTlyhWdPHly2oc/iQAIAAAsVFFRofPnz6uqqko1NTWqqKhQX1+f1WVJut31W716tbZv366qqiqdP39+2u32HQ8BEAAAWMrhcCgYDI7qBra0tCgWi1lSTywWU0tLy6iuXzAYnFbP+bsXAiAAAMgKyW7g5s2bVVdXpwULFsjv96u3t3dKrt/b26vt27fL6XSqrq5OmzdvnlFdvzsRAAEAQNZwOBxqbW1VJBLRzp079c0336i8vFwrV67UV199pUQiYer1EomEvvzyS61YsULl5eU6duyYAoGA+vr61NraOqO6fnfiXcAAACBr3bp1S8eOHdPBgwf1/fffa968eXrqqafkdrtHPi6XK6XHsRiGof7+foVCoZFPT0+PotGoVq1aJb/fr40bNyovL28K7sx86eQ1AiAAAJgWLly4oKNHj+rMmTMKhUL69ddfJUnFxcVyu91asmSJ7Ha77Ha78vPzlUgkFI/HFY/HFQ6HFQqFdOPGDUlSSUmJ3G63PB6PKisrVVpaauWtmYIACAAAZjTDMHT9+vVR3bz+/n7F43ENDg5qaGhIBQUFKiwslN1ul8vlGukYejweOZ1Oq2/BdARAAACAHJNOXmMTCAAAQI4hAAIAAOQYAiAAAECOIQACAADkGAIgAABAjiEAAgAA5BgCIAAAQI4hAAIAAOQYAiAAAECOIQACAADkGAIgAABAjiEAAgAA5BgCIAAAQI4hAAIAAOQYAiAAAECOeSCVkwzDkCTFYrGMFgMAAIDJSea0ZG6bSEoBcGBgQJLkcrnuoywAAABk2sDAgIqKiiY8x2akEBOHh4d1/fp1zZkzRzabzbQCAQAAYA7DMDQwMCCn06lZsyZe5ZdSAAQAAMDMwSYQAACAHEMABAAAyDEEQAAAgBxDAAQAAMgxBEAAAIAcQwAEAADIMQRAAACAHPN/+WFVx74TLIUAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "draw_frame_model(frame_model_B) # , dot = True)" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "id": "fd86cf56", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:52.073525Z", - "iopub.status.busy": "2024-07-11T15:30:52.073203Z", - "iopub.status.idle": "2024-07-11T15:30:52.081318Z", - "shell.execute_reply": "2024-07-11T15:30:52.080829Z" - } - }, - "outputs": [], - "source": [ - "# TODO: streamline this so it can draw the parameters from context\n", - "def birth_aNrmNow(self, N):\n", - " \"\"\"Birth value for aNrmNow\"\"\"\n", - " return Lognormal(\n", - " mu=self.aNrmInitMean,\n", - " sigma=self.aNrmInitStd,\n", - " seed=self.RNG.integers(0, 2**31 - 1),\n", - " ).draw(N)\n", - "\n", - " # maybe replace reference to init_portfolio to self.parameters?\n", - "\n", - "\n", - "frame_model_C = FrameModel(\n", - " [\n", - " # TODO : make an aggegrate value\n", - " Frame(\n", - " (\"PermShk\"),\n", - " None,\n", - " default={\n", - " \"PermShk\": 1.0,\n", - " }, # maybe this is unnecessary because the shock gets sampled at t = 0\n", - " # this is discretized before it's sampled\n", - " transition=IndexDistribution(\n", - " Lognormal.from_mean_std,\n", - " {\n", - " \"mean\": init_parameters[\"PermGroFac\"],\n", - " \"std\": init_parameters[\"PermShkStd\"],\n", - " },\n", - " ).discretize(\n", - " init_parameters[\"PermShkCount\"],\n", - " method=\"equiprobable\",\n", - " tail_N=0,\n", - " ),\n", - " ),\n", - " Frame(\n", - " (\"TranShk\"),\n", - " None,\n", - " default={\n", - " \"TranShk\": 1.0,\n", - " }, # maybe this is unnecessary because the shock gets sampled at t = 0\n", - " transition=IndexDistribution(\n", - " MeanOneLogNormal,\n", - " {\"sigma\": init_parameters[\"TranShkStd\"]},\n", - " ).discretize(\n", - " init_parameters[\"TranShkCount\"],\n", - " method=\"equiprobable\",\n", - " tail_N=0,\n", - " ),\n", - " ),\n", - " Frame( ## TODO: Handle Risky as an Aggregate value\n", - " (\"Risky\"),\n", - " None,\n", - " transition=IndexDistribution(\n", - " Lognormal.from_mean_std,\n", - " {\n", - " \"mean\": init_parameters[\"RiskyAvg\"],\n", - " \"std\": init_parameters[\"RiskyStd\"],\n", - " },\n", - " # seed=self.RNG.integers(0, 2 ** 31 - 1) : TODO: Seed logic\n", - " ).discretize(init_parameters[\"RiskyCount\"], method=\"equiprobable\"),\n", - " aggregate=True,\n", - " ),\n", - " Frame(\n", - " (\"Rport\"),\n", - " (\"Share\", \"Risky\", \"Rfree\"),\n", - " transition=lambda Share, Risky, Rfree: (\n", - " Share * Risky + (1.0 - Share) * Rfree,\n", - " ),\n", - " ),\n", - " Frame(\n", - " (\"bNrm\",),\n", - " (\"aNrm\", \"Rport\", \"PermShk\"),\n", - " transition=lambda aNrm, Rport, PermShk: (Rport / PermShk) * aNrm,\n", - " ),\n", - " Frame(\n", - " (\"mNrm\",),\n", - " (\"bNrm\", \"TranShk\"),\n", - " transition=lambda bNrm, TranShk: (bNrm + TranShk,),\n", - " ),\n", - " Frame((\"Share\"), (\"Adjust\", \"mNrm\"), default={\"Share\": 0}, control=True),\n", - " Frame((\"cNrm\"), (\"Adjust\", \"mNrm\", \"Share\"), control=True),\n", - " Frame(\n", - " (\"U\"),\n", - " (\"cNrm\", \"CRRA\"), ## Note CRRA here is a parameter not a state var\n", - " transition=lambda cNrm, CRRA: (CRRAutility(cNrm, CRRA),),\n", - " reward=True,\n", - " ),\n", - " Frame(\n", - " (\"aNrm\"),\n", - " (\"mNrm\", \"cNrm\"),\n", - " default={\"aNrm\": birth_aNrmNow},\n", - " transition=lambda mNrm, cNrm: (mNrm - cNrm,),\n", - " ),\n", - " ],\n", - " init_parameters,\n", - ")" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "id": "f54fc581", - "metadata": { - "execution": { - "iopub.execute_input": "2024-07-11T15:30:52.082759Z", - "iopub.status.busy": "2024-07-11T15:30:52.082530Z", - "iopub.status.idle": "2024-07-11T15:30:52.291761Z", - "shell.execute_reply": "2024-07-11T15:30:52.291223Z" - } - }, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAOwCAYAAACuwMU6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADDBUlEQVR4nOzdd1xV9eM/8NdlCSggKjkQJQcKolmQZqmpgWTukevjyGSEW0Ec4EQcIIgLETXNkZo5c+LMzE0uQhM1FHAkhlzHhYtwfn/w83wlFyDc973c1/Px4NF933Ve92bx8n3OeR+FJEkSiIiIiEhvGIgOQERERESaxQJIREREpGdYAImIiIj0DAsgERERkZ5hASQiIiLSMyyARERERHqGBZCIiIhIz7AAEhEREekZo4I8KTc3F7dv34aFhQUUCkVJZyIiIiKiQpIkCY8ePUK1atVgYPDmOb4CFcDbt2/Dzs6uWMIRERERUclJTk5G9erV3/icAhVACwsL+Q0tLS3fPRkRERERFSulUgk7Ozu5t71JgQrg892+lpaWLIBEREREWqwgh+vxJBAiIiIiPcMCSERERKRnWACJiIiI9AwLIBEREZGeYQEkIiIi0jMsgERERER6hgWQiIiISM+wABIRERHpGRZAIiIiIj3DAkhERESkZ1gAiYiIiPQMCyARERGRnmEBJCIiItIzLIBEREREeoYFkIiIiEjPsAASERER6RkWQCIiIiI9wwJIREREpGdYAImIiIj0DAsgERERkZ5hASQiIiLSMyyARERERHqGBZCIiIhIz7AAEhEREekZFkAiIiIiPcMCSERERKRnWACJiIiI9AwLIBEREZGeYQEkIiIi0jMsgERERER6hgWQiIiISM+wABIRERHpGRZAIiIiIj3DAkhERESkZ1gAiYiIiPQMCyARERGRnmEBJCIiItIzLIBEREREeoYFkIiIiEjPsAASERER6RkWQCIiIiI9wwJIREREpGdYAImIiEhvqNVqhIeHo3HjxggPD4darRYdSQgWQCIiIir1JEnCzp074ezsjHHjxqFy5coYN24cnJ2dsWvXLkiSJDqiRrEAEhERUal2+fJltGvXDh07dkSNGjVw/vx57Nu3D+fPn0eNGjXQoUMHfPXVV7h8+bLoqBrDAkhERESlUnp6OkaNGoWGDRsiMTER27Ztw/79++Hs7AwAcHZ2xv79+7Ft2zZcvXoVDRs2xKhRo5Ceni44ecljASQiIqJS5dmzZ1iyZAnq1q2LFStWYObMmUhISEDnzp2hUCjyPVehUKBz585ISEhASEgIVqxYgbp16yI6Oho5OTmCPkHJYwEkIiKiUuPQoUP46KOPMGTIEHTq1AmJiYkICAhAmTJl3vi6MmXKYNy4cbh69So6deoEX19ffPTRRzh8+LCGkmsWCyARERHpvBs3bqB79+744osvUK5cOZw+fRrff/89qlSpUqj3qVq1Kr7//nucPn0aZcuWRZs2bdC9e3f8/fffJZRcDBZAIiIi0lmPHz9GYGAgnJyccPr0aaxbtw6///47Pv7443d6348//hi///471q1bh1OnTsHR0RGBgYF4/PhxMSUXiwWQiIiIdE5ubi5Wr14NBwcHREREYNy4cbhy5Qr69u370nF+RaVQKNC3b1/89ddfCAgIQEREBBwcHLB69Wrk5uYWyzZEYQEkIiIinXLy5Ek0a9YMAwcORIsWLXDlyhVMmzYNZcuWLZHtlS1bFtOnT8eVK1fQokULDBw4EM2aNcOpU6dKZHuawAJIREREOiE1NRUDBgxAs2bNkJ2djaNHj2Ljxo2oWbOmRrZfs2ZNbNy4Eb/++ivUajU++eQTDBgwALdv39bI9osTCyARERFpNZVKhZCQEDg4OGDv3r1YtmwZzpw5gxYtWgjJ07JlS5w9exYxMTHYu3cvHBwcMHPmTGRmZgrJUxQsgERERKSVJEnC5s2b4eTkhGnTpsHX1xeJiYnw9PSEoaGh0GyGhobw8vJCYmIivvvuO0yZMgWOjo7YvHmzTlxWjgWQiIiItM6FCxfQpk0b9OjRA87OzoiPj8fcuXNhZWUlOlo+VlZWmDt3LuLj49GgQQP06NEDbdq0wcWLF0VHeyMWQCIiItIa9+/fx3fffYePPvoId+/exZ49e/DLL7/AwcFBdLQ3qlevHnbu3Indu3fjzp07+PDDD+Hr64v79++LjvZKLIBEREQkXHZ2NiIjI1G3bl1s3LgRERERuHjxIr788kvR0QqlXbt2uHTpEsLDw7F+/Xo4ODhg/vz5yM7OFh0tHxZAIiIiEmrPnj1o1KgR/Pz80LdvXyQmJmLkyJEwNjYWHa1IjI2NMWrUKCQmJqJ3794YM2YMGjVqhL1794qOJmMBJCIiIiEyMzPRoUMHfPXVV6hSpQrOnTuHqKgoVKpUSXS0YmFjY4MlS5bgjz/+QJUqVdCuXTt07NhRK84WZgEkIiIiIX7//Xfs2rULK1euxKFDh9CoUSPRkUrEBx98gEOHDuH777/Hzp078fvvv4uOxAJIREREYjxfLqVVq1bFdvk2baVQKNC6dWsA0IplYlgAiYiIiPQMCyARERGRnmEBJCIiItIzLIBEREREeoYFkIiIiEjPsAASERER6RkWQCIiIipVWrVqhVatWhXqNVOnToVCoUBaWlrJhNIyLIBERESk9VatWgWFQiH/GBkZwdbWFt988w1SU1NFx9M5RqIDEBERERXU9OnT8f777yMzMxMnT57EqlWrcOzYMcTHx8PU1BQAEBsbKzil9mMBJCIiIp3Rrl07uLq6AgA8PT1RqVIlzJkzBzt27EDPnj0BACYmJiIj6gTuAiYiIiKd1aJFCwDA9evX5ftedQzgwoUL0aBBA5ibm8Pa2hqurq748ccf3/jeN2/eRJ06deDs7IxTp05BoVBg3rx5Lz3v+PHjUCgUWL9+/bt/IA1hASQiIiKdlZSUBACwtrZ+7XOWLVuGESNGwMnJCZGRkZg2bRoaN26MU6dOvfY1169fR8uWLWFhYYEjR46gadOm+Oyzz7Bu3bqXnrtu3TpYWFigc+fO7/x5NIW7gImIiEhnZGRkIC0tDZmZmTh16hSmTZuGMmXKoEOHDq99za5du9CgQQNs2rSpQNu4cuUKvvjiC9ja2mLfvn1yuRwwYAB8fHxw5coV1K9fHwCQnZ2Nn376Cd26dYO5ufm7f0AN4QwgERER6Qw3NzfY2NjAzs4OPXr0QNmyZbFjxw5Ur179ta8pX748UlJScObMmbe+f3x8PD7//HPY29vjwIED+WYWe/bsCVNT03yzgPv27UNaWhr69ev3bh9Mw1gAiYiISGcsXrwY+/fvx88//4yvvvoKaWlpKFOmzBtfM27cOJQrVw5NmjRB3bp1MXToUPz++++vfG7Hjh1hYWGBffv2wdLSMt9j5cuXR8eOHfMdO7hu3TrY2tqiTZs27/7hNIgFkIiIiHRGkyZN4Obmhu7du2PHjh1wdnZG37598fjx49e+xtHREX/99Rc2bNiA5s2bY/PmzWjevDmmTJny0nO7d++O69evv/JYPyBvN/CNGzdw/PhxPHr0CDt27ECfPn1gYKBblUq30hIRERH9f4aGhpg1axZu376NRYsWvfG5ZcuWRa9evbBy5UrcunUL7du3R0hICDIzM/M9LywsDIMHD8aQIUNeeZbwl19+CRsbG6xbtw5bt27F06dP0b9//2L9XJrAAkhEREQ6q1WrVmjSpAkiIyNfKnPPPXjwIN/YxMQETk5OkCQJ2dnZ+R5TKBSIiYlBjx49MHDgQOzYsSPf40ZGRujTpw9++uknrFq1Cg0bNkSjRo2K90NpAAsgERER6bSxY8fi3r17WLVq1Ssfb9u2Ldq3b4+ZM2dixYoV8Pf3x4IFC9C+fXtYWFi89HwDAwOsXbsWbdu2Rc+ePXHo0KF8jw8YMABpaWk4fPiwzp388RwLIBEREem0bt26oXbt2pg7dy5ycnJeetzHxwePHz9GREQEhg4dim3btmHEiBFYu3bta9/T2NgYP//8Mz755BN07tw535qBLi4uaNCgAQwMDPC///2vRD5TSVNIkiS97UlKpRJWVlbIyMh46YwYIiIioqI4cOAA3N3d8ffff8Pe3l50nEL58MMPUaFCBRw8eLDAr0lKSsL777+P/fv3w83NrdgzFaavcQaQiIiIqBDOnj2L8+fPY8CAAaKjFBmvBEJERERUAPHx8YiLi0N4eDiqVq2KXr16iY5UZJwBJCIiIiqAn3/+GYMGDUJ2djbWr18PU1NT0ZGKjAWQiIiIqACmTp2K3NxcXL58GZ9//rnoOO+EBZCIiIhIz7AAEhEREekZFkAiIiIiPcMCSERERKRnWACJiIiI9AwLIBEREZGeYQEkIiIi0jMsgERERCSEQqEAABw+fBiSJAlOU7IkScLhw4cB/N/nFokFkIiIiIT47LPP0KFDB3z77bdo06YNLly4IDpSibhw4QJat26Nb7/9Fh06dMBnn30mOhILIBEREYlhamqKX375BXv27MHdu3fx0UcfwdfXF/fv3xcdrVjcv38f3333HT766CPcu3cPe/bswS+//KIVl5BjASQiIiKhvvzyS1y8eBERERFYv3496tati8jISGRnZ4uOViRqtRrz5s1D3bp1sXHjRsybNw8XL17El19+KTqajAWQiIiIhDM2NsbIkSORmJiIPn36wM/PD40aNcLevXtFRyuUPXv2oFGjRvD390ffvn2RmJiIESNGwNjYWHS0fFgAiYiISGvY2NhgyZIlOHfuHKpUqYJ27dqhQ4cOuHr1quhob/TXX3+hffv2+Oqrr1CtWjWcO3cOUVFRqFSpkuhor8QCSERERFqnUaNGOHToEDZv3ow///wTDRo0gJ+fHx4+fCg6Wj4PHz6En58fnJ2dkZCQgM2bN+PgwYNo1KiR6GhvxAJIREREWkmhUKBbt264fPkypk2bhqVLl8LBwQHLli1DTk6O0Gw5OTmIiYlB3bp1sXTpUkyfPh2XL19Gt27dtGKZl7dhASQiIiKtZmpqiokTJ+Lq1ato164dvL294erqiqNHjwrJ8+uvv8LFxQU+Pj746quvcPXqVUyYMEErzu4tKBZAIiIi0gnVqlXDDz/8gJMnT8LExASff/45evbsiZs3b2pk+0lJSejZsydatWoFU1NTnDx5Ej/88AOqVaumke0XJxZAIiIi0ilNmzbFiRMnsHr1ahw7dgz169fH5MmT8eTJkxLZ3pMnTzBp0iQ4Ojri999/x+rVq3H8+HE0bdq0RLanCSyAREREpHMMDAzQv39/XL16FX5+fggNDUW9evWwbt26YrusnCRJWLduHerVq4ewsDD4+fnhr7/+Qv/+/WFgoNsVSrfTExERkV4rV64cZsyYgcuXL+OTTz5Bv3798Nlnn+HMmTPv9L5nzpzBZ599hn79+uGTTz7B5cuXMWPGDJQrV66YkovFAkhEREQ6Sa1W4/z588jKysL777+Pn3/+GYcOHcKTJ0/QpEkTDBo0CHfu3CnUe965cweDBg1CkyZN8OTJExw+fBg///wz3n///RL6FGKwABIREZFOGjBgAD788EN4enrK97Vu3RpxcXFYsmQJfvnlFzg4OGDOnDnIysp643tlZmZi9uzZcHBwwC+//ILo6Gj88ccfaNWqVQl/CjFYAImIiEjnXLx4ERs3bgQA/P333/keMzIywnfffYfExER4enoiKCgITk5O2LZt20vHB0qShG3btqFBgwaYNGkSPD09kZiYCB8fHxgaGmrs82gaCyARERHpnIULF8q3e/fu/crnWFtbY968ebh48SLq1q2Lrl27wt3dHfHx8QCA+Ph4uLu7o2vXrnBwcMClS5cwb948WFtba+QziKSQCnCqjFKphJWVFTIyMmBpaamJXERERESv9ODBA9jZ2UGlUsHCwgKpqamwsLB442skScLu3bsxevRoXL9+HW5ubjhw4ADq1KmDefPm4auvvtJQ+pJTmL7GGUAiIiLSKStWrIBKpQIAfPvtt28tf0DeZeXat2+P+Ph4hIWF4d69ewgLC8OlS5dKRfkrLM4AEhERkc549uwZateujVu3bkGhUODq1auoU6eO6FhagTOAREREVCrt2LEDt27dAgC0a9eO5a+IWACJiIhIZ7x48seIESMEJtFtLIBERESkEy5evIgjR44AAOrVqwd3d3exgXQYCyARERHphBdn/4YPH67z1+MVid8cERERab0HDx5g7dq1AAALCwsMGDBAcCLdxgJIREREWm/58uXIzMwEUPClX+j1WACJiIhIqz179gxRUVEA8tbzGzZsmOBEuo8FkIiIiLTai0u/fPXVV1z6pRiwABIREZFWW7BggXybS78UDxZAIiIi0loXL17Er7/+CiBv6Rc3NzfBiUoHFkAiIiLSWlz6pWTwWyQiIiKt9OLSL5aWllz6pRixABIREZFW4tIvJYcFkIiIiLTOs2fPsHjxYgB5S78MHTpUcKLShQWQiIiItM6OHTuQnJwMgEu/lAQWQCIiItI6XPqlZLEAEhERkVa5cOGCvPRL/fr14e7uLjhR6cMCSERERFrlxaVfhg0bBoVCITBN6cQCSERERFrjwYMHWLduHQAu/VKSWACJiIhIa3DpF81gASQiIiKtwKVfNIcFkIiIiLTC9u3b5aVf2rdvz6VfShALIBEREWmFF5d+GT58uMAkpR8LIBEREQl34cIFHD16FACXftEEFkAiIiIS7sWlX4YPH86lX0oYCyAREREJlZaWxqVfNIwFkIiIiIT679Iv5cqVE5yo9GMBJCIiImGePXuGqKgoAFz6RZNYAImIiEgYLv0iBgsgERERCfPi0i8jRowQmES/sAASERGREOfPn5eXfnF0dISbm5vgRPqDBZCIiIiEeHHpl2HDhnHpFw1iASQiIiKNS0tLw48//giAS7+IwAJIREREGvfi0i+DBw/m0i8axgJIREREGvXs2TMsXrwYAJd+EYUFkIiIiDRq27ZtSElJAZC39Evt2rUFJ9I/LIBERESkUS+e/MGlX8RgASQiIiKN4dIv2oEFkIiIiDSGS79oBxZAIiIi0oi0tDSsW7cOAGBlZcWlXwRiASQiIiKNWLZsGbKysgAA3377LZd+EYgFkIiIiErcs2fPEBUVBYBLv2gDFkAiIiIqcS8u/dKhQwcu/SIYCyARERGVuAULFsi3ufSLeCyAREREVKLOnz+P3377DUDe0i9ffPGF4ETEAkhEREQl6sWlX4YPH86lX7QACyARERGVmP8u/dK/f3/BiQhgASQiIqIS9OLSL4MHD+bSL1qCBZCIiIhKRHZ2Npd+0VIsgERERFQi/rv0S61atQQnoudYAImIiKhEvHjyB5d+0S4sgERERFTszp07x6VftBgLIBERERW7/87+cekX7cICSERERMXq/v37+PHHHwHkLf3Sr18/wYnov1gAiYiIqFhx6RftxwJIRERExSY7OxtLliwBwKVftBkLIBERERWbF5d+6dixI5d+0VIsgERERFRsFixYIN/m0i/aiwWQiIiIisW5c+dw7NgxAICTkxPatGkjOBG9DgsgERERFYsXl34ZPnw4l37RYiyARERE9M7+u/RL//79BSeiN2EBJCIionf24tIvnp6eKFu2rOBE9CYsgERERPROsrOzERUVBYBLv+gKFkAiIiJ6J1u3bkVqaiqAvKVf3n//fcGJ6G1YAImIiOid/Pe6v6T9WACJiIioyP744w8u/aKDWACJiIioyP47+8elX3QDCyAREREVyf3797F+/XoAQPny5dGvXz/BiaigWACJiIioSF5c+mXw4MFc+kWHsAASERFRoXHpF93GAkhERESF9uLSL506deLSLzrGSHQAIiIi0g1LlizB6dOn0a1bN8yfP1++n0u/6B6FJEnS256kVCphZWWFjIwMWFpaaiIXERERaZF//vkHlStXfun++vXrIyEhgWf/aoHC9DXuAiYiIqK3UqlUr7z/77//xvDhw6FUKjWciN4FdwETERHRW1lZWb3y/qysLCxevBiSJGHx4sUaTkVFxRlAIiIieisLC4s3Pm5nZ6ehJFQcWACJiIjorQwNDV9bAgMCAhAQEKDhRPQuuAuYiIiICsTY2Djf2MjICEuXLsW3334rKBEVFQsgERERFcizZ8/k2xYWFtixYwdatWolLhAVGQsgERFRKSRJElJTUxEXFyf/JCcnQ6VSITMzE2q1GiYmJjA1NYWZmRns7Ozg4uICFxcXuLq6olq1ai8t7dKgQQOcOHEC5ubmOHPmDOrVqyfo09G74jqAREREpURCQgI2btyIs2fPIi4uDvfu3QMAVKxYEa6urqhTpw7Mzc1hZmYGExMTqNVqqFQqPH36FNeuXcPZs2fx4MEDAEDlypXlMtirVy84OTkhJycH+/btQ8uWLVGuXDmRH5VeoTB9jQWQiIhIh2VnZ2Pbtm2IiorCkSNHUL58eXzyySdwdXWVZ/SqV69eoIWaJUlCSkqKPGN49uxZnDx5Eg8fPkSrVq0wZMgQdOnS5aVjAUk7sAASERGVcikpKYiJicGyZctw9+5dfPbZZxg+fDi6du0KExOTYtuOWq3Gli1bsHDhQhw/fhxVq1aFl5cXvLy8UL169WLbDr07FkAiIqJSSqlUIiAgAMuXL4epqSkGDhwIX19fODs7l/i2L126hCVLlmD16tXIzMyEp6cnQkND2Q20BAsgERFRKRQbG4vBgwcjPT0dwcHBGDx4sJDfy0qlEitWrEBQUBAqVKiAFStWoG3bthrPQfnxWsBERESliFKphLe3Nzw8PFC3bl38+eefGD16tLBJGUtLS4wePRp//vkn6tSpAw8PD3h7e/N6wDqEBZCIiEiLxcbGokGDBli3bh2io6Nx8OBB1KxZU3QsAIC9vT0OHTqE6OhorFu3Dg0aNEBsbKzoWFQALIBERERaKiwsTJ71S0hIgI+PT4HO5tUkhUIBHx+ffLOBYWFhomPRW7AAEhERaRlJkjBx4kQEBAQgKChIq2b9Xuf5bGBQUBACAgIQGBiIApxmQILwSiBERERaRJIkjBgxAosWLUJERARGjx4tOlKBKRQKBAcHw9raGn5+fnj06BHmz5+vdbOWxAJIRESkVQIDA7Fo0SIsXboU3t7eouMUyZgxY1CuXDn4+PjAwsICISEhoiPRf7AAEhERaYmwsDDMmjUL4eHhOlv+nvP29sajR4/g7++P8uXLY+zYsaIj0QtYAImIiLRAbGysfMzfmDFjRMcpFn5+fkhPT0dAQAAaN24Md3d30ZHo/+NC0ERERIIplUrUrVsXDRo0wMGDB0vVMXOSJKF169a4fPkyEhMT2SNKEBeCJiIi0iEjRozA48ePsXLlylJV/oC8E0NWrVqFx48fY+TIkaLj0P/HAkhERCRQbGwsfvjhB0RERGj9Ui9FZW9vj/DwcKxatQr79+8XHYfAXcBERETClOZdv//FXcElj7uAiYiIdMCoUaNK7a7f/3pxV/CoUaNEx9F7LIBEREQCpKSk4IcffsCMGTNK7a7f/7K3t0dwcDB++OEHpKamio6j11gAiYiIBAgPD0eZMmUwePBg0VE0ytPTEyYmJggPDxcdRa+xABIREWlYdnY2vv/+e3zzzTd6dyycpaUlvvnmG6xYsQLZ2dmi4+gtFkAiIiIN+/nnn6FUKuHr6ys6ihC+vr5QKpXYvHmz6Ch6i2cBExERaZizszOsrKzw+++/i44izKeffopHjx7h0qVLoqOUGjwLmIiISEslJCTgzz//xPDhw0VHEWr48OGIj4/H5cuXRUfRSyyAREREGrRo0SJYWlqiW7duoqMI1b17d1hYWGDRokWio+glFkAiIiINOnDgAJo1awYTExPRUYQyMTFBs2bNcODAAdFR9BILIBERkYZIkoTU1FR8/PHHBX7NqlWroFAo5B8jIyPY2trim2++EbqWXkJCArp06QKFQoGzZ8++9fn29vbo0KFDvvs+/vhjpKSklFREegMWQCIiIg2ZN28enj59ihkzZkChUMDU1BQODg4YNmwY7t2798bXTp8+HWvWrEF0dDTatWuHtWvX4vPPP0dmZmax58zNzcXq1avRtGlTVKhQARYWFnBwcMCAAQNw8uRJAHkFcPv27e+0HRcXFzx9+hS3b98ujthUCEaiAxAREemL+Ph4AICfnx8aN26MzMxMHDt2DEuWLMHu3bsRHx8Pc3PzV762Xbt2cHV1BZC3mHKlSpUwZ84c7NixAz179izWnCNGjMDixYvRuXNn/O9//4ORkRH++usv7NmzBzVq1ECTJk2KZTsuLi4AgNjYWHzzzTfF8p5UMJwBJCIi0pDnBbBXr17o168fPD09sWrVKowaNQp///13oWbUWrRoAQC4fv26fF/NmjXRoUMHxMbGonHjxjA1NYWTkxO2bNny0utv3LiBr7/+GhUqVIC5uTk++eQT7Nq1C/fu3UNUVBS8vLwwatQojBw5Up4FfPLkCWbOnIkFCxbg66+/lt/r448/hkKhwJEjRwr1fdjZ2aF8+fLYu3dvoV5H744FkIiISENu3boFAFAoFPnub9OmDQDg77//BgCsXbsWLi4uMDMzw9ChQwEAd+/ezfeaUaNGAchb+61ly5YwNzdHeno6EhIS4OHhgQoVKqB9+/a4du0aunfvDhcXFyQnJ0OSJIwbNw5169bFzz//jEqVKiEwMBCZmZno1KkTVq5cCUmS8Nlnn8nbCg4Oxq5du+Dv74+ZM2eibdu2GDFihPz4pEmT8OWXX6J79+4oW7Ysunbtivv377/1+1i9ejUyMjKwb9++Qn6T9K5YAImIiDTk0aNHr7z/+SxexYoVERISggEDBqBu3bqIiIhA27ZtAeTt9r1+/TpSUlKwefNm3Lx5EwAQExODxo0bIzIyEqampnKJTE9Px5UrVzBt2jSUK1cO586dQ8+ePREUFIQ1a9YgNzcXPXr0wLVr13D9+nUcO3YMNWvWRFRUFABg06ZN8vGFmZmZOH78OEaPHo3x48fDyclJnoEEgJ07d0KtVmPatGnw9fXFL7/8gmHDhr3xu4iJicGgQYPw0UcfvVSISQOkAsjIyJAASBkZGQV5OhEREb2CiYmJBEA6cOCAdP/+fSk5OVnasGGDVLFiRcnMzExKSkqSDA0NpZCQEPk1K1eulAC89GNqaioBkKKjo+Xn1qxZU6pcubIEQLKxsZEePnwoSZIkjRs3Tn7dBx98IDk4OEhNmjSRJEmS+vTpI5mYmEiZmZnSrFmzJABSx44dJQBSuXLlJABS27ZtpcuXL+f7LJs2bZLf083NTcrNzZUfGz16tGRoaChv/3m29u3bS5IkSfPnz5cUCoUUHBws+fv7S2XLli3+L1sPFaavcQaQiIhIQ3JzcwEAbm5usLGxgZ2dHXr37o1y5cph69at2LJlC3Jzc9GzZ0+kpaUhLS1NnjWsXLkyPvzwQ/z888/46quvkJ2dDWNjYwwaNCjfNmrWrAkA+Prrr2FlZQUAcHBwkB/v168fbt68iXr16gEAmjZtCrVajdTUVDg6OgIAvLy8sGjRIlStWhVA3kkajo6O+OKLL1659Iy3t3e+WbwWLVogJydHnqV8UWhoKEaOHIk5c+YgKCgIZmZm8vdCmsOzgImIiDREkiQAwOLFi+Hg4AAjIyNUrlwZ9erVg4GBAbZv3w5JklC3bt2XXnvv3j1UrlwZ3bt3R5cuXWBtbY2nT59CrVa/clHpGjVqvDKDnZ1dvvHzkpieni7fZ2BggKFDh6JBgwZo3bo1AgICcOnSJezZswe9e/fGb7/99sZtWVtbv/SeAPDrr79i165dGDduHMaOHQsgb0HonJycV2alksMZQCIiIg15PkvWpEkTuLm5oVWrVnB0dISBQd6v49zcXCgUCuzduxf79+/H/v374e/vDyDvEnJLly4FABgaGqJWrVrIycl56VJqz2fdDA0N5fuuXr0q3zY0NETNmjXx119/5XudJEm4cuUKgP+bRXzu448/xu7du/H555/j2LFjuHnzZr4Zvxe39d/3fFGDBg1Qr149rFmzRj5WUa1W8xhAAVgAiYiINORtRad27dqQJAnvv/8+3Nzc4ObmhgYNGgDI21X7ySefyM8tX748zMzMEBkZmW8x6P8uKK1UKrF69WrUqVNHvu+rr77C6dOnceLECfk+lUqFmJgY2Nvbw8nJ6ZX5nq9DeOfOHZQtW7aAn/r/VKpUCQcOHICxsTG++OIL3L59GyqVSi7ApDn8xomIiDTkbQWwW7duMDQ0xLRp016aPZMkCQ8ePMh3X8WKFXHv3j2sWrVKvu/9998HAOzevRuRkZFo3rw57t27By8vL/k548ePR+XKldGuXTts3boVQN5Zxn///TcmTZokzwS+SK1W4+DBgzAwMECdOnXQuHFjubjt3LkTGzZswD///PPW76B69eo4cOAAVCoV3N3dkZ6ezgIoAL9xIiIiDXlb0alduzZmzJiBH3/8Ec2bN0dYWBgOHz4MAOjevTtWrlyZ7/mWlpaoXbs25s6dKx9H97wAXrlyBePHj0d2djY2btyY7+odlStXxvHjx+Hu7o4DBw4AAIyNjfHLL7+gUaNGcHZ2hpubG9atWwcA2LZtG5o0aYLz589jxIgRqFSpEqpUqYIBAwYAAGbMmIE+ffogISGhQN9DnTp1EBsbi7t372LTpk0sgALwGyciItIQS0tLAC8fG/ei8ePHY/PmzTAwMMC0adOwefNm1K9fH506dUKnTp3yPVehUODatWu4du3aS8fhjRkzBpmZmbh8+TJ69Ojx0nZq1aqFTZs2YfHixQCAVatWoX379qhXrx4iIyNhZGSEvXv3wtjYGDt27IC5uTmWLVuGiIgI+T0+//xzAMDJkychSRJatWpV4O+iYcOG2L17N5RKJZ49ewaVSlXg19K7U0hv+lP4/ymVSlhZWSEjI0P+w0tERESF06tXL/z000+4devWS2fjFgd7e3s4Oztj586dxf7eJeHWrVuoWbMmevXqhQ0bNoiOo/MK09c4A0hERKQhHh4eAIC4uDjBSbTD8+/h+fdCmsMCSEREpCFt27aFkZERC+D/FxcXByMjIxZAAbgQNBERkYbY2trCyMgIZ8+eLZH3T0pKKpH3LSlnz56FkZERqlWrJjqK3uEMIBERkYYoFApUr14dJ06cgFqtFh1HqKysLJw4caJEjoWkt2MBJCIi0iB3d3dkZGRgy5YtoqMItWXLFiiVSri7u4uOopdYAImIiDRo2LBhMDAwkJdf0VeLFy+GgYEBhg0bJjqKXmIBJCIi0iAnJyfUr18fx44dw6VLl0THEeLixYv4/fff4ejoCEdHR9Fx9BILIBERkYYFBQXB0NAQS5YsER1FiCVLlsDIyAhBQUGio+gtLgRNRESkYdnZ2bC2toYkSbhz545e/W5VKpWoWrUqDAwM8O+//8LY2Fh0pFKDC0ETERFpMWNjY3h5eUGlUmHFihWi42jU8uXLoVKp4OXlxfInEGcAiYiIBEhJSUGNGjVgbm6O+Ph42Nvbi45U4pKSkuDs7IynT58iOTkZtra2oiOVKpwBJCIi0nLVq1fHN998A7VaDU9PTxRgPkanSZKEwYMHQ61W45tvvmH5E4wFkIiISJDIyEiUL18eBw8eRExMjOg4JWrp0qU4dOgQypcvj8jISNFx9B4LIBERkSCWlpZYu3YtAMDPz0/nLuVWUElJSfD39wcArFu3joeTaQEWQCIiIoHatm2LgQMHltpdwf/d9csrf2gHFkAiIiLBFixYIO8Knjx5sug4xWrSpEnyrt/58+eLjkP/HwsgERGRYC/uCp4xYwYiIiIEJyoe4eHhCAkJAcBdv9qGBZCIiEgLtG3bFqGhoQDyjgfU9ZNCYmJi5OP+wsLCuOtXy7AAEhERaYmxY8diwoQJAAAfHx+dnQkMDw+Hj48PAGDixIlyESTtwQJIRESkRUJCQjBs2DAAeTOBkyZN0pkTQyRJQlBQkFz4hg8fjhkzZghORa/CAkhERKRFFAoFFixYgIkTJwLIOybQ3d0dN2/eFJzszZKSkuDm5iYf8xcYGIj58+dDoVAITkavwgJIRESkZRQKBUJCQuRjAk+cOAFnZ2csXbpU62YDJUlCdHQ0GjZsiJMnTwIAQkNDMWPGDJY/LcYCSEREpKXGjh2L2NhYWFtbIzMzE999951WzQY+n/Xz9fVFZmYmrK2tERsbi7Fjx4qORm/BAkhERKTF3N3dkZCQgG+//RbA/80GRkREQKlUCsmkVCoRERGRb9bv22+/RUJCAs/21REKqQBzyUqlElZWVsjIyOAaPkRERILs378fgwYNwr1795Cbmwtzc3P0798fvr6+aNiwYYlv/9KlS4iKisKaNWugUqlgYGCAypUrY+XKlSx+WqAwfY0zgERERDri+Wygk5MTcnNzkZmZibVr16JRo0Zo2bIlNmzYALVaXazbVKvVWL9+PVq0aIFGjRph7dq18jYGDx7MWT8dZSQ6ABERERVcmTJlcO3aNQDAs2fP5JNC4uPj0adPH1SoUAFNmjSBi4uL/GNnZ1egEzIkSUJycjLi4uLkn1OnTiE9PR3W1tYAgHLlysHPzw9eXl6wtbUtuQ9KJYoFkIiISIesXLkST58+BQAYGBjg6tWr+P333xEVFYXDhw/j6dOn+OOPP3D8+HH5GMFKlSrBxcUFderUgZmZGczMzGBiYgK1Wg2VSgWVSoVr164hLi4OaWlpAPIuT2dqagqVSgUAaNy4MYYMGYLOnTvD2NhYzIenYsNjAImIiHSEJEmwtbXFnTt3AABdunTB1q1b5ccTEhLw008/4ezZszh79izu3bsHADAzM4OFhQUAIDc3Fzk5OcjJyYGhoSEMDQ1hYGAASZLw+PFjufBVqVIFLi4ucHV1Rc+ePeHk5KThT0uFVZi+xgJIRESkI2JjY+Hh4SGPr1y5gnr16r3yuZIk4fbt2/l25yYnJ0OlUiEzMxNZWVkoU6YMTE1NYWZmBjs7O3mXsaurK6pVq6apj0XFhAWQiIioFPrwww9x/vx5AICLiwvOnj0rNhBpFZ4FTEREVMpcvnxZLn8AMGfOHHFhSOexABIREemAcePGyberV6+ONm3aCExDuo4FkIiISMulpaVh165d8njq1Km8zi69ExZAIiIiLRccHIzc3FwAeevwDRgwQHAi0nUsgERERFosKysLy5Ytk8cjRozgOnz0zlgAiYiItFhMTIy8Np+RkRECAgIEJ6LSgAWQiIhIS0mShJCQEHnco0cPWFlZCUxEpQULIBERkZbas2ePfDUPAJg9e7bANFSasAASERFpqReXfvn0009Rs2ZNgWmoNGEBJCIi0kLx8fGIj4+Xx3PnzhWYhkobFkAiIiIt5O/vL9+uVasWmjVrJjANlTYsgERERFrm/v372L9/vzwODg4WmIZKIxZAIiIiLTN58mR54efy5cujV69eghNRacMCSEREpEUyMzOxatUqeTxmzBgYGhqKC0SlEgsgERGRFlm8eDEyMzMBACYmJvDz8xOciEojFkAiIiItIUlSvrX++vbtC3Nzc4GJqLRiASQiItIS27dvR1paGgBAoVBg1qxZghNRacUCSEREpCUmTJgg327VqhWqVKkiMA2VZiyAREREWuDChQu4cuWKPI6IiBCYhko7FkAiIiItMGbMGPl2vXr10LhxY3FhqNRjASQiIhLs3r17OHz4sDx+8UQQopLAAkhERCTYxIkTIUkSAKBSpUro3Lmz4ERU2rEAEhERCaRSqbB27Vp5PH78eCgUCoGJSB+wABIREQkUGRkJtVoNADA1NcWwYcMEJyJ9wAJIREQkSG5uLsLCwuTxoEGDUKZMGYGJSF+wABIREQmyefNmpKenAwAMDAwQHBwsOBHpCxZAIiIiQSZOnCjf9vDwQMWKFQWmIX3CAkhERCRAXFwcrl27Jo+58DNpEgsgERGRAKNHj5ZvN2zYEPXr1xeYhvQNCyAREZGG3b59G8eOHZPHc+fOFZiG9BELIBERkYaNGzdOXvi5SpUqcHd3F5yI9A0LIBERkQY9ffoUGzdulMeTJ0/mws+kcSyAREREGhQaGors7GwAgLm5Oby8vAQnIn3EAkhERKQhubm5iIyMlMc+Pj4wMjISF4j0FgsgERGRhqxfvx4ZGRkAAENDQ0ydOlVsINJbLIBEREQaMmnSJPl2x44dYWlpKTAN6TMWQCIiIg04efIk/v77b3k8b948gWlI37EAEhERacCYMWPk266urrC3txcXhvQeCyAREVEJS0lJwYkTJ+QxL/tGorEAEhERlTA/Pz/5tp2dHVq0aCEwDRELIBERUYl68uQJtmzZIo+nTZsmMA1RHhZAIiKiEhQSEoJnz54BACwtLTFw4EDBiYhYAImIiEpMbm4uFi1aJI+HDRsGAwP+6iXx+KeQiIiohPzwww949OgRAMDIyAiBgYGCExHlYQEkIiIqIVOmTJFvd+/eHebm5gLTEP0fFkAiIqIScOzYMSQnJ8tjLv1C2oQFkIiIqASMHj1avv3pp5+iWrVqAtMQ5ccCSEREVMxu3bqFs2fPyuP58+cLTEP0MhZAIiKiYjZy5Ej5du3ateHq6iowDdHLWACJiIiK0ePHj/HLL7/I45CQEIFpiF6NBZCIiKgYTZkyBTk5OQAAa2tr9OzZU3AiopexABIRERWTnJwcLF26VB6PGTMGCoVCYCKiV2MBJCIiKibLly/HkydPAAAmJiYICAgQnIjo1VgAiYiIisn06dPl23369IGJiYnANESvxwJIRERUDA4dOoTbt28DABQKBebOnSs4EdHrsQASEREVgzFjxsi3P//8c1SqVElgGqI3YwEkIiJ6R9evX8eFCxfk8cKFCwWmIXo7FkAiIqJ39OLCz/Xr14ezs7PANERvxwJIRET0Dh49eoQ9e/bI49DQUIFpiAqGBZCIiOgdTJgwAbm5uQCASpUqoUOHDoITEb0dCyAREVER5eTk4Pvvv5fH48aN48LPpBNYAImIiIpo8eLFUKlUAABTU1OMGjVKbCCiAmIBJCIiKqKZM2fKtwcOHAgjIyOBaYgKjgWQiIioCPbs2YN79+4BAAwMDHjyB+kUFkAiIqIiGDt2rHzb3d0dlpaWAtMQFQ4LIBERUSFdvXoVf/75pzzmws+ka1gAiYiICmnYsGHy7YYNG6Ju3boC0xAVHgsgERFRIWRkZODgwYPyOCIiQmAaoqJhASQiIiqEsWPHygs/V61aFW5uboITERUeCyAREVEB5eTkYM2aNfI4MDBQYBqiomMBJCIiegO1Wo1Dhw4hMzMTERERyMzMBACYm5vD19dXcDqiouGKlURERG/g6OiIGzduwNDQEIaGhvL9np6eMDDgPArpJhZAIiKiN0hKSgKQt/s3JydHvr9Tp06CEhG9O/7VhYiI6A1eN8vn5uaGzp07azgNUfFgASQiInqDF3f7/tfu3bs1mISo+LAAEhERvYGxsfFrHxswYIAGkxAVHxZAIiKiNzAyevXh8lOnTsWKFSs0nIaoePAkECIiojfIysrKNzY2NsbWrVvRvn17QYmI3h0LIBERlQqSJCE1NRVxcXHyT3JyMlQqFTIzM6FWq2FiYgJTU1OYmZnBzs4OLi4ucHFxgaurK6pVqwaFQvHGbZQtWxYXL15ErVq1NPSpiEoGCyAREemshIQEbNy4EWfPnkVcXBzu3bsHALCxsYGLiwtatmwJc3NzmJmZwcTEBGq1GiqVCk+fPsX169cRHR2N+/fvAwAqV64sl8FevXrByckJALBgwQL4+vrCxsYG169fh5mZmbDPS1RcFJIkSW97klKphJWVFTIyMmBpaamJXERERK+UnZ2Nbdu2ISoqCkeOHEGFChXQtGlTeTbPxcUF1atXf+tsHpA3a5iSkpJv1vDUqVP4999/0apVKwwZMgRdunR544kgRNqiMH2NBZCIiHRCSkoKYmJisGzZMty9exctW7bEkCFD0LVrV5iYmBTbdtRqNbZs2YKoqCj89ttvqFq1Kry8vODl5YXq1asX23aIihsLIBERlRpKpRIBAQFYvnw5zMzMMGDAAPj6+sLZ2bnEt33p0iUsWbIEa9asgUqlgqenJ0JDQ/m7kLQSCyAREZUKsbGx8PT0RHp6OqZPn47BgwcL+T2kVCqxYsUKTJ48GdbW1li+fDnatm2r8RxEb1KYvsZ1AImISOsolUp4e3vDw8MD9erVQ3x8PEaPHi1sEsLS0hKjR4/GpUuX4ODgAA8PD3h7e0OpVArJQ/SuWACJiEirxMbGwtnZGevXr0d0dDRiY2NRs2ZN0bEAAPb29ti/fz+io6Oxfv16ODs7IzY2VnQsokJjASQiIq0RFhaWb9bPx8enQGfzapJCoYCPj0++2cCwsDDRsYgKhQWQiIiEkyQJEydOREBAAIKCgrRq1u91ns8GBgUFISAgAIGBgSjAYfVEWoELQRMRkVCSJGHkyJFYuHAhIiIiMHr0aNGRCkyhUCA4OBjW1tbw8/PD48ePERkZqXWzlkT/xQJIRERCBQUFYeHChVi6dCm8vb1FxymSMWPGoFy5cvDx8YGFhQVmzJghOhLRG7EAEhGRMGFhYZg5cybCw8N1tvw95+3tjUePHsHf3x9WVlYYO3as6EhEr8UCSEREQsTGxsrH/I0ZM0Z0nGLh5+eH9PR0BAQEoHHjxnB3dxcdieiVuBA0ERFpnFKphLOzM+rVq4fY2NhSdcycJElwc3NDYmIi4uPj+XuTNIYLQRMRkVbz9/dHeno6li9fXqrKH5B3YsiKFSuQnp7O3cCktVgAiYhIo2JjY7Fs2TLMnTtX65d6KSp7e3uEhYUhJiYG+/fvFx2H6CXcBUxERBpTmnf9/hd3BZOmcRcwERFppYCAgFK76/e/XtwVHBAQIDoOUT4sgEREpBEpKSlYvnw5pk+fXmp3/f6Xvb09pk2bhuXLlyM1NVV0HCIZCyAREWnEsmXLYGZmhsGDB4uOolGenp4wNTXFsmXLREchkrEAEhFRicvOzkZMTAz69++vd8fCWVpaon///oiJiUF2drboOEQAWACJiEgDtm3bhrt378LX11d0FCF8fX1x584dbN++XXQUIgA8C5iIiDSgdevWyMnJwdGjR0VHEaZFixYwNjbGoUOHREehUopnARMRkdZISEjAkSNHMGTIENFRhBoyZAgOHz6My5cvi45CxAJIREQla+PGjahQoQK6desmOopQ3bt3h7W1NTZu3Cg6ChELIBERlayzZ8+iSZMmMDExKfBrpk6dCoVCgbS0tBJMplkmJiZo0qQJzp49KzoKEQsgERGVHEmSEBcXB1dX1xJ5f3t7eygUCgwfPvylx44cOQKFQoGff/65RLZdFK6uroiLixMdg4gFkIiISs7t27dx7949uLi4lOh2li1bhtu3b5foNoqDi4sL7t69qxNZqXRjASQiohLzfHdnSRbABg0aICcnB7Nnzy7S6588eVLMiV7v+ffA3cAkGgsgERGVmLi4OFSoUAHVq1cv0uvT0tLQs2dPWFpaomLFihg5ciQyMzPzPcfe3h4DBgwo0Czg82MLExIS0LdvX1hbW6N58+by+3To0AFHjhyBq6srzMzM0LBhQzRu3BjOzs7YsmULGjZsCFNTU7i4uODcuXP53rsgu5zt7OxgbW3N3cAkHAsgERGVmOfH/xkYGEChULz158iRI/le37NnT2RmZmLWrFn46quvsGDBAnh7e7+0ncDAQDx79qzAs4Bff/010tPT0bhxY9y+fRtmZmZITk7GwYMH0aFDB3h4eGDWrFlIT09HfHw8Hj58iNGjR6Nfv36YNm0arl+/jp49eyI3N7dQ34dCoeBxgKQVjEQHICKi0uvvv/9GmzZt0L9//3z3r169Gvv378eaNWvy3e/o6Jhv/P7778tXzxg6dCgsLS0RFRUFf39/NGrUSH5erVq10L9/fyxbtgwTJkxA1apV35jL0dERZ86cgVKpxLfffov69esjICAADx8+hLm5Oby8vGBvbw8nJyd4eHjg9u3bSEpKQo0aNQAA1tbW8PHxwdGjR9GqVatCfScODg44fPhwoV5DVNxYAImIqMQolUqYm5ujX79++e4/efIk9u/f/9L9/zV48OB84+HDhyMqKgq7d+/OVwABICgoCGvWrMHs2bMxf/78N76vjY0Nbt26hd9//x2ffvopACAkJATVqlXDiRMn5CVrmjZtCgAoW7asXP5evP/GjRuFLoBmZmbIyMgo1GuIiht3ARMRUYl58uQJzMzMCvTcVq1awdnZGXFxcVi5ciUAYOvWrQCA7du3o3379mjdujUAYObMmQgODs73+lq1aqFSpUpYuHAhfv31V4waNQoA4O3tjdDQ0HzPffToEQwNDfHJJ5/ku79GjRqwtLSEqakpAMDKygoAYGxsjISEBLRu3Rrm5uZo27YtACA9Pf2NnykrKwsdOnSAlZUVjh8/DiCvAD59+rRA3wlRSWEBJCKiEqNWqwu1APSDBw/Qrl07VKlSBQDQrFkzAMCqVatQrlw5jBo1CgqFAjY2Npg8efJLBaxGjRqQJAkdOnRAnTp1AAC2trYYN24c9uzZIz/P3t4eOTk5L+2CNjQ0fGWurKwsfPnll/jggw8QHh6O2rVrA8AbL+umUqnQsWNHHD9+HAcOHJBnGk1MTJCVlVXg74SoJLAAEhFRiZEkCWq1usDPv3v3LoKDg9GuXTsAeUUNAH788Uds3LgRnTt3hiRJ8PLygo+PDx49epTvRIzns41ZWVno3r07gLwTRKpUqYIVK1bIz+vbty9sbGzwzTffwNHREb6+vnjy5AmePXv2ylxPnz5FSEgIIiMj4evri1WrVgEATp8+/crnP378GO3atcO5c+dw6NAhfPzxx/JjarUakiQV+DshKgksgEREVGIUCgVUKlWBn1+mTBkMGjRIHi9evBjA/xW7hQsXAgA++eQTtGjRApIk4fHjx/new9zcHLm5ufJuXyMjIzRp0gQ3btyQn/Pee+/hwoUL+O6775Ceno7o6GikpaUhNjYWwcHBLxU0Y2PjfMcrPp/VfPDgwUufISMjA23btsWVK1dw5MgRNG7cON/jKpUKCoWiwN8JUUngSSBERFRiJEkq1PFutra2+XYZ//333+jUqRM++OADrFq1CikpKQAgHwsI4KVZuxo1aqBp06b44Ycf5Pusra1x8eLFfM+rWrUqlixZgqioKCQmJqJZs2Z48uQJJk+ejKpVq8LT01N+btmyZV9Z2l5VbkeNGoXMzEycO3cODRo0KNBriDSNM4BERFRicnNzce3atQI//78njGzcuBEGBgYICQnB7du30aJFC2zevBn79+/HnDlzAOCl2TpDQ0MEBQW9dDzf63a7KhQKODg4wMLCAp9++ikMDAywbt26fM8xMHj1r8tXvefz3dSzZ89+5TqBiYmJyMnJeeX7EWkKCyAREZUYExMTnD17ttDHvE2dOhWSJMHR0RHffPMNJEnC4cOHcfToUXTr1g1ubm6wtrYGAMyaNeul19epUwfPnj2DJEno0aPHS+9bqVKll16TlJSEQ4cOwdraGnfu3JHv//zzz19aV9De3h4DBw6UzxJ+UZcuXfD999/jxx9/xNChQ/M9JkkSzp49izJlyhTq+yAqbiyARERUYsqWLYsHDx7Iu26L4vlM3oslUq1WIyoqqsjveerUqVdeA/j06dN48OAB6tWrV+T3BoABAwZgwYIFiI6Oxrhx4+T7k5OT8e+//6Js2bLv9P5E74rHABIRUYkpX7487t69i7i4ONjZ2RXpPT799FNYW1tj4MCBGDFiBBQKBdasWfNOZ9KuWbMG69atQ9euXeHi4gITExNcvnwZ33//PUxNTTFx4sQiv/dzw4YNg1KpRGBgIKysrDBx4kT5EnDly5d/5/cnehcsgEREVGLef/993Lp1C3FxcejSpUuR3qNixYrYuXMn/Pz8EBQUBGtra/Tr1w9ffPEFPDw8ivSePj4+MDc3x8GDB7F9+3YolUrY2Nigbdu2mDBhAj788MMive9/TZw4ERkZGXIJvHPnDszNzVGrVq1ieX+iolJIBfgrlFKphJWVFTIyMmBpaamJXEREVApMnjwZoaGhaNOmDXbv3i06jnDt2rXD4cOHMW7cOEybNk10HCplCtPXeAwgERGVGBcXF2RlZeHUqVOFWhC6NHr+PWRlZcHFxUV0HNJzLIBERFRiXF1dAQD//vsvtmzZIjiNWFu2bJEvXff8eyEShbuAiYioxEiShKpVq8LMzAx2dnY4evSo6EjCtGjRAqmpqVCpVPmWmSEqLtwFTEREWkGhUMDFxQXly5fHb7/9hkuXLomOJMTFixdx7NgxWFlZcfcvaQUWQCIiKlGurq64efMmqlSpgiVLloiOI8SSJUtQtWpVJCUlcfcvaQUWQCIiKlG9evVCeno6Pv30U6xZswZKpVJ0JI1SKpVYs2YNmjVrhocPH6JXr16iIxGxABIRUclycnJCq1atkJKSApVKhRUrVoiOpFHLly9HZmYmkpOT0bp1azg6OoqORMQCSEREJW/IkCE4ffo0unXrhsmTJyMpKUl0JI1ISkrClClT0LVrV5w5cwZDhgwRHYkIAAsgERFpQJcuXVClShVYWlrC2toanp6e73QpN10gSRIGDx6MChUqwNLSElWrVkXnzp1FxyICwAJIREQaYGxsDG9vb2zcuBHz58/HwYMHERMTIzpWiVq6dCkOHTqE+fPnY+PGjfD29oaxsbHoWEQAWACJiEhDvLy8oFKpkJSUBC8vL/j7+5faXcFJSUkYO3YsvL29cePGDWRmZsLLy0t0LCIZCyAREWlE9erV4enpicmTJ2P48OGldlfwi7t+hw0bhilTpsDT0xO2traioxHJWACJiEhjQkNDYW1tjdGjR2PZsmU4ePAgJk+eLDpWsZo0aRIOHTqEZcuWYdSoUahQoQJCQ0NFxyLKhwWQiIg0xtLSEsuXL8fBgweRlJSE0NBQzJgxAxEREaKjFYvw8HCEhIQgLCwMN27cwKFDh7B8+XJeRpW0jpHoAEREpF/atm0rHwN46dIlPHz4EH5+fihXrhy8vb1FxyuymJgY+Pv7IzAwED169EDDhg3h7e0Nd3d30dGIXsICSEREGjd37lzs3bsXnp6eiI2NxaNHj+Dj44PHjx9jzJgxouMVWnh4OPz9/TFixAhMnz4d7u7uqFChAsLCwkRHI3olFkAiItK457uCPTw8MGXKFMyfPx8WFhbw8/NDeno6pk+fDoVCITrmW0mShEmTJiEkJASBgYEIDg6WjwGMjY3lrl/SWiyAREQkRNu2bREaGoqAgABYW1sjJCQE5cuXR0BAAE6cOIEVK1agZs2aomO+VlJSEgYPHoxDhw4hNDQUY8eOzXcMIHf9kjZjASQiImHGjh2b7xjAsWPHonHjxhg8eDCcnZ0xd+5ceHt7a9VsoCRJWLp0KcaOHQtra2vExsbC3d093zGA/v7+omMSvRHPAiYiIqFmzJiB4cOHw8fHBxEREXB3d0d8fDz69u2L7777Du7u7rh586bomADyZv3c3Nzg6+uLvn37Ij4+Hu7u7ggPD4ePjw9GjBiB4OBg0TGJ3ooFkIiIhFIoFJg/fz4mTpwIPz8/TJo0CRYWFli6dCliY2Nx9epVODs7IyIiAkqlUkhGpVKJiIgINGzYEImJiYiNjcXSpUthYWGBoKAgeeYvMjJSq2YriV5LKoCMjAwJgJSRkVGQpxMRERVJaGioBED64osvpKSkJEmS8n4H+fj4SIaGhlK5cuUkX19f6eLFixrJc/HiRem7776TypYtKxkaGko+Pj7y78K///5batOmjQRACg0N1UgeojcpTF/jDCAREWmNsWPH5pv1ez7LFh0djaSkJIwZMwbbtm1Do0aN0LJlS2zYsAFqtbpYM6jVaqxfvx4tWrRAo0aNsH37dvj7++PmzZuIjo6W87w4Gzh27NhizUBU0hSS9PaLMCqVSlhZWSEjI4OntBMRUYlTKpUYO3YsYmJi0Lp1a6xcuVI+Izg7Oxvbt29HVFQUDh8+jAoVKqBJkyZwcXGRf+zs7Aq0K1aSJCQnJyMuLk7+OXXqFNLT09G6dWsMGTIEnTt3hrGxMYD8Z/56e3sjLCyMvxdJaxSmr7EAEhGR1lq9ejUGDx4MY2NjzJgxA56envl+DyUkJOCnn37C2bNnERcXh7t37wIAKlWqBBcXF9SpUwdmZmYwMzODiYkJ1Go1VCoVVCoVrl27hri4OKSlpQEAqlSpAhcXF7i6uqJnz55wcnKSt6NUKrF8+XJMmTIF1tbWWLFiBZd5Ia3DAkhERKWCj48PYmJiAOSdLGJubo4BAwbA19cXDRs2zPdcSZJw+/btfLN5ycnJUKlUyMzMRFZWFsqUKQNTU1OYmZnBzs5OnjF0dXVFtWrVXtr+pUuXEBUVhTVr1iAzMxOenp4IDQ3l70LSSiyARESk81JSUvD+++/j2bNnAIDKlStj8ODBWLlyJe7cuYMWLVpgyJAh6NatG0xMTIptu2q1Gps3b0ZUVBSOHTuGqlWrwtvbG15eXrC1tS227RAVt8L0NS4ETUREWik0NFQufwAwefJkDBkyBFOnTpWPAezTp0+JHgO4adOmfMcAEpUWnAEkIiKtc/fuXdjb2yMrKwtA3uxfUlISTE1N8z1PU8cAEukCzgASEZFOmzt3rlz+ACAwMPCl8gcATk5OmDp1KoBXHwP422+/vfEYwCFDhrzxGECi0oozgEREpFXu37+PGjVqIDMzEwDw3nvv4ebNm68sgET0fwrT17gQNBERaZV58+bJ5Q8AJk6cyPJHVMw4A0hERFrj33//RY0aNfDkyRMAecfy3bp1C2ZmZoKTEWk/zgASEZFOWrhwoVz+AGDChAksf0QlgDOARESkFZRKJezs7KBUKgEAFStWxK1bt2Bubi44GZFu4AwgERHpnMWLF8vlDwDGjx/P8kdUQjgDSEREwj158gR2dnZIT08HAFhbWyM5ORlly5YVnIxId3AGkIiIdEp0dLRc/gBg3LhxLH9EJYgzgEREJJRKpUKNGjXkK3JYWVkhJSUF5cqVE5yMSLdwBpCIiHTGihUr5PIH5M3+sfwRlSzOABIRkTBZWVmwt7eXr+FraWmJlJQUWFhYCE5GpHs4A0hERDrhhx9+kMsfAIwdO5blj0gDOANIRERCZGdno1atWkhJSQEAlCtXDikpKbCyshKcjEg3cQaQiIi03rp16+TyB+TN/rH8EWkGZwCJiEjjcnJyUKdOHSQlJQEAypYti5SUFJQvX15oLiJdxhlAIiLSaj/99JNc/gDA39+f5Y9Ig1gAiYhIo3JzczF16lR5bG5ujpEjR4oLRKSHWACJiEijtm7diqtXr8rj0aNHw9raWmAiIv3DAkhERBojSRKmTJkij83MzDBmzBiBiYj0EwsgERFpzM6dO/Hnn3/K41GjRqFChQoCExHpJxZAIiLSCEmSMGnSJHlcpkwZzv4RCcICSEREGrF//35cuHBBHo8cORKVKlUSmIhIf7EAEhFRifvv7J+JiQn8/f0FJiLSbyyARERU4n799VecPn1aHg8fPhw2NjYCExHpNxZAIiIqcS/O/hkbGyMgIEBgGiJiASQiohJ1/PhxHDt2TB4PHToU7733nsBERMQCSEREJSooKEi+bWRkhHHjxglMQ0QACyAREZWgs2fP4vDhw/LY19cXVapUEZiIiAAWQCIiKkEvHvtnZGSECRMmCExDRM+xABIRUYm4ePEi9u7dK4+9vLxQtWpVgYmI6DkWQCIiKhEvzv4ZGhoiMDBQYBoiehELIBERFbvLly9jx44d8njw4MGwtbUVmIiIXsQCSERExW7y5MnybUNDw3yzgUQkHgsgEREVq8TERGzevFkef/PNN6hevbrARET0XyyARERUrKZNmwZJkgAABgYG+WYDiUg7sAASEVGxSUpKwvr16+XxgAEDUKNGDYGJiOhVWACJiKjYTJ8+Hbm5uQAAhUKBKVOmCE5ERK/CAkhERMUiNTUVq1evlsf/+9//YG9vLy4QEb0WCyARERWL4OBg5OTkAMib/Zs2bZrgRET0OiyARET0zu7evYsVK1bI4169eqFWrVoCExHRm7AAEhHRO5s1axaePXsGIG/2b8aMGYITEdGbsAASEdE7SUtLQ3R0tDzu0aMHateuLTAREb0NCyAREb2T0NBQqNVqeRwSEiIwDREVBAsgEREV2cOHD7FgwQJ53LVrV9StW1dgIiIqCBZAIiIqsrlz5yIrK0sez5o1S2AaIiooFkAiIiqSR48eISIiQh536tQJ9erVE5iIiAqKBZCIiIokMjISKpVKHs+ePVtgGiIqDBZAIiIqtCdPniA0NFQet2vXDo6OjgITEVFhsAASEVGhLVq0CI8fP5bHYWFhAtMQUWGxABIRUaFkZmZi5syZ8rht27Zo0KCBwEREVFgsgEREVChLliyBUqmUx3PnzhWYhoiKggWQiIgKTK1WIzg4WB63bt0aDRs2FJiIiIqCBZCIiApsxYoVSE9Pl8fz5s0TmIaIiooFkIiICuTZs2eYPHmyPG7ZsiU++OADgYmIqKhYAImIqEB++OEHpKWlyePIyEhxYYjonbAAEhHRW+Xk5GDixIny+NNPP8WHH34oMBERvQsWQCIieqv169fjn3/+kccLFiwQmIaI3hULIBERvVFubi7GjRsnj5s2bQoXFxeBiYjoXbEAEhHRG23evBm3b9+Wx5z9I9J9LIBERPRakiTB399fHru4uKBJkyYCExFRcWABJCKi19qxYwdu3boljxcuXCgwDREVFxZAIiJ6JUmSMGbMGHn8wQcfoFmzZgITEVFxYQEkIqJX2rdvH27cuCGPFy1aJDANERUnFkAiInqlUaNGybednZ3RvHlzcWGIqFixABIR0UsOHz6Mv/76Sx7z2D+i0oUFkIiIXjJ8+HD5tqOjI1q1aiUuDBEVOxZAIiLK5/fff8eff/4pjzn7R1T6sAASEVE+w4YNk287ODjgiy++EJiGiEoCCyAREclOnz6N8+fPy2Ne9YOodGIBJCIi2Yuzf7Vr10bbtm0FpiGiksICSEREAIALFy7gzJkz8njBggVQKBQCExFRSWEBJCIiAMCQIUPk2/b29mjXrp3ANERUklgAiYgICQkJOH78uDyeP38+Z/+ISjEWQCIiPfXkyROo1WoA+Wf/7Ozs0LFjR1GxiEgDWACJiPTQ1atXYW1tjTJlysDJyQm//vqr/Ni8efM4+0dUyrEAEhHpofXr1yM7OxsAcPnyZfl+GxsbdOvWTVQsItIQFkAiIj2Uk5Pzyvvv37+PDz/8EE+ePNFwIiLSJBZAIiI9ZGho+NrHLly4gNGjR2swDRFpGgsgEZEeelMBBIAWLVpoKAkRicACSESkhwwMXv2/f0NDQ0RHR6N///4aTkREmmQkOgAREb2aJElITU1FXFyc/JOcnAyVSoXMzEyo1WqYmJjA1NQUZmZmsLOzg4uLC1xcXODq6opq1aq99mxelUr10n02Njb49ddf4ejoWNIfjYgEYwEkItIiCQkJ2LhxI86ePYu4uDjcu3cPQF45c3FxQcuWLWFubg4zMzOYmJhArVZDpVLh6dOnuH79OqKjo3H//n0AQOXKleUy2KtXLzg5Ocnbefz4cb7turm54ZdffoGpqanmPiwRCaOQJEl625OUSiWsrKyQkZEBS0tLTeQiItIb2dnZ2LZtG6KionDkyBFUqFABTZs2lWfzXFxcUL169QKtzSdJElJSUvLNGp46dQr//vsvWrVqhSFDhqBLly5QqVSoVKkSsrOzMWTIECxevFgDn5SISlJh+hpnAImIBElJSUFMTAyWLVuGu3fvomXLltiwYQO6du0KExOTIr2nQqGAnZ0d7Ozs0KVLFwCAWq3Gli1bEBUVhZ49e6Jq1arw8vLCjRs3UL169WL8RESkKzgDSESkYUqlEgEBAVi+fDnMzMwwYMAA+Pr6wtnZucS3fenSJSxZsgRr1qyBSqWCp6cnQkND+f92olKgMH2NBZCISINiY2Ph6emJ9PR0TJ8+HYMHDxby/1WlUokVK1Zg8uTJsLa2xvLly9G2bVuN5yCi4lOYvsZlYIiINECpVMLb2xseHh6oV68e4uPjMXr0aGF/qba0tMTo0aNx6dIlODg4wMPDA97e3lAqlULyEJFmsQASEZWw2NhYODs7Y/369YiOjkZsbCxq1qwpOhYAwN7eHvv370d0dDTWr18PZ2dnxMbGio5FRCWMBZCIqASFhYXlm/Xz8fEp0Nm8mqRQKODj45NvNjAsLEx0LCIqQSyAREQlQJIkTJw4EQEBAQgKCtKqWb/XeT4bGBQUhICAAAQGBqIAh4kTkQ7iMjBERMVMkiSMHDkSCxcuREREBEaPHi06UoEpFAoEBwfD2toafn5+ePz4MSIjI7Vu1pKI3g0LIBFRMQsKCsLChQuxdOlSeHt7i45TJGPGjEG5cuXg4+MDCwsLzJgxQ3QkIipGLIBERMUoLCwMM2fORHh4uM6Wv+e8vb3x6NEj+Pv7w8rKCmPHjhUdiYiKCQsgEVExiY2NlY/5GzNmjOg4xcLPzw/p6ekICAhA48aN4e7uLjoSERUDLgRNRFQMlEolnJ2dUa9ePcTGxpaqY+YkSYKbmxsSExMRHx/P3wNEWooLQRMRaZi/vz/S09OxfPnyUlX+gLwTQ1asWIH09HTuBiYqJVgAiYjeUWxsLJYtW4a5c+dq/VIvRWVvb4+wsDDExMRg//79ouMQ0TviLmAiondQmnf9/hd3BRNpN+4CJiLSkICAgFK76/e/XtwVHBAQIDoOEb0DFkAioiJKSUnB8uXLMX369FK76/e/7O3tMW3aNCxfvhypqami4xBREbEAEhEV0bJly2BmZobBgweLjqJRnp6eMDU1xbJly0RHIaIi4jqAVCSJiYl49OiR6Bhax8LCAnXr1hUdgzQgOzsbMTEx6N+/v94dC2dpaYn+/fsjJiYGgYGBMDY2Fh2JiAqJBZAKLTExEQ4ODqJjaK2rV6+yBOqBbdu24e7du/D19RUdRQhfX19ER0dj+/bt6NGjh+g4RFRILIBUaM9n/tauXQtHR0fBabTH5cuX0a9fP86M6omoqCi0aNECDRs2FB1FiEaNGqF58+aIiopiASTSQSyAVGSOjo746KOPRMcg0riEhAQcOXIE69evFx1FqCFDhqBv3764fPky/zJIpGN4EggRUSFt3LgRFSpUQLdu3URHEap79+6wtrbGxo0bRUchokJiASQiKqSzZ8+iadOmMDExER1FKBMTEzRt2hRnz54VHYWICokFkIioECRJQlxcHFxcXEp0O0lJSVAoFFAoFNi8efNLj0+dOhUKhQJpaWklmuNtXFxcEBcXJzQDERUeCyARUSHcvn0b9+7dK/EC+KLp06ejAFftFMLFxQV3797F7du3RUchokJgASQiKoTnuzs1VQAbN26MixcvYuvWrUV6/dOnT4s5UX7PvwfuBibSLSyARESFEBcXBxsbG1SvXv2tz32+m/bq1avo168frKysYGNjg0mTJkGSJCQnJ6Nz586wtLRElSpVEB4e/tJ79O7dGw4ODgWaBWzVqhWcnZ0RFxeHli1bwtzcHBMnTpR3J8+dOxeLFy9GrVq1YG5ujrZt2yI5ORmSJCE4OBjVq1eHmZkZOnfujH///bdA34ednR0qVarE3cBEOoYFkIioEJ4f/6dQKAr8ml69eiE3NxezZ89G06ZNMWPGDERGRsLd3R22traYM2cO6tSpA39/fxw9ejTfaw0NDREUFIQLFy4UaBbwwYMHaNeuHRo3bozIyEi0bt1afmzdunWIiorC8OHD4efnh19//RU9e/ZEUFAQ9u7di3HjxsHb2xu//PIL/P39C/TZFAoFjwMk0kFcB5CIqBCSk5PRsmXLQr2mSZMmWLp0KQDA29sb9vb28PPzw6xZszBu3DgAQJ8+fVCtWjV8//33L71/3759ERwcjOnTp6Nr165vLJ93795FdHQ0fHx85PuSkpIAAKmpqUhMTISVlRUAICcnB7NmzYJKpcLZs2dhZJT3K+H+/ftYt24dlixZgjJlyrz189WpUwe//fZbwb8QIhKOM4BERIWgUqlgbm5eqNd4enrKtw0NDeHq6gpJkjB48GD5/vLly6NevXq4cePGS69/cRZw27Ztb9xWmTJlMGjQoFc+9vXXX8vlDwCaNm0KAOjXr59c/p7fr1arkZqaWqDPZ2ZmBpVKVaDnEpF2YAEkIiqEzMxMmJmZFeo1NWrUyDe2srKCqakpKlWq9NL96enpr3yP//3vf6hTp85bjwW0tbV97fqEr8oB5B3H96r7X5flv8zMzJCZmVmg5xKRdmABJCIqBLVaXegFoA0NDQt0H4DXlrvns4Dnz5/H9u3bX7utN5XT122zsFn+y8TEBFlZWQV6LhFpBxZAIqJCMDExgVqtFrLtfv36oU6dOpg2bZpWrQuoVqsLdKwgEWkPngRCRFQIpqamwo53ez4L+M033wjZ/uuoVCqYmpqKjkFEhcACSET0gmfPnuH27dtITk7GrVu38v0zOTkZKSkpJb648pv873//Q3BwMM6fPy8sw3+pVKpCHxdJRGKxABKR3pAkCWlpaa8sd8//efv2beTm5r72PRQKBRITEzWYOj8jIyMEBQW99kxfEa5du/bSiSREpN0UUgEOJFEqlbCyskJGRgYsLS01kYu02B9//CEv/PrRRx+JjqM1+L2I9/jx4zeWu+Tk5Hc6W9XQ0BBly5aFsbEx7t+/X6jFoEsrSZLw3nvvYciQIZg2bZroOER6rTB9jTOARKQTsrOzkZqa+sZyV9BlS17HxsYGNWrUgJ2dHezs7OTbz/9ZtWpV7Ny5E126dEFKSgpnvZC3MHZaWprGro1MRMWDBZCIhMvNzcX9+/dfW+5u3bqFu3fvvtOZr+XKlXtjuXt+Hdy3cXV1BZB3STgWQMiXgHv+vRCRbmABJKISp1Qq31juUlJS3mlpFWNjY1SvXv215a5GjRqwsrIqll221apVQ+XKlREXF4cuXbq88/vpuri4OFSpUgXVqlUTHYWICoEFkIjeSVZWFlJSUt547J1SqXynbVSpUuWN5a5y5cowMNDMsqYKhUI+1pPyCiB3/xLpHhZAInqt3Nxc3L17943l7t69e++0DSsrq3yF7r/lztbWVusWGXZ1dcWiRYuKdFWQ0iQrKwunTp3CiBEjREchokJiASTSU5Ik4eHDh689oeLWrVtITU1FdnZ2kbdhYmLyxnJnZ2enkysL9OrVC9OnT8eWLVvQu3dv0XGE2bJlC9LT09GrVy/RUYiokFgAiUoplUqFlJSU15a75ORkPH78uMjvr1AoULVq1dfulrWzs4ONjY3Gds1qkpOTE1q1aoWoqCi9LoBRUVFo3bo1HB0dRUchokJiASStolAoMHToUCxatEh0lGKVkZGBxYsXw9DQEP7+/jA0NHyn98vJycGdO3feWO7u37//TtuwtrZ+48ydra0tjI2N32kbumzIkCHo2bMnLl26hIYNG4qOo3EXL17EsWPHsGnTJtFRiKgIWABJYy5duoRp06bhzJkzuHfvHipWrAgnJyd06tQJw4cPFx2vxOzcuRPfffcdUlNTAeTNHnXs2PG1z5ckCf/+++8rS93zf6ampiInJ6fImUxNTd9Y7uzs7FCuXLkiv78+6NKlC6pUqYIlS5YgKipKdByNW7JkCapWrYrOnTuLjkJERcACSBpx/PhxtG7dGjVq1ICXlxeqVKmC5ORknDx5EvPnzy+VBTAtLQ2jRo3CunXr8t0fFxeHunXrvrbc3bp1CyqVqsjbNTAwQLVq1V67W7ZGjRqoWLEir2LxjoyNjeHt7Y2IiAjMnj1bJ49lLCqlUok1a9bA399fr2eBiXQZCyBpREhICKysrHDmzBmUL18+32P//POPRrM8efIEZcuWLdFtzJs3D1OnTn3l8ifTpk17p0tmVaxY8Y3lrmrVqjAy4n/amuDl5YWQkBCsWLECo0ePFh1HY5YvX47MzEx4eXmJjkJERcTfEqQR169fR4MGDV4qfwDw3nvvvXTftm3bEBQUhMTERNSpUwfh4eH48ssv5cdv3ryJOXPm4ODBg7h16xbMzc3Rpk0bhIWFwd7eXn7eqlWrMGjQIBw5cgQbN27Ezz//jOzsbPmSYXv27MHMmTPxxx9/wMDAAC1btkRoaCgaNGhQ5M86b948rF27tkivNTc3f225e/5jbm5e5GxUvKpXrw5PT09MnjwZXbt2zfdnr7RKSkrClClT4OnpCVtbW9FxiKiIWABJI2rWrIkTJ04gPj4ezs7Ob3zusWPHsGXLFgwZMgQWFhZYsGABunfvjlu3bqFixYoAgDNnzuD48ePo3bs3qlevjqSkJCxZsgStWrVCQkLCSyVpyJAhsLGxweTJk/HkyRMAwJo1azBw4EB4eHhgzpw5ePr0KZYsWYLmzZvj3LlzRf5lfuvWrTc+bm5uji5durxyeRRra2vumtUxoaGh2L17Nzw9PbF///5S/e9PkiQMHjwYFSpUQGhoqOg4RPQupALIyMiQAEgZGRkFeTqVcnFxcRIAKS4ursCviY2NlQwNDSVDQ0OpWbNmUkBAgLRv3z5JrVbnex4AycTERLp27Zp834ULFyQA0sKFC+X7nj59+tI2Tpw4IQGQVq9eLd+3cuVKCYDUvHlz6dmzZ/L9jx49ksqXLy95eXnle4+7d+9KVlZWL91fEM+/l6NHj0pdunSRrK2tJQAv/VhZWRX6vUm77du3TwIgRUdHi45SopYsWSIBkGJjY0VHIaJXKExfK30LdJFWcnd3x4kTJ9CpUydcuHABoaGh8PDwgK2tLXbs2JHvuW5ubqhdu7Y8btSoESwtLXHjxg35PjMzM/l2dnY2Hjx4gDp16qB8+fL4448/Xtq+l5dXvqVX9u/fj4cPH6JPnz5IS0uTfwwNDdG0aVMcPny4yJ+1bNmy2Lp1K9LS0nD06FF4eXnByspKftzExASSJBX5/Un7tG3bFl5eXvD390dSUpLoOCUiKSkJY8eOhbe3N9zd3UXHIaJ3xAJIGvPxxx/LVw44ffo0JkyYgEePHqFHjx5ISEiQn1ejRo2XXmttbS0ftwfkLXI8efJk2NnZoUyZMqhUqRJsbGzw8OFDZGRkvPT6999/P984MTERANCmTRvY2Njk+4mNjS2WE1MMDAzQokULxMTE4O7du9i0aRNGjBiBjRs3lurdhPpq7ty5sLa2hqenZ6kr+NILu37DwsJExyGiYsBjAEnjTExM8PHHH+Pjjz+Gg4MDBg0ahE2bNmHKlCkA8NpFkl/8pTp8+HCsXLkSo0aNQrNmzWBlZQWFQoHevXsjNzf3pde+OGMIQH7OmjVrUKVKlZeeX9xn0ZqamqJHjx7o0aNHsb4vaQ9LS0ssX74cHh4emDx5MoKDg0VHKjaTJk3CoUOHEBsbq1fL3RCVZiyAJJSrqysA4M6dO4V63c8//4yBAwciPDxcvi8zMxMPHz4s0Ouf72J+77334ObmVqhtE71O27ZtERoaioCAAFhbW2PMmDGiI72z8PBwhISEICwsjLt+iUoR7gImjTh8+PArd4vt3r0bAFCvXr1CvZ+hoeFL77dw4cICXx3Dw8MDlpaWmDlzJrKzs196/F0vo0b6a+zYsZg4cSL8/PwQExMjOs47iYmJgb+/PwIDA+Hv7y86DhEVI84AkkYMHz4cT58+RdeuXVG/fn2o1WocP34cGzduhL29PQYNGlSo9+vQoQPWrFkDKysrODk54cSJEzhw4IC8TMzbWFpaYsmSJejfvz8++ugj9O7dGzY2Nrh16xZ27dqFzz77rNRdj5g0Z8aMGXj06BF8fHzw+PFjnZwJDA8Ph7+/P0aMGFGqdmcTUR4WQNKIuXPnYtOmTdi9ezdiYmKgVqtRo0YNDBkyBEFBQa9cIPpN5s+fD0NDQ6xbtw6ZmZn47LPPcODAAXh4eBT4Pfr27Ytq1aph9uzZCAsLQ1ZWFmxtbdGiRYtCF1KiFykUCsyfPx8WFhbw8/NDeno6pk+frhMn/0iShEmTJiEkJASBgYEIDg7WidxEVDgKqQCnqymVSlhZWSEjI4MHABP++OMPuLi4IC4uDh999JHoOFqD3wu9SlhYGAICAvDFF19gxYoVqFmzpuhIr5WUlITBgwfj0KFDCA0NxdixY0VHIqJCKExf4zGAREQlaOzYsYiNjcXVq1fh7OyMpUuXat0yMZIkITo6Gg0bNkRiYiJiY2NZ/ohKORZAIqIS5u7ujvj4ePTt2xffffcdvvjiC9y8eVN0LAB5s35ubm7w9fVF3759ER8fz7N9ifQACyARkQZYWlpi6dKlGDRoEI4ePQpHR0dERERAqVQKyaNUKhEREQEnJydcuXIFsbGxWLp0KQ/zIdITLIBERBpy+/Zt/PTTT8jJyYFKpUJAQABsbW0xZMgQXLp0SSMZLl26BF9fX1StWhX+/v5QqVRo2bIlZ/2I9AwLIBGRhkyYMAFPnjwBAAwdOhRJSUkYM2YMtm3bhkaNGqFly5bYsGED1Gp1sW5XrVZj/fr1aNGiBRo1aoTt27dj+PDh8mzfxo0bNVZAiUg7sAASEWnA6dOnsXr1agB517aeNm0aqlevjmnTpuHmzZvYtGkTjIyM0KdPH1StWhXt2rVDUFAQtm7dilu3bhX4xBFJknDr1i1s3boVQUFBaNeuHapUqYK+ffvC2NgYmzZtws2bNzF79mwEBgbKr5k4cWKJfXYi0j5cBoYKjcudvBq/F3qd3NxcfPrppzh16hQAYMGCBRg+fPgrn5uQkICffvoJZ8+eRVxcHO7evQsAqFSpElxcXFCnTh2YmZnBzMwMJiYmUKvVUKlUUKlUuHbtGuLi4pCWlgYAqFKlClxcXODq6oqePXvCyckp37ZUKhUcHByQkpICAPjtt9/QvHnzkvoaiKiEFaavcSFoIqIS9uOPP8rlz8nJCd99991rn+vk5ISpU6cCyJuZu337NuLi4uSf3377DSqVCpmZmcjKykKZMmVgamoKMzMz2NnZYciQIXLpq1at2htzmZmZYerUqfD09AQAjBs3DseOHePCz0R6gAWQiKgEPX78GOPGjZPH8+bNg7GxcYFeq1AoYGtrC1tbW3Tq1KlE8g0cOBBz587FlStXcPz4cezcuRMdO3YskW0RkfbgMYBERCVozpw5uH37NgCgY8eOaNu2reBE+RkZGSEkJEQeT5gwATk5OQITEZEmsAASEZWQpKQkzJ07FwBgbGyM8PBwwYlerWvXrmjatCkA4M8//8TatWsFJyKiksYCSERUQgICApCZmQkAGDlyJOrWrSs40aspFArMnj1bHk+ePFnOTUSlEwsgEVEJ+PXXX7Fp0yYAwHvvvYegoCDBid6sVatW+PLLLwEAt27dwpIlSwQnIqKSxAJIRFTMcnJyMGrUKHkcEhICKysrcYEKaNasWfLtkJAQZGRkCExDRCWJBZCIqJh9//33OH/+PADgww8/xKBBg8QGKqDGjRujb9++AIAHDx7Ixy8SUenDAkhEVIwyMjLkK2wAwPz582FoaCgwUeEEBwfDyChvhbCIiAh5IWoiKl1YAImIilFwcDDu378PAOjZsydatGghOFHh1KpVCz4+PgCAp0+fIjg4WHAiIioJLIBERMXk6tWrmD9/PgDA1NQUoaGhghMVzaRJk1C2bFkAQExMDK5duyY4EREVNxZAIqJi4ufnh2fPngEAxo4di5o1awpOVDSVK1fGmDFjAADPnj3D5MmTBSciouLGAkhEVAz27t2LnTt3AgBsbW3zXf5NF/n7+6NSpUoAgPXr1+PcuXOCExFRcWIBJCJ6R9nZ2Rg9erQ8Dg0NlXeh6ipLS8t8J7NMmDBBYBoiKm4sgERE72jJkiW4cuUKAKBZs2bo06eP4ETFw9fXV96NvW/fPhw+fFhwIiIqLiyARETvIC0tDVOmTJHH8+fPh0KhEJio+JQpUwbTp0+Xx+PHj4ckSQITEVFxYQEkInoHU6ZMwcOHDwEAAwcOxMcffyw2UDH73//+B2dnZwDA6dOnsWXLFsGJiKg4sAASERXRpUuXEB0dDQAoV65cvkuplRaGhob5PldgYKB8pjMR6S4WQCKiIpAkCaNGjUJubi6AvGJUtWpVwalKRvv27fHZZ58BAP766y+sXLlScCIielcsgERERbB9+3YcOnQIAPD+++9j1KhRYgOVIIVCgTlz5sjjqVOn4unTpwITEdG7YgEkIiqkzMxM+Pn5yePw8HCYmpoKTFTyPvvsM3Ts2BEAcPv2bSxcuFBwIiJ6F0aiA5Duunz5sugIWoXfh/6IjIzEjRs3AACtW7dGly5dxAbSkJkzZ2Lnzp2QJAmzZ8+Gt7c3rK2tRccioiJgAaRCs7CwAAD069dPcBLt9Pz7odLpzp07CAkJAQAYGBggMjKy1Cz78jbOzs4YMGAAfvjhBzx8+BBz5szB7NmzRccioiJQSAVY1EmpVMLKygoZGRmwtLTURC7ScgsXLsSIESPksZ+fH/r27SswkRgqlQpDhw7FhQsXAORdQ/XkyZOwt7cXG4xKzKBBg7Bq1SoAeQslR0VFiQ2kYTdv3oSDgwPUajVMTU1x7do12Nraio5FRChcX2MBpEI7cuQIPDw8oFarAeQtDlsal78oqIcPH6J169Y4f/48AKB27dr47bffSu0ZofrszJkzaNKkCQCgfPnySExMlK+Xq0/GjBmDefPmAQC8vLwQExMjOBERAYXrazwJhArl/Pnz6Ny5s1z+vvnmG8ycOVNwKrHKly+Pffv2oV69egCA69evo23btvj3338FJ6PiJEkSRo4cKY+nTp2ql+UPACZOnCj/cvn+++/x119/CU5ERIXFAkgFduPGDbRr1w5KpRJA3tpgMTExenP805u89957OHDggHzd1Pj4eLRr1w6PHj0SnIyKy/r163HixAkAQP369TFkyBDBicSpVKkSxo4dCwDIyclBYGCg4EREVFjcBUwF8s8//+Czzz7DtWvXAACffPIJDh48CHNzc8HJtEtiYiJatGiBe/fuAcg7Q3T37t2lfomQ0u7JkyeoX78+UlJSAAB79uzBl19+KTiVWI8fP0adOnXkP+unTp2Sd48TkRjcBUzF6tGjR/jqq6/k8ufo6IidO3ey/L1C3bp1sX//fnlpjMOHD6Nnz57Izs4WnIzeRWhoqFz+2rdvr/flD8i79N2kSZPk8fjx41GA+QQi0hKcAaQ3UqvVaN++PQ4cOAAAqF69Oo4fPw47OzvBybTbqVOn8MUXX+DJkycAgL59+2LNmjUwMODfuXTNrVu3UK9ePWRmZsLIyAjx8fHy8Z76Tq1Ww9HRUV4Tce/evfDw8BCcikh/cQaQikVubi4GDhwolz9ra2vs3buX5a8AmjZtil9++QVlypQBAPz4448YOnQoZ0h0UEBAADIzMwEAI0aMYPl7gYmJCWbMmCGPJ0yYIF8bmYi0GwsgvZIkSRg9ejQ2bNgAADAzM8POnTvRoEEDwcl0R+vWrfHTTz/B0NAQABAdHY0JEyYITkWF8dtvv2Hjxo0AABsbm3y7PClPr1698OGHHwIAzp07h59++klwIiIqCBZAeqU5c+ZgwYIFAABDQ0Ns3LgRn376qeBUuqdTp05YvXq1fKb0nDlz9HrNRF2Sk5OTb9mXGTNmoHz58uICaSkDA4N8f6aDgoLkZaKISHuxANJLVq5cmW+matmyZfJF4Knw+vbtm+9qERMnTsTixYsFJqKCWLVqFc6dOwcA+OCDDzB48GDBibRX27Zt0bp1awB562AuX75ccCIiehueBEL57Ny5E126dEFOTg4AYNasWRg/frzgVKXDnDlz8n2Xa9as4fWUtZRSqUTdunXxzz//AMi7+s3nn38uOJV2O336NJo2bQog75KI165dQ7ly5QSnItIvPAmEiuT48ePo2bOnXP5GjhyJcePGCU5VeowbNy7fzOo333yDbdu2iQtErzVjxgy5/HXv3p3lrwCaNGmC7t27AwDu3buHyMhIsYGI6I04A0gAgISEBDRv3hzp6ekAgD59+mDt2rVctqSYSZKE4cOHy7uATUxMsGvXLri5uQlORs8lJiaiQYMGyM7ORpkyZXDlyhXY29uLjqUTrly5ggYNGiA3NxcWFha4ceOG3l4uj0gEzgBSoSQnJ8PDw0Muf25ubli1ahXLXwlQKBRYsGCBvOtXrVajS5cu8iXGSDx/f3954W5/f3+Wv0KoX78+vv32WwB5C8jr+3XCibQZZwD13L///ovmzZvj8uXLAAAXFxccPnwYFhYWgpOVbs+ePUOPHj2wfft2AED58uVx5MgRfPDBB4KT6bfY2Fh5IeNq1arhr7/+4nFshZSamoo6deogMzMTJiYmuHr1qnyNbCIqWZwBpAJ5+vQpOnToIJe/OnXqYPfu3Sx/GmBkZIQNGzbgiy++AAA8fPgQbdu2xdWrVwUn01/Pnj3D6NGj5fGcOXNY/orA1tYWI0aMAJA3wz1lyhTBiYjoVVgA9VR2djZ69uwp73qsXLky9u3bh/fee09wMv1hamqKbdu2oVmzZgCAf/75B25ubrh165bgZPopOjoaCQkJAPKu5NK3b1/BiXTX+PHj5TUTV69ejfj4eLGBiOglLIB6SJIk+Pj4YNeuXQAACwsL7N27F7Vq1RKcTP+UK1cOu3btQqNGjQDkHY/p7u6Oe/fuCU6mXx48eIDJkyfL4/nz5/MY2HdgbW0tL3kkSRICAwMFJyKi/+L/4fRQYGAgVq5cCSDvLNTt27ejcePGYkPpMWtra8TGxqJu3boAgKtXr+Y7KYdK3pQpU+Tvu3///vJ6dlR0w4cPR7Vq1QAAO3bswO+//y44ERG9iAVQz8yfP1++bJNCocC6devkFfxJnMqVK+PAgQOws7MDAFy4cAHt27fH48ePBScr/eLj4xEdHQ0AKFu2LC/VV0zMzc0xdepUeTx+/HgU4JxDItIQFkA9smHDBowaNUoeL168GD169BAXiPKpUaMGDhw4ABsbGwDAiRMn0LVrV2RlZQlOVnpJkoTRo0fLi59PnDgRtra2glOVHoMGDYKDgwMA4NixY/JhJ0QkHgugnti/fz8GDBggjydPngxfX1+BiehVHBwcEBsbCysrKwDAgQMH0KdPHzx79kxwstLpl19+wYEDBwAA9vb2GDNmjOBEpYuRkRFCQkLk8YQJE+SyTURisQDqgbNnz6Jbt27y4rbe3t75ds2QdmncuDH27NkDc3NzAMDWrVvx7bffIjc3V3Cy0iUrKytf4Zs7dy5MTU0FJiqdunfvjo8//hhA3u72devWCU5ERAALYKmXmJiIr776Sj6WrGvXroiKioJCoRCcjN6kWbNm2L59O0xMTAAAa9aswciRI3kMVTGaP38+rl+/DgBo1aoVunXrJjhR6aRQKDB79mx5PHnyZB7WQKQFWABLsTt37sDDwwP3798HALRs2RI//vgjDA0NBSejgnBzc8OGDRvkf1+LFi3CpEmTBKcqHe7evYsZM2YAAAwMDBAZGcm/FJWgNm3aoG3btgCAmzdvYsmSJYITERELYCmVkZGBdu3a4e+//wYANGzYENu3b+cuLh3TtWtXfP/99/I4JCQEYWFhAhOVDoGBgXj06BEAwMvLi5fg04AXZwFDQkKgVCoFpiEiFsBSKDMzE126dMGFCxcAADVr1sSePXvklflJtwwYMACLFi2SxwEBAVi6dKnARLotLi5OXgfTysoKwcHBghPphw8//BC9e/cGAKSlpSE8PFxwIiL9xgJYyuTk5KB///44cuQIAKBixYrYt28fl7bQcUOHDs13NqWvry/Wr18vMJFukiQp37GUU6ZMkZfdoZIXHBwMIyMjAEB4eDiveEMkEAtgKSJJEkaMGIGff/4ZQN5CrLt370a9evUEJ6PiMGHCBIwdOxZA3r/rAQMGYOfOnYJT6ZaNGzfKV6SoV68ehg4dKjiRfqlTpw68vb0BAE+ePJGPwyQizVNIBTitUKlUwsrKChkZGbC0tNRELiqC4OBg+XqmRkZG+OWXX/Dll18KTkXFSZIk+Pr6yruAy5Qpgz179vBqLgXw9OlT1K9fH8nJyQCAXbt24auvvhKcSv/cvXsXtWvXxtOnT2FsbIwrV67wOuRExaQwfY0zgKVETExMvovZr1y5kuWvFFIoFFi8eDH69u0LIG8tu06dOuH06dOCk2m/sLAwufy1a9eO5U+QKlWqYPTo0QCA7OxsntlOJAhnAEuBrVu3okePHvJCweHh4byiQSmXnZ2Nbt26ybuAra2tcfToUTg7OwtOpp2Sk5NRr149qFQqGBkZ4dKlS6hfv77oWHorIyMDtWvXxoMHDwAA586dQ+PGjcWGIioFOAOoR44ePYo+ffrI5W/s2LEsf3rA2NgYP/30k7zrNz09He7u7rh27ZrgZNpp3LhxUKlUAIBhw4ax/AlmZWWFiRMnyuMJEyYITEOknzgDqMMuXryIli1bIiMjA0DeciErV66EgQF7vb549OgR3Nzc5F3ANWvWxLFjx1C9enXBybTHsWPH0KJFCwBApUqVcPXqVVhbWwtORZmZmXBwcJB3yx8+fBitWrUSG4pIx3EGUA8kJSXhyy+/lMtfu3btsHz5cpY/PWNhYYE9e/bIu35v3rwJd3d3+eov+i43NxejRo2Sx8HBwSx/WsLU1BTTp0+Xx+PHj+elDok0iG1BB92/fx8eHh64c+cOAKBp06bYtGkTjI2NBScjESpUqIDY2FjUrl0bAHDlyhV4eHjIfznQZz/88APi4uIAAI0aNYKXl5fgRPSi/v37o0GDBgCAU6dOYdu2bWIDEekRFkAd8/jxY7Rv3x5Xr14FkLeW2c6dO1G2bFnByUikqlWr4sCBA/KC3+fOnUOHDh3w9OlTwcnEUSqV+Y4ti4yM5HWwtYyhoSFmzpwpjydOnIhnz54JTESkP1gAdUh2djZ69OiBM2fOAACqVauGffv2oVKlSoKTkTawt7fHgQMH5D8Px44dQ7du3ZCVlSU4mRgzZ86UrzTRrVs3rpWopTp27IjPPvsMQN7s9Q8//CA4EZF+4EkgOiI3NxcDBw7E2rVrAQDly5fHb7/9xmU/6CV//PEHWrduDaVSCQDo3r07NmzYIF+CSx9cu3YNDRo0gFqtRpkyZZCQkMDFhrXYiyfq2NraIjExEWZmZoJTEekengRSCgUEBMjlz9TUFDt27GD5o1f66KOPsGvXLvkX6ObNm+Ht7S0vFaQP/P39oVarAQB+fn4sf1quefPm6NChAwAgNTUVixYtEpyIqPTjDKAOmDt3rnwNWAMDA2zZsgWdO3cWnIq03b59+9CxY0dkZ2cDAEaOHIl58+ZBoVAITlb8nj59iqdPn6JSpUo4cOAA3N3dAeQdG3n16lWUK1dOcEJ6m0uXLuGDDz6AJEmwtrbGjRs3UL58edGxiHQKZwBLkdWrV8vlDwCWLl3K8kcF4uHhgR9//FFeGmj+/PmYNm2a4FTF7/k1fm1sbPC///0PQ4cOlR+bPXs2y5+OaNiwIfr16wcgb2HzOXPmCE5EVLpxBlCL7d69G506dUJOTg4AYMaMGQgMDBScinTNypUr8e2338rjiIgI+VqspcGRI0deeYKHq6srTp06xbUxdUhSUhLq1asHtVoNMzMzXLt2DdWqVRMdi0hncAawFDh58iS+/vprufwNGzYs36WTiApq0KBBiIyMlMdjxozBihUrxAUqZg8fPnzl/ampqfK1kkk32Nvbw9fXFwCgUqnyLRRNRMWLBVALXb58Ge3bt5fXcOvZsyciIyNL5bFbpBkjR47Mt/vXy8sLP/30k8BExed1C17fuXMHXbp0wfnz5zUbiN5JYGAgLCwsAADLly+X1zwlouKlP+tC6IiUlBR4eHjg33//BQC0adMGq1ev5gK29M4mTZqEjIwMREREQJIk9O3bF3fv3kXz5s1FR3snly5deu1jCoUCV69eLdAZ0BYWFqhbt25xRqMisLGxgb+/P6ZMmYKcnBwEBQWVmr+sEGkTHgOoRdLT09GiRQv8+eefAIDGjRvj119/5XdOxebq1auoV6+e6Bha6+rVqyyBWuDx48eoXbs2/vnnHwDAmTNn4OrqKjgVkfYrTF/jDKCWUKlU6NSpk1z+atWqhT179rD8UbF6/PgxAGDt2rVwdHQUnEZ7XL58Gf369cOjR49ERyEA5cqVw6RJkzB8+HAAwPjx43HgwAHBqYhKFxZALfDs2TP07t0bx44dAwC899572LdvH6pUqSI4GZVWjo6O+Oijj0THIHotb29vzJs3Dzdu3MDBgwexf/9+eX1HInp3PAlEMEmS4Ovrix07dgDI+5vvnj17UKdOHcHJiIjEMTExQXBwsDweP368Xl3NhqiksQAKNnnyZCxfvhwAYGxsjG3btnFmhogIQO/evfHBBx8AyLvG9c8//yw4EVHpwQIo0KJFizBjxgwAeWcrrl27Fl988YXgVERE2sHAwACzZs2Sx4GBgfKlDYno3bAACvLTTz9hxIgR8nj+/Pno2bOnwERERNrnyy+/xOeffw4AuHbtWqlaxJxIJBZADXj48CG+/fZbTJ48GVlZWTh48CD69euH5yvwBAYGyme7ERHR/1EoFJg9e7Y8njZtGp48eSIwEVHpUOrPApYkCampqYiLi5N/kpOToVKpkJmZCbVaDRMTE5iamsLMzAx2dnZwcXGBi4sLXF1dUa1atXe+AsecOXOwcuVKAEBsbCz+/PNPeTfG4MGD8x3oTERE+X3yySfo2rUrtm7dirt372L+/Pm8NCbROyqVBTAhIQEbN27E2bNnERcXh3v37gHIW2HexcUFLVu2hLm5OczMzGBiYgK1Wg2VSoWnT5/i+vXriI6Oxv379wEAlStXlstgr1694OTkVOg8u3btkm+fOnVKvt2xY0dER0fzEm9ERG8REhKC7du3Izc3F3PmzIGPjw8qVqwoOhaRzio1BTA7Oxvbtm1DVFQUjhw5ggoVKqBp06bw8vKSZ/SqV69eoLIlSRJSUlLyzRouWrQI06dPR6tWrTBkyBB06dIFxsbGb32v1NTUV16qytTUFLNmzYKRUan5V0BEVGIcHR0xaNAgrFixAkqlErNmzcLcuXNFxyLSWTp/DGBKSgomT56MGjVqoGfPnsjNzcWGDRtw584d7N69G8HBwejSpQvs7OwKPNOmUChgZ2eHLl26IDg4GLt378adO3ewfv165OTkoGfPnqhZsyamTJmClJSUN75XbGzsK+/PzMyEm5ubfM1fIiJ6s6lTp8LU1BRA3ioKt27dEpyISHfpbAFUKpX47rvvYG9vj3nz5qFbt264dOkSfv31V/Tq1QsmJibFuj0TExP07t0bR48excWLF9GlSxdERETA3t4e3333HZRK5Stft3v37te+5927d3H69OlizUlEVFpVr15dPmEuKysL06ZNE5yISHfpZAGMjY2Fs7Mz1q1bh7CwMKSmpmLx4sVwdnbWyPYbNmyIqKgopKamIiwsDOvWrYOzs/NLs305OTnyFT7+y8TEBN7e3mjdurUmIhMRlQrjx4+HlZUVAGDVqlVISEgQnIhIN+lUAVQqlfD29oaHhwfq1auH+Ph4jB49GpaWlkLyWFpaYvTo0bh06RIcHBzg4eEBb29veTbwwoULUKvV+V7ToEEDzJs3D6mpqVi6dCnKlCkjIjoRkU6qUKECxo0bBwDIzc1FYGCg4EREuklnCuDzWb/169cjOjoasbGxqFmzpuhYAAB7e3vs378f0dHRWL9+vTwb6OzsjCpVqsDQ0BBffvklTp48iUuXLmHUqFGoVKmS6NhERDpp5MiRqFq1KgBg27ZtOHHiBC5evIjw8HAkJSWJDUekI3SiAIaFheWb9fPx8dG6pVMUCgV8fHzyzQbOnz8fd+7cQXZ2Nvbs2YOmTZtqXW4iIl1jbm6OKVOmyOMuXbqgcePG8Pf3R+/evQUmI9IdWl0AJUnCxIkTERAQgKCgIK2a9Xud57OBQUFBCAgI4O4JIqIS0KFDB/lYwH/++Ue+slJiYqLIWEQ6Q2sXoZMkCSNHjsTChQsRERGB0aNHi45UYAqFAsHBwbC2toafnx8eP36MyMhIzv4RERWDvXv34uuvv8bjx49feiwrK0tAIiLdo7UFMCgoCAsXLsTSpUvh7e0tOk6RjBkzBuXKlYOPjw8sLCwwY8YM0ZGIiHRedHT0K8sfwAJIVFBaWQDDwsIwc+ZMhIeH62z5e87b2xuPHj2Cv78/rKysMHbsWNGRiIh02ogRI3DgwAE8efLkpceePXuG3NxcGBho9RFORMJpXQGMjY2Vj/kbM2aM6DjFws/PD+np6QgICEDjxo3h7u4uOhIRkc5q06YNzp07h379+r1yMf2srCyYmZm98T0kSUJqamq+S34mJydDpVIhMzMTarUaJiYmMDU1hZmZGezs7OTLirq6uqJatWo8rId0mlYVQKVSCU9PT7i5uWH69Omi4xSr4OBgnDhxAoMHD0Z8fLywtQuJiEqDunXr4tixY5g+fTpmzpyJ3Nxc+bHXFcCEhARs3LgRZ8+eRVxcHO7duwcAsLGxgYuLC1q2bAlzc3OYmZnBxMQEarUaKpUKT58+xfXr1xEdHY379+/j/7V373FRV/n/wF8DchkvXLwiF4W1tBBviyvbrpq6XtY2zS5qUt7iJpiKCqwJIuBtAyHzwt2iyPWaSbXthlu4Wu36y1ELs0xcQRBFTWA0Bgbl8/uDnflKXGRgZj6fmXk9Hw8f21w+M+/hsY4vzjnvcwCgX79+2jA4d+5ceHt7G+eDE+mJpAJgREQEKisrkZ2dbXa/WclkMuzevRvDhg1DZGQkMjIyxC6JiMik2djYYMOGDZg2bRqmT5+Ou3fvwsrKCt27d9c+p76+HkeOHEFqaiqOHTuGnj17ws/PD0FBQdoRPXd393b9myMIAsrKypqMGu7cuRMJCQmYMGECwsLCMGvWLNjY2BjyYxPphWQCYH5+PrKyspCeni75rV46ytPTE0lJSQgNDcULL7zAqWAiIj0YO3YsiouLER8fj1mzZqFLly4oKytDZmYmsrKycP36dYwfPx779u3Ds88+2+Gz4mUyGTw8PODh4YFZs2YBANRqNQ4fPozU1FTMmTMH/fv3R1BQEIKCguDu7q7HT0mkXzJBs3lSG5RKJRwdHVFdXW2QqUulUgkfHx8MGTIE+fn5Zjf69yBBEDB58mRcvHiRU8FkdKdPn4avry8UCgV+/etfi12OZPDnYj6USiWioqKQnZ0NuVyOBQsWIDQ01ChnxRcWFiItLQ25ublQqVQIDAxEYmIiv+fJaHTJa5Jok4qKijLbqd9f0kwFa5pCiIhIPzRHcO7ZswdJSUm4evUqdu3aZZTwBwDDhg1Damoqrl69iqSkJOzZs0d7NCiR1IgeAMvKypCdnY2EhASznfr9JU9PT8THxyM7OxtXr14VuxwivTl27BhkMhlkMhkUCkWzxxctWtRkfRaRPiiVSgQHBzc5MnTlypWijbw5ODhg5cqVTY4GDQ4OhlKpFKUeopaIHgCzsrIgl8sREBAgdilGFRgYCHt7e2RlZYldCpFBxMXFiV0CWQDNqN/evXuRnp4uqSNDNUeDpqenY+/evRwNJEkRNQDW19cjMzMT8+fPt7g1Eg4ODpg/fz4yMzNRX18vdjlEejVy5Eh8/PHHOH36tM7XCoIAlUplgKrI3CQlJTUZ9QsJCZHcMiKZTIaQkJAmo4FJSUlil0UkbgA8cuQIrl+/jtDQUDHLEE1oaCiuXbuGvLw8sUsharerV68iICAArq6usLOzg5eXF0JDQ6FWq7XPWbZsGZydnds1Cujp6Ymnn34an376KUaPHg25XI6MjAztdPKBAwcQHx8PNzc39OjRAy+88AKqq6tRV1eH8PBw9O3bF927d8fixYt5DJiFEAQBa9eu1R4aIKVRv9ZoRgNjYmIQFRWF6OhotKMHk8hgRN0GJjU1FePGjcOwYcPELEM0w4cPx9ixY5GamooXXnhB7HKIHqq8vBxjxoxBVVUVgoOD8dhjj+Hq1as4dOgQampqtM/TrIGKjY3F6dOnH9pZe+HCBcybNw8hISEICgrCkCFDtI9t2bIFcrkca9asQVFREXbs2AEbGxtYWVmhsrIScXFx+M9//oOcnBx4eXkhNjbWYJ+fxCcIAlasWIEdO3YgJSUFK1euFLukdpPJZNiwYQOcnZ2xevVq3L17F9u2bZPcqCVZCKEdqqurBQBCdXV1e57eLt99950AQNi7d6/eXtMU/fWvfxUACOfPnxe7FLIACoVCACAoFIoOXb9gwQLByspK+Prrr5s91tDQIBQUFAgAhIMHDwpVVVWCs7OzMHPmTO1zFi5cKHTr1q3JdQMHDhQACP/4xz+a3K95LR8fH0GtVmvvnzdvniCTyYTp06c3ef4TTzwhDBw4sEOfq7M/FzKetWvXCgCEjIwMsUvplIyMDAGAEB0dLXYpZEZ0yWuiTQHv378fPXv2xHPPPSdWCZLw/PPPw9nZGfv37xe7FKI2NTQ04MiRI5gxYwZGjx7d7PFfjmI4OjoiPDwcH374Ic6cOdPma3t5eWHatGktPrZgwYImJyv4+flBEAS88sorTZ7n5+eH0tJS3Lt3r70fiUxMUlISNm/ejOTkZAQHB4tdTqcEBwdj69at2LRpE9cEkihEC4CnTp2Cn59fh3dkNxe2trbw8/PDqVOnxC6FqE03b97UbtreXitWrICTk9ND1wJ6eXm1+tiAAQOa3HZ0dAQAeHh4NLu/oaEB1dXV7a6PTEd+fr52zd+qVavELkcvVq9ejejoaERFReHo0aNil0MWRpQAKAgCFAoFfH19H/rcnJwc7b5iMpkMXbp0gZubGxYtWiTqHnrnz59HXFwciouLmz02YcIELFq0qN2vpTmBgMjctHcUUC6Xt/qYtbW1TvcLXFhvdpRKJQIDAzF58mQkJCSIXY5ebdiwAZMmTUJAQAD3CSSjEiUAlpeXo6Kiol0BUCMhIQG5ublIT0/H9OnT8d577+HJJ59EbW2tAStt3fnz5xEfH99iANSVr68vrl+/jvLy8s4XRmQgffr0gYODA86dO6fTdeHh4XByckJ8fLyBKiNzFxERYbanRT14OlRkZKTY5ZAFESUAaqY7dQmA06dPx8svv4zAwEBkZ2cjIiICly5dwocffmioMltUW1uLhoYGvb6m5ufAaWCSMisrK8yaNQsfffRRi/9fbW3kTTMKmJeXh7Nnzxq4SjI3+fn5yMrKwtatWyW/1UtHeXp6IikpCZmZmZwKJqMRJQAqFAr06dMH7u7uHX6NcePGAQAuXbqkvU+zn1h+fj5GjhwJe3t7eHt74/Dhw82u/+9//4vZs2ejZ8+e6Nq1K37729/ib3/7W5PnaPYh27dvH2JiYuDm5oauXbti+/btmD17NgBg4sSJ2unpY8eOdeizeHh4oHfv3pwGJsnbvHkz+vbtiyeffBIrV65EZmYm4uPj4ePj0+bauxUrVsDR0RHffPONEavVXVJSErZt24YjR47gm2++4ZScyB6c+jX1po+HCQkJ4VQwGZUo+wBq1v91ZihfM/Xq7Ozc5P6LFy9i7ty5WLJkCRYuXIi3334bs2fPxj/+8Q9MmTIFAFBRUYHf/e53qKmpwfLly9GrVy+88847mDlzJg4dOoRnn322yWtu2LABtra2iIiIQF1dHaZOnYrly5dj+/btWLt2LR5//HEA0P6vrmQyGdcBkklwc3PDyZMnsW7dOuzZswdKpRJubm6YPn06unbt2up1Tk5OCA8Pl/w08L59+7Bv374m9zk7O8PLywteXl7w9PRs8t+enp5tfm7qnKioKLOd+v0lzVTwsGHDEBUVhfT0dLFLInOn731l2mPYsGHC0qVL2/Xct99+WwAg/POf/xRu3rwplJaWCocOHRL69Okj2NnZCaWlpdrnavYTe//995vU3r9/f2HUqFHa+8LDwwUAwokTJ7T33blzR/Dy8hI8PT2F+/fvC4Lwf/uQ/epXvxJqamqa1HXw4EEBgFBQUNCRH0EzS5cuFYYPH66X1yJqDfe7a5nm59KRP/369RP8/PyEF198UXjttdeEjIwMIT8/X7h48aJQV1cn9kczWaWlpYK1tbWQkpIidilGlZycLFhbWwtlZWVil0ImSJe8JsoIoEql0vm35smTJze57enpiffee6/ZNLKrq2uTETwHBwcsWLAAr7/+Oq5fvw4XFxd88sknGDNmDMaOHat9Xvfu3REcHIzXXnsN58+fb7LVxcKFC9vsUtQHuVzO80+JRJadnQ1bW1tcvnwZxcXFuHz5Mi5fvozS0tJW1/5WVFSgoqICJ0+ebPaYTCaDm5tbi6OHXl5ecHd3b7Wb2dJlZWVBLpcjICBA7FKMKjAwELGxscjKymrXUYpEHSVKAKytrdU5UO3atQuDBw9GdXU13nrrLRw/fhx2dnbNnvfII480myoYPHgwgMZpYxcXF5SUlMDPz6/ZtZop3JKSkiYBsK09yvRFLpeL1tFMRI1GjRrV4rF19fX1KCsraxYMNf/dWge/IAgoKytDWVkZTpw40ezxLl26wMPDo9UpZhcXF1hZiXpkuyjq6+uRmZmJ+fPnw8HBQexyjMrBwQHz589HZmYmoqOjm2yCTqRPogRAtVqt8wbQY8aM0Z4+MGvWLIwdOxb+/v64cOECunfvbogytQw9+gc0bgjNg+yJpMnGxkYbzFpSW1uLK1euNAuGmv+9efNmi9fdu3dPe01L7OzstGsNWwqJvXr1Msu1cUeOHMH169cRGhoqdimiCA0NRXp6OvLy8nhOPBmMKAHQ1tYWarW6w9dbW1tjy5YtmDhxInbu3Ik1a9ZoHysqKoIgCE2+FH/88UcAjdPGADBw4EBcuHCh2ev+8MMP2scfRt9fumq1usURTSKSPnt7ewwePFg72/BLd+/eRUlJSbOAqPnTWgd1XV0dLly40OL3FdC4dKWtgKg5NcXUpKamYty4cRg2bJjYpYhi+PDhGDt2LFJTUxkAyWBECYD29vadXu82YcIEjBkzBtu2bUN4eDjs7e0BNG4y/cEHH2jPGFYqlXj33XcxcuRIuLi4AACeeuopbNu2Df/+97/xxBNPAAB+/vlnZGZmwtPTE97e3g99/27dugEAqqqqOvU5NFQqlfYzEJF56d69O4YOHYqhQ4e2+HhVVVWr08uXL19GTU1Ni9fdvXsX586da3VzbicnpzY7mDXfY1Jy/vx5HDt2DHv37hW7FFGFhYXB398f33//fYd3mCBqiygBUC6Xt/qFpovIyEjMnj0bOTk5WLJkCYDG9X4BAQH4+uuv0a9fP7z11luoqKjA22+/rb1uzZo12Lt3L6ZPn47ly5ejZ8+eeOedd3D58mW8//777VpzM3LkSFhbW+P1119HdXU17OzsMGnSJPTt27dDn0WlUhllqpmIpMfJyQmjRo3CqFGjmj0mCAJu3brVYjAsLi5GcXFxqzMqVVVVOHPmTKvH8PXt27fF0UNPT08MHDhQr7MS165dg6Oj40MbAPfv34+ePXtqf4m3VM8//zycnZ2xf/9+NoOQQYgSAD08PJps4NxRzz33HAYNGoStW7ciKCgIAPDoo49ix44diIyMxIULF+Dl5YX9+/dj2rRp2uv69euHr776Cn/+85+xY8cO1NbWYvjw4fjoo4/wpz/9qV3v7eLigvT0dGzZsgUBAQG4f/8+CgoKOhwAi4qKmh1uT0Qkk8nQp08f9OnTB2PGjGn2eENDA65du9bq6GFpaSnu37/f4mvfuHEDN27cwP/7f/+vxfd1dXVtdXrZ3d0dXbq075+QTz/9FE899RS6d++ON954A4sXL251Gc2pU6fg5+en8zpxc2Nraws/Pz+eEEUGI0oA9PX1RXp6erO1ei1ZtGgRFi1a1OJjVlZWKCoqanb/1KlTMXXq1DZf91e/+hUOHjzY5nMmTJjQ5sHygYGBCAwMbPM12kMQBCgUCoSFhXX6tYjIslhZWcHNzQ1ubm74/e9/3+zxe/fuoaysrNWAWF5e3uL3nCAIuHr1Kq5evYovv/yy2ePW1tbaDuaWQmL//v21symHDh1CQ0MDlEolAgICcOjQIWRlZcHNza3ZeyoUCu0v9Pp07NgxTJw4EUBjyPzlUaSLFi3CoUOHcPfuXb2/d0f5+vpi9+7dYpdBZkq0AHjz5k2UlZVx1AtAaWkpbt26pdPZyERE7dGlSxftmr8JEyY0e7yurk7bwdxSSLxx40aLr3v//n3tFHRLbG1tMXDgQHh5eeG7775r8tjf//53DB06FG+++SYWLFigHQgoLy9HRUWFwb8L4+Li8NFHHxn0PfTB19cXmzZtQnl5OVxdXcUuh8yMKAFQs52LQqFgAAS0R8Bpfi5ERMZiZ2eHRx99FI8++miLj//888/aDuaWAmJlZWWL16nValy8eBEXL15s8fHq6mosWrQIGzduxJkzZ9C9e3ftdKchA+DIkSPx8ccf4/Tp0y3u+dgWQRA6tI9tR2l+DqdOncLMmTON8p5kOUTZYdTV1RX9+vXj2bf/o1Ao4OLiwt/wiEhyunXrBm9vb/zpT3/C0qVLsXXrVrz//vtQKBS4ffs2qqqqcPbsWXzwwQdISUnB8uXLMWPGDPj4+LSry7ioqAjbtm0D0Phd2KdPn2YnPLWlpKQEYWFhGDJkCORyOXr16oXZs2e3OjK5bNkyODs7t6uxwtPTE08//TQ+/fRTjB49GnK5HBkZGTh27BhkMhkOHDiA+Ph4uLm5oUePHnjhhRdQXV2Nuro6hIeHo2/fvujevTsWL17coX1ePTw80Lt3b/5bSQYhygigTCaDr6+v3v9P3dpfeKlTKBSc/iUik+To6IgRI0ZgxIgRzR4TBAHffPNNi93NGnZ2dpg9ezaA//su1GWf1a+//hpfffUVXnzxRbi7u6O4uBhpaWmYMGECzp8/36zr2MHBAStXrkRsbGy7RgEvXLiAefPmISQkBEFBQRgyZIj2sS1btkAul2PNmjUoKirCjh07YGNjAysrK1RWViIuLg7/+c9/kJOTAy8vL8TGxrb7cwGG+7eSCBApAAKN0507d+7s0Kkg5qSurg4nT57E8uXLxS6FiEivZDIZ7t271+z+7t2747nnnsO8efMwefJkbTdxaWkpxo8fr9N7/OlPf2q2WfKMGTPwxBNP4P3338f8+fObXbN8+XK88cYbiI+PR15eXpuvX1RUhH/84x9NdpI4duwYgMYGm3/961/a49pu3ryJffv24Y9//CM++eQTAI37+RUVFeGtt97SOQACjcebtnSMIFFniXbI5Ny5c3H79m0cPnxYrBIk4fDhw6isrMTcuXPFLoWISO+8vb0xYsQI2Nra4tlnn8XBgwdx48YNvPPOO/jjH//YZCsZlUr10H0Cf+nB9Xj19fX46aef8Mgjj8DJyQmnT59u8RpHR0eEh4fjww8/bHWPRA0vL68m4e9BCxYsaHJWr5+fHwRBwCuvvNLkeX5+figtLW0xDD+MXC7v9MEJRC0RLQB6e3tjwoQJSE1NFasESUhNTcXEiRO50zsRmaWuXbvi7NmzqKurw+HDh/HCCy+02kTRkQYLlUqF2NhYeHh4wM7ODr1790afPn1QVVXV6hF7ALBixQo4OTk9dC1ga+c/A8CAAQOa3NYcvffL5kZHR0c0NDS0WU9r5HI5amtrdb6O6GFEC4BA49D4iRMnUFhYKGYZovn222/xxRdfcP8/IiKgQ0uCli1bhk2bNmHOnDk4cOAA8vPzcfToUfTq1QsNDQ2tXtfeUcC2Aqm1tbVO97e1r2xrbG1tO9RAQvQwogbAWbNmwcXFBWlpaWKWIZq0tDT0798fzzzzjNilEBGJztbWttVj7Vpz6NAhLFy4EMnJyXjhhRcwZcoUjB07tl3ntIeHh8PJyQnx8fEdrNjw1Gq1Xo/kI9IQNQDa2NggODgYubm5UCqVYpZidEqlErm5uQgODm6yhoSIyFLZ29vrvN7N2tq62cjajh07Wj3+7kGaUcC8vDycPXtWp/c1FpVKBXt7e7HLIDMkagAEgKCgIKhUKos77iY7Oxu1tbUGOfKIiMgUyeVy1NTU6HTN008/jdzcXISHhyMzMxOLFy/G9u3b0atXr3Zdv2LFCjg6OuKbb77pSMkGp1KpjLbxNFkW0QOgu7s7AgMDERsba7L7+OmquLgY69evR2BgYLOzMImILJWHhwcuXbqk0zWa4+T27NmD1atX49q1a/jnP/+J7t27t+t6JycnhIeHd6Ba4ygqKuKJWWQQMqEdq1KVSiUcHR1RXV0NBwcHvRehVCrh4+ODwYMH4+jRozptAmpqBEHA5MmTUVRUhMLCQoP8PIlac/r0ae3Gsroeg2XO+HORhtjYWKSnp6OiosKs/x1oL0EQ0LdvX4SFhUl6nSJJhy55TfQRQKBxZ/bs7Gx89tlnyMzMFLscg8rIyMDnn3+O7Oxshj8iogf4+vri5s2bKCsrE7sUSSgtLcWtW7d4UhQZhCQCIABMnToVQUFBiIiIMNup4OLiYkRGRiI4OBhTpkwRuxwiIkkZPXo0APDos//R/Bw0PxcifZJMAASArVu3wtnZGYGBgR3aL0nKBEFAQEAAevbsiaSkJLHLISKSHFdXV/Tr148B8H8UCgVcXFzg6uoqdilkhiQVAB+cCu7ImYlStm7dOk79EhG1QSaTaddiUmMA5PQvGYqkAiDQOBWcmJiIjRs3IiUlRexy9CI5ORmbNm1CUlISp36JiNowevRonDx5UucNoc1NXV0dTp48yelfMhjJBUAAiIyMxNq1a7F69WqTbwrJzMxEREQEoqOjERERIXY5RESSNnfuXNy+fRuHDx8WuxRRHT58GJWVlZg7d67YpZCZkmQABICNGzdi2bJlCAkJMdmRwOTkZISEhGD58uXYsGGD2OUQEUmet7c3JkyYgNTUVLFLEVVqaiomTpyIxx9/XOxSyEx1EbuA1shkMrz55pvo0aMHVq9ejcrKSiQkJJjE3lCCIGDdunXYtGkToqOjsWHDBpOomyzH999/L3YJksKfh7SEhYVhzpw5KCwsxLBhw8Qux+i+/fZbfPHFFzh48KDYpZAZk2wABBpD4KZNm+Dk5ISoqCj8+9//xu7duzFw4ECxS2tVcXExAgIC8PnnnyMxMRGRkZFil0Sk1aNHDwDAyy+/LHIl0qT5+ZC4Zs2aBRcXF6SlpVnkSGBaWhr69++PZ555RuxSyIxJ4iSQ9jh69CgCAgJQWVmJrVu3Ijg4WFKjaoIgICMjA5GRkXB2dsbu3bvZ8EGSdPHiRdy5c0fsMrTu3bsHPz8/AMDQoUPx7rvvilJHjx498Oijj4ry3tTc+vXrkZKSgqtXr1rUzglKpRKurq6IiIhAXFyc2OWQidElr5lMANTUERkZiczMTPzhD3+QzGjgg6N+wcHBSEpKsqgvLKLO6tu3L27evIkBAwagpKRE7HJIAsrKyuDp6YmkpCSsXLlS7HKMJiUlBVFRUSgpKeFZ8aQzkzsKrr0cHByQkZGB/Px8/Pjjj/Dx8UFKSgqUSqUo9SiVSqSkpGDYsGG4ePEi8vPzkZGRwfBHpKP+/fsDAK5fv252m8BTx7i7uyMwMBCxsbFmezrULxUXF2P9+vUIDAxk+CODM6kAqDFlyhScO3cOL730EqKiouDm5oawsDAUFhYa5f0LCwsRGhoKV1dXREVF4aWXXsK5c+c45UvUQS4uLgAAtVqN27dvi1wNSUViYqLZng71Sw+eFpWYmCh2OWQBTDIAAo2jgenp6SguLsaqVatw5MgRDB8+HOPHj8e+ffv0vomoWq3G3r17MW7cOAwfPhx5eXmIiIhASUkJ0tPTOepH1AmaEUCgcRSQCGh6OpSp7wn7MBkZGTwtiozKpNYAtqW+vh55eXlITU1FQUEBevbsiTFjxsDX11f7x8PDo12NI4IgoLS0FAqFQvvn5MmTqKysxMSJExEWFoZnnnkGNjY2RvhkRObvtddew1/+8hcAjQ1fkydPFrkikpLg4GDs3bsXhYWF8PT0FLscvSsuLsawYcPg7++PjIwMscshE2a2TSDtdf78eRw4cACnTp2CQqHQjij07t0bvr6+eOSRRyCXyyGXy2Frawu1Wg2VSgWVSoWioiIoFArcunULQOPUlK+vL0aPHo05c+bA29tbzI9GZJbefPNNhIeHAwDeffddzJ8/X9yCSFKUSiV8fHwwePBgHD16VFI7QHSWIAiYPHkyioqKUFhYaBL/xpJ06ZLXJL0PYEd5e3tr2+cFQUB5eXmT0bwTJ05ApVKhtrYWdXV1sLOzg729PeRyOTw8PBAWFqYNfa6uruJ+GCILwClgaotmKnjatGmIjY01q5OV1q1bh88//xz5+fkMf2RUZhkAHySTyeDm5gY3NzfMnDlT7HKIqAUPBsBr166JWAlJ1dSpU5GYmIioqCg4Oztj1apVYpfUacnJydi0aROSkpLYREhGZ/YBkIikT9MFDHAEkFoXGRmJqqoqrF69Gt27d0dwcLDYJXVYZmYmIiIiEB0djYiICLHLIQvEAEhEouMIILXXxo0bcefOHYSEhODu3bsmORKYnJyMiIgILF++3Kyms8m0MAASkei6d++Obt264eeff2YApDbJZDK8+eab6NGjB1avXo3KykokJCSYRGOIIAhYt24dNm3ahOjoaGzYsMEk6ibzxABIRJLQv39/FBUVcQqYHkomk2HTpk1wcnJCVFQU/v3vf0vmaNDWPHhkaGJiIiIjI8UuiSycyW4ETUTmRTMNXF1dDZVKJXI1ZAoiIyObHA2akZEhuRNDBEFAenp6kyNDGf5IChgAiUgSHmwE4TQwtZfmaFB/f38sWbIEU6ZMQUlJidhlAWgc9Zs4cSJCQ0Mxb948HhlKksIASESSwL0AqaMcHByQkZHRZDQwJSUFSqVSlHqUSiVSUlIwdOhQfPHFFwAa96flPn8kJQyARCQJ7ASmztKMBr700kuIioqCm5sbwsLCUFhYaJT3LywsRGhoKFxdXREVFYUpU6bg/v37AIDo6GgUFxcbpQ6i9mAAJCJJ4F6ApA8ODg5IT09HcXExVq1ahSNHjmD48OEYP3489u3bB7Vardf3U6vV2Lt3L8aNG4fhw4cjLy8PERERKCkpwZEjR7B06VIAQE1NDZYsWSK5NYpkuRgAiUgSOAJI+uTu7o74+HiUlJTg4MGD6NKlC+bNm4f+/ftj+vTpiImJwQcffIArV660O5QJgoArV67ggw8+QExMDKZPnw4XFxf4+/vDxsYGBw8eRElJCeLi4uDm5gYA2Lx5M9zd3QEAn376Kfbs2WOwz0ykC5nQjv/n63K4MBFRR3z77bcYMWIEAOCVV17B7t27Ra6IzM358+dx4MABnDp1CgqFQjvS3Lt3b/j6+uKRRx6BXC6HXC6Hra0t1Go1VCoVVCoVioqKoFAocOvWLQCNI9aaM+PnzJkDb2/vVt/3448/xowZMwAAvXr1wvfff48+ffoY/gOTxdElrzEAEpEk3LhxA/369QMAPPXUU/jb3/4mckVkzgRBQHl5ORQKhfZPaWkpVCoVamtrUVdXBzs7O9jb20Mul8PDwwO+vr7a0Ofq6qrT+7344ovYv38/AOCll17Ce++9Z4iPRRaOAZCITE5DQwNsbW1x//59jBo1CqdPnxa7JCK9qaiowOOPP47KykoAwCeffILp06eLXBWZG13yGtcAEpEkWFlZaUcAuQaQzE2/fv2QkpKivb1kyRLcvXtXxIrI0jEAEpFkaBpBbty4od0+g8hcLFy4EH/4wx8AAFeuXEFMTIzIFZElYwAkIsnQBMCGhgbcvHlT5GqI9EsmkyEjIwNyuRwAsH37dpw8eVLkqshSMQASkWRwL0Ayd4MGDUJCQgKAxkaUwMBAve9NSNQeDIBEJBncC5AsQXh4OH79618DAM6dO4fExESRKyJLxABIRJLBAEiWoEuXLsjOzoa1tTUAYMOGDfjhhx9EroosDQMgEUkGp4DJUowaNQoREREAGo+TCwoKQkNDg8hVkSVhACQiyeAIIFmS9evXY9CgQQCAL774ApmZmSJXRJaEAZCIJOPBEUAGQDJ3crkcWVlZ2ttRUVG4evWqiBWRJWEAJCLJ4BQwWZqJEyciICAAAHDnzh2EhYWhHQd0EXUaAyARSYa9vT2cnZ0BcASQLEdSUpL2FJwPP/wQ77//vsgVkSVgACQiSdGMAl67do0jIWQRnJ2dsXPnTu3tV199VXtmMJGhMAASkaRoGkFUKhXu3LkjcjVExvH888/jmWeeAQBUVFQgMjJS5IrI3DEAEpGksBOYLJFMJsOuXbvg4OAAANi9ezc+//xzkasic8YASESSwkYQslRubm54/fXXtbeDg4OhUqlErIjMGQMgEUkKRwDJkgUHB2Ps2LEAgEuXLiE+Pl7kishcMQASkaRwL0CyZFZWVsjKyoKtrS0AYOvWrThz5ozIVZE5YgAkIkl5cASQU8BkiR577DGsW7cOAHD//n0EBgbi3r17IldF5oYBkIgkhVPARI2ngvj4+AAATp8+jW3btolbEJkdBkAikhROARMBtra2yM7OhkwmAwDExsbi0qVLIldF5oQBkIgkxcnJCXZ2dgA4BUyWzc/PD8uWLQPQuC9mSEgIN0cnvWEAJCJJkclk2mlgjgCSpdu4cSMGDBgAAPjss8/wzjvviFwRmQsGQCKSHM008E8//QS1Wi1yNUTi6dGjB9LT07W3V61ahYqKChErInPBAEhEkvNgIwj/sSNLN336dPj7+wMAKisrsWLFCpErInPAAEhEksNGEKKmtm3bhl69egEA9u/fj48++kjkisjUMQASkeRwL0Cipvr06YM33nhDezssLAxKpVLEisjUMQASkeRwL0Ci5l5++WVMnToVAFBWVoa1a9eKXBGZMgZAIpIcTgETNSeTyZCeno6uXbsCAFJTU/Hll1+KXBWZKgZAIpIcTgETtczLywsbN24EAAiCgKCgINTV1YlcFZkiBkAikhxOARO1bvny5fjNb34DAPj++++xZcsWkSsiU8QASESS07dvX+0RWBwBJGrK2toaWVlZ6NKlCwBg8+bN+O6770SuikwNAyARSU6XLl3Qp08fABwBJGrJiBEjEBUVBQCor69HYGAg7t+/L3JVZEoYAIlIkjTTwNevX+f5p0QtWLduHQYPHgwA+M9//oO0tDSRKyJTwgBIRJKk6QSur6/H7du3Ra6GSHrs7e2RmZmpvf3aa6/hypUrIlZEpoQBkIgkiY0gRA/35JNPIjg4GABw9+5dhIaGcsSc2oUBkIgkiQGQqH1ef/117d+XTz75BPv37xe5IjIFDIBEJEkPbgbNTmCi1jk5OWHXrl3a28uXL8dPP/0kYkVkChgAiUiSOAJI1H7PPvssnnvuOQDAzZs3sXr1apErIqljACQiSWIAJNLNjh074OjoCAB45513cPToUZErIiljACQiSeIUMJFuXF1dkZSUpL0dEhKCn3/+WcSKSMoYAIlIkjgCSKS7gIAAPPnkkwCAy5cvY/369SJXRFLFAEhEktStWzf06NEDAEcAidrLysoKmZmZsLOzAwC88cYbOHXqlMhVkRQxABKRZGmmgTkCSNR+gwcP1o78NTQ0IDAwEPX19SJXRVLDAEhEkqWZBlYqlaipqRG5GiLTERERgeHDhwMAvvnmGyQnJ4tcEUkNAyARSRYbQYg6xsbGBtnZ2bCyavxnPi4uDhcvXhS5KpISBkAikiw2ghB13G9+8xuEh4cDAOrq6hAUFISGhgZxiyLJYAAkIsliACTqnISEBHh6egIA/vWvf+Gtt94StyCSDAZAIpIsTgETdU63bt2QkZGhvR0REcFfpggAAyARSRhHAIk6b+rUqViwYAEAoLq6GsuWLRO5IpICBkAikqwHAyBHAIk6LiUlBX369AEAvP/++/jggw9ErojExgBIRJL14BQwRwCJOq5Xr1548803tbeXLl2Kqqoq8Qoi0TEAEpFk9erVC126dAHAAEjUWS+++CKeeuopAI1/n9asWSNyRSQmBkAikiwrKyvtKCCngIk6RyaTIS0tDd26dQMAZGRk4Pjx4yJXRWJhACQiSdMEwBs3buD+/fsiV0Nk2gYMGIAtW7ZobwcFBaG2tlbEikgsDIBEJGmaRpCGhgbcuHFD5GqITF9YWBh++9vfAgB+/PFHbNy4UeSKSAwMgEQkaewEJtIva2trZGdnw8bGBgDw+uuv49tvvxW5KjI2BkAikjR2AhPp39ChQ/Haa68BAO7du4fAwEAusbAwDIBEJGkcASQyjLVr1+Kxxx4DAHz99dfYsWOHyBWRMTEAEpGk8TQQIsOws7NDdna29nZ0dDSKi4vFK4iMigGQiCSttSlgQRDw/fffQxAEMcoiMgu///3vERYWBgCoqanBkiVL+HfKQjAAEpGktTYF/O6778Lb2xvvvvuuGGURmY0tW7bAzc0NAPDpp59iz549IldExsAASESS1q9fP+1/a0YAq6qqEBkZCXt7e0RFRfFIK6JOcHBwQGpqqvZ2eHg4bt68KWJFZAwMgEQkaXZ2dujZsyeA/wuA69atg0qlwokTJ1BTU4PY2FgxSyQyeTNnzsScOXMAAD/99BNWrlwpckVkaAyARCR5mmng69ev48yZM0hNTUV8fDxGjx6NuLg47Nq1C998843IVRKZtu3bt8PZ2RkAsGfPHvz9738XuSIyJJnQjtWeSqUSjo6OqK6uhoODgzHqIiILJwgCPv74Y5w4cQK5ubna9X+2trbw8vJCYWEhbGxsUF9fj5EjR8LZ2RnHjx+HlRV/ryXqqLfffhuvvPIKgMZj47777jt0795d5KqovXTJa/ymJCJJ+uqrrzBz5kwkJSU1af5Qq9VIT0/XnmJgY2ODnTt34ssvv0Rubq5Y5RKZhUWLFmHSpEkAgCtXriAmJkbkishQGACJSJJ69OjR7D5ra2u8+OKLmDBhQpP7J06ciHnz5rEhhKiTZDIZMjMzYW9vD6BxWvjkyZMiV0WGwABIRJI0fPhwzJ8/v8l9tra2SE5ObvH5W7duZUMIkR4MGjQICQkJABqXYgQGBkKtVotcFekbAyARSVZycrK2A1gmk2Hjxo1wdXVt8bmurq5sCCHSk5UrV2LUqFEAgHPnziExMRFA47nBt27dErM00hMGQCKSrD59+iAxMRHW1tYYPHgwli1b1ubzly9fjsceewxLly5FQ0ODkaokMj9dunRBdnY2rK2tAQAJCQnYtm0bPDw84OLigg8++EDkCqmzGACJSNKsrKxw//79Jo0frWFDCJH+/PrXv8bq1asBAPX19Vi5ciWuX7+O+/fvY9++fSJXR53FAEhEklVVVYU///nPmDdvXrPGj9awIYRIPxoaGuDm5tbi1kpXr14VoSLSJwZAIpIszYkfW7du1ek6NoQQdd7atWuxYsWKFpdTMACavi5iF0BE1JKzZ88iNTUVSUlJrTZ+tEbTEBIVFYWAgACMGDHCQFUSma+zZ8+2+lh5eTkaGhravfG6IAi4evUqFAqF9k9paSlUKhVqa2uhVqtha2sLe3t7yOVyeHh4wNfXF76+vhg9ejRcXV0hk8n09MkI4EkgRCRBDQ0NGDduHKqrq3HmzJmHrv1rCU8IIeqcoqIi+Pv74+uvv27x8YqKCvTt27fV68+fP4/9+/fj1KlTUCgUqKioANDY3OXr64tBgwaha9eukMvlsLW1hVqthkqlQk1NDS5dugSFQoGbN28CAPr166cNg3PnzoW3t7f+P7AZ0CWvMQASkeTk5ORg8eLFKCgoaPfav5YUFBRg0qRJyMnJwcKFC/VXIJGFaGhowFtvvYU1a9bgp59+avLYV199hSeeeKLJffX19Thy5AhSU1Nx7Ngx9OzZE35+ftrRPF9fX7i7u7drNE8QBJSVlTUZNTx58iRu376NCRMmICwsDLNmzerQL4jmigGQiExWVVUVBg8ejMmTJ+Ovf/1rp1/P398fn332GS5cuAAnJ6fOF0hkgW7fvo2YmBikpaVp7ztw4ABmz54NACgrK0NmZiaysrJw/fp1jB8/HmFhYXj22Wdha2urtzrUajUOHz6M1NRUnDhxAv3790dQUBCCgoLg7u6ut/cxVQyARGSyli1bhpycHFy4cEHntX8tKS8vx5AhQ7B48WJs375dDxUSWa6CggIEBwejX79++Ne//oWff/4ZUVFRyM7Ohlwux4IFCxAaGgofHx+D11JYWIi0tDTk5uZCpVIhMDAQiYmJFp1TGACJyCSdPXsWvr6+SEpKwqpVq/T2usnJyYiKisLp06fZEEKkJ/n5+QgMDERlZSUSEhIQEBAgSkZQKpXYvXs3YmNj4ezsjOzsbEydOtXodUgBAyARmRx9NH60hg0hRPqjVCoRERGBrKwsTJ48GdnZ2Rg4cKDYZaG4uBiBgYH47LPPEBQUhK1bt1pcZtElr/FbkIgk4d1338VXX32FnTt36n1RN08IIdKP/Px8+Pj4YO/evUhPT0d+fr4kwh8AeHp64ujRo0hPT8fevXvh4+OD/Px8scuSLAZAIhJdVVUVoqKidDrxQ1c8IYSoc5KSkjBt2jQMGTIE586dQ0hIiOT25pPJZAgJCUFhYSEGDx6MadOmISkpSeyyJIkBkIhE19ETP3TFE0KIdCcIAtauXYuoqCjExMRIatSvNZrRwJiYGERFRSE6OhrtWPFmUXgSCBGJqjMnfuiKJ4QQ6UYQBKxYsQI7duxASkoKVq5cKXZJ7SaTybBhwwY4Oztj9erVuHv3LrZt2ya5UUuxsAmEiERjyMaP1rAhhKj9oqOjsXnzZmRkZCA4OFjscjosMzMTISEhiI6OxsaNG8Uux2B0yWscASQi0WgaPwoKCoy2m7+mIWTSpEnIzc3lCSFErUhKSsLmzZuRnJxs0uEPAIKDg3Hnzh1ERETA0dERkZGRYpckOo4AEpEo9H3ih654QghR6/Lz8zFt2jTExMRgw4YNYpejNzExMdi0aRPy8/MxZcoUscvRO+4DSESSp+8TP3TFE0KIWqZUKuHj44MhQ4YgPz/frNbMCYKAyZMn4+LFizh37pzZZRruA0hEkqZp/IiPjxcl/AH/1xCya9cunD17VpQaiKQoIiIClZWVyM7ONqvwBzQ2huzevRuVlZUWPw3MEUAiMioxGj9aw4YQoqY0U7/p6ekICQkRuxyDSU9PR2hoqNlNBXMKmIgkKycnB4sXL0ZBQYHBNn3WRUFBASZNmoScnBw2hJBFM+ep318y16lgTgETkSQZ48QPXfGEEKJGUVFRZjv1+0sPTgVHRUWJXY4oGACJyGiMdeKHrnhCCFm6srIyZGdnIyEhQfKnfOiLp6cn4uPjkZ2djatXr4pdjtExABKRUUih8aM1bAghS5eVlQW5XI6AgACxSzGqwMBA2NvbIysrS+xSjI5rAInI4KTU+NEaNoSQpaqvr8eAAQPw7LPPIjU1VexyjC40NBR5eXkoKSmR5HeTLrgGkIgkRXPix86dOyX7Bas5IeTLL79Ebm6u2OUQGc2RI0dw/fp1hIaGil2KKEJDQ3Ht2jXk5eWJXYpRcQSQiAxK7BM/dMUTQsjSTJw4Effv38fx48fFLkU048aNg42NDT7//HOxS+kUjgASkWRItfGjNWwIIUty/vx5HDt2DGFhYWKXIqqwsDAUFBTg+++/F7sUo2EAJCKDkXLjR2vYEEKWZP/+/ejZsyeee+45sUsR1fPPPw9nZ2fs379f7FKMhgGQiAyioaEBS5cuxeOPP45ly5aJXY5Oli9fjsceewyvvvoqGhoaxC6HyGBOnToFPz8/2NraPvS5cXFxkMlkuHXrlhEqMy5bW1v4+fnh1KlTYpdiNAyARGQQptD40Ro2hJAlEAQBCoUCvr6+en1dT09PyGSyFn/xO3bsGGQyGQ4dOqTX92xNXFwcPD092/VcX19fKBQKwxYkIQyARKR3hjjx42GjDz4+Pno9XYQnhJC5Ky8vR0VFhd4DoEZWVhbKy8sN8tqG4Ovri+vXr5tUzZ3BAEhEemdqjR+tYUMImTPNdKchAuDQoUNx//59/OUvf+nQ9T///LOeK3o4zc/BUqaBGQCJSK9MsfGjNWwIIXOmUCjQp08fuLu763TdrVu3MGfOHDg4OKBXr15YsWIFamtrmzzH09MTCxYsaNcooGZ0//z58/D394ezszPGjh2rfZ2nn34ax44dw+jRoyGXyzFs2DAcO3YMAHD48GEMGzYM9vb28PX1xZkzZ3T6LA/y8PBA7969LWYamAGQiPTGlBs/WsOGEDJXmvV/MplMp+vmzJmD2tpabNmyBU899RS2b9+O4ODgZs+Ljo7GvXv32j0KOHv2bNTU1GDz5s0ICgrS3l9UVAR/f3/MmDEDW7ZsQWVlJWbMmIE9e/Zg5cqVePnllxEfH49Lly5hzpw5Hf57KpPJLGodYBexCyAi86Fp/CgoKDC5xo/WaBpCJk2ahNzcXCxcuFDskoj0orS0FOPHj9f5Oi8vL+2pGUuXLoWDgwNSU1MRERGB4cOHa5/3q1/9CvPnz0dWVhZee+019O/fv83XHTFiRIubxV+4cAFfffUVnnjiCQCAt7c3pk2bhqCgIPzwww8YMGAAAMDZ2RkhISE4fvy4dj1wXFwc4uLi2v3ZHnnkEZw4caLdzzdlHAEkIr0wROOHVLAhhMyRSqVC165ddb5u6dKlTW5rRvs/+eSTZs+NiYlp9yjgkiVLWrzf29tbG/4AwM/PDwAwadIkbfh78P7//ve/D32v1sjlcqhUqg5fb0oYAIlIL8yl8aM1bAghc1NbWwu5XK7zdY8++miT24MGDYKVlRWKi4ubPVczCpiZmYlr1661+bpeXl4t3v9gyAMAR0dHAI1r9lq6v7Kyss33aYtcLm+2ntFcMQASUadJpfFD17VMumBDCJkbtVrdrg2gH+Zhf+80awFff/31Np/XWhi1trbW6X5BENp8n7bY2tqirq6uw9ebEgZAIuq09957D7a2tq1O4eiDvb09ALQ6PVNTU6N9jqGEhobC1tYW7733nkHfh8gYbG1toVardb7u4sWLTW4XFRWhoaGh1Q2XBw0ahJdffhkZGRkPHQUUm1qthp2dndhlGAUDIBF12ssvvwy1Wo309HSDvcfAgQMBNC4I/6WamhqUlpZqn2MoaWlpUKvVmD9/vkHfh8gY7O3tO7TebdeuXU1u79ixAwAwffr0Vq+JiYlBfX09EhMTdX4/Y1KpVAb/RVIqGACJqNNGjhyJsLAwrF+/3mC76P/hD3+Ara0t0tLSmm3zkJmZiXv37rX5D1BnlZeXIy4uDkuXLsWIESMM9j5ExiKXy1FTU6PzdZcvX8bMmTORmpqK+fPnIzU1Ff7+/m3+vdCMAkp9+YRKperQukhTxABIRHqxYcMGyOVyREREGOT1+/bti9jYWBw+fBjjx49HYmIidu7cCX9/f6xcuRJTp07FjBkzDPLeABAREYGuXbsiISHBYO9BZEweHh64dOmSztft378fdnZ2WLNmDf72t7/h1Vdfxe7dux96XUxMTKvr9qSiqKioWXOJuZIJ7VgtqVQq4ejoiOrqajg4OBijLiIyQTk5OVi8eDEKCgoMthXMnj17sHPnThQWFuLevXvw8vLCvHnz8Oc//9lga3cKCgowadIk5OTkcB9AMhuxsbFIT09HRUWFQRuoTIUgCOjbty/CwsIQHx8vdjkdokteYwAkIr1paGjAuHHjUFVVhbNnz5rFZtD19fUYOXIknJ2dcfz4cVhZceKEzENeXh5mzZqFK1euWMyoV1uuXLmCgQMHIi8vDzNnzhS7nA7RJa/xm4yI9MbKygq7du3CDz/8oF0Ybuq2b9+OH374Abt27WL4I7MyevRoALCYo88eRvNz0PxczB2/zYhIr4zREGIsbPwgc+bq6op+/foxAP6PQqGAi4uLqHuZGhMDIBHpnaEbQoyFjR9kzmQyGXx9fRkA/0ehUMDX11fsMoyGAZCI9M7JyQmJiYnYu3cvjh07JnY5HVJQUIC9e/ciMTERTk5OYpdDZBCjR4/GyZMnO7QhtDmpq6vDyZMnLWb6F2AAJCIDWbBgAX73u99h6dKlqK+vF7scndTX1+PVV1/F73//e276TGZt7ty5uH37Ng4fPix2KaI6fPgwKisrMXfuXLFLMRoGQCIyCFNuCGHjB1kKb29vTJgwAampqWKXIqrU1FRMnDgRjz/+uNilGA2/2YjIYEyxIYSNH2RpwsLCcOLECRQWFopdiii+/fZbfPHFFwgLCxO7FKNiACQigzK1hhA2fpClmTVrFlxcXJCWliZ2KaJIS0tD//798cwzz4hdilExABKRQZlSQwgbP8gS2djYIDg4GLm5uVAqlWKXY1RKpRK5ubkIDg42i43rdcEASEQGZwoNIWz8IEsWFBQElUrVrjN9zUl2djZqa2sRFBQkdilGxwBIRAZnCg0hbPwgS+bu7o7AwEDExsaiuLhY7HKMori4GOvXr0dgYCDc3NzELsfoeBYwERnNsmXLkJOTgwsXLkhqt/3y8nIMGTIEixcvxvbt28Uuh0gUSqUSPj4+GDx4MI4ePQqZTCZ2SQYjCAImT56MoqIiFBYWmk224VnARCRJUm0IYeMHEeDg4IDs7Gx89tlnyMzMFLscg8rIyMDnn3+O7Oxsswl/umIAJCKjkWJDCBs/iP7P1KlTERQUhIiICLOdCi4uLkZkZCSCg4MxZcoUscsRDaeAicioGhoaMG7cOFRVVeHs2bOidt7V19dj5MiRcHZ2xvHjx7n2jwjmPRVsrlO/GpwCJiLJklJDCBs/iJp7cCo4NjZW7HL0at26dRY/9avBbzwiMjopnBDCEz+IWjd16lQkJiZi48aNSElJEbscvUhOTsamTZuQlJRk0VO/GgyARCQKsRtC2PhB1LbIyEisXbsWq1evNvmmkMzMTERERCA6OlpyTWhiYQAkIlGI2RDCxg+i9tm4cSOWLVuGkJAQkx0JTE5ORkhICJYvX44NGzaIXY5ksAmEiEQjRkMIGz+IdCMIAmJiYrB582bExMQgISHBJBpDBEHAunXrsGnTJkRHR2PDhg0mUXdnsAmEiEyCGA0hbPwg0o1MJsOmTZu0awKnTJmCkpISsctqU3FxMSZPntykbnMPf7ritx8RicqYDSFs/CDquMjISOTn5+PHH3+Ej48PMjIy0I5JRKMSBAHp6ekYNmwYLl68iPz8fERGRopdliQxABKR6IzVEMLGD6LOmTJlCs6dOwd/f38sWbJEUqOBmlG/0NBQ+Pv749y5c+z2bQMDIBGJzhgNIWz8INIPBwcHZGRkNBkNTElJgVKpFKUepVKJlJSUJqN+GRkZ7Fl4CDaBEJEkGLIhhI0fRIahVCoRFRWF7OxsyOVyzJ8/H6GhoRg2bJjB37uwsBCpqanIzc1FbW0tAgMDkZiYaNE5hU0gRGRyDNkQwsYPIsNwcHBAeno6iouLsWrVKhw5cgTDhw/H+PHjsW/fPqjVar2+n1qtxt69ezFu3DgMHz4ceXl5iIiIQElJCdLT0y06/OmKI4BEJCnLli1DTk4OLly4AFdX106/Xnl5OYYMGYLFixdj+/bteqiQiFpTX1+PvLw8pKamoqCgAD179sSYMWPg6+ur/ePh4dGujlxBEFBaWgqFQqH9c/LkSVRWVmLixIkICwvDM888I+p54lKjS15jACQiSamqqsLgwYMxefJk/PWvf+306/n7++Ozzz7DhQsXuPaPyIjOnz+PAwcO4NSpU1AoFLh+/ToAoHfv3vD19cUjjzwCuVwOuVwOW1tbqNVqqFQqqFQqFBUVQaFQ4NatWwAAFxcX+Pr6YvTo0ZgzZw68vb3F/GiSxQBIRCYtJycHixcvRkFBASZMmNDh1ykoKMCkSZOQk5ODhQsX6q9AItKJIAgoLy9vMppXWloKlUqF2tpa1NXVwc7ODvb29pDL5fDw8NCOGI4ePVovswGWgAGQiEyaPhpC2PhBRJaGTSBEZNL00RDCxg8iotbxW5GIJKkzJ4TwxA8iorYxABKRZHX0hBCe+EFE1DYGQCKSrI6cEMITP4iIHo5NIEQkabo0hLDxg4gsGZtAiMhs6NIQwsYPIqL24TckEUleexpC2PhBRNR+DIBEZBIe1hDCxg8iovZjACQik9BWQwgbP4iIdMMmECIyGS01hLDxg4ioEZtAiMgstdQQwsYPIiLd8duSiEzKgw0hp06dYuMHEVEHcAqYiExOVVUVBg8ejDt37sDBwQEXLlzg2j8isnicAiYis+bk5ISkpCTU1tay8YOIqAO6iF0AEVFHLFiwAH5+fhgyZIjYpRARmRwGQCIySTKZDI899pjYZRARmSROARMRERFZGAZAIiIiIgvDAEhERERkYRgAiYiIiCwMAyARERGRhWEAJCIiIrIwDIBEREREFoYBkIiIiMjCMAASERERWRgGQCIiIiILwwBIREREZGEYAImIiIgsDAMgERERkYVhACQiIiKyMAyARERERBaGAZCIiIjIwjAAEhEREVkYBkAiIiIiC8MASERERGRhGACJiIiILAwDIBEREZGFYQAkIiIisjAMgEREREQWhgGQiIiIyMIwABIRERFZGAZAIiIiIgvDAEhERERkYbq050mCIAAAlEqlQYshIiIioo7R5DRNbmtLuwLgnTt3AAAeHh6dKIuIiIiIDO3OnTtwdHRs8zkyoR0xsaGhAeXl5ejRowdkMpneCiQiIiIi/RAEAXfu3IGrqyusrNpe5deuAEhERERE5oNNIEREREQWhgGQiIiIyMIwABIRERFZGAZAIiIiIgvDAEhERERkYRgAiYiIiCwMAyARERGRhfn/GGMSEdEaM4kAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "draw_frame_model(frame_model_C, figsize=(8, 12)) # , dot = True)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "49dbf354", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "jupytext": { - "formats": "ipynb,py:percent" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.9" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}