diff --git a/HARK/ConsumptionSaving/ConsPortfolioModel.py b/HARK/ConsumptionSaving/ConsPortfolioModel.py index a7f5836d0..5d6111a13 100644 --- a/HARK/ConsumptionSaving/ConsPortfolioModel.py +++ b/HARK/ConsumptionSaving/ConsPortfolioModel.py @@ -3,6 +3,7 @@ agents who must allocate their resources among consumption, saving in a risk-free asset (with a low return), and saving in a risky asset (with higher average return). """ + from copy import deepcopy import numpy as np @@ -182,7 +183,7 @@ def __init__(self, verbose=False, quiet=False, **kwds): else: solver = ConsPortfolioJointDistSolver self.solve_one_period = make_one_period_oo_solver(solver) - #self.solve_one_period = solve_one_period_ConsPortfolio + # self.solve_one_period = solve_one_period_ConsPortfolio self.update() @@ -331,25 +332,27 @@ def __init__(self, verbose=False, quiet=False, **kwds): # Set the solver for the portfolio model, and update various constructed attributes self.solve_one_period = make_one_period_oo_solver(ConsSequentialPortfolioSolver) - - -def solve_one_period_ConsPortfolio( solution_next, - ShockDstn, - IncShkDstn, - RiskyDstn, - LivPrb, - DiscFac, - CRRA, - Rfree, - PermGroFac, - BoroCnstArt, - aXtraGrid, - ShareGrid, - AdjustPrb, - ShareLimit, - vFuncBool, - DiscreteShareBool, - IndepDstnBool,): + + +def solve_one_period_ConsPortfolio( + solution_next, + ShockDstn, + IncShkDstn, + RiskyDstn, + LivPrb, + DiscFac, + CRRA, + Rfree, + PermGroFac, + BoroCnstArt, + aXtraGrid, + ShareGrid, + AdjustPrb, + ShareLimit, + vFuncBool, + DiscreteShareBool, + IndepDstnBool, +): """ Solve one period of a consumption-saving problem with portfolio allocation between a riskless and risky asset. This function handles various sub-cases @@ -427,22 +430,22 @@ def solve_one_period_ConsPortfolio( solution_next, raise ValueError( "PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!" ) - + # Define the current period utility function and effective discount factor uFunc = UtilityFuncCRRA(CRRA) DiscFacEff = DiscFac * LivPrb # "effective" discount factor - + # Unpack next period's solution for easier access vPfuncAdj_next = solution_next.vPfuncAdj dvdmFuncFxd_next = solution_next.dvdmFuncFxd dvdsFuncFxd_next = solution_next.dvdsFuncFxd vFuncAdj_next = solution_next.vFuncAdj vFuncFxd_next = solution_next.vFuncFxd - + # Set a flag for whether the natural borrowing constraint is zero, which # depends on whether the smallest transitory income shock is zero - BoroCnstNat_iszero = np.min(IncShkDstn.atoms[1]) == 0.0 - + BoroCnstNat_iszero = np.min(IncShkDstn.atoms[1]) == 0.0 + # Prepare to calculate end-of-period marginal values by creating an array # of market resources that the agent could have next period, considering # the grid of end-of-period assets and the distribution of shocks he might @@ -469,7 +472,7 @@ def solve_one_period_ConsPortfolio( solution_next, # Make tiled arrays to calculate future realizations of mNrm and Share when integrating over IncShkDstn bNrmNext, ShareNext = np.meshgrid(bNrmGrid, ShareGrid, indexing="ij") - + # Define functions that are used internally to evaluate future realizations def calc_mNrm_next(S, b): """ @@ -477,7 +480,7 @@ def calc_mNrm_next(S, b): shock distribution S and normalized bank balances b. """ return b / (S["PermShk"] * PermGroFac) + S["TranShk"] - + def calc_dvdm_next(S, b, z): """ Evaluate realizations of marginal value of market resources next period, @@ -486,7 +489,7 @@ def calc_dvdm_next(S, b, z): """ mNrm_next = calc_mNrm_next(S, b) dvdmAdj_next = vPfuncAdj_next(mNrm_next) - + if AdjustPrb < 1.0: # Expand to the same dimensions as mNrm Share_next_expanded = z + np.zeros_like(mNrm_next) @@ -495,7 +498,7 @@ def calc_dvdm_next(S, b, z): dvdm_next = AdjustPrb * dvdmAdj_next + (1.0 - AdjustPrb) * dvdmFxd_next else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvdm_next = dvdmAdj_next - + dvdm_next = (S["PermShk"] * PermGroFac) ** (-CRRA) * dvdm_next return dvdm_next @@ -506,10 +509,10 @@ def calc_dvds_next(S, b, z): the risky share z. """ mNrm_next = calc_mNrm_next(S, b) - + # No marginal value of Share if it's a free choice! dvdsAdj_next = np.zeros_like(mNrm_next) - + if AdjustPrb < 1.0: # Expand to the same dimensions as mNrm Share_next_expanded = z + np.zeros_like(mNrm_next) @@ -518,10 +521,10 @@ def calc_dvds_next(S, b, z): dvds_next = AdjustPrb * dvdsAdj_next + (1.0 - AdjustPrb) * dvdsFxd_next else: # Don't bother evaluating if there's no chance that portfolio share is fixed dvds_next = dvdsAdj_next - + dvds_next = (S["PermShk"] * PermGroFac) ** (1.0 - CRRA) * dvds_next return dvds_next - + # Calculate end-of-period marginal value of assets and shares at each point # in aNrm and ShareGrid. Does so by taking expectation of next period marginal # values across income and risky return shocks. @@ -538,13 +541,13 @@ def calc_dvds_next(S, b, z): # Make tiled arrays to calculate future realizations of bNrm and Share when integrating over RiskyDstn aNrmNow, ShareNext = np.meshgrid(aNrmGrid, ShareGrid, indexing="ij") - + # Define functions for calculating end-of-period marginal value def calc_EndOfPrd_dvda(S, a, z): - ''' + """ Compute end-of-period marginal value of assets at values a, conditional on risky asset return S and risky share z. - ''' + """ # Calculate future realizations of bank balances bNrm Rxs = S - Rfree # Excess returns Rport = Rfree + z * Rxs # Portfolio return @@ -552,16 +555,16 @@ def calc_EndOfPrd_dvda(S, a, z): # Ensure shape concordance z_rep = z + np.zeros_like(bNrm_next) - + # Calculate and return dvda EndOfPrd_dvda = Rport * dvdbFunc_intermed(bNrm_next, z_rep) return EndOfPrd_dvda def EndOfPrddvds_dist(S, a, z): - ''' + """ Compute end-of-period marginal value of risky share at values a, conditional on risky asset return S and risky share z. - ''' + """ # Calculate future realizations of bank balances bNrm Rxs = S - Rfree # Excess returns Rport = Rfree + z * Rxs # Portfolio return @@ -569,20 +572,26 @@ def EndOfPrddvds_dist(S, a, z): # Make the shares match the dimension of b, so that it can be vectorized z_rep = z + np.zeros_like(bNrm_next) - + # Calculate and return dvds - EndOfPrd_dvds = Rxs * a * dvdbFunc_intermed(bNrm_next, z_rep) + dvdsFunc_intermed(bNrm_next, z_rep) + EndOfPrd_dvds = Rxs * a * dvdbFunc_intermed( + bNrm_next, z_rep + ) + dvdsFunc_intermed(bNrm_next, z_rep) return EndOfPrd_dvds # Evaluate realizations of value and marginal value after asset returns are realized # Calculate end-of-period marginal value of assets by taking expectations - EndOfPrd_dvda = DiscFacEff * expected(calc_EndOfPrd_dvda, RiskyDstn, args=(aNrmNow, ShareNext)) + EndOfPrd_dvda = DiscFacEff * expected( + calc_EndOfPrd_dvda, RiskyDstn, args=(aNrmNow, ShareNext) + ) EndOfPrd_dvdaNvrs = uFunc.derinv(EndOfPrd_dvda) # Calculate end-of-period marginal value of risky portfolio share by taking expectations - EndOfPrd_dvds = DiscFacEff * expected(EndOfPrddvds_dist, RiskyDstn, args=(aNrmNow, ShareNext)) - + EndOfPrd_dvds = DiscFacEff * expected( + EndOfPrddvds_dist, RiskyDstn, args=(aNrmNow, ShareNext) + ) + # Now find the optimal (continuous) risky share on [0,1] by solving the first # order condition EndOfPrd_dvds == 0. FOC_s = EndOfPrd_dvds # Relabel for convenient typing @@ -592,7 +601,7 @@ def EndOfPrddvds_dist(S, a, z): share_idx = np.argmax(crossing, axis=1) # This represents the index of the segment of the share grid where dvds flips # from positive to negative, indicating that there's a zero *on* the segment - + # Calculate the fractional distance between those share gridpoints where the # zero should be found, assuming a linear function; call it alpha a_idx = np.arange(aNrmCount) @@ -603,7 +612,7 @@ def EndOfPrddvds_dist(S, a, z): bot_c = EndOfPrd_dvdaNvrs[a_idx, share_idx] top_c = EndOfPrd_dvdaNvrs[a_idx, share_idx + 1] alpha = 1.0 - top_f / (top_f - bot_f) - + # Calculate the continuous optimal risky share and optimal consumption ShareAdj_now = (1.0 - alpha) * bot_s + alpha * top_s cNrmAdj_now = (1.0 - alpha) * bot_c + alpha * top_c @@ -624,10 +633,10 @@ def EndOfPrddvds_dist(S, a, z): # grid, but there's no way to "optimize" the portfolio if a=0, and consumption # can't depend on the risky share if it doesn't meaningfully exist. Apply # a small fix to the bottom gridpoint (aNrm=0) when this happens. - if (not BoroCnstNat_iszero): + if not BoroCnstNat_iszero: ShareAdj_now[0] = 1.0 cNrmAdj_now[0] = EndOfPrd_dvdaNvrs[0, -1] - + # Construct functions characterizing the solution for this period # Calculate the endogenous mNrm gridpoints when the agent adjusts his portfolio, @@ -657,7 +666,7 @@ def EndOfPrddvds_dist(S, a, z): # Construct the marginal value of mNrm function when the agent can't adjust his share dvdmFuncFxd_now = MargValueFuncCRRA(cFuncFxd_now, CRRA) - + # Construct the optimal risky share function when adjusting is possible if BoroCnstNat_iszero: Share_lower_bound = ShareLimit @@ -665,7 +674,7 @@ def EndOfPrddvds_dist(S, a, z): Share_lower_bound = 1.0 ShareAdj_now = np.insert(ShareAdj_now, 0, Share_lower_bound) ShareFuncAdj_now = LinearInterp(mNrmAdj_now, ShareAdj_now, ShareLimit, 0.0) - + # This is a point at which (a,c,share) have consistent length. Take the # snapshot for storing the grid and values in the solution. save_points = { @@ -682,12 +691,12 @@ def EndOfPrddvds_dist(S, a, z): # Create the value functions for this period, defined over market resources # mNrm when agent can adjust his portfolio, and over market resources and # fixed share when agent can not adjust his portfolio. - + def calc_v_intermed(S, b, z): - ''' + """ Calculate "intermediate" value from next period's bank balances, the income shocks S, and the risky asset share. - ''' + """ mNrm_next = calc_mNrm_next(S, b) vAdj_next = vFuncAdj_next(mNrm_next) @@ -697,7 +706,7 @@ def calc_v_intermed(S, b, z): v_next = AdjustPrb * vAdj_next + (1.0 - AdjustPrb) * vFxd_next else: # Don't bother evaluating if there's no chance that portfolio share is fixed v_next = vAdj_next - + v_intermed = (S["PermShk"] * PermGroFac) ** (1.0 - CRRA) * v_next return v_intermed @@ -708,7 +717,7 @@ def calc_v_intermed(S, b, z): vNvrs_intermed = uFunc.inv(v_intermed) vNvrsFunc_intermed = BilinearInterp(vNvrs_intermed, bNrmGrid, ShareGrid) vFunc_intermed = ValueFuncCRRA(vNvrsFunc_intermed, CRRA) - + def calc_EndOfPrd_v(S, a, z): # Calculate future realizations of bank balances bNrm Rxs = S - Rfree @@ -723,7 +732,9 @@ def calc_EndOfPrd_v(S, a, z): return EndOfPrd_v # Calculate end-of-period value by taking expectations - EndOfPrd_v = DiscFacEff * expected(calc_EndOfPrd_v, RiskyDstn, args=(aNrmNow, ShareNext)) + EndOfPrd_v = DiscFacEff * expected( + calc_EndOfPrd_v, RiskyDstn, args=(aNrmNow, ShareNext) + ) EndOfPrd_vNvrs = uFunc.inv(EndOfPrd_v) # Now make an end-of-period value function over aNrm and Share @@ -764,32 +775,31 @@ def calc_EndOfPrd_v(S, a, z): ) vNvrsFuncFxd = LinearInterpOnInterp1D(vNvrsFuncFxd_by_Share, ShareGrid) vFuncFxd_now = ValueFuncCRRA(vNvrsFuncFxd, CRRA) - + else: # If vFuncBool is False, fill in dummy values vFuncAdj_now = NullFunc() vFuncFxd_now = NullFunc() # Package and return the solution solution_now = PortfolioSolution( - cFuncAdj=cFuncAdj_now, - ShareFuncAdj=ShareFuncAdj_now, - vPfuncAdj=vPfuncAdj_now, - vFuncAdj=vFuncAdj_now, - cFuncFxd=cFuncFxd_now, - ShareFuncFxd=ShareFuncFxd_now, - dvdmFuncFxd=dvdmFuncFxd_now, - dvdsFuncFxd=dvdsFuncFxd_now, - vFuncFxd=vFuncFxd_now, - AdjPrb=AdjustPrb, - # WHAT IS THIS STUFF FOR?? - aGrid=save_points["a"], - Share_adj=save_points["share_adj"], - EndOfPrddvda_adj=save_points["eop_dvda_adj"], - ShareGrid=save_points["share_grid"], - EndOfPrddvda_fxd=save_points["eop_dvda_fxd"], - EndOfPrddvds_fxd=save_points["eop_dvds_fxd"], - - ) + cFuncAdj=cFuncAdj_now, + ShareFuncAdj=ShareFuncAdj_now, + vPfuncAdj=vPfuncAdj_now, + vFuncAdj=vFuncAdj_now, + cFuncFxd=cFuncFxd_now, + ShareFuncFxd=ShareFuncFxd_now, + dvdmFuncFxd=dvdmFuncFxd_now, + dvdsFuncFxd=dvdsFuncFxd_now, + vFuncFxd=vFuncFxd_now, + AdjPrb=AdjustPrb, + # WHAT IS THIS STUFF FOR?? + aGrid=save_points["a"], + Share_adj=save_points["share_adj"], + EndOfPrddvda_adj=save_points["eop_dvda_adj"], + ShareGrid=save_points["share_grid"], + EndOfPrddvda_fxd=save_points["eop_dvda_fxd"], + EndOfPrddvds_fxd=save_points["eop_dvds_fxd"], + ) return solution_now