forked from huggingface/pytorch-image-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sotabench.py
222 lines (207 loc) · 13.6 KB
/
sotabench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
from torchbench.image_classification import ImageNet
from timm import create_model
from timm.data import resolve_data_config, create_transform
from timm.models import TestTimePoolHead
import os
NUM_GPU = 1
BATCH_SIZE = 256 * NUM_GPU
def _entry(model_name, paper_model_name, paper_arxiv_id, batch_size=BATCH_SIZE,
ttp=False, args=dict(), model_desc=None):
return dict(
model=model_name,
model_description=model_desc,
paper_model_name=paper_model_name,
paper_arxiv_id=paper_arxiv_id,
batch_size=batch_size,
ttp=ttp,
args=args)
# NOTE For any original PyTorch models, I'll remove from this list when you add to sotabench to
# avoid overlap and confusion. Please contact me.
model_list = [
## Weights ported by myself from other frameworks or trained myself in PyTorch
_entry('adv_inception_v3', 'Adversarial Inception V3', '1611.01236',
model_desc='Ported from official Tensorflow weights'),
_entry('ens_adv_inception_resnet_v2', 'Ensemble Adversarial Inception V3', '1705.07204',
model_desc='Ported from official Tensorflow weights'),
_entry('dpn68', 'DPN-68 (224x224)', '1707.01629'),
_entry('dpn68b', 'DPN-68b (224x224)', '1707.01629'),
_entry('dpn92', 'DPN-92 (224x224)', '1707.01629'),
_entry('dpn98', 'DPN-98 (224x224)', '1707.01629'),
_entry('dpn107', 'DPN-107 (224x224)', '1707.01629'),
_entry('dpn131', 'DPN-131 (224x224)', '1707.01629'),
_entry('dpn68', 'DPN-68 (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)),
_entry('dpn68b', 'DPN-68b (320x320, Mean-Max Pooling)', '1707.01629', ttp=True, args=dict(img_size=320)),
_entry('dpn92', 'DPN-92 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2),
_entry('dpn98', 'DPN-98 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//2),
_entry('dpn107', 'DPN-107 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4),
_entry('dpn131', 'DPN-131 (320x320, Mean-Max Pooling)', '1707.01629',
ttp=True, args=dict(img_size=320), batch_size=BATCH_SIZE//4),
_entry('efficientnet_b0', 'EfficientNet-B0', '1905.11946'),
_entry('efficientnet_b1', 'EfficientNet-B1', '1905.11946'),
_entry('efficientnet_b2', 'EfficientNet-B2', '1905.11946'),
_entry('fbnetc_100', 'FBNet-C', '1812.03443',
model_desc='Trained in PyTorch with RMSProp, exponential LR decay'),
_entry('gluon_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet18_v1b', 'ResNet-18', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet34_v1b', 'ResNet-34', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1b', 'ResNet-50', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1c', 'ResNet-50-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1d', 'ResNet-50-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet50_v1s', 'ResNet-50-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1b', 'ResNet-101', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1c', 'ResNet-101-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1d', 'ResNet-101-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet101_v1s', 'ResNet-101-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1b', 'ResNet-152', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1c', 'ResNet-152-C', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1d', 'ResNet-152-D', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnet152_v1s', 'ResNet-152-S', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext101_32x4d', 'ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_resnext101_64x4d', 'ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_senet154', 'SENet-154', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_seresnext101_64x4d', 'SE-ResNeXt-101 64x4d', '1812.01187', model_desc='Ported from GluonCV Model Zoo'),
_entry('gluon_xception65', 'Modified Aligned Xception', '1802.02611', batch_size=BATCH_SIZE//2,
model_desc='Ported from GluonCV Model Zoo'),
_entry('mixnet_xl', 'MixNet-XL', '1907.09595', model_desc="My own scaling beyond paper's MixNet Large"),
_entry('mixnet_l', 'MixNet-L', '1907.09595'),
_entry('mixnet_m', 'MixNet-M', '1907.09595'),
_entry('mixnet_s', 'MixNet-S', '1907.09595'),
_entry('mnasnet_100', 'MnasNet-B1', '1807.11626'),
_entry('mobilenetv3_100', 'MobileNet V3-Large 1.0', '1905.02244',
model_desc='Trained in PyTorch with RMSProp, exponential LR decay, and hyper-params matching '
'paper as closely as possible.'),
_entry('resnet18', 'ResNet-18', '1812.01187'),
_entry('resnet26', 'ResNet-26', '1812.01187', model_desc='Block cfg of ResNet-34 w/ Bottleneck'),
_entry('resnet26d', 'ResNet-26-D', '1812.01187',
model_desc='Block cfg of ResNet-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'),
_entry('resnet34', 'ResNet-34', '1812.01187'),
_entry('resnet50', 'ResNet-50', '1812.01187'),
_entry('resnext50_32x4d', 'ResNeXt-50 32x4d', '1812.01187'),
_entry('resnext50d_32x4d', 'ResNeXt-50-D 32x4d', '1812.01187',
model_desc="'D' variant (3x3 deep stem w/ avg-pool downscale). Trained with "
"SGD w/ cosine LR decay, random-erasing (gaussian per-pixel noise) and label-smoothing"),
_entry('semnasnet_100', 'MnasNet-A1', '1807.11626'),
_entry('seresnet18', 'SE-ResNet-18', '1709.01507'),
_entry('seresnet34', 'SE-ResNet-34', '1709.01507'),
_entry('seresnext26_32x4d', 'SE-ResNeXt-26 32x4d', '1709.01507',
model_desc='Block cfg of SE-ResNeXt-34 w/ Bottleneck, deep stem, and avg-pool in downsample layers.'),
_entry('spnasnet_100', 'Single-Path NAS', '1904.02877',
model_desc='Trained in PyTorch with SGD, cosine LR decay'),
_entry('tf_efficientnet_b0', 'EfficientNet-B0 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b1', 'EfficientNet-B1 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b2', 'EfficientNet-B2 (AutoAugment)', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b3', 'EfficientNet-B3 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b4', 'EfficientNet-B4 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b5', 'EfficientNet-B5 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//4,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b6', 'EfficientNet-B6 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_b7', 'EfficientNet-B7 (AutoAugment)', '1905.11946', batch_size=BATCH_SIZE//8,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_es', 'EfficientNet-EdgeTPU-S', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_em', 'EfficientNet-EdgeTPU-M', '1905.11946',
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_efficientnet_el', 'EfficientNet-EdgeTPU-L', '1905.11946', batch_size=BATCH_SIZE//2,
model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_inception_v3', 'Inception V3', '1512.00567', model_desc='Ported from official Tensorflow weights'),
_entry('tf_mixnet_l', 'MixNet-L', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mixnet_m', 'MixNet-M', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
_entry('tf_mixnet_s', 'MixNet-S', '1907.09595', model_desc='Ported from official Google AI Tensorflow weights'),
## Cadene ported weights (to remove if Cadene adds sotabench)
_entry('inception_resnet_v2', 'Inception ResNet V2', '1602.07261'),
_entry('inception_v4', 'Inception V4', '1602.07261'),
_entry('nasnetalarge', 'NASNet-A Large', '1707.07012', batch_size=BATCH_SIZE // 4),
_entry('pnasnet5large', 'PNASNet-5', '1712.00559', batch_size=BATCH_SIZE // 4),
_entry('seresnet50', 'SE-ResNet-50', '1709.01507'),
_entry('seresnet101', 'SE-ResNet-101', '1709.01507'),
_entry('seresnet152', 'SE-ResNet-152', '1709.01507'),
_entry('seresnext50_32x4d', 'SE-ResNeXt-50 32x4d', '1709.01507'),
_entry('seresnext101_32x4d', 'SE-ResNeXt-101 32x4d', '1709.01507'),
_entry('senet154', 'SENet-154', '1709.01507'),
_entry('xception', 'Xception', '1610.02357', batch_size=BATCH_SIZE//2),
## Torchvision weights
# _entry('densenet121'),
# _entry('densenet161'),
# _entry('densenet169'),
# _entry('densenet201'),
# _entry('inception_v3', paper_model_name='Inception V3', ),
# _entry('tv_resnet34', , ),
# _entry('tv_resnet50', , ),
# _entry('resnet101', , ),
# _entry('resnet152', , ),
# _entry('tv_resnext50_32x4d', , ),
# _entry('resnext101_32x8d', ),
# _entry('wide_resnet50_2' , ),
# _entry('wide_resnet101_2', , ),
## Facebook WSL weights
_entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d', '1805.00932'),
_entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d', '1805.00932'),
_entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d', '1805.00932', batch_size=BATCH_SIZE // 2),
_entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d', '1805.00932', batch_size=BATCH_SIZE // 4),
_entry('ig_resnext101_32x8d', 'ResNeXt-101 32x8d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288)),
_entry('ig_resnext101_32x16d', 'ResNeXt-101 32x16d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 2),
_entry('ig_resnext101_32x32d', 'ResNeXt-101 32x32d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 4),
_entry('ig_resnext101_32x48d', 'ResNeXt-101 32x48d (288x288 Mean-Max Pooling)', '1805.00932',
ttp=True, args=dict(img_size=288), batch_size=BATCH_SIZE // 8),
## DLA official impl weights (to remove if sotabench added to source)
_entry('dla34', 'DLA-34', '1707.06484'),
_entry('dla46_c', 'DLA-46-C', '1707.06484'),
_entry('dla46x_c', 'DLA-X-46-C', '1707.06484'),
_entry('dla60x_c', 'DLA-X-60-C', '1707.06484'),
_entry('dla60', 'DLA-60', '1707.06484'),
_entry('dla60x', 'DLA-X-60', '1707.06484'),
_entry('dla102', 'DLA-102', '1707.06484'),
_entry('dla102x', 'DLA-X-102', '1707.06484'),
_entry('dla102x2', 'DLA-X-102 64', '1707.06484'),
_entry('dla169', 'DLA-169', '1707.06484'),
## Res2Net official impl weights (to remove if sotabench added to source)
_entry('res2net50_26w_4s', 'Res2Net-50 26x4s', '1904.01169'),
_entry('res2net50_14w_8s', 'Res2Net-50 14x8s', '1904.01169'),
_entry('res2net50_26w_6s', 'Res2Net-50 26x6s', '1904.01169'),
_entry('res2net50_26w_8s', 'Res2Net-50 26x8s', '1904.01169'),
_entry('res2net50_48w_2s', 'Res2Net-50 48x2s', '1904.01169'),
_entry('res2net101_26w_4s', 'Res2NeXt-101 26x4s', '1904.01169'),
_entry('res2next50', 'Res2NeXt-50', '1904.01169'),
_entry('dla60_res2net', 'Res2Net-DLA-60', '1904.01169'),
_entry('dla60_res2next', 'Res2NeXt-DLA-60', '1904.01169'),
]
for m in model_list:
model_name = m['model']
# create model from name
model = create_model(model_name, pretrained=True)
param_count = sum([m.numel() for m in model.parameters()])
print('Model %s, %s created. Param count: %d' % (model_name, m['paper_model_name'], param_count))
# get appropriate transform for model's default pretrained config
data_config = resolve_data_config(m['args'], model=model, verbose=True)
if m['ttp']:
model = TestTimePoolHead(model, model.default_cfg['pool_size'])
data_config['crop_pct'] = 1.0
input_transform = create_transform(**data_config)
# Run the benchmark
ImageNet.benchmark(
model=model,
model_description=m.get('model_description', None),
paper_model_name=m['paper_model_name'],
paper_arxiv_id=m['paper_arxiv_id'],
input_transform=input_transform,
batch_size=m['batch_size'],
num_gpu=NUM_GPU,
data_root=os.environ.get('IMAGENET_DIR', './imagenet')
)
torch.cuda.empty_cache()