-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexperiments_cs_script_xlnet.py
31 lines (27 loc) · 1.28 KB
/
experiments_cs_script_xlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import pandas as pd
from utils_data import create_calibrated_df
from utils_mturk import get_list_id_within_doc, prepare_df_for_evaluation, perform_evaluation
# data preparation
df_results_mturk = pd.read_csv('data/pairwise_race_cs.csv')
df_predictions = create_calibrated_df([
'output_xlnet_seed_2_test.csv',
'output_xlnet_seed_3_test.csv',
'output_xlnet_seed_4_test.csv'
])
list_id_within_doc = get_list_id_within_doc(df_predictions)
df_predictions['id'] = list_id_within_doc
df_for_evaluation = prepare_df_for_evaluation(df_results_mturk, df_predictions)
output_filename = 'output/pairwise_race_cs_xlnet_ensemble_test.txt'
output_file = open(output_filename, "w")
perform_evaluation(df_for_evaluation, output_file=output_file)
output_file.close()
# Single models
for random_seed in [2, 3, 4]:
df_predictions = create_calibrated_df(['output_xlnet_seed_%d_test.csv' % random_seed])
list_id_within_doc = get_list_id_within_doc(df_predictions)
df_predictions['id'] = list_id_within_doc
df_for_evaluation = prepare_df_for_evaluation(df_results_mturk, df_predictions)
output_filename = 'output/pairwise_race_cs_xlnet_%d_test.txt' % random_seed
output_file = open(output_filename, "w")
perform_evaluation(df_for_evaluation, output_file=output_file)
output_file.close()