-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
147 lines (123 loc) · 4.86 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import sys
import csv
import time
import numpy as np
from datetime import datetime
import torch
"""
Utils for compressive MR fingerprinting (CS-MRF) in the paper
@inproceedings{chen2020compressive,
author = {Dongdong Chen and Mike E. Davies and Mohammad Golbabaee},
title = {Compressive MR Fingerprinting reconstruction with Neural Proximal Gradient iterations},
booktitle={International Conference on Medical image computing and computer-assisted intervention (MICCAI)},
year = {2020}
}
"""
def set_gpu(gpu):
print('Current GPU:{}'.format(gpu))
torch.cuda.set_device(gpu)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark =True
dtype = torch.cuda.FloatTensor
return dtype
def check_paths(args):
try:
if not os.path.exists(args.save_model_dir):
os.makedirs(args.save_model_dir)
if args.checkpoint_model_dir is not None and not (os.path.exists(args.checkpoint_model_dir)):
os.makedirs(args.checkpoint_model_dir)
except OSError as e:
print(e)
sys.exit(1)
def prefix(args):
return '{}_{}_cuda_{}_sampling_{}_iter_{}_T_{}_x_{}_y_{}_m_{}_{}_{}_bs_{}_lr_{}_wd_{}'.format(
args.filename, str(time.ctime()).replace(' ', '_'),
args.cuda, args.sampling, args.epochs, args.time_step,
args.loss_weight['x'], args.loss_weight['y'],
args.loss_weight['m'][0], args.loss_weight['m'][1], args.loss_weight['m'][2],
args.batch_size, args.lr, args.weight_decay)
# --------------------------------
# logger
# --------------------------------
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
class LOG(object):
def __init__(self, filepath, filename, field_name=['iter', 'loss_x', 'loss_m', 'loss_y', 'loss_total', 'alpha']):
self.filepath = filepath
self.filename = filename
self.field_name = field_name
self.logfile, self.logwriter = csv_log(file_name=os.path.join(filepath, filename+'.csv'), field_name=field_name)
self.logwriter.writeheader()
def record(self, *args):
dict = {}
for i in range(len(self.field_name)):
dict[self.field_name[i]]=args[i]
self.logwriter.writerow(dict)
def close(self):
self.logfile.close()
def print(self, msg):
logT(msg)
def csv_log(file_name, field_name):
assert file_name is not None
assert field_name is not None
logfile = open(file_name, 'w')
logwriter = csv.DictWriter(logfile, fieldnames=field_name)
return logfile, logwriter
def logT(*args, **kwargs):
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S:"), *args, **kwargs)
def logger(args):
logfile, logwriter = csv_log(file_name=os.path.join(args.net_dir, args.net_name+'.csv'), field_name=['iter', 'loss'])
logwriter.writeheader()
if args.opt['loss_type']=='mse':
criterion = torch.nn.MSELoss().cuda()
if args.opt['loss_type']=='l1':
criterion = torch.nn.L1Loss().cuda()
if args.opt['val_dataloader'] is not None:
val_logfile, val_logwriter = csv_log(file_name=os.path.join(args.net_dir, args.net_name+'_val.csv'), field_name=['iter', 'loss'])
val_logwriter.writeheader()
return logfile, logwriter, val_logfile, val_logwriter, criterion
else:
return logfile, logwriter, criterion
# --------------------------------
# Convert data type
# --------------------------------
def to_tensor(data):
"""
Convert numpy array to PyTorch tensor. For complex arrays, the real and imaginary parts
are stacked along the last dimension.
Args:
data (np.array): Input numpy array
Returns:
torch.Tensor: PyTorch version of data
"""
if np.iscomplexobj(data):
data = np.stack((data.real, data.imag), axis=-1)
return torch.from_numpy(data)
def np_to_torch(img_np):
'''Converts image in numpy.array to torch.Tensor.
From C x W x H [0..1] to C x W x H [0..1]
'''
return torch.from_numpy(img_np)[None, :]
def torch_to_np(img_var):
'''Converts an image in torch.Tensor format to np.array.
From 1 x C x W x H [0..1] to C x W x H [0..1]
'''
return img_var.detach().cpu().numpy()
# --------------------------------
# complex-valued operation
# --------------------------------
def complex_matmul(A, B): # A: (dim1, dim2, 2), B:(N, dim2, dim3, 2)' (a+bj)x(c+dj) = (ac-bd) + (bc+ad)j
return torch.stack([torch.matmul(A[...,0], B[...,0]) - torch.matmul(A[...,1], B[...,1]),
torch.matmul(A[...,1], B[...,0]) + torch.matmul(A[...,0], B[...,1])],dim=-1)
def complex_abs(data):
"""
Compute the absolute value of a complex valued input tensor.
Args:
data (torch.Tensor): A complex valued tensor, where the size of the final dimension
should be 2.
Returns:
torch.Tensor: Absolute value of data
"""
assert data.size(-1) == 2
return (data ** 2).sum(dim=-1).sqrt()