-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAUTHORS.py
49 lines (46 loc) · 1.73 KB
/
AUTHORS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import glob
import calcAuthor
import numpy as np
def getAttributions(dir, authors):
attributions = []
f = open(dir+"/AUTHORS.txt")
for line in f:
groups = line.split(":")
groups[1] = groups[1].replace("\n", "")
try:
groups[1] = authors.index(groups[1])
except ValueError:
groups[1] = -1
attributions.append(groups)
return attributions
def getAuthor(text, attributions):
for i in range(len(attributions)):
if attributions[i][0] in text:
return attributions[i][1]
def getSamplesAndAuthors(dir, authors, debug, sampleLength):
attributions = getAttributions(dir, authors)
featuresCalculated = []
authorsCalculated = []
for f in glob.glob(dir+"/*.txt"):
if "AUTHORS.txt" in f:
continue
calc = calcAuthor.CalcAuthorBatch(f, False, sampleLength, False)
featuresCalculated.append(calc.calcFeatures())
authorsCalculated.append(np.zeros(calc.getNumSamples(), dtype=np.int))
authorsCalculated[len(authorsCalculated)-1].fill(getAuthor(f, attributions))
return np.concatenate(featuresCalculated), np.concatenate(authorsCalculated)
def calcAttributions(dir, authors, sampleLength, classifier):
attributions = getAttributions(dir, authors)
#Second element in array will be changed to guessed author
result = np.copy(attributions)
i = 0
for f in glob.glob(dir+"/*.txt"):
if "AUTHORS.txt" in f:
continue
calc = calcAuthor.CalcAuthorBatch(f, False, sampleLength, False)
probs = classifier.getPredictions(calc.calcFeatures())
probs = np.mean(probs, axis=0)
result[i][1] = np.argmax(probs)
i+=1
print attributions
return result