-
Notifications
You must be signed in to change notification settings - Fork 1
/
cocostuff.py
126 lines (104 loc) · 3.4 KB
/
cocostuff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# ================================================================
# MIT License
# Copyright (c) 2021 edwardyehuang (https://github.com/edwardyehuang)
# ================================================================
import os
import tensorflow as tf
import numpy as np
import random
INAGE_DIR = "images"
LABEL_DIR = "labels"
SEGMENTATION_TRAIN_FILENAME = "train.txt"
SEGMENTATION_EVAL_FILENAME = "val.txt"
IMAGE_FILE_EXTENSION = ".jpg"
LABEL_FILE_EXTENSION = ".png"
from .dataset import Dataset
class Cocostuff(Dataset):
def __init__(self, dataset_dir):
super().__init__(dataset_dir)
self.ignore_label = 255
self.num_class = 171
self.val_image_count = 5000
self.compress = True
def load_data_paths(self, dataset_dir):
image_dir = os.path.join(dataset_dir, INAGE_DIR)
label_dir = os.path.join(dataset_dir, LABEL_DIR)
train_list_path = os.path.join(dataset_dir, SEGMENTATION_TRAIN_FILENAME)
val_list_path = os.path.join(dataset_dir, SEGMENTATION_EVAL_FILENAME)
return (
self.__get_data_paths(train_list_path, image_dir, label_dir),
self.__get_data_paths(val_list_path, image_dir, label_dir),
)
def __get_data_paths(self, names_list_path, images_dir, labels_dir):
with open(names_list_path, "r") as f:
images_names = f.read().split()
if self.shuffle_raw_image_paths:
random.shuffle(images_names)
images_paths = [os.path.join(images_dir, image_name + IMAGE_FILE_EXTENSION) for image_name in images_names]
labels_paths = [os.path.join(labels_dir, image_name + LABEL_FILE_EXTENSION) for image_name in images_names]
return images_paths, labels_paths
def create_label_colormap(self):
colormap = [
(0, 0, 0),
(128, 0, 0),
(0, 128, 0),
(128, 128, 0),
(0, 0, 128),
(128, 0, 128),
(0, 128, 128),
(128, 128, 128),
(64, 0, 0),
(192, 0, 0),
(64, 128, 0),
(192, 128, 0),
(64, 0, 128),
(192, 0, 128),
(64, 128, 128),
(192, 128, 128),
(0, 64, 0),
(128, 64, 0),
(0, 192, 0),
(128, 192, 0),
(0, 64, 128),
(128, 64, 128),
(0, 192, 128),
(128, 192, 128),
(64, 64, 0),
(192, 64, 0),
(64, 192, 0),
(192, 192, 0),
(64, 64, 128),
(192, 64, 128),
(64, 192, 128),
(192, 192, 128),
(0, 0, 64),
(128, 0, 64),
(0, 128, 64),
(128, 128, 64),
(0, 0, 192),
(128, 0, 192),
(0, 128, 192),
(128, 128, 192),
(64, 0, 64),
(192, 0, 64),
(64, 128, 64),
(192, 128, 64),
(64, 0, 192),
(192, 0, 192),
(64, 128, 192),
(192, 128, 192),
(0, 64, 64),
(128, 64, 64),
(0, 192, 64),
(128, 192, 64),
(0, 64, 192),
(128, 64, 192),
(0, 192, 192),
(128, 192, 192),
(64, 64, 64),
(192, 64, 64),
(64, 192, 64),
(192, 192, 64),
]
colormap = np.array(colormap)
return colormap