forked from BayesWatch/nas-without-training
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_results.py
87 lines (60 loc) · 3.09 KB
/
process_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import numpy as np
import argparse
import os
import random
import pandas as pd
from collections import OrderedDict
import tabulate
parser = argparse.ArgumentParser(description='Produce tables')
parser.add_argument('--data_loc', default='../datasets/cifar/', type=str, help='dataset folder')
parser.add_argument('--save_loc', default='results', type=str, help='folder to save results')
parser.add_argument('--batch_size', default=256, type=int)
parser.add_argument('--GPU', default='0', type=str)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--trainval', action='store_true')
parser.add_argument('--n_runs', default=500, type=int)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.GPU
from statistics import mean, median, stdev as std
import torch
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
df = []
datasets = OrderedDict()
datasets['CIFAR-10 (val)'] = ('cifar10-valid', 'x-valid', True)
datasets['CIFAR-10 (test)'] = ('cifar10', 'ori-test', False)
### CIFAR-100
datasets['CIFAR-100 (val)'] = ('cifar100', 'x-valid', False)
datasets['CIFAR-100 (test)'] = ('cifar100', 'x-test', False)
datasets['ImageNet16-120 (val)'] = ('ImageNet16-120', 'x-valid', False)
datasets['ImageNet16-120 (test)'] = ('ImageNet16-120', 'x-test', False)
dataset_top1s = OrderedDict()
for n_samples in [10, 100]:
method = f"Ours (N={n_samples})"
time = 0.
for dataset, params in datasets.items():
top1s = []
dset = params[0]
acc_type = 'accs' if 'test' in params[1] else 'val_accs'
filename = f"{args.save_loc}/{dset}_{args.n_runs}_{n_samples}_{args.seed}.t7"
full_scores = torch.load(filename)
if dataset == 'CIFAR-10 (test)':
time = median(full_scores['times'])
time = f"{time:.2f}"
accs = []
for n in range(args.n_runs):
acc = full_scores[acc_type][n]
accs.append(acc)
dataset_top1s[dataset] = accs
cifar10_val = f"{mean(dataset_top1s['CIFAR-10 (val)']):.2f} +- {std(dataset_top1s['CIFAR-10 (val)']):.2f}"
cifar10_test = f"{mean(dataset_top1s['CIFAR-10 (test)']):.2f} +- {std(dataset_top1s['CIFAR-10 (test)']):.2f}"
cifar100_val = f"{mean(dataset_top1s['CIFAR-100 (val)']):.2f} +- {std(dataset_top1s['CIFAR-100 (val)']):.2f}"
cifar100_test = f"{mean(dataset_top1s['CIFAR-100 (test)']):.2f} +- {std(dataset_top1s['CIFAR-100 (test)']):.2f}"
imagenet_val = f"{mean(dataset_top1s['ImageNet16-120 (val)']):.2f} +- {std(dataset_top1s['ImageNet16-120 (val)']):.2f}"
imagenet_test = f"{mean(dataset_top1s['ImageNet16-120 (test)']):.2f} +- {std(dataset_top1s['ImageNet16-120 (test)']):.2f}"
df.append([method, time, cifar10_val, cifar10_test, cifar100_val, cifar100_test, imagenet_val, imagenet_test])
df = pd.DataFrame(df, columns=['Method','Search time (s)','CIFAR-10 (val)','CIFAR-10 (test)','CIFAR-100 (val)','CIFAR-100 (test)','ImageNet16-120 (val)','ImageNet16-120 (test)' ])
print(tabulate.tabulate(df.values,df.columns, tablefmt="pipe"))