forked from ROZ-MOFUMOFU-ME/node-multi-hashing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
magimath.c
118 lines (110 loc) · 2.77 KB
/
magimath.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
// Copyright (c) 2014 The Magi developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <stdio.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
//#include <gmpxx.h>
#include "magimath.h"
//#define EPS1 (std::numeric_limits<double>::epsilon())
#define EPS1 (DBL_EPSILON)
#define EPS2 3.0e-11
double exp_n(double xt)
{
double p1 = -700.0, p3 = -0.8e-8, p4 = 0.8e-8, p6 = 700.0;
if(xt < p1)
return 0;
else if(xt > p6)
return 1e200;
else if(xt > p3 && xt < p4)
return (1.0 + xt);
else
return exp(xt);
}
// 1 / (1 + exp(x1-x2))
double exp_n2(double x1, double x2)
{
double p1 = -700., p2 = -37., p3 = -0.8e-8, p4 = 0.8e-8, p5 = 37., p6 = 700.;
double xt = x1 - x2;
if (xt < p1+1.e-200)
return 1.;
else if (xt > p1 && xt < p2 + 1.e-200)
return ( 1. - exp(xt) );
else if (xt > p2 && xt < p3 + 1.e-200)
return ( 1. / (1. + exp(xt)) );
else if (xt > p3 && xt < p4)
return ( 1. / (2. + xt) );
else if (xt > p4 - 1.e-200 && xt < p5)
return ( exp(-xt) / (1. + exp(-xt)) );
else if (xt > p5 - 1.e-200 && xt < p6)
return ( exp(-xt) );
else if (xt > p6 - 1.e-200)
return 0.;
else
return 0.;
}
void gauleg(double x1, double x2, double x[], double w[], int n)
{
int m,j,i;
double z1, z, xm, xl, pp, p3, p2, p1;
m=(n+1)/2;
xm=0.5*(x2+x1);
xl=0.5*(x2-x1);
for (i=1;i<=m;i++) {
z=cos(3.141592654*(i-0.25)/(n+0.5));
do {
p1=1.0;
p2=0.0;
for (j=1;j<=n;j++) {
p3=p2;
p2=p1;
p1=((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j;
}
pp=n*(z*p1-p2)/(z*z-1.0);
z1=z;
z=z1-p1/pp;
} while (fabs(z-z1) > EPS2);
x[i]=xm-xl*z;
x[n+1-i]=xm+xl*z;
w[i]=2.0*xl/((1.0-z*z)*pp*pp);
w[n+1-i]=w[i];
}
}
double GaussianQuad_N(double func(const double), const double a2, const double b2, int NptGQ)
{
double s=0.0;
double x[NptGQ], w[NptGQ];
int j;
// double dh=(b2-a2)/double(divs);
gauleg(a2, b2, x, w, NptGQ);
for (j=1; j<=NptGQ; j++) {
s += w[j]*func(x[j]);
}
/*
for (i=1; i<=divs; i++)
{
a0 = a2 + (i-1)*dh;
b0 = a0 + dh;
gauleg(a0, b0, x, w, NptGQ);
for (j=1; j<=NptGQ; j++)
{
s += w[j]*func(x[j]);
}
}
*/
return s;
}
double swit_(double wvnmb)
{
return pow( (5.55243*(exp_n(-0.3*wvnmb/15.762) - exp_n(-0.6*wvnmb/15.762)))*wvnmb, 0.5)
/ 1034.66 * pow(sin(wvnmb/65.), 2.);
}
uint32_t sw_(int nnounce, int divs)
{
double wmax = ((sqrt((double)(nnounce))*(1.+EPS1))/450+100);
return ((uint32_t)(GaussianQuad_N(swit_, 0., wmax, divs)*(1.+EPS1)*1.e6));
}