-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdispatch.rs
366 lines (321 loc) · 11.4 KB
/
dispatch.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use perfect::*;
use perfect::events::*;
use rand::prelude::*;
use perfect::stats::*;
use perfect::asm::Emitter;
fn main() {
let mut harness = HarnessConfig::default_zen2().emit();
DispatchTest::run(&mut harness);
}
/// Use PMC events to characterize instruction dispatch.
///
/// Context
/// =======
///
/// According to different revisions of the SOG, there are three ways that an
/// x86 instruction may be represented internally:
///
/// - "Fastpath single": 1 macro-op
/// - "Fastpath double": 2 macro-ops
/// - "Microcoded": >2 macro-ops
///
/// Each macro-op [mop] corresponds with up to 2 micro-ops [uop].
///
/// Some other relevant facts from the Family 17h SOG:
///
/// - Up to 4 instructions can be decoded per cycle
/// - Up to 6 macro-ops [mops] can be dispatched per cycle
///
/// Observations
/// ============
///
/// It seems like the size of a dispatch group is constrained by how the
/// instructions are decomposed into macro-ops? The following permutations
/// can be dispatched in a single cycle:
///
/// - 3 fastpath double instructions (6 mops)
/// - 2 fastpath double + 2 fastpath single instructions (6 mops)
/// - 1 fastpath double + 4 fastpath single instructions (6 mops)
/// - 5 fastpath single instructions (5 mops)
///
/// Note that we [seemingly] cannot dispatch 6 fastpath single instructions.
/// This is easy to observe with NOP: we never observe cycles where the full
/// 6 NOPs are dispatched simultaneously, and it always occurs over two cycles.
///
/// It seems like at least one fastpath double instruction is required to
/// achieve full throughput. The location of the fastpath double mops within
/// the dispatch group does not seem to matter, ie. all of the following
/// cases lead to 6 dispatched mops in a single cycle:
///
/// add; sub; and; mov; mul
/// add; sub; and; mul; mov
/// add; sub; mul; and; mov
/// add; mul; sub; and; mov
/// mul; add; sub; and; mov
///
/// I think this means that the dispatch interface selects up to 6 macro-ops
/// *from a window consisting of the oldest 5 instructions in the op queue*.
///
pub struct DispatchTest;
impl DispatchTest {
const CASES: StaticEmitterCases<usize> = StaticEmitterCases::new(&[
// 3 double (6 dispatched mops)
EmitterDesc { desc: "xchg (3)",
func: |f, input| {
dynasm!(f
; xchg rax, rbx
; xchg rax, rbx
; xchg rax, rbx
);
}},
// 2 double, two single (6 dispatched mops)
EmitterDesc { desc: "xchg (2); nop (2)",
func: |f, input| {
dynasm!(f
; xchg rax, rbx
; xchg rax, rbx
; nop
; nop
);
}},
// 3 fastpath double (6 dispatched mops)
EmitterDesc { desc: "mul (3)",
func: |f, input| {
dynasm!(f
; mul rdx
; mul rdx
; mul rdx
);
}},
// 4 single, 1 double (6 dispatched mops)
EmitterDesc { desc: "nop (4); mul",
func: |f, input| {
dynasm!(f
; nop
; nop
; nop
; nop
; mul rdx
);
}},
// 4 single, 1 double (6 dispatched mops)
EmitterDesc { desc: "nop (3); mul; nop",
func: |f, input| {
dynasm!(f
; nop
; nop
; nop
; mul rdx
; nop
);
}},
// 6 single (5 dispatched mops; 1 dispatched mop)
EmitterDesc { desc: "nop (6)",
func: |f, input| {
dynasm!(f
; nop
; nop
; nop
; nop
; nop
; nop
);
}},
// 4 single, 1 double (6 dispatched mops)
EmitterDesc { desc: "add; sub; and; load; mul",
func: |f, input| {
dynasm!(f
; add rax, 1
; sub rbx, 1
; and rcx, 1
; mov rdi, [0x1000]
; mul rax
);
}},
// 6 single (4 dispatched mops; 2 dispatched mops)
EmitterDesc { desc: "load (6)",
func: |f, input| {
dynasm!(f
; mov rdi, [0x1000]
; mov rsi, [0x1100]
; mov rax, [0x1200]
; mov rbx, [0x1300]
; mov rcx, [0x1400]
; mov rcx, [0x1500]
);
}},
// 6 single (4 dispatched mops; 4 dispatched mops)
EmitterDesc { desc: "lea r64, [imm] (6)",
func: |f, input| {
dynasm!(f
; lea rsi, [0x1100]
; lea rax, [0x1200]
; lea rbx, [0x1300]
; lea rcx, [0x1400]
; lea rdx, [0x1500]
; lea rdi, [0x1600]
);
}},
// 6 single (5 dispatched mops; 1 dispatched mop)
EmitterDesc { desc: "lea r64, [r64+imm] (1); lea r64, [imm] (5)",
func: |f, input| {
dynasm!(f
; lea rdi, [rip + 0x200]
; lea rsi, [0x1100]
; lea rax, [0x1200]
; lea rbx, [0x1300]
; lea rcx, [0x1400]
; lea rdx, [0x1500]
);
}},
// 6 single (4 dispatched mops; 2 dispatched mops)
// NOTE: I think we can only dispatch 4 ALU ops per cycle
// (one for each ALSQ)
EmitterDesc { desc: "add; add; add; add; add; add",
func: |f, input| {
dynasm!(f
; add rax, rax
; add rbx, rcx
; add rdx, rcx
; add rdi, rcx
; add rsi, rcx
; add rdi, rbx
);
}},
// 6 single (5 dispatched mops; 1 dispatched mops)
// NOTE: I think we can only dispatch 4 ALU ops per cycle
// (one for each ALSQ)
EmitterDesc { desc: "add; add; add; add; load; load",
func: |f, input| {
dynasm!(f
; add rax, [0x1000]
; add rbx, [0x2000]
; add rdx, [0x4000]
; add rdi, rcx
; mov [0x1000], rax
);
}},
// 1 microcoded instruction (3, 2, 1 dispatched mop) (unknown order)
EmitterDesc { desc: "bsr",
func: |f, input| {
dynasm!(f
; bsr rax, rbx
);
}},
]);
fn emit(case_emitter: fn(&mut X64Assembler, usize)) -> X64Assembler {
let mut f = X64Assembler::new().unwrap();
dynasm!(f
; mov r9, 0
; sub r9, 0x5a5a5a59
; cmp r9, 0
; vmovq xmm0, r9
; mov r10, 0x2
; mov [0x1000], r9
; mfence
; lfence
);
dynasm!(f
; lfence
; mov rcx, 0
; lfence
; rdpmc
; lfence
; mov [0x2000], rax
; mov rax, 0xdead_beef
; xor rdx, rdx
; lfence
);
case_emitter(&mut f, 0);
dynasm!(f
; mfence
; lfence
);
dynasm!(f
; lfence
; mov rcx, 0
; lfence
; rdpmc
; lfence
; mov rbx, [0x2000]
; sub rax, rbx
);
f.emit_ret();
f.commit().unwrap();
f
}
fn run(harness: &mut PerfectHarness) {
let mut events = EventSet::new();
events.add(Zen2Event::LsNotHaltedCyc(0x00));
events.add(Zen2Event::DeDisUopQueueEmpty(0x00));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::NonZero));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Zero));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop1Disp));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop2Disp));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop3Disp));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop4Disp));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop5Disp));
events.add(Zen2Event::DsTokStall3(DsTokStall3Mask::Cop6Disp));
events.add(Zen2Event::ExRetCops(0x00));
events.add(Zen2Event::ExRetInstr(0x00));
//events.add(Zen2Event::Dsp0Stall(0x01));
//events.add(Zen2Event::DeDisDispatchTokenStalls0(DeDisDispatchTokenStalls0Mask::ALUTokenStall));
//events.add(Zen2Event::DeDisDispatchTokenStalls0(DeDisDispatchTokenStalls0Mask::ALSQ1RsrcStall));
//events.add(Zen2Event::DeDisDispatchTokenStalls0(DeDisDispatchTokenStalls0Mask::ALSQ2RsrcStall));
//events.add(Zen2Event::DeDisDispatchTokenStalls0(DeDisDispatchTokenStalls0Mask::ALSQ3_0_TokenStall));
//events.add(Zen2Event::DeDisDispatchTokenStalls0(DeDisDispatchTokenStalls0Mask::AGSQTokenStall));
//events.add(Zen2Event::DeMsStall(DeMsStallMask::Serialize));
//events.add_unknown(0xa7);
//events.add_unknown(0xac);
//events.add_unknown(0xad);
//events.add(Zen2Event::Unk(0xd5, 0x00));
//events.add(Zen2Event::Unk(0x1d6, 0x00));
//events.add(Zen2Event::Unk(0xa8, 0x01));
//events.add(Zen2Event::Unk(0xa8, 0x02));
//events.add(Zen2Event::Unk(0xa8, 0x80));
events.add(Zen2Event::DeDisOpsFromDecoder(
DeDisOpsFromDecoderMask::Unk(0xff)
));
// Measure the floor
let mut floor_res: ExperimentCaseResults<Zen2Event, usize> =
ExperimentCaseResults::new("floor");
let floor_asm = Self::emit(|f, input| {});
let floor_asm_reader = floor_asm.reader();
let floor_asm_tgt_buf = floor_asm_reader.lock();
let floor_asm_tgt_ptr = floor_asm_tgt_buf.ptr(AssemblyOffset(0));
let floor_fn: MeasuredFn = unsafe {
std::mem::transmute(floor_asm_tgt_ptr)
};
for testcase in Self::CASES.iter() {
println!("[*] Testcase '{}'", testcase.desc);
let asm = Self::emit(testcase.func);
let asm_reader = asm.reader();
let asm_tgt_buf = asm_reader.lock();
let asm_tgt_ptr = asm_tgt_buf.ptr(AssemblyOffset(0));
let asm_fn: MeasuredFn = unsafe {
std::mem::transmute(asm_tgt_ptr)
};
for event in events.iter() {
let desc = event.as_desc();
let floor_results = harness.measure(floor_fn,
desc.id(), desc.mask(), 1024, InputMethod::Fixed(0, 0)
).unwrap();
let results = harness.measure(asm_fn,
desc.id(), desc.mask(), 1024, InputMethod::Fixed(0, 0)
).unwrap();
let fmin = floor_results.get_min();
let fmax = floor_results.get_max();
let rmin = results.get_min();
let rmax = results.get_max();
let norm_min = (rmin as i32 - fmin as i32);
if norm_min == 0 { continue; }
println!("norm_min={:4} (fmin={:4} fmax={:4}) (rmin={:4} rmax={:4}) {:03x}:{:02x} {}",
norm_min,
fmin,fmax,rmin,rmax,
desc.id(), desc.mask(), desc.name()
);
}
println!();
}
}
}