-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_av.py
392 lines (345 loc) · 17.1 KB
/
train_av.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import argparse
from pathlib import Path
import time
import wandb
import torch
from torch.optim.lr_scheduler import MultiStepLR
import numpy as np
from models_av import MTCN_AV
from epic_kitchens import EpicKitchens
from egtea import Egtea
from mixup import mixup_data, mixup_criterion
from utils import accuracy, multitask_accuracy, save_checkpoint, AverageMeter
_DATASETS = {'epic': EpicKitchens, 'egtea': Egtea}
_NUM_CLASSES = {'epic-55': [125, 352], 'epic-100': [97, 300], 'egtea': 106}
parser = argparse.ArgumentParser(description=('Train Audio-Visual Transformer on Sequence ' +
'of actions from untrimmed video'))
# ------------------------------ Dataset -------------------------------
parser.add_argument('--train_hdf5_path', type=Path)
parser.add_argument('--val_hdf5_path', type=Path)
parser.add_argument('--train_pickle', type=Path)
parser.add_argument('--val_pickle', type=Path)
parser.add_argument('--dataset', choices=['epic-55', 'epic-100', 'egtea'])
# ------------------------------ Model ---------------------------------
parser.add_argument('--seq_len', type=int, default=5)
parser.add_argument('--visual_input_dim', type=int, default=2304)
parser.add_argument('--audio_input_dim', type=int, default=2304)
parser.add_argument('--d_model', type=int, default=512)
parser.add_argument('--dim_feedforward', type=int, default=2048)
parser.add_argument('--nhead', type=int, default=8)
parser.add_argument('--num_layers', type=int, default=6)
parser.add_argument('--classification_mode', choices=['summary', 'all'], default='summary')
parser.add_argument('--dropout', type=float, default=0.1)
# ------------------------------ Train ----------------------------------
parser.add_argument('--epochs', default=50, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N', help='mini-batch size (default: 256)')
# ------------------------------ Optimizer ------------------------------
parser.add_argument('--optimizer', choices=['sgd', 'adam'], default='adam')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_steps', default=[25, 40], type=float, nargs="+",
metavar='LRSteps', help='epochs to decay learning rate by 10')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
# ------------------------------ Misc ------------------------------------
parser.add_argument('--output_dir', type=Path)
parser.add_argument('--disable_wandb_log', action='store_true')
parser.add_argument('-j', '--workers', default=40, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--print-freq', '-p', default=20, type=int,
metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
best_prec1 = 0
training_iterations = 0
if not args.output_dir.exists():
args.output_dir.mkdir(parents=True)
def main():
global args, best_prec1
np.random.seed(0)
torch.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", 0)
model = MTCN_AV(_NUM_CLASSES[args.dataset],
seq_len=args.seq_len,
num_clips=1,
visual_input_dim=args.visual_input_dim,
audio_input_dim=args.audio_input_dim if args.dataset.split('-')[0] == 'epic' else None,
d_model=args.d_model,
dim_feedforward=args.dim_feedforward,
nhead=args.nhead,
num_layers=args.num_layers,
dropout=args.dropout,
classification_mode=args.classification_mode,
audio=not args.dataset == 'egtea')
model = model.to(device)
if not args.disable_wandb_log:
wandb.init(project='MTCN', config=args)
wandb.watch(model)
dataset = _DATASETS[args.dataset.split('-')[0]]
train_loader = torch.utils.data.DataLoader(
dataset(args.train_hdf5_path,
args.train_pickle,
visual_feature_dim=args.visual_input_dim,
audio_feature_dim=args.audio_input_dim if args.dataset.split('-')[0] == 'epic' else None,
window_len=args.seq_len,
num_clips=10,
clips_mode='random',
labels_mode='all' if args.classification_mode == 'all' else 'center_action',),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
dataset(args.val_hdf5_path,
args.val_pickle,
visual_feature_dim=args.visual_input_dim,
audio_feature_dim=args.audio_input_dim if args.dataset.split('-')[0] == 'epic' else None,
window_len=args.seq_len,
num_clips=10,
clips_mode='random',
labels_mode='all' if args.classification_mode == 'all' else 'center_action',),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if not args.classification_mode == 'all':
criterion = torch.nn.CrossEntropyLoss()
else:
criterion = torch.nn.CrossEntropyLoss(reduction='none')
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(),
args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
else:
optimizer = torch.optim.Adam(model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay)
scheduler = MultiStepLR(optimizer, args.lr_steps, gamma=0.1)
for epoch in range(args.epochs):
train(train_loader, model, criterion, optimizer, epoch, device)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion, device)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
}, is_best, args.output_dir)
scheduler.step()
def train(train_loader, model, criterion, optimizer, epoch, device):
global training_iterations
is_multitask = isinstance(model.num_class, list)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
if is_multitask:
verb_losses = AverageMeter()
noun_losses = AverageMeter()
if args.classification_mode == 'all':
if 'epic' in args.dataset:
weights = torch.tensor(2 * args.seq_len * [0.1] + [0.9]).unsqueeze(0).cuda(device=0)
else:
weights = torch.tensor(args.seq_len * [0.1] + [0.9]).unsqueeze(0).cuda(device=0)
else:
weights = None
# switch to train mode
model.train()
end = time.time()
for i, (input, target, _) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.to(device)
input, target_a, target_b, lam = mixup_data(input, target, alpha=0.2)
# compute output
output = model(input)
batch_size = input.size(0)
if not is_multitask:
target_a = target_a.to(device)
target_b = target_b.to(device)
loss = mixup_criterion(criterion, output, target_a, target_b, lam, weights=weights)
else:
target_a = {k: v.to(device) for k, v in target_a.items()}
target_b = {k: v.to(device) for k, v in target_b.items()}
loss_verb = mixup_criterion(criterion, output[0], target_a['verb'], target_b['verb'], lam, weights=weights)
loss_noun = mixup_criterion(criterion, output[1], target_a['noun'], target_b['noun'], lam, weights=weights)
loss = 0.5 * (loss_verb + loss_noun)
verb_losses.update(loss_verb.item(), batch_size)
noun_losses.update(loss_noun.item(), batch_size)
losses.update(loss.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
training_iterations += 1
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
if not is_multitask:
if not args.disable_wandb_log:
wandb.log(
{
"Train/loss": losses.avg,
"Train/epochs": epoch,
"Train/lr": optimizer.param_groups[-1]['lr'],
"train_step": training_iterations,
},
)
message = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t' +
'Time {batch_time.avg:.3f} ({batch_time.avg:.3f})\t' +
'Data {data_time.avg:.3f} ({data_time.avg:.3f})\t' +
'Loss {loss.avg:.4f} ({loss.avg:.4f})\t'
).format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses,
lr=optimizer.param_groups[-1]['lr'])
else:
if not args.disable_wandb_log:
wandb.log(
{
"Train/loss": losses.avg,
"Train/epochs": epoch,
"Train/lr": optimizer.param_groups[-1]['lr'],
"Train/verb/loss": verb_losses.avg,
"Train/noun/loss": noun_losses.avg,
"train_step": training_iterations,
},
)
message = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t' +
'Time {batch_time.avg:.3f} ({batch_time.avg:.3f})\t' +
'Data {data_time.avg:.3f} ({data_time.avg:.3f})\t' +
'Loss {loss.avg:.4f} ({loss.avg:.4f})\t' +
'Verb Loss {verb_loss.avg:.4f} ({verb_loss.avg:.4f})\t' +
'Noun Loss {noun_loss.avg:.4f} ({noun_loss.avg:.4f})\t' # +
).format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, verb_loss=verb_losses,
noun_loss=noun_losses,
lr=optimizer.param_groups[-1]['lr'])
print(message)
def validate(val_loader, model, criterion, device, name=''):
global training_iterations
is_multitask = isinstance(model.num_class, list)
with torch.no_grad():
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
if is_multitask:
verb_losses = AverageMeter()
noun_losses = AverageMeter()
verb_top1 = AverageMeter()
verb_top5 = AverageMeter()
noun_top1 = AverageMeter()
noun_top5 = AverageMeter()
if args.classification_mode == 'all':
if 'epic' in args.dataset:
weights = torch.tensor(2 * args.seq_len * [0.1] + [0.9]).unsqueeze(0).cuda(device=0)
else:
weights = torch.tensor(args.seq_len * [0.1] + [0.9]).unsqueeze(0).cuda(device=0)
else:
weights = None
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target, _) in enumerate(val_loader):
input = input.to(device)
# compute output
output = model(input)
batch_size = input.size(0)
if not is_multitask:
target = target.to(device)
loss = criterion(output, target)
if weights is not None:
loss = loss * weights
loss = loss.sum(1)
loss = loss.mean()
output = output if len(output.shape) == 2 else output[:, :, -1]
target = target if len(target.shape) == 1 else target[:, -1]
# measure accuracy and record loss
prec1, prec5 = accuracy(output, target, topk=(1, 5))
else:
target = {k: v.to(device) for k, v in target.items()}
loss_verb = criterion(output[0], target['verb'])
if weights is not None:
loss_verb = loss_verb * weights
loss_verb = loss_verb.sum(1)
loss_verb = loss_verb.mean()
loss_noun = criterion(output[1], target['noun'])
if weights is not None:
loss_noun = loss_noun * weights
loss_noun = loss_noun.sum(1)
loss_noun = loss_noun.mean()
loss = 0.5 * (loss_verb + loss_noun)
verb_losses.update(loss_verb.item(), batch_size)
noun_losses.update(loss_noun.item(), batch_size)
verb_output = output[0] if len(output[0].shape) == 2 else output[0][:, :, -1]
noun_output = output[1] if len(output[1].shape) == 2 else output[1][:, :, -1]
verb_target = target['verb'] if len(target['verb'].shape) == 1 else target['verb'][:, -1]
noun_target = target['noun'] if len(target['noun'].shape) == 1 else target['noun'][:, -1]
verb_prec1, verb_prec5 = accuracy(verb_output, verb_target, topk=(1, 5))
verb_top1.update(verb_prec1, batch_size)
verb_top5.update(verb_prec5, batch_size)
noun_prec1, noun_prec5 = accuracy(noun_output, noun_target, topk=(1, 5))
noun_top1.update(noun_prec1, batch_size)
noun_top5.update(noun_prec5, batch_size)
prec1, prec5 = multitask_accuracy((verb_output, noun_output),
(verb_target, noun_target),
topk=(1, 5))
losses.update(loss.item(), batch_size)
top1.update(prec1, batch_size)
top5.update(prec5, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if not is_multitask:
if not args.disable_wandb_log:
wandb.log(
{
"Val/loss": losses.avg,
"Val/Top1_acc": top1.avg,
"Val/Top5_acc": top5.avg,
"val_step": training_iterations,
},
)
message = ('Testing Results: '
'Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} '
'Loss {loss.avg:.5f}').format(top1=top1,
top5=top5,
loss=losses)
else:
if not args.disable_wandb_log:
wandb.log(
{
"Val/loss": losses.avg,
"Val/Top1_acc": top1.avg,
"Val/Top5_acc": top5.avg,
"Val/verb/loss": verb_losses.avg,
"Val/verb/Top1_acc": verb_top1.avg,
"Val/verb/Top5_acc": verb_top5.avg,
"Val/noun/loss": noun_losses.avg,
"Val/noun/Top1_acc": noun_top1.avg,
"Val/noun/Top5_acc": noun_top5.avg,
"val_step": training_iterations,
},
)
message = ("Testing Results: "
"{name} Verb Prec@1 {verb_top1.avg:.3f} Verb Prec@5 {verb_top5.avg:.3f} "
"{name} Noun Prec@1 {noun_top1.avg:.3f} Noun Prec@5 {noun_top5.avg:.3f} "
"{name} Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} "
"{name} Verb Loss {verb_loss.avg:.5f} "
"{name} Noun Loss {noun_loss.avg:.5f} "
"{name} Loss {loss.avg:.5f}").format(verb_top1=verb_top1, verb_top5=verb_top5,
noun_top1=noun_top1, noun_top5=noun_top5,
top1=top1, top5=top5,
name=name,
verb_loss=verb_losses,
noun_loss=noun_losses,
loss=losses)
print(message)
return top1.avg
if __name__ == '__main__':
main()