diff --git a/AOT_Possibilities.thy b/AOT_Possibilities.thy index 7f9e23d..b78afe8 100644 --- a/AOT_Possibilities.thy +++ b/AOT_Possibilities.thy @@ -51,7 +51,8 @@ proof(safe intro!: "\I" GEN) using \ "\E" by blast qed -AOT_theorem "modal-clos-facts:1b": \ModallyClosed(s) \ \p\<^sub>1\p\<^sub>2\q((s \ p\<^sub>1 & s \ p\<^sub>2 & ((p\<^sub>1 & p\<^sub>2) \ q)) \ s \ q)\ +AOT_theorem "modal-clos-facts:1b": + \ModallyClosed(s) \ \p\<^sub>1\p\<^sub>2\q((s \ p\<^sub>1 & s \ p\<^sub>2 & ((p\<^sub>1 & p\<^sub>2) \ q)) \ s \ q)\ proof(safe intro!: "\I" GEN) fix p\<^sub>1 p\<^sub>2 q AOT_assume \ModallyClosed(s)\ @@ -93,13 +94,15 @@ proof(safe intro!: "\I" GEN) ultimately AOT_have \\(Actual(s) \ p\<^sub>2)\ using "vdash-properties:10" by blast AOT_hence \\(Actual(s) \ (p\<^sub>1 & p\<^sub>2))\ - by (meson "1" "KBasic:1.\E" "KBasic:5.\E.\E_1" "RM:1.\E" "con-dis-i-e:1" "oth-class-taut:8:b") + by (meson "1" "KBasic:1.\E" "KBasic:5.\E.\E_1" "RM:1.\E" + "con-dis-i-e:1" "oth-class-taut:8:b") AOT_hence \Actual(s) \ (p\<^sub>1 & p\<^sub>2)\ by (simp add: "nec-impl-p:1.\\<^sub>d\<^sub>fI") AOT_hence \Actual(s) \ q\ using \ using "nec-impl-p:3[trans]"[unvarify p, OF "log-prop-prop:2"] - by (meson "&E"(2) "con-dis-taut:5.\E.\E" "log-prop-prop:2" "nec-impl-p:3[trans].unvarify_p.unvarify_q.unvarify_r.\E_1.\E_1.\E_1.\E") + by (meson "&E"(2) "con-dis-taut:5.\E.\E" "log-prop-prop:2" + "nec-impl-p:3[trans].unvarify_p.unvarify_q.unvarify_r.\E_1.\E_1.\E_1.\E") AOT_thus \s \ q\ using \ "\E" by blast qed @@ -111,7 +114,8 @@ proof(safe intro!: "\I") AOT_have \: \\q((Actual(s) \ q) \ s \ q)\ using 1 "\\<^sub>d\<^sub>fE" "&E" "sit-clo" by blast AOT_have \: \\\p(s \ p & s \ \p)\ - using 1 by (metis (no_types, lifting) "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "existential:2[const_var]" "instantiation" "reductio-aa:1" cons) + using 1 by (metis (no_types, lifting) "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "existential:2[const_var]" + "instantiation" "reductio-aa:1" cons) AOT_show \Possible(s)\ proof(rule "RAA") @@ -143,7 +147,8 @@ proof(safe intro!: "\I") using "\E" by meson AOT_hence \\s \ \p\<^sub>1\ using \ - by (metis (mono_tags, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "existential:2[const_var]" "raa-cor:6") + by (metis (mono_tags, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" + "existential:2[const_var]" "raa-cor:6") moreover AOT_have \((Actual(s) \ \p\<^sub>1) \ s \ \p\<^sub>1)\ using \ "log-prop-prop:2" "rule-ui:1" by blast ultimately AOT_have \\(Actual(s) \ \p\<^sub>1)\ @@ -195,7 +200,8 @@ proof (rule "\I") using "modal-clos-facts:3" 1 by (meson "con-dis-i-e:1" "vdash-properties:10") AOT_thus \\NullSituation(s)\ - using "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "df-null-trivial:1" "existential:2[const_var]" "raa-cor:3" by blast + using "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "df-null-trivial:1" + "existential:2[const_var]" "raa-cor:3" by blast qed AOT_theorem "world-closed:1": \ModallyClosed(w)\ @@ -206,7 +212,8 @@ proof - AOT_assume \: \Actual(s) \ q\ AOT_assume \: \\p(s \ p \ p)\ AOT_hence \\p(s \ p \ p)\ - by (metis (no_types, lifting) "deduction-theorem" "intro-elim:3:a" "rule-ui:2[const_var]" "universal-cor") + by (metis (no_types, lifting) "deduction-theorem" "intro-elim:3:a" + "rule-ui:2[const_var]" "universal-cor") AOT_hence \Actual(s)\ using "\\<^sub>d\<^sub>fI" "con-dis-i-e:1" Situation.restricted_var_condition actual by blast AOT_hence \q\ @@ -261,12 +268,14 @@ AOT_theorem "world-closed:3":\PossibleWorld(s) \ Maximal(s) & Consi proof(safe intro!: "\I" "\I") AOT_assume \PossibleWorld(s)\ AOT_thus \Maximal(s) & Consistent(s) & ModallyClosed(s)\ - (* Note: takes a moment to prove - might be good to add an intermediate step *) - by (smt (verit) "PossibleWorld.\I" "con-dis-i-e:1" "rule-ui:3" "vdash-properties:10" "world-closed:1" "world-cons:1" "world-max") + by (simp add: "con-dis-taut:5.\E.\E" "world-closed:1.unconstrain_w.\E_1.\E" + "world-cons:1.unconstrain_w.\E_1.\E" "world:3.\E" + "world=maxpos:2.unvarify_x.\E_1.\E_1.&E_1") next AOT_assume 1: \Maximal(s) & Consistent(s) & ModallyClosed(s)\ AOT_hence \Possible(s)\ - by (meson "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "modal-clos-facts:2" "vdash-properties:10") + by (meson "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "modal-clos-facts:2" "vdash-properties:10") AOT_thus \PossibleWorld(s)\ using "1" "con-dis-i-e:2:a" "df-simplify:1" "intro-elim:3:b" "world=maxpos:2" by blast qed @@ -312,7 +321,8 @@ proof - moreover AOT_have \q = p \ \q = p\ using "id-nec:1" by blast ultimately AOT_show \\(s \ q \ q = p)\ - by (metis "KBasic:15" "con-dis-i-e:3:a" "con-dis-i-e:3:b" "con-dis-i-e:4:a" "deduction-theorem") + by (metis "KBasic:15" "con-dis-i-e:3:a" "con-dis-i-e:3:b" + "con-dis-i-e:4:a" "deduction-theorem") qed } qed @@ -334,18 +344,22 @@ AOT_theorem tmp: \Situation(s\<^sup>+p)\ (* TODO: put into correct position *) AOT_theorem "oth-class-taut:8:j": \((\ \ \) \ \) \ ((\ \ \) & (\ \ \))\ - by (metis "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "con-dis-i-e:3:a" "con-dis-i-e:3:b" "con-dis-i-e:4:c" "deduction-theorem" "intro-elim:2" "reductio-aa:1" "vdash-properties:10") + by (metis "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "con-dis-i-e:3:a" + "con-dis-i-e:3:b" "con-dis-i-e:4:c" "deduction-theorem" "intro-elim:2" + "reductio-aa:1" "vdash-properties:10") (* TODO: put into correct position *) AOT_theorem "term-out:5": \\\(\ = \ \ \{\}) \ \{\}\ - by (metis (no_types, lifting) "\E"(4) "\E" "deduction-theorem" "id-eq:1" "intro-elim:2" "rule=E" GEN id_sym) + by (metis (no_types, lifting) "\E"(4) "\E" "deduction-theorem" "id-eq:1" + "intro-elim:2" "rule=E" GEN id_sym) AOT_theorem "poss-sit-part-w:2": \s\<^sup>+p \ w \ s \ w & w \ p\ proof - AOT_have 1: \s\<^sup>+p \ w \ (Situation(s\<^sup>+p) & Situation(w) & \q(s\<^sup>+p \ q \ w \ q))\ using "sit-part-whole"[THEN "\Df"]. also AOT_have \... \ \q(s\<^sup>+p \ q \ w \ q)\ - by (meson "&E"(1) "\S"(1) "intro-elim:3:b" "oth-class-taut:3:a" "rule-eq-df:2" "world-pos" pos tmp) + by (meson "&E"(1) "\S"(1) "intro-elim:3:b" "oth-class-taut:3:a" + "rule-eq-df:2" "world-pos" pos tmp) also AOT_have \... \ \q((s \ q \ q = p) \ w \ q)\ by (simp add: "pext-lem:2" "rule-sub-lem:1:b" "rule-sub-lem:1:d" RN) also AOT_have \... \ \q((s \ q \ w \ q) & (q = p \ w \ q))\ @@ -358,7 +372,10 @@ proof - using "term-out:5" apply blast using "oth-class-taut:3:a" by blast also AOT_have \... \ (Situation(s) & Situation(w) & \q(s \ q \ w \ q)) & w \ p\ - by (metis (no_types, lifting) 1 "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "intro-elim:3:b" Situation.restricted_var_condition calculation) + by (metis (no_types, lifting) 1 "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "deduction-theorem" "intro-elim:2" "intro-elim:3:a" + "intro-elim:3:b" Situation.restricted_var_condition + calculation) also AOT_have \... \ s \ w & w \ p\ apply (AOT_subst \Situation(s) & Situation(w) & \q (s \ q \ w \ q)\ \s \ w\) using "sit-part-whole"[THEN "\Df", symmetric] apply simp @@ -373,16 +390,17 @@ AOT_theorem aux: \w \ s \ p \ s \ AOT_theorem aux2: \w \ Actual(s) \ s \ w\ proof - AOT_have \w \ (Actual(s) \ (Situation(s) & \p (s \ p \ p)))\ - using actual[THEN "\Df", THEN RN, THEN "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "\E"(1)], THEN "PossibleWorld.\E"] - by blast + by (simp add: "\Df" "fund:2.unvarify_p.\E_1.\E_1.\E_1.\E" "log-prop-prop:2" + "world:3.\E" PossibleWorld.restricted_var_condition RN actual) AOT_hence \w \ Actual(s) \ w \ (Situation(s) & \p (s \ p \ p))\ using "conj-dist-w:4"[unvarify p, OF "log-prop-prop:2", unvarify q, OF "log-prop-prop:2"] using "intro-elim:3:a" by blast also AOT_have \... \ (w \ Situation(s) & w \ \p (s \ p \ p))\ using "conj-dist-w:1"[unvarify p, OF "log-prop-prop:2", unvarify q, OF "log-prop-prop:2"]. also AOT_have \... \ w \ \p (s \ p \ p)\ - using "Situation.\"[THEN RN, THEN "fund:2"[unvarify p, OF "log-prop-prop:2", THEN "\E"(1)], THEN "PossibleWorld.\E"] - using "df-simplify:1" "oth-class-taut:3:a" by blast + by (meson "fund:2.unvarify_p.\E_1.\E_1.\E_1.\E" "log-prop-prop:2" "oth-class-taut:3:a" + "oth-class-taut:8:i.\E.\E" "world:3.\E" PossibleWorld.restricted_var_condition + RN Situation.restricted_var_condition) also AOT_have \... \ \p w \ (s \ p \ p)\ by (simp add: "conj-dist-w:5") also AOT_have \... \ \p (w \ s \ p \ w \ p)\ @@ -391,8 +409,9 @@ proof - also AOT_have \... \ \p (s \ p \ w \ p)\ using aux by (simp add: "rule-sub-lem:1:b" "rule-sub-lem:1:d" RN) also AOT_have \... \ s \ w\ - apply (AOT_subst_def "sit-part-whole") - by (meson "\S"(1) "con-dis-taut:1" "df-rules-formulas[3]" "intro-elim:3:b" "oth-class-taut:2:e" "oth-class-taut:3:a" "vdash-properties:10" "world-pos" Situation.\ pos) + by (AOT_subst_def "sit-part-whole") + (simp add: "con-dis-taut:2" "con-dis-taut:5.\E.\E" "deduction-theorem" + "intro-elim:2" "sit-clo.\\<^sub>d\<^sub>fE.&E_1" "world-closed:1" Situation.\) finally show ?thesis. qed @@ -409,7 +428,8 @@ proof - by (metis "deduction-theorem" "intro-elim:2" "oth-class-taut:4:d" "vdash-properties:10") also AOT_have \... \ \w(s \ w \ w \ p)\ apply (safe intro!: "rule-sub-lem:1:d" RN) - using aux2[unconstrain w] by (metis "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "intro-elim:3:b") + using aux2[unconstrain w] + by (metis "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "intro-elim:3:b") finally show ?thesis using "intro-elim:3:f" "oth-class-taut:3:a" by blast qed @@ -457,7 +477,8 @@ proof - AOT_hence \\(s \ w & \w \ p)\ for w using "rule-ui:3" "vdash-properties:10" PossibleWorld.restricted_var_condition by blast AOT_hence \\(s \ w & w \ \p)\ for w - by (metis "&E"(2) "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "intro-elim:3:a" "reductio-aa:1") + by (metis "&E"(2) "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" + "intro-elim:3:a" "reductio-aa:1") AOT_thus \\w \(s \ w & w \ \p)\ using "PossibleWorld.\I" by presburger next @@ -465,21 +486,27 @@ proof - AOT_hence \\(s \ w & w \ \p)\ for w using "PossibleWorld.rule-ui" by fastforce AOT_hence \\(s \ w & \w \ p)\ for w - by (metis "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "intro-elim:3:b" "reductio-aa:1") + by (metis "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "intro-elim:3:b" "reductio-aa:1") AOT_thus \\w \(s \ w & \w \ p)\ using "PossibleWorld.\I" by presburger qed also AOT_have \... \ \\w(s \ w & w \ \p)\ - by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "existential:2[const_var]" "instantiation" "intro-elim:2" "reductio-aa:1" "rule-ui:3" "universal-cor" "vdash-properties:10") + by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "deduction-theorem" "existential:2[const_var]" + "instantiation" "intro-elim:2" "reductio-aa:1" + "rule-ui:3" "universal-cor" "vdash-properties:10") also AOT_have \... \ \\w(s\<^sup>+(\p) \ w)\ - apply (AOT_subst \PossibleWorld(w) & (s \ w & w \ (\p))\ \PossibleWorld(w) & (s\<^sup>+(\p) \ w)\ for: w) + apply (AOT_subst \PossibleWorld(w) & (s \ w & w \ (\p))\ + \PossibleWorld(w) & (s\<^sup>+(\p) \ w)\ for: w) apply (rule tmp2[THEN "\E"]) apply (rule "PossibleWorld.\I"[THEN "\E"(2)]) using "poss-sit-part-w:2"[unvarify p, OF "log-prop-prop:2", symmetric] apply force using "oth-class-taut:3:a" by auto also AOT_have \... \ \Possible(s\<^sup>+(\p))\ - using "poss-sit-part-w:1"[unconstrain s, unvarify \, OF tmp3, THEN "\E", OF tmp, symmetric, unvarify p, OF "log-prop-prop:2"] + using "poss-sit-part-w:1"[unconstrain s, unvarify \, OF tmp3, THEN "\E", + OF tmp, symmetric, unvarify p, OF "log-prop-prop:2"] by (simp add: "rule-sub-lem:1:a" RN) also AOT_have \... \ \\Actual(s\<^sup>+(\p))\ apply (AOT_subst_def pos) @@ -491,12 +518,13 @@ proof - apply (rule "oth-class-taut:4:b"[THEN "\E"(1)]) using tmp[unvarify p, OF "log-prop-prop:2"] by (simp add: "RE\" "con-dis-i-e:1" "con-dis-taut:2" "deduction-theorem" "intro-elim:2") - also AOT_have \... \ \\\q((s \ q \ q = (\p)) \ q)\ (* NOTE: wrong parentheses in principia! *) + also AOT_have \... \ \\\q((s \ q \ q = (\p)) \ q)\ apply (AOT_subst \s\<^sup>+(\p) \ q\ \s \ q \ q = (\p)\ for: q) using "pext-lem:2"[unvarify p, OF "log-prop-prop:2"] using "oth-class-taut:3:a" by auto - also AOT_have \... \ \\\q((s \ q \ q) & (q = (\p) \ q))\ (* NOTE: too many parentheses in principia! *) - by (meson "RE\" "intro-elim:3:a" "oth-class-taut:4:b" "oth-class-taut:8:j" "rule-sub-lem:1:d" RN) + also AOT_have \... \ \\\q((s \ q \ q) & (q = (\p) \ q))\ + by (meson "RE\" "intro-elim:3:a" "oth-class-taut:4:b" "oth-class-taut:8:j" + "rule-sub-lem:1:d" RN) also AOT_have \... \ \\(\q(s \ q \ q) & \q(q = (\p) \ q))\ apply (AOT_subst \\q ((s \ q \ q) & (q = (\p) \ q))\ \\q(s \ q \ q) & \q(q = (\p) \ q)\) apply (simp add: "cqt-basic:4") @@ -509,7 +537,8 @@ proof - also AOT_have \... \ \\(Actual(s) & \p)\ apply (AOT_subst_def actual) apply (AOT_subst \Situation(s) & \p (s \ p \ p) & \p\ \\p (s \ p \ p) & \p\) - apply (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "intro-elim:2" Situation.restricted_var_condition) + apply (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "deduction-theorem" "intro-elim:2" Situation.restricted_var_condition) using "oth-class-taut:3:a" by auto also AOT_have \... \ \\(Actual(s) & \p)\ using "KBasic2:1" "intro-elim:3:f" "oth-class-taut:3:a" by blast @@ -531,7 +560,7 @@ proof - using "rule-id-df:1"[OF "poss-sit-part-w:4", OF "sit-comp-simp:3"] by blast AOT_obtain y where 1: \y = \<^bold>\s' \p(s' \ p \ (Actual(s) \ p))\ - by (smt (verit, del_insts) "0" "existential:1" "instantiation" "t=t-proper:1" "vdash-properties:10" id_sym) + using "free-thms:3[const_var].unvarify_\.\E_1.\E'" "sit-comp-simp:3" by blast AOT_have \\p(y \ p \ (Actual(s) \ p))\ proof(safe intro!: "sit-comp-simp:4"[THEN "\E"] "strict-can:1[I]") AOT_modally_strict { @@ -559,8 +588,9 @@ qed AOT_theorem aux4: \Situation(s\<^sup>\)\ proof - AOT_have \Situation(\<^bold>\s'(\p (s' \ p \ Actual(s) \ p)))\ - using "actual-desc:4"[THEN "\E", OF "sit-comp-simp:3", THEN "Act-Basic:2"[THEN "\E"(1)], THEN "&E"(1)] - "possit-sit:4"[unvarify x, THEN "\E"(1)] + using "actual-desc:4"[THEN "\E", OF "sit-comp-simp:3", + THEN "Act-Basic:2"[THEN "\E"(1)], THEN "&E"(1)] + "possit-sit:4"[unvarify x, THEN "\E"(1)] using "sit-comp-simp:3" by blast thus ?thesis using "sit-comp-simp:3" "=\<^sub>d\<^sub>fI"(1)[OF "poss-sit-part-w:4", OF "sit-comp-simp:3"] @@ -583,7 +613,7 @@ next proof (rule RM[THEN "\E"]) AOT_modally_strict { AOT_show \(s \ p) \ (Actual(s) \ p)\ - by (metis (no_types, lifting) "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "deduction-theorem" "rule-ui:3" "vdash-properties:10" actual) + by (meson "actual.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" "log-prop-prop:2" CP) } next AOT_show \\s \ p\ using 1 "intro-elim:3:a" "lem2:1" by blast @@ -605,17 +635,19 @@ proof(safe intro!: "\I" "\I") AOT_hence \\(Situation(s\<^sup>\) & Situation(w) & \p (s\<^sup>\ \ p \ w \ p))\ by (AOT_subst_def (reverse) "sit-part-whole") AOT_hence \\(\p (s\<^sup>\ \ p \ w \ p))\ - by (metis (no_types, lifting) "1" "\\<^sub>d\<^sub>fE" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "raa-cor:6" "sit-part-whole" aux4) + by (metis "con-dis-taut:5.\E.\E" "raa-cor:2" "sit-clo.\\<^sub>d\<^sub>fE.&E_1" "world-closed:1" aux4) AOT_hence \\p \(s\<^sup>\ \ p \ w \ p)\ - by (meson "existential:1" "log-prop-prop:2" "reductio-aa:1" "universal-cor") + by (metis "cqt-further:2.\E.\E'" "existential:1" "log-prop-prop:2") AOT_hence \\p (s\<^sup>\ \ p & \w \ p)\ - by (metis (no_types, lifting) "con-dis-i-e:1" "deduction-theorem" "existential:2[const_var]" "instantiation" "raa-cor:3") + by (metis (no_types, lifting) "con-dis-i-e:1" "deduction-theorem" + "existential:2[const_var]" "instantiation" "raa-cor:3") then AOT_obtain p\<^sub>1 where p\<^sub>1_prop: \s\<^sup>\ \ p\<^sub>1 & \w \ p\<^sub>1\ using "\E"[rotated] by meson AOT_hence 2: \\(w \ p\<^sub>1)\ using "con-dis-i-e:2:b" by blast AOT_have \Actual(s) \ p\<^sub>1\ - using p\<^sub>1_prop[THEN "&E"(1)] "intro-elim:3:a" "log-prop-prop:2" "poss-sit-part-w:5" "rule-ui:1" by blast + using p\<^sub>1_prop[THEN "&E"(1)] "intro-elim:3:a" "log-prop-prop:2" + "poss-sit-part-w:5" "rule-ui:1" by blast AOT_hence \s \ w \ w \ p\<^sub>1\ using "poss-sit-part-w:3"[THEN "\E"(2), THEN "PossibleWorld.\E"] by blast @@ -635,7 +667,8 @@ next AOT_have 2: \Situation(w)\ using "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" "world-pos" pos by blast AOT_show \s \ w\ - using "part:3"[unconstrain s', unconstrain s'', THEN "\E", OF 2, unvarify \, OF 1, THEN "\E", OF aux4] + using "part:3"[unconstrain s', unconstrain s'', THEN "\E", + OF 2, unvarify \, OF 1, THEN "\E", OF aux4] using A B by (meson "con-dis-i-e:1" "vdash-properties:10") qed @@ -645,7 +678,8 @@ proof - AOT_have \Possible(s) \ \w(s \ w)\ using "poss-sit-part-w:1" by auto also AOT_have \\w(s \ w) \ \w(s\<^sup>\ \ w)\ - by (metis "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "intro-elim:3:b" "poss-sit-part-w:7" PossibleWorld.existential PossibleWorld.instantiation) + by (metis "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "intro-elim:3:b" + "poss-sit-part-w:7" PossibleWorld.existential PossibleWorld.instantiation) also AOT_have \\w(s\<^sup>\ \ w) \ Possible(s\<^sup>\)\ using "poss-sit-part-w:1"[unconstrain s, unvarify \, THEN "\E", symmetric] using "Situation.res-var:3" "vdash-properties:10" aux4 by blast @@ -677,7 +711,9 @@ proof - moreover { AOT_have \\(Actual(s) & (\p)) \ \(\q(s \ q \ q) & \p)\ by (AOT_subst_def actual) - (smt (verit, del_insts) "RM\" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "intro-elim:2" Situation.restricted_var_condition) + (smt (verit, del_insts) "RM\" "con-dis-i-e:1" "con-dis-i-e:2:a" + "con-dis-i-e:2:b" "deduction-theorem" "intro-elim:2" + Situation.\) also AOT_have \\ \ \(\q(s \ q \ q) & \q(q = (\p) \ q))\ proof (AOT_subst \\q (s \ q \ q) & \p\ \\q(s \ q \ q) & \q(q = (\p) \ q)\) AOT_modally_strict { @@ -691,11 +727,14 @@ proof - also AOT_have \\ \ \\q((s \ q \ q = (\p)) \ q)\ proof (AOT_subst \\q (s \ q \ q) & \q (q = (\p) \ q)\ \\q ((s \ q \ q = (\p)) \ q)\) AOT_modally_strict { - AOT_have \(\q (s \ q \ q) & \q (q = (\p) \ q)) \ \q((s \ q \ q) & (q = (\p) \ q))\ + AOT_have \(\q (s \ q \ q) & \q (q = (\p) \ q)) \ + \q((s \ q \ q) & (q = (\p) \ q))\ using "cqt-basic:13" "cqt-basic:4" "intro-elim:3:f" by blast also AOT_have \\ \ \q ((s \ q \ q = (\p)) \ q)\ - by (meson "Commutativity of \" "intro-elim:3:a" "oth-class-taut:8:j" "rule-sub-lem:1:d" RN) - finally AOT_show \(\q (s \ q \ q) & \q (q = (\p) \ q)) \ \q ((s \ q \ q = (\p)) \ q)\ + by (meson "Commutativity of \" "intro-elim:3:a" + "oth-class-taut:8:j" "rule-sub-lem:1:d" RN) + finally AOT_show \(\q (s \ q \ q) & \q (q = (\p) \ q)) \ + \q ((s \ q \ q = (\p)) \ q)\ by blast } qed(safe intro!: "\I" "\I") @@ -706,11 +745,12 @@ proof - using "oth-class-taut:3:a" by blast also AOT_have \\ \ \Actual(s\<^sup>+(\p))\ apply (AOT_subst_def actual) - using aux5 - using "RE\" "con-dis-i-e:1" "con-dis-taut:2" "deduction-theorem" "intro-elim:2" by presburger + by (simp add: "RE\" "con-dis-taut:2" "con-dis-taut:5.\E.\E" + "deduction-theorem" "intro-elim:2" aux5) also AOT_have \\ \ Possible(s\<^sup>+(\p))\ apply (AOT_subst_def pos) - by (simp add: "con-dis-i-e:1" "con-dis-taut:2" "deduction-theorem" "intro-elim:2" aux5) + by (simp add: "con-dis-i-e:1" "con-dis-taut:2" "deduction-theorem" + "intro-elim:2" aux5) also AOT_have \\ \ \w(s\<^sup>+(\p) \ w)\ using "poss-sit-part-w:1"[unconstrain s, unvarify \, THEN "\E"] using "Situation.res-var:3" "vdash-properties:10" aux5 by blast @@ -723,7 +763,8 @@ proof - using "poss-sit-part-w:2"[unvarify p, OF "log-prop-prop:2", THEN "\E"(1)] by blast AOT_hence \s\<^sup>\ \ w & \w \ p\ - by (metis "\E"(4) "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-taut:2" "modus-tollens:1" "poss-sit-part-w:7" "reductio-aa:1") + by (metis "\E"(4) "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-taut:2" + "modus-tollens:1" "poss-sit-part-w:7" "reductio-aa:1") AOT_thus \\w(s\<^sup>\ \ w & \w \ p)\ using "PossibleWorld.\I" by simp next @@ -731,7 +772,8 @@ proof - then AOT_obtain w where \s\<^sup>\ \ w & \w \ p\ using PossibleWorld.instantiation[rotated] by meson AOT_hence \s \ w & w \ (\p)\ - by (metis "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "intro-elim:3:b" "poss-sit-part-w:7") + by (metis "coherent:1" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "intro-elim:3:b" "poss-sit-part-w:7") AOT_hence \s\<^sup>+\p \ w\ using "poss-sit-part-w:2"[unvarify p, OF "log-prop-prop:2", THEN "\E"(2)] by blast @@ -739,12 +781,19 @@ proof - using "PossibleWorld.\I" by simp qed also AOT_have \\ \ \w \(s\<^sup>\ \ w \ w \ p)\ - by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "existential:2[const_var]" "instantiation" "intro-elim:2" "reductio-aa:1" "vdash-properties:10") + by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "deduction-theorem" "existential:2[const_var]" + "instantiation" "intro-elim:2" "reductio-aa:1" + "vdash-properties:10") also AOT_have \\ \ \\w (s\<^sup>\ \ w \ w \ p)\ - by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "deduction-theorem" "existential:2[const_var]" "instantiation" "intro-elim:2" "reductio-aa:1" "rule-ui:3" "universal-cor" "vdash-properties:10") + by (metis (no_types, lifting) "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "deduction-theorem" "existential:2[const_var]" "instantiation" + "intro-elim:2" "reductio-aa:1" "rule-ui:3" "universal-cor" + "vdash-properties:10") also AOT_have \\ \ \(Actual(s\<^sup>\) \ p)\ using "poss-sit-part-w:3"[unconstrain s, unvarify \, THEN "\E"] - by (meson "Situation.res-var:3" "intro-elim:3:a" "oth-class-taut:4:b" "vdash-properties:10" aux4) + by (meson "Situation.res-var:3" "intro-elim:3:a" "oth-class-taut:4:b" + "vdash-properties:10" aux4) finally AOT_have \\(Actual(s) & \p) \ \(Actual(s\<^sup>\) \ p)\. } ultimately AOT_show \\(Actual(s\<^sup>\) \ p)\ @@ -754,7 +803,8 @@ proof - qed qed moreover AOT_have B: \(Actual(s) \ p) \ s\<^sup>\ \ p\ - using "deduction-theorem" "intro-elim:3:b" "log-prop-prop:2" "poss-sit-part-w:5" "rule-ui:1" by blast + using "deduction-theorem" "intro-elim:3:b" "log-prop-prop:2" + "poss-sit-part-w:5" "rule-ui:1" by blast moreover AOT_assume \Actual(s\<^sup>\) \ p\ ultimately AOT_show \s\<^sup>\ \ p\ using "vdash-properties:10" by blast @@ -826,7 +876,8 @@ proof(safe intro!: "\I" dest!: "possibilities:1"[THEN "\\<^su AOT_assume \Situation(s) & (Consistent(s) & ModallyClosed(s))\ AOT_thus \\Possibility(s)\ apply (AOT_subst_def "possibilities:1") - by (metis "1" "2" "KBasic:3" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" "intro-elim:3:a" "intro-elim:3:b" RN Situation.restricted_var_condition) + by (metis "1" "2" "KBasic:3" "con-dis-i-e:1" "con-dis-i-e:2:a" "con-dis-i-e:2:b" + "intro-elim:3:a" "intro-elim:3:b" RN Situation.restricted_var_condition) qed @@ -840,13 +891,15 @@ proof next AOT_modally_strict { AOT_show \Possibility(\) \ \\\ for \ - by (metis "Hypothetical Syllogism" "Situation.res-var:3" "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" "deduction-theorem" "possibilities:1") + by (metis "Hypothetical Syllogism" "Situation.res-var:3" "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" + "deduction-theorem" "possibilities:1") } next AOT_modally_strict { AOT_show \\\(Possibility(\) \ \Possibility(\))\ using "possiblities:3" - by (smt (verit, del_insts) "Situation.\I" "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" "deduction-theorem" "possibilities:1" "rule-ui:3" "universal-cor" "vdash-properties:10") + by (smt (verit, del_insts) "Situation.\I" "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" "deduction-theorem" + "possibilities:1" "rule-ui:3" "universal-cor" "vdash-properties:10") } qed @@ -858,10 +911,10 @@ proof(safe intro!: "\I" "Possibilities.\I") fix \ AOT_assume 1: \\p\ AOT_show \\ \ p\ - apply (rule "modal-clos-facts:3"[unconstrain s, unvarify \, THEN "\E", THEN "\E"]) - using "cqt:2"(1) apply blast - using "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:a" "possibilities:1" Possibilities.restricted_var_condition apply blast - by (meson "1" "\\<^sub>d\<^sub>fE" "con-dis-i-e:1" "con-dis-i-e:2:b" "possibilities:1" AOT_restricted_type.\ Possibilities.AOT_restricted_type_axioms) + by (meson "1" "con-dis-i-e:1" "cqt:2"(1) + "modal-clos-facts:3.unconstrain_s.unvarify_p.\E_1.\E_1.\E.\E" + "possibilities:1.\\<^sub>d\<^sub>fE.&E_1" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" + AOT_restricted_type.\ Possibilities.AOT_restricted_type_axioms) qed AOT_define Contains :: \\ \ \ \ \\ (infixl \\\ 80) @@ -997,11 +1050,10 @@ proof(safe intro!: "\\<^sub>d\<^sub>fI"[OF "possibilities:1"] "&I" absolu by (AOT_subst_def (reverse) cons) AOT_hence \\p(s\<^sub>\ \ p & s\<^sub>\ \ \p)\ using "con-dis-i-e:1" "raa-cor:4" absolute_necessity_situation by blast - then AOT_obtain q\<^sub>1 where q_prop: \s\<^sub>\ \ q\<^sub>1 & s\<^sub>\ \ \q\<^sub>1\ + then AOT_obtain q\<^sub>1 where \s\<^sub>\ \ q\<^sub>1 & s\<^sub>\ \ \q\<^sub>1\ using "\E"[rotated] by blast AOT_hence \\q\<^sub>1\ and \\\q\<^sub>1\ - using "con-dis-i-e:2:a" "intro-elim:3:a" "log-prop-prop:2" "rule-ui:1" absolute_necessity_matrix apply blast - using "con-dis-i-e:2:b" "intro-elim:3:a" "log-prop-prop:2" "rule-ui:1" absolute_necessity_matrix q_prop by blast + using "&E" "intro-elim:3:a" "log-prop-prop:2" "rule-ui:1" absolute_necessity_matrix by blast+ AOT_hence \q\<^sub>1 & \q\<^sub>1\ by (meson "B\" "T\" "con-dis-i-e:1" "vdash-properties:10") AOT_thus \p & \p\ @@ -1015,7 +1067,8 @@ proof(safe intro!: "\\<^sub>d\<^sub>fI"[OF "possibilities:1"] "&I" absolu AOT_hence \\(Actual(s\<^sub>\) \ p)\ using "\\<^sub>d\<^sub>fE" "nec-impl-p:1" by blast AOT_hence \\(\p \ \Actual(s\<^sub>\))\ - by (simp add: "intro-elim:2" "rule-sub-remark:5[1]" "useful-tautologies:4" "useful-tautologies:5") + by (simp add: "intro-elim:2" "rule-sub-remark:5[1]" + "useful-tautologies:4" "useful-tautologies:5") AOT_hence \: \\\p \ \\Actual(s\<^sub>\)\ using "K\" "vdash-properties:10" by blast AOT_have \\p\ @@ -1028,11 +1081,10 @@ proof(safe intro!: "\\<^sub>d\<^sub>fI"[OF "possibilities:1"] "&I" absolu AOT_hence \\(\(Situation(s\<^sub>\) & \p (s\<^sub>\ \ p \ p)))\ by (AOT_subst_def (reverse) actual) AOT_hence \\(\\p (s\<^sub>\ \ p \ p))\ - by (smt (z3) "RM\" "con-dis-i-e:1" "deduction-theorem" "raa-cor:3" "vdash-properties:6" absolute_necessity_situation) + by (smt (z3) "RM\" "con-dis-i-e:1" "deduction-theorem" "raa-cor:3" + "vdash-properties:6" absolute_necessity_situation) AOT_hence \\(\p \(s\<^sub>\ \ p \ p))\ - apply (AOT_subst \\p \(s\<^sub>\ \ p \ p)\ \\\p (s\<^sub>\ \ p \ p)\) - apply (metis (full_types) "cqt-further:2" "cqt-further:3" "deduction-theorem" "intro-elim:2" "intro-elim:3:a" "raa-cor:3") - by auto + using "RM:2.\E" "cqt-further:2" by blast AOT_hence \\p \\(s\<^sub>\ \ p \ p)\ using "BF\" "vdash-properties:10" by blast then AOT_obtain p\<^sub>1 where \\\(s\<^sub>\ \ p\<^sub>1 \ p\<^sub>1)\ @@ -1047,7 +1099,8 @@ proof(safe intro!: "\\<^sub>d\<^sub>fI"[OF "possibilities:1"] "&I" absolu AOT_hence 4: \\\p\<^sub>1\ using 3 "KBasic:11" "intro-elim:3:b" by blast AOT_have \\(s\<^sub>\ \ p\<^sub>1 \ \p\<^sub>1)\ - using "if-p-then-p" "log-prop-prop:2" "rule-sub-remark:6[1]" "rule-ui:1" RN absolute_necessity_matrix by blast + using "if-p-then-p" "log-prop-prop:2" "rule-sub-remark:6[1]" "rule-ui:1" + RN absolute_necessity_matrix by blast AOT_hence \\\p\<^sub>1\ using 2 using "K\" "vdash-properties:10" by blast @@ -1057,7 +1110,8 @@ proof(safe intro!: "\\<^sub>d\<^sub>fI"[OF "possibilities:1"] "&I" absolu using 4 "raa-cor:3" by blast qed AOT_thus \s\<^sub>\ \ p\ - using "cqt-orig:3" "intro-elim:3:b" "vdash-properties:10" absolute_necessity_matrix by blast + using "cqt-orig:3" "intro-elim:3:b" "vdash-properties:10" + absolute_necessity_matrix by blast qed qed @@ -1073,20 +1127,22 @@ proof (safe intro!: "\I" "Situation.GEN") AOT_hence \\(s = s\<^sub>\)\ using "=-infix" "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" by blast AOT_hence \\\p(s \ p \ s\<^sub>\ \ p)\ - by (metis (full_types) "reductio-aa:1" "rule=I:1" "sit-identity.unconstrain_s.unconstrain_s'.\E_1.\E.\E_1.\E.\E_2.rule=E'" "situations:3.\E" Situation.restricted_var_condition absolute_necessity_situation) + by (metis (full_types) "reductio-aa:1" "rule=I:1" + "sit-identity.unconstrain_s.unconstrain_s'.\E_1.\E.\E_1.\E.\E_2.rule=E'" + "situations:3.\E" Situation.restricted_var_condition absolute_necessity_situation) AOT_hence \\p \(s \ p \ s\<^sub>\ \ p)\ using "cqt-further:2" "vdash-properties:10" by blast then AOT_obtain q\<^sub>1 where \\(s \ q\<^sub>1 \ s\<^sub>\ \ q\<^sub>1)\ using "\E"[rotated] by blast AOT_hence \(s \ q\<^sub>1 & \s\<^sub>\ \ q\<^sub>1) \ (s\<^sub>\ \ q\<^sub>1 & \s \ q\<^sub>1)\ - by (metis "con-dis-i-e:1" "con-dis-i-e:3:a" "con-dis-i-e:3:b" "deduction-theorem" "intro-elim:2" "reductio-aa:1") + by (metis "con-dis-i-e:1" "con-dis-i-e:3:a" "con-dis-i-e:3:b" + "deduction-theorem" "intro-elim:2" "reductio-aa:1") moreover { AOT_assume 0: \s \ q\<^sub>1 & \s\<^sub>\ \ q\<^sub>1\ AOT_have \s \ s\<^sub>\\ using "1" "con-dis-i-e:2:a" by blast AOT_hence \\p (s \ p \ s\<^sub>\ \ p)\ - using "Aux"[unconstrain s', unvarify \, OF absolute_necessity_denotes, THEN "\E", OF absolute_necessity_situation] - using "con-dis-i-e:2:b" "intro-elim:3:a" by blast + using "\\<^sub>d\<^sub>fE" "con-dis-i-e:2:b" "sit-part-whole" by blast AOT_hence \s\<^sub>\ \ q\<^sub>1\ using 0 "con-dis-i-e:2:a" "log-prop-prop:2" "rule-ui:1" "vdash-properties:10" by blast AOT_hence \\p (p & \p)\ @@ -1095,7 +1151,7 @@ proof (safe intro!: "\I" "Situation.GEN") ultimately AOT_have 3: \s\<^sub>\ \ q\<^sub>1 & \s \ q\<^sub>1\ by (metis "con-dis-i-e:4:c" "instantiation" "raa-cor:1") AOT_hence 2: \\q\<^sub>1\ - using "con-dis-i-e:2:a" "intro-elim:3:a" "log-prop-prop:2" "rule-ui:1" absolute_necessity_matrix by blast + using "absolute_necessity_matrix.\E_1.\E_1" "con-dis-i-e:2:a" "log-prop-prop:2" by blast AOT_show \\Possibility(s)\ proof(rule "raa-cor:2") AOT_assume \Possibility(s)\ @@ -1144,11 +1200,13 @@ proof(safe intro!: "\I") AOT_hence \\(\p & \\p)\ using "intro-elim:3:c" "thm-cont-propos:2" by blast AOT_hence \\\p \ \p\ - by (meson "Commutativity of \" "KBasic2:1" "KBasic:12" "intro-elim:1" "intro-elim:3:a" "oth-class-taut:5:c") + by (metis "KBasic2:1.\E_2" "KBasic:12.\E_2" "con-dis-i-e:1" "con-dis-i-e:3:a" + "con-dis-i-e:3:b" "reductio-aa:2") moreover { AOT_assume \\\p\ AOT_hence \\ \ \p\ - by (simp add: "cqt:2"(1) "log-prop-prop:2" "possibilities:4.unvarify_p.\E_1.\E.\E_1.\E" Possibilities.restricted_var_condition) + by (simp add: "cqt:2"(1) "log-prop-prop:2" + "possibilities:4.unvarify_p.\E_1.\E.\E_1.\E" Possibilities.\) AOT_hence \p & \p\ using "2" "raa-cor:3" by blast } @@ -1174,15 +1232,16 @@ proof(rule "\I") qed AOT_theorem "possibilities:15[b]": \Possible(\)\ - using "possibilities:15[a]" - by (metis "vdash-properties:10" Possibilities.restricted_var_condition Possibilities_are_Situations Situation.Rep_cases mem_Collect_eq) + by (simp add: "cqt:2"(1) "possibilities:15[a].unconstrain_s.\E_1.\E.\E" + Possibilities.\ Possibilities_are_Situations) AOT_theorem "possibilities:16": \GapOn(\, p) \ \\'(\' \ \ & \' \ p) & \\'(\' \ \ & \' \ \p)\ proof(safe intro!: "\I" "&I") { fix p AOT_have sit: \Situation(\\<^sup>+p\<^sup>\)\ - by (simp add: "aux4.unconstrain_s.\E_1.\E" "aux5.unconstrain_s.\E_1.\E" "situations:3.\E" Possibilities_are_Situations) + by (simp add: "aux4.unconstrain_s.\E_1.\E" "aux5.unconstrain_s.\E_1.\E" + "situations:3.\E" Possibilities_are_Situations) AOT_assume A: \GapOn(\, p)\ AOT_show \\\'(\' \ \ & \' \ p)\ proof(safe intro!: "\I"(1) "&I") @@ -1191,46 +1250,61 @@ proof(safe intro!: "\I" "&I") fix q AOT_assume \\ \ q\ AOT_thus \\\<^sup>+p\<^sup>\ \ q\ - by (meson "aux5.unconstrain_s.\E_1.\E" "log-prop-prop:2" "pext-lem:3.unconstrain_s.unvarify_q.unvarify_p.\E_1.\E_1.\E_1.\E.\E" "poss-sit-part-w:6.unconstrain_s.\E_1.\E" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" "situations:3.\E" Possibilities_are_Situations) + by (meson "aux5.unconstrain_s.\E_1.\E" "log-prop-prop:2" + "pext-lem:3.unconstrain_s.unvarify_q.unvarify_p.\E_1.\E_1.\E_1.\E.\E" + "poss-sit-part-w:6.unconstrain_s.\E_1.\E" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" + "situations:3.\E" Possibilities_are_Situations) qed AOT_hence \\ \ \\<^sup>+p\<^sup>\\ by (simp add: "con-dis-i-e:1" "sit-part-whole.\\<^sub>d\<^sub>fI" Possibilities_are_Situations sit) AOT_thus \\\<^sup>+p\<^sup>\ \ \\ by (simp add: "con-dis-i-e:1" "possibilities:5.\\<^sub>d\<^sub>fI" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_1.&E_1" sit) AOT_show \\\<^sup>+p\<^sup>\ \ p\ - by (meson "log-prop-prop:2" "pext-lem:4.unconstrain_s.unvarify_p.\E_1.\E_1.\E" "poss-sit-part-w:6.unconstrain_s.\E_1.\E" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" "situations:3.\E" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities_are_Situations) + by (meson "log-prop-prop:2" "pext-lem:4.unconstrain_s.unvarify_p.\E_1.\E_1.\E" + "poss-sit-part-w:6.unconstrain_s.\E_1.\E" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" + "situations:3.\E" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities_are_Situations) AOT_show 1: \Possibility(\\<^sup>+p\<^sup>\)\ proof(safe intro!: "possibilities:1"[THEN "\\<^sub>d\<^sub>fI"] "&I" sit) AOT_have B: \Possible(\\<^sup>+p)\ proof(rule "raa-cor:1") AOT_assume \\Possible(\\<^sup>+p)\ AOT_hence \\\w (\\<^sup>+p \ w)\ - using "aux5.unconstrain_s.\E_1.\E" "poss-sit-part-w:1.unconstrain_s.\E_1.\E.\E_2" "raa-cor:3" "situations:3.\E" Possibilities_are_Situations by blast + using "aux5.unconstrain_s.\E_1.\E" "poss-sit-part-w:1.unconstrain_s.\E_1.\E.\E_2" + "raa-cor:3" "situations:3.\E" Possibilities_are_Situations by blast AOT_hence \\w \(\\<^sup>+p \ w)\ - by (metis (no_types, lifting) "con-dis-taut:5.\E.\E" "deduction-theorem" "existential:2[const_var]" "reductio-aa:2" "universal-cor") + by (metis (no_types, lifting) "con-dis-taut:5.\E.\E" "deduction-theorem" + "existential:2[const_var]" "reductio-aa:2" "universal-cor") AOT_hence \\(\\<^sup>+p \ w)\ for w using "PossibleWorld.\E" by fastforce AOT_hence \\(\ \ w & w \ p)\ for w - by (metis "cqt:2"(1) "poss-sit-part-w:2.unconstrain_s.unvarify_p.unconstrain_w.\E_1.\E.\E_1.\E_1.\E.\E_2" "reductio-aa:2" Possibilities_are_Situations PossibleWorld.restricted_var_condition) + by (metis "cqt:2"(1) + "poss-sit-part-w:2.unconstrain_s.unvarify_p.unconstrain_w.\E_1.\E.\E_1.\E_1.\E.\E_2" + "reductio-aa:2" Possibilities_are_Situations PossibleWorld.\) AOT_hence \\ \ w \ w \ \p\ for w by (metis "\E"(2) "coherent:1" "con-dis-taut:5.\E.\E" "reductio-aa:2" CP) AOT_hence \\w (\ \ w \ w \ \p)\ using "PossibleWorld.\I" by force AOT_hence \Actual(\) \ \p\ - by (simp add: "log-prop-prop:2" "poss-sit-part-w:3[newproof].unconstrain_s.unvarify_p.\E_1.\E_1.\E.\E_1" "situations:3.\E" Possibilities_are_Situations) + by (simp add: "log-prop-prop:2" + "poss-sit-part-w:3[newproof].unconstrain_s.unvarify_p.\E_1.\E_1.\E.\E_1" + "situations:3.\E" Possibilities_are_Situations) AOT_hence \\ \ \p\ - by (meson "log-prop-prop:2" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" "sit-clo.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" AOT_restricted_type.restricted_var_condition Possibilities.AOT_restricted_type_axioms) + by (meson "log-prop-prop:2" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" + "sit-clo.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" AOT_restricted_type.\ + Possibilities.AOT_restricted_type_axioms) moreover AOT_have \\\ \ \p\ using "routley-star:5.\\<^sub>d\<^sub>fE.&E_2.&E_2" A by auto ultimately AOT_show \p & \p\ using "raa-cor:3" by blast qed AOT_hence C: \Possible(\\<^sup>+p\<^sup>\)\ - by (simp add: "pos.\\<^sub>d\<^sub>fE.&E_1" "poss-sit-part-w:8.unconstrain_s.\E_1.\E.\E_1" "situations:3.\E") + by (simp add: "pos.\\<^sub>d\<^sub>fE.&E_1" "poss-sit-part-w:8.unconstrain_s.\E_1.\E.\E_1" + "situations:3.\E") AOT_thus \Consistent(\\<^sup>+p\<^sup>\)\ by (simp add: "pos-cons-sit:1.unconstrain_s.\E_1.\E.\E" "situations:3.\E" sit) AOT_show \ModallyClosed(\\<^sup>+p\<^sup>\)\ - by (simp add: "pos.\\<^sub>d\<^sub>fE.&E_1" "poss-sit-part-w:9.unconstrain_s.\E_1.\E" "situations:3.\E" local.B) + by (simp add: "pos.\\<^sub>d\<^sub>fE.&E_1" "poss-sit-part-w:9.unconstrain_s.\E_1.\E" + "situations:3.\E" local.B) qed AOT_show \\\<^sup>+p\<^sup>\\\ by (simp add: "situations:3.\E" sit) @@ -1267,7 +1341,8 @@ proof(safe intro!: "\I" "&I") AOT_show \(\\p)\\ by (simp add: "log-prop-prop:2") AOT_show \\ \ \\p & (\\p \ p)\ - by (simp add: "2" "con-dis-taut:5.\E.\E" "nec-impl-p:1.\\<^sub>d\<^sub>fI" "useful-tautologies:1" RN) + by (simp add: "2" "con-dis-taut:5.\E.\E" "nec-impl-p:1.\\<^sub>d\<^sub>fI" + "useful-tautologies:1" RN) qed AOT_hence \\p(p & \p)\ using "1" "raa-cor:4" "routley-star:5.\\<^sub>d\<^sub>fE.&E_2.&E_1" by blast @@ -1296,11 +1371,12 @@ proof(safe intro!: "\I") by (simp add: "possibilitites:7(a).unconstrain_s.\E_1.\E" "situations:3.\E" Possibilities_are_Situations) AOT_hence \\\''(\'' \ \ & \'' \ p)\ - using \[THEN "\E"(1), THEN "\E", THEN "\E"] "cqt:2"(1) Possibilities.restricted_var_condition by blast + using \[THEN "\E"(1), THEN "\E", THEN "\E"] "cqt:2"(1) Possibilities.\ by blast then AOT_obtain \\<^sub>1 where 1: \\\<^sub>1 \ \ & \\<^sub>1 \ p\ using "Possibilities.\E" by meson AOT_hence 2: \\\<^sub>1 \ \p\ - using "con-dis-i-e:2:a" "log-prop-prop:2" "possibilities:5.\\<^sub>d\<^sub>fE.&E_2" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" a by blast + using "con-dis-i-e:2:a" "log-prop-prop:2" "possibilities:5.\\<^sub>d\<^sub>fE.&E_2" + "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" a by blast AOT_have \Consistent(\\<^sub>1)\ using "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_1" Possibilities.restricted_var_condition by auto AOT_hence \\\p (\\<^sub>1 \ p & \\<^sub>1 \ \p)\ @@ -1315,7 +1391,8 @@ proof(safe intro!: "\I") AOT_hence \GapOn(\, p)\ using "0" "con-dis-i-e:1" "routley-star:5.\\<^sub>d\<^sub>fI" Possibilities_are_Situations by presburger AOT_hence \\\'(\' \ \ & \' \ \p)\ - by (meson "\I"(2) "cqt:2"(1) "possibilities:16.unconstrain_\.unvarify_p.\E_1.\E_1.\E.\E.&E_2.\E'" Possibilities.restricted_var_condition) + by (meson "\I"(2) "cqt:2"(1) + "possibilities:16.unconstrain_\.unvarify_p.\E_1.\E_1.\E.\E.&E_2.\E'" Possibilities.\) then AOT_obtain \\<^sub>2 where 1: \\\<^sub>2 \ \ & \\<^sub>2 \ \p\ using "Possibilities.\E" by meson AOT_hence \\\''(\'' \ \\<^sub>2 & \'' \ p)\ @@ -1327,7 +1404,8 @@ proof(safe intro!: "\I") using "possibilities:8"[THEN "\E"(1), OF "log-prop-prop:2"] 1[THEN "&E"(2)] 2[THEN "&E"(1)] "oth-class-taut:7:a.\E.\E.\E" by blast AOT_have \Consistent(\\<^sub>3)\ - by (simp add: "pos-cons-sit:1.unconstrain_s.\E_1.\E.\E" "pos.\\<^sub>d\<^sub>fE.&E_1" "possibilities:15[b]" "situations:3.\E") + by (simp add: "pos-cons-sit:1.unconstrain_s.\E_1.\E.\E" "pos.\\<^sub>d\<^sub>fE.&E_1" + "possibilities:15[b]" "situations:3.\E") AOT_hence \\\p (\\<^sub>3 \ p & \\<^sub>3 \ \p)\ by (simp add: "cons.\\<^sub>d\<^sub>fE.&E_2") moreover AOT_have \\p (\\<^sub>3 \ p & \\<^sub>3 \ \p)\ @@ -1348,7 +1426,8 @@ proof(safe intro!: "\I" "\I" "Possibilities.GEN") AOT_hence 1: \\ \ \'\ using "possibilities:5.\\<^sub>d\<^sub>fE.&E_2" by auto AOT_hence \\p(\ \ p \ \' \ p)\ - by (simp add: "deduction-theorem" "log-prop-prop:2" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" "universal-cor") + by (simp add: "deduction-theorem" "log-prop-prop:2" + "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" "universal-cor") AOT_hence 2: \\' \ \p\ using "0" "1" "log-prop-prop:2" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E" by auto AOT_show \\\' \ p\ @@ -1359,7 +1438,8 @@ proof(safe intro!: "\I" "\I" "Possibilities.GEN") AOT_hence \\Consistent(\')\ using "cons.\\<^sub>d\<^sub>fE.&E_2" "raa-cor:3" by blast moreover AOT_have \Consistent(\')\ - by (simp add: "pos-cons-sit:1.unconstrain_s.\E_1.\E.\E" "pos.\\<^sub>d\<^sub>fE.&E_1" "possibilities:15[b]" "situations:3.\E") + by (simp add: "pos-cons-sit:1.unconstrain_s.\E_1.\E.\E" "pos.\\<^sub>d\<^sub>fE.&E_1" + "possibilities:15[b]" "situations:3.\E") ultimately AOT_show \p & \p\ using "raa-cor:3" by blast qed @@ -1369,7 +1449,8 @@ next proof(rule "raa-cor:1") AOT_assume 2: \\\ \ \p\ AOT_have \\ \ \\ - using "cqt:2"(1) "possibilitites:7(a).unconstrain_s.\E_1.\E" Possibilities_are_Situations by blast + using "cqt:2"(1) "possibilitites:7(a).unconstrain_s.\E_1.\E" + Possibilities_are_Situations by blast AOT_hence \\\ \ p\ using "1" "rule-ui:3" "vdash-properties:10" Possibilities.restricted_var_condition by blast AOT_hence \GapOn(\, p)\ @@ -1380,7 +1461,7 @@ next using "Possibilities.\E" by meson AOT_hence \\\\<^sub>1 \ p\ using 1 - using "con-dis-i-e:2:a" "ded-thm-cor:4.\E" "rule-ui:3" Possibilities.restricted_var_condition by blast + using "con-dis-i-e:2:a" "ded-thm-cor:4.\E" "rule-ui:3" Possibilities.\ by blast AOT_thus \p & \p\ using "3" "con-dis-i-e:2:b" "raa-cor:3" by blast qed @@ -1392,19 +1473,26 @@ proof(safe intro!: "\I" "\I" "&I") moreover AOT_have \(p & q) \ p\ by (simp add: "con-dis-taut:1" "nec-impl-p:1.\\<^sub>d\<^sub>fI" RN) ultimately AOT_show \\ \ p\ - by (meson "con-dis-taut:5.\E.\E" "cqt:2"(1) "log-prop-prop:2" "modal-clos-facts:1.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities.restricted_var_condition) + by (meson "con-dis-taut:5.\E.\E" "cqt:2"(1) "log-prop-prop:2" + "modal-clos-facts:1.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E" + "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities.\) next AOT_assume \\ \ (p & q)\ moreover AOT_have \(p & q) \ q\ using "con-dis-taut:2" "nec-impl-p:1.\\<^sub>d\<^sub>fI" RN by blast ultimately AOT_show \\ \ q\ - by (meson "con-dis-taut:5.\E.\E" "cqt:2"(1) "log-prop-prop:2" "modal-clos-facts:1.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities.restricted_var_condition) + by (meson "con-dis-taut:5.\E.\E" "cqt:2"(1) "log-prop-prop:2" + "modal-clos-facts:1.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E" + "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" "true-in-s.\\<^sub>d\<^sub>fE.&E_1" Possibilities.\) next AOT_assume \\ \ p & \ \ q\ moreover AOT_have \(p & q) \ (p & q)\ using "log-prop-prop:2" "nec-impl-p:3[rec].unvarify_p.\E_1" by auto ultimately AOT_show \\ \ (p & q)\ - by (meson "con-dis-i-e:1" "cqt:2"(1) "log-prop-prop:2" "modal-clos-facts:1b.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E_1.\E" "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" AOT_restricted_type.restricted_var_condition Possibilities.AOT_restricted_type_axioms Possibilities_are_Situations) + by (meson "con-dis-i-e:1" "cqt:2"(1) "log-prop-prop:2" + "modal-clos-facts:1b.unconstrain_s.\E_1.\E.\E.\E_1.\E_1.\E_1.\E" + "possibilities:1.\\<^sub>d\<^sub>fE.&E_2.&E_2" AOT_restricted_type.\ + Possibilities.AOT_restricted_type_axioms Possibilities_are_Situations) qed AOT_theorem "possibilities:20": \\p \ \\(\ \ p)\ @@ -1423,13 +1511,15 @@ next AOT_have \Possible(\)\ by (simp add: "possibilities:15[b]") AOT_hence \\w \ \ w\ - by (meson "\I"(2) "pos.\\<^sub>d\<^sub>fE.&E_1" "situations:3.\E" "poss-sit-part-w:1.unconstrain_s.\E_1.\E.\E_1.\E'") + by (meson "\I"(2) "pos.\\<^sub>d\<^sub>fE.&E_1" "situations:3.\E" + "poss-sit-part-w:1.unconstrain_s.\E_1.\E.\E_1.\E'") then AOT_obtain w where \\ \ w\ using PossibleWorld.instantiation by blast AOT_hence \w \ p\ using 1 by (simp add: "log-prop-prop:2" "sit-part-whole.\\<^sub>d\<^sub>fE.&E_2.\E_1.\E") AOT_thus \\p\ - by (metis (no_types, lifting) "con-dis-taut:5.\E.\E" "existential:2[const_var]" "fund:1" "intro-elim:3:b" PossibleWorld.restricted_var_condition) + by (metis (no_types, lifting) "con-dis-taut:5.\E.\E" "existential:2[const_var]" + "fund:1" "intro-elim:3:b" PossibleWorld.restricted_var_condition) qed AOT_theorem "possibilities:21": \\p \ \\(\ \ p)\ @@ -1437,7 +1527,7 @@ proof(safe intro!: "\I" "\I" Possibilities.GEN) fix \ AOT_assume \\p\ AOT_thus \\ \ p\ - by (simp add: "cqt:2"(1) "possibilities:4.unvarify_p.\E_1.\E.\E_1.\E" Possibilities.restricted_var_condition) + by (simp add: "cqt:2"(1) "possibilities:4.unvarify_p.\E_1.\E.\E_1.\E" Possibilities.\) next AOT_assume \\\(\ \ p)\ AOT_hence \s\<^sub>\ \ p\