-
Notifications
You must be signed in to change notification settings - Fork 86
/
CShiftPWM.cpp
575 lines (495 loc) · 17.8 KB
/
CShiftPWM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
/*
CShiftPWM.cpp - ShiftPWM.h - Library for Arduino to PWM many outputs using shift registers
Copyright (c) 2011-2012 Elco Jacobs, www.elcojacobs.com
All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* workaround for a bug in WString.h */
#define F(string_literal) (reinterpret_cast<const __FlashStringHelper *>(PSTR(string_literal)))
#include "CShiftPWM.h"
#include <Arduino.h>
CShiftPWM::CShiftPWM(int timerInUse, bool noSPI, int latchPin, int dataPin, int clockPin) : // Constants are set in initializer list
m_timer(timerInUse), m_noSPI(noSPI), m_latchPin(latchPin), m_dataPin(dataPin), m_clockPin(clockPin){
m_ledFrequency = 0;
m_maxBrightness = 0;
m_amountOfRegisters = 0;
m_amountOfOutputs = 0;
m_counter = 0;
m_pinGrouping = 1; // Default = RGBRGBRGB... PinGrouping = 3 means: RRRGGGBBBRRRGGGBBB...
unsigned char * m_PWMValues=0;
}
CShiftPWM::~CShiftPWM() {
if(m_PWMValues>0){
free( m_PWMValues );
}
}
bool CShiftPWM::IsValidPin(int pin){
if(pin<m_amountOfOutputs){
return 1;
}
else{
Serial.print(F("Error: Trying to write duty cycle of pin "));
Serial.print(pin);
Serial.print(F(" , while number of outputs is "));
Serial.print(m_amountOfOutputs);
Serial.print(F(" , numbered 0-"));
Serial.println(m_amountOfOutputs-1);
delay(1000);
return 0;
}
}
void CShiftPWM::SetOne(int pin, unsigned char value){
if(IsValidPin(pin) ){
m_PWMValues[pin]=value;
}
}
void CShiftPWM::SetAll(unsigned char value){
for(int k=0 ; k<(m_amountOfOutputs);k++){
m_PWMValues[k]=value;
}
}
void CShiftPWM::SetGroupOf2(int group, unsigned char v0,unsigned char v1, int offset){
int skip = m_pinGrouping*(group/m_pinGrouping); // is not equal to 2*group. Division is rounded down first.
if(IsValidPin(group+skip+offset+m_pinGrouping) ){
m_PWMValues[group+skip+offset] =v0;
m_PWMValues[group+skip+offset+m_pinGrouping] =v1;
}
}
void CShiftPWM::SetGroupOf3(int group, unsigned char v0,unsigned char v1,unsigned char v2, int offset){
int skip = 2*m_pinGrouping*(group/m_pinGrouping); // is not equal to 2*group. Division is rounded down first.
if(IsValidPin(group+skip+offset+2*m_pinGrouping) ){
m_PWMValues[group+skip+offset] =v0;
m_PWMValues[group+skip+offset+m_pinGrouping] =v1;
m_PWMValues[group+skip+offset+m_pinGrouping*2] =v2;
}
}
void CShiftPWM::SetGroupOf4(int group, unsigned char v0,unsigned char v1,unsigned char v2,unsigned char v3, int offset){
int skip = 3*m_pinGrouping*(group/m_pinGrouping); // is not equal to 2*group. Division is rounded down first.
if(IsValidPin(group+skip+offset+3*m_pinGrouping) ){
m_PWMValues[group+skip+offset] =v0;
m_PWMValues[group+skip+offset+m_pinGrouping] =v1;
m_PWMValues[group+skip+offset+m_pinGrouping*2] =v2;
m_PWMValues[group+skip+offset+m_pinGrouping*3] =v3;
}
}
void CShiftPWM::SetGroupOf5(int group, unsigned char v0,unsigned char v1,unsigned char v2,unsigned char v3,unsigned char v4, int offset){
int skip = 4*m_pinGrouping*(group/m_pinGrouping); // is not equal to 2*group. Division is rounded down first.
if(IsValidPin(group+skip+offset+4*m_pinGrouping) ){
m_PWMValues[group+skip+offset] =v0;
m_PWMValues[group+skip+offset+m_pinGrouping] =v1;
m_PWMValues[group+skip+offset+m_pinGrouping*2] =v2;
m_PWMValues[group+skip+offset+m_pinGrouping*3] =v3;
m_PWMValues[group+skip+offset+m_pinGrouping*4] =v4;
}
}
void CShiftPWM::SetRGB(int led, unsigned char r,unsigned char g,unsigned char b, int offset){
int skip = 2*m_pinGrouping*(led/m_pinGrouping); // is not equal to 2*led. Division is rounded down first.
if(IsValidPin(led+skip+offset+2*m_pinGrouping) ){
m_PWMValues[led+skip+offset] =( (unsigned int) r * m_maxBrightness)>>8;
m_PWMValues[led+skip+offset+m_pinGrouping] =( (unsigned int) g * m_maxBrightness)>>8;
m_PWMValues[led+skip+offset+2*m_pinGrouping] =( (unsigned int) b * m_maxBrightness)>>8;
}
}
void CShiftPWM::SetAllRGB(unsigned char r,unsigned char g,unsigned char b){
for(int k=0 ; (k+3*m_pinGrouping-1) < m_amountOfOutputs; k+=3*m_pinGrouping){
for(int l=0; l<m_pinGrouping;l++){
m_PWMValues[k+l] = ( (unsigned int) r * m_maxBrightness)>>8;
m_PWMValues[k+l+m_pinGrouping] = ( (unsigned int) g * m_maxBrightness)>>8;
m_PWMValues[k+l+m_pinGrouping*2] = ( (unsigned int) b * m_maxBrightness)>>8;
}
}
}
void CShiftPWM::SetHSV(int led, unsigned int hue, unsigned int sat, unsigned int val, int offset){
unsigned char r,g,b;
unsigned int H_accent = hue/60;
unsigned int bottom = ((255 - sat) * val)>>8;
unsigned int top = val;
unsigned char rising = ((top-bottom) *(hue%60 ) ) / 60 + bottom;
unsigned char falling = ((top-bottom) *(60-hue%60) ) / 60 + bottom;
switch(H_accent) {
case 0:
r = top;
g = rising;
b = bottom;
break;
case 1:
r = falling;
g = top;
b = bottom;
break;
case 2:
r = bottom;
g = top;
b = rising;
break;
case 3:
r = bottom;
g = falling;
b = top;
break;
case 4:
r = rising;
g = bottom;
b = top;
break;
case 5:
r = top;
g = bottom;
b = falling;
break;
}
SetRGB(led,r,g,b,offset);
}
void CShiftPWM::SetAllHSV(unsigned int hue, unsigned int sat, unsigned int val){
// Set the first LED
SetHSV(0, hue, sat, val);
// Copy RGB values all LED's.
SetAllRGB(m_PWMValues[0],m_PWMValues[m_pinGrouping],m_PWMValues[2*m_pinGrouping]);
}
// OneByOne functions are usefull for testing all your outputs
void CShiftPWM::OneByOneSlow(void){
OneByOne_core(1024/m_maxBrightness);
}
void CShiftPWM::OneByOneFast(void){
OneByOne_core(1);
}
void CShiftPWM::OneByOne_core(int delaytime){
int pin,brightness;
SetAll(0);
for(int pin=0;pin<m_amountOfOutputs;pin++){
for(brightness=0;brightness<m_maxBrightness;brightness++){
m_PWMValues[pin]=brightness;
delay(delaytime);
}
for(brightness=m_maxBrightness;brightness>=0;brightness--){
m_PWMValues[pin]=brightness;
delay(delaytime);
}
}
}
void CShiftPWM::SetAmountOfRegisters(unsigned char newAmount){
cli(); // Disable interrupt
unsigned char oldAmount = m_amountOfRegisters;
m_amountOfRegisters = newAmount;
m_amountOfOutputs=m_amountOfRegisters*8;
if(LoadNotTooHigh() ){ //Check if new amount will not result in deadlock
m_PWMValues = (unsigned char *) realloc(m_PWMValues, newAmount*8); //resize array for PWMValues
for(int k=oldAmount; k<(newAmount*8);k++){
m_PWMValues[k]=0; //set new values to zero
}
sei(); //Re-enable interrupt
}
else{
// New value would result in deadlock, keep old values and print an error message
m_amountOfRegisters = oldAmount;
m_amountOfOutputs=m_amountOfRegisters*8;
Serial.println(F("Amount of registers is not increased, because load would become too high"));
sei();
}
}
void CShiftPWM::SetPinGrouping(int grouping){
// Sets the number of pins per color that are used after eachother. RRRRGGGGBBBBRRRRGGGGBBBB would be a grouping of 4.
m_pinGrouping = grouping;
}
bool CShiftPWM::LoadNotTooHigh(void){
// This function calculates if the interrupt load would become higher than 0.9 and prints an error if it would.
// This is with inverted outputs, which is worst case. Without inverting, it would be 42 per register.
float interruptDuration;
if(m_noSPI){
interruptDuration = 96+108*(float) m_amountOfRegisters;
}
else{
interruptDuration = 97+43* (float) m_amountOfRegisters;
}
float interruptFrequency = (float) m_ledFrequency* ((float) m_maxBrightness + 1);
float load = interruptDuration*interruptFrequency/F_CPU;
if(load > 0.9){
Serial.print(F("New interrupt duration =")); Serial.print(interruptDuration); Serial.println(F("clock cycles"));
Serial.print(F("New interrupt frequency =")); Serial.print(interruptFrequency); Serial.println(F("Hz"));
Serial.print(F("New interrupt load would be "));
Serial.print(load);
Serial.println(F(" , which is too high."));
return 0;
}
else{
return 1;
}
}
void CShiftPWM::Start(int ledFrequency, unsigned char maxBrightness){
// Configure and enable timer1 or timer 2 for a compare and match A interrupt.
m_ledFrequency = ledFrequency;
m_maxBrightness = maxBrightness;
pinMode(m_dataPin, OUTPUT);
pinMode(m_clockPin, OUTPUT);
pinMode(m_latchPin, OUTPUT);
digitalWrite(m_clockPin, LOW);
digitalWrite(m_dataPin, LOW);
if(!m_noSPI){ // initialize SPI when used
// The least significant bit shoult be sent out by the SPI port first.
// equals SPI.setBitOrder(LSBFIRST);
SPCR |= _BV(DORD);
// Here you can set the clock speed of the SPI port. Default is DIV4, which is 4MHz with a 16Mhz system clock.
// If you encounter problems due to long wires or capacitive loads, try lowering the SPI clock.
// equals SPI.setClockDivider(SPI_CLOCK_DIV4);
SPCR = (SPCR & 0b11111000);
SPSR = (SPSR & 0b11111110);
// Set clock polarity and phase for shift registers (Mode 3)
SPCR |= _BV(CPOL);
SPCR |= _BV(CPHA);
// When the SS pin is set as OUTPUT, it can be used as
// a general purpose output port (it doesn't influence
// SPI operations).
pinMode(SS, OUTPUT);
digitalWrite(SS, HIGH);
// Warning: if the SS pin ever becomes a LOW INPUT then SPI
// automatically switches to Slave, so the data direction of
// the SS pin MUST be kept as OUTPUT.
SPCR |= _BV(MSTR);
SPCR |= _BV(SPE);
}
if(LoadNotTooHigh() ){
if(m_timer==1){
InitTimer1();
}
#if defined(USBCON)
else if(m_timer==3){
InitTimer3();
}
#else
else if(m_timer==2){
InitTimer2();
}
#endif
}
else{
Serial.println(F("Interrupts are disabled because load is too high."));
cli(); //Disable interrupts
}
}
void CShiftPWM::InitTimer1(void){
/* Configure timer1 in CTC mode: clear the timer on compare match
* See the Atmega328 Datasheet 15.9.2 for an explanation on CTC mode.
* See table 15-4 in the datasheet. */
bitSet(TCCR1B,WGM12);
bitClear(TCCR1B,WGM13);
bitClear(TCCR1A,WGM11);
bitClear(TCCR1A,WGM10);
/* Select clock source: internal I/O clock, without a prescaler
* This is the fastest possible clock source for the highest accuracy.
* See table 15-5 in the datasheet. */
bitSet(TCCR1B,CS10);
bitClear(TCCR1B,CS11);
bitClear(TCCR1B,CS12);
/* The timer will generate an interrupt when the value we load in OCR1A matches the timer value.
* One period of the timer, from 0 to OCR1A will therefore be (OCR1A+1)/(timer clock frequency).
* We want the frequency of the timer to be (LED frequency)*(number of brightness levels)
* So the value we want for OCR1A is: timer clock frequency/(LED frequency * number of bightness levels)-1 */
m_prescaler = 1;
OCR1A = round((float) F_CPU/((float) m_ledFrequency*((float) m_maxBrightness+1)))-1;
/* Finally enable the timer interrupt, see datasheet 15.11.8) */
bitSet(TIMSK1,OCIE1A);
}
#if defined(OCR2A)
void CShiftPWM::InitTimer2(void){
/* Configure timer2 in CTC mode: clear the timer on compare match
* See the Atmega328 Datasheet 15.9.2 for an explanation on CTC mode.
* See table 17-8 in the datasheet. */
bitClear(TCCR2B,WGM22);
bitSet(TCCR2A,WGM21);
bitClear(TCCR2A,WGM20);
/* Select clock source: internal I/O clock, calculate most suitable prescaler
* This is only an 8 bit timer, so choose the prescaler so that OCR2A fits in 8 bits.
* See table 15-5 in the datasheet. */
int compare_value = round((float) F_CPU/((float) m_ledFrequency*((float) m_maxBrightness+1))-1);
if(compare_value <= 255){
m_prescaler = 1;
bitClear(TCCR2B,CS22); bitClear(TCCR2B,CS21); bitClear(TCCR2B,CS20);
}
else if(compare_value/8 <=255){
m_prescaler = 8;
bitClear(TCCR2B,CS22); bitSet(TCCR2B,CS21); bitClear(TCCR2B,CS20);
}
else
if(compare_value/32 <=255){
m_prescaler = 32;
bitClear(TCCR2B,CS22); bitSet(TCCR2B,CS21); bitSet(TCCR2B,CS20);
}
else if(compare_value/64 <= 255){
m_prescaler = 64;
bitSet(TCCR2B,CS22); bitClear(TCCR2B,CS21); bitClear(TCCR2B,CS20);
}
else if(compare_value/128 <= 255){
m_prescaler = 128;
bitSet(TCCR2B,CS22); bitClear(TCCR2B,CS21); bitSet(TCCR2B,CS20);
}
else if(compare_value/256 <= 255){
m_prescaler = 256;
bitSet(TCCR2B,CS22); bitSet(TCCR2B,CS21); bitClear(TCCR2B,CS20);
}
/* The timer will generate an interrupt when the value we load in OCR2A matches the timer value.
* One period of the timer, from 0 to OCR2A will therefore be (OCR2A+1)/(timer clock frequency).
* We want the frequency of the timer to be (LED frequency)*(number of brightness levels)
* So the value we want for OCR2A is: timer clock frequency/(LED frequency * number of bightness levels)-1 */
OCR2A = round( ( (float) F_CPU / (float) m_prescaler ) / ( (float) m_ledFrequency*( (float) m_maxBrightness+1) ) -1);
/* Finally enable the timer interrupt, see datasheet 15.11.8) */
bitSet(TIMSK2,OCIE2A);
}
#endif
#if defined(OCR3A)
// Arduino Leonardo or Micro
void CShiftPWM::InitTimer3(void){
/*
* Only available on Leonardo and micro.
* Configure timer3 in CTC mode: clear the timer on compare match
* See the Atmega32u4 Datasheet 15.10.2 for an explanation on CTC mode.
* See table 14-5 in the datasheet. */
bitSet(TCCR3B,WGM32);
bitClear(TCCR3B,WGM33);
bitClear(TCCR3A,WGM31);
bitClear(TCCR3A,WGM30);
/* Select clock source: internal I/O clock, without a prescaler
* This is the fastest possible clock source for the highest accuracy.
* See table 15-5 in the datasheet. */
bitSet(TCCR3B,CS30);
bitClear(TCCR3B,CS31);
bitClear(TCCR3B,CS32);
/* The timer will generate an interrupt when the value we load in OCR1A matches the timer value.
* One period of the timer, from 0 to OCR1A will therefore be (OCR1A+1)/(timer clock frequency).
* We want the frequency of the timer to be (LED frequency)*(number of brightness levels)
* So the value we want for OCR1A is: timer clock frequency/(LED frequency * number of bightness levels)-1 */
m_prescaler = 1;
OCR3A = round((float) F_CPU/((float) m_ledFrequency*((float) m_maxBrightness+1)))-1;
/* Finally enable the timer interrupt, see datasheet 15.11.8) */
bitSet(TIMSK3,OCIE3A);
}
#endif
void CShiftPWM::PrintInterruptLoad(void){
//This function prints information on the interrupt settings for ShiftPWM
//It runs a delay loop 2 times: once with interrupts enabled, once disabled.
//From the difference in duration, it can calculate the load of the interrupt on the program.
unsigned long start1,end1,time1,start2,end2,time2,k;
double load, cycles_per_int, interrupt_frequency;
if(m_timer==1){
if(TIMSK1 & (1<<OCIE1A)){
// interrupt is enabled, continue
}
else{
// interrupt is disabled
Serial.println(F("Interrupt is disabled."));
return;
}
}
#if defined(USBCON)
else if(m_timer==3){
if(TIMSK3 & (1<<OCIE3A)){
// interrupt is enabled, continue
}
else{
// interrupt is disabled
Serial.println(F("Interrupt is disabled."));
return;
}
}
#else
else if(m_timer==2){
if(TIMSK2 & (1<<OCIE2A)){
// interrupt is enabled, continue
}
else{
// interrupt is disabled
Serial.println(F("Interrupt is disabled."));
return;
}
}
#endif
//run with interrupt enabled
start1 = micros();
for(k=0; k<100000; k++){
delayMicroseconds(1);
}
end1 = micros();
time1 = end1-start1;
//Disable Interrupt
if(m_timer==1){
bitClear(TIMSK1,OCIE1A);
}
#if defined(USBCON)
else if(m_timer==3){
bitClear(TIMSK3,OCIE3A);
}
#else
else if(m_timer==2){
bitClear(TIMSK2,OCIE2A);
}
#endif
// run with interrupt disabled
start2 = micros();
for(k=0; k<100000; k++){
delayMicroseconds(1);
}
end2 = micros();
time2 = end2-start2;
// ready for calculations
load = (double)(time1-time2)/(double)(time1);
if(m_timer==1){
interrupt_frequency = (F_CPU/m_prescaler)/(OCR1A+1);
}
#if defined(USBCON)
else if(m_timer==3){
interrupt_frequency = (F_CPU/m_prescaler)/(OCR3A+1);
}
#else
else if(m_timer==2){
interrupt_frequency = (F_CPU/m_prescaler)/(OCR2A+1);
}
#endif
cycles_per_int = load*(F_CPU/interrupt_frequency);
//Ready to print information
Serial.print(F("Load of interrupt: ")); Serial.println(load,10);
Serial.print(F("Clock cycles per interrupt: ")); Serial.println(cycles_per_int);
Serial.print(F("Interrupt frequency: ")); Serial.print(interrupt_frequency); Serial.println(F(" Hz"));
Serial.print(F("PWM frequency: ")); Serial.print(interrupt_frequency/(m_maxBrightness+1)); Serial.println(F(" Hz"));
#if defined(USBCON)
if(m_timer==1){
Serial.println(F("Timer1 in use."));
Serial.println(F("add '#define SHIFTPWM_USE_TIMER3' before '#include <ShiftPWM.h>' to switch to timer 3."));
Serial.print(F("OCR1A: ")); Serial.println(OCR1A, DEC);
Serial.print(F("Prescaler: ")); Serial.println(m_prescaler);
//Re-enable Interrupt
bitSet(TIMSK1,OCIE1A);
}
else if(m_timer==3){
Serial.println(F("Timer3 in use."));
Serial.print(F("OCR3A: ")); Serial.println(OCR3A, DEC);
Serial.print(F("Presclaler: ")); Serial.println(m_prescaler);
//Re-enable Interrupt
bitSet(TIMSK3,OCIE3A);
}
#else
if(m_timer==1){
Serial.println(F("Timer1 in use for highest precision."));
Serial.println(F("add '#define SHIFTPWM_USE_TIMER2' before '#include <ShiftPWM.h>' to switch to timer 2."));
Serial.print(F("OCR1A: ")); Serial.println(OCR1A, DEC);
Serial.print(F("Prescaler: ")); Serial.println(m_prescaler);
//Re-enable Interrupt
bitSet(TIMSK1,OCIE1A);
}
else if(m_timer==2){
Serial.println(F("Timer2 in use."));
Serial.print(F("OCR2A: ")); Serial.println(OCR2A, DEC);
Serial.print(F("Presclaler: ")); Serial.println(m_prescaler);
//Re-enable Interrupt
bitSet(TIMSK2,OCIE2A);
}
#endif
}