forked from riya-17/FaceRecognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFaceRecognizer.py
168 lines (129 loc) · 5.45 KB
/
FaceRecognizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# import the packages that are required
from imutils import face_utils
from imutils.face_utils import FaceAligner
import face_recognition
import numpy as np
import argparse
import imutils
import dlib
import pickle
import cv2
import uuid
import rotateImage
def rect_to_bb(rect):
# we will take the bounding box predicted by dlib library
# and convert it into (x, y, w, h) where x, y are coordinates
# and w, h are width and height
x = rect.left()
y = rect.top()
w = rect.right() - x
h = rect.bottom() - y
return (x, y, w, h)
def shape_to_np(shape, dtype="int"):
# initialize (x, y) coordinates to zero
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# loop through 68 facial landmarks and convert them
# to a 2-tuple of (x, y)- coordinates
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
# construct the arguments
# if you want to pass arguments at the time of running code
# follow below code and format for running code
"""
#ap.add_argument("-e", "--encodings", required=True,
# help="path to serialized db of facial encodings")
#ap.add_argument("-i", "--image", required=True,
# help="path to input image")
#ap.add_argument("-d", "--detection-method", type=str, default="cnn",
# help="face detection model to use: either `hog` or `cnn`")
#args = vars(ap.parse_args())
python recognize_faces_image.py --encodings encodings.pickle --image examples/example_01.png
"""
# if you want to use predefined path than define the path in a variable
args = {
"shape_predictor": "complete_path/shape_predictor_68_face_landmarks.dat",
"image": "complete_path/input_image.jpg",
"encodings": "complete_path/encodings.pickle",
"detection_method": "cnn"
}
# initialize dlib's face detector and facial landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args["shape_predictor"])
face = FaceAligner(predictor, desiredFaceWidth=256)
# Load input image, resize and convert it to grayscale
image = cv2.imread(args["image"])
image = imutils.resize(image, width=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale image
cv2.imshow("Input", image)
rects = detector(gray, 1)
# loop over the faces that are detected
for (i, rect) in enumerate(rects):
# Detected face landmark (x, y)-coordinates are converted into
# Numpy array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# convert dlib's rectangle to OpenCV bounding box and draw
# [i.e., (x, y, w, h)]
(x, y, w, h) = face_utils.rect_to_bb(rect)
faceOrig = imutils.resize(image[y:y + h, x:x + w], width=256)
faceAligned = face.align(image, gray, rect)
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)
f = str(uuid.uuid4())
cv2.imwrite("foo/" + f + ".png", faceAligned)
# shows the face number
cv2.putText(image, "Face #{}".format(i + 1), (x - 10, y - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
# loop over the (x, y) coordinate for facial landmark and drow on th image
for (x, y) in shape:
cv2.circle(image, (x, y), 1, (0, 0, 255), -1)
cv2.imshow("Original", faceOrig)
cv2.imshow("Aligned", faceAligned)
cv2.waitKey(0)
# show output with facial landmarks
cv2.imshow("Landmarks", image)
# load the known faces and embeddings
print("[INFO] loading encodings...")
data = pickle.loads(open(args["encodings"], "rb").read())
# load the input image and convert it from BGR to RGB
image = cv2.imread(args["image"])
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# detect the (x, y) coordinates of the bounding box corresponding to
# each face inthe input image and compute facial embeddings for each face
print("[INFO] recognizing faces...")
boxes = face_recognition.face_locations(rgb, model = args["detection_method"])
encodings = face_recognition.face_encodings(rgb, boxes)
# initialize the list of names of detected faces
names = []
# loop over facial embeddings
for encoding in encodings:
# compares each face in the input image to our known encodings
matches = face_recognition.compare_faces(data["encodings"], encoding)
name = "Unknown"
# check if match is found or not
if True in matches:
#find the indexes of all matches and initialize a dictionary
# to count number of times a match occur
matchedIdxs = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over matched indexes and maintain a count for each face
for i in matchedIdxs:
name = data["names"][i]
counts[name] = counts.get(name, 0) + 1
# Select the recognized face with maximum number of matches and
# if there is a tie Python selects first entry from the dictionary
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ((top, right, bottom, left), name) in zip(boxes, names):
# draw predicted face name on image
cv2.rectangle(image, (left, top), (right, bottom), (0, 255, 0), 2)
y = top - 15 if top - 15 > 15 else top + 15
cv2.putText(image, name, (left, y), cv2.FONT_HERSHEY_SIMPLEX,
0.75, (0, 255, 0), 2)
# Output Image
cv2.imshow("Detected face", image)
cv2.waitKey(0)
rotateImage.rotateFunction(image)