-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathWavelets.py
396 lines (355 loc) · 13.4 KB
/
Wavelets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import numpy as NP
"""
A module which implements the continuous wavelet transform
---------------------------------------------------------
Code released under the BSD 3-clause licence.
Copyright (c) 2012, R W Fearick, University of Cape Town
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the University of Cape Town nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------
Wavelet classes:
Morlet
MorletReal
MexicanHat
Paul2 : Paul order 2
Paul4 : Paul order 4
DOG1 : 1st Derivative Of Gaussian
DOG4 : 4th Derivative Of Gaussian
Haar : Unnormalised version of continuous Haar transform
HaarW : Normalised Haar
Usage e.g.
wavelet=Morlet(data, largestscale=2, notes=0, order=2, scaling="log")
data: Numeric array of data (float), with length ndata.
Optimum length is a power of 2 (for FFT)
Worst-case length is a prime
largestscale:
largest scale as inverse fraction of length
scale = len(data)/largestscale
smallest scale should be >= 2 for meaningful data
notes: number of scale intervals per octave
if notes == 0, scales are on a linear increment
order: order of wavelet for wavelets with variable order
[Paul, DOG, ..]
scaling: "linear" or "log" scaling of the wavelet scale.
Note that feature width in the scale direction
is constant on a log scale.
Attributes of instance:
wavelet.cwt: 2-d array of Wavelet coefficients, (nscales,ndata)
wavelet.nscale: Number of scale intervals
wavelet.scales: Array of scale values
Note that meaning of the scale will depend on the family
wavelet.fourierwl: Factor to multiply scale by to get scale
of equivalent FFT
Using this factor, different wavelet families will
have comparable scales
References:
A practical guide to wavelet analysis
C Torrance and GP Compo
Bull Amer Meteor Soc Vol 79 No 1 61-78 (1998)
naming below vaguely follows this.
updates:
(24/2/07): Fix Morlet so can get MorletReal by cutting out H
(10/04/08): Numeric -> numpy
(25/07/08): log and lin scale increment in same direction!
swap indices in 2-d coeffiecient matrix
explicit scaling of scale axis
"""
class Cwt:
"""
Base class for continuous wavelet transforms
Implements cwt via the Fourier transform
Used by subclass which provides the method wf(self,s_omega)
wf is the Fourier transform of the wavelet function.
Returns an instance.
"""
fourierwl=1.00
def _log2(self, x):
# utility function to return (integer) log2
return int( NP.log(float(x))/ NP.log(2.0)+0.0001 )
def __init__(self, data, largestscale=1, notes=0, order=2, scaling='linear'):
"""
Continuous wavelet transform of data
data: data in array to transform, length must be power of 2
notes: number of scale intervals per octave
largestscale: largest scale as inverse fraction of length
of data array
scale = len(data)/largestscale
smallest scale should be >= 2 for meaningful data
order: Order of wavelet basis function for some families
scaling: Linear or log
"""
ndata = len(data)
self.order=order
self.scale=largestscale
self._setscales(ndata,largestscale,notes,scaling)
self.cwt= NP.zeros((self.nscale,ndata), NP.complex64)
omega= NP.array(range(0,ndata/2)+range(-ndata/2,0))*(2.0*NP.pi/ndata)
datahat=NP.fft.fft(data)
self.fftdata=datahat
#self.psihat0=self.wf(omega*self.scales[3*self.nscale/4])
# loop over scales and compute wvelet coeffiecients at each scale
# using the fft to do the convolution
for scaleindex in range(self.nscale):
currentscale=self.scales[scaleindex]
self.currentscale=currentscale # for internal use
s_omega = omega*currentscale
psihat=self.wf(s_omega)
psihat = psihat * NP.sqrt(2.0*NP.pi*currentscale)
convhat = psihat * datahat
W = NP.fft.ifft(convhat)
self.cwt[scaleindex,0:ndata] = W
return
def _setscales(self,ndata,largestscale,notes,scaling):
"""
if notes non-zero, returns a log scale based on notes per ocave
else a linear scale
(25/07/08): fix notes!=0 case so smallest scale at [0]
"""
if scaling=="log":
if notes<=0: notes=1
# adjust nscale so smallest scale is 2
noctave=self._log2( ndata/largestscale/2 )
self.nscale=notes*noctave
self.scales=NP.zeros(self.nscale,float)
for j in range(self.nscale):
self.scales[j] = ndata/(self.scale*(2.0**(float(self.nscale-1-j)/notes)))
elif scaling=="linear":
nmax=ndata/largestscale/2
self.scales=NP.arange(float(2),float(nmax))
self.nscale=len(self.scales)
else: raise ValueError, "scaling must be linear or log"
return
def getdata(self):
"""
returns wavelet coefficient array
"""
return self.cwt
def getcoefficients(self):
return self.cwt
def getpower(self):
"""
returns square of wavelet coefficient array
"""
return (self.cwt* NP.conjugate(self.cwt)).real
def getscales(self):
"""
returns array containing scales used in transform
"""
return self.scales
def getnscale(self):
"""
return number of scales
"""
return self.nscale
# wavelet classes
class Morlet(Cwt):
"""
Morlet wavelet
"""
_omega0=5.0
fourierwl=4* NP.pi/(_omega0+ NP.sqrt(2.0+_omega0**2))
def wf(self, s_omega):
H= NP.ones(len(s_omega))
n=len(s_omega)
H[s_omega < 0.0] = 0.0
# !!!! note : was s_omega/8 before 17/6/03
xhat=0.75112554*( NP.exp(-(s_omega-self._omega0)**2/2.0))*H
return xhat
class MorletReal(Cwt):
"""
Real Morlet wavelet
"""
_omega0=5.0
fourierwl=4* NP.pi/(_omega0+ NP.sqrt(2.0+_omega0**2))
def wf(self, s_omega):
H= NP.ones(len(s_omega))
n=len(s_omega)
H[s_omega < 0.0] = 0.0
# !!!! note : was s_omega/8 before 17/6/03
xhat=0.75112554*( NP.exp(-(s_omega-self._omega0)**2/2.0)+ NP.exp(-(s_omega+self._omega0)**2/2.0)- NP.exp(-(self._omega0)**2/2.0)+ NP.exp(-(self._omega0)**2/2.0))
return xhat
class Paul4(Cwt):
"""
Paul m=4 wavelet
"""
fourierwl=4* NP.pi/(2.*4+1.)
def wf(self, s_omega):
n=len(s_omega)
xhat= NP.zeros(n)
xhat[0:n/2]=0.11268723*s_omega[0:n/2]**4* NP.exp(-s_omega[0:n/2])
#return 0.11268723*s_omega**2*exp(-s_omega)*H
return xhat
class Paul2(Cwt):
"""
Paul m=2 wavelet
"""
fourierwl=4* NP.pi/(2.*2+1.)
def wf(self, s_omega):
n=len(s_omega)
xhat= NP.zeros(n)
xhat[0:n/2]=1.1547005*s_omega[0:n/2]**2* NP.exp(-s_omega[0:n/2])
#return 0.11268723*s_omega**2*exp(-s_omega)*H
return xhat
class Paul(Cwt):
"""
Paul order m wavelet
"""
def wf(self, s_omega):
Cwt.fourierwl=4* NP.pi/(2.*self.order+1.)
m=self.order
n=len(s_omega)
normfactor=float(m)
for i in range(1,2*m):
normfactor=normfactor*i
normfactor=2.0**m/ NP.sqrt(normfactor)
xhat= NP.zeros(n)
xhat[0:n/2]=normfactor*s_omega[0:n/2]**m* NP.exp(-s_omega[0:n/2])
#return 0.11268723*s_omega**2*exp(-s_omega)*H
return xhat
class MexicanHat(Cwt):
"""
2nd Derivative Gaussian (mexican hat) wavelet
"""
fourierwl=2.0* NP.pi/ NP.sqrt(2.5)
def wf(self, s_omega):
# should this number be 1/sqrt(3/4) (no pi)?
#s_omega = s_omega/self.fourierwl
#print max(s_omega)
a=s_omega**2
b=s_omega**2/2
return a* NP.exp(-b)/1.1529702
#return s_omega**2*exp(-s_omega**2/2.0)/1.1529702
class DOG4(Cwt):
"""
4th Derivative Gaussian wavelet
see also T&C errata for - sign
but reconstruction seems to work best with +!
"""
fourierwl=2.0* NP.pi/ NP.sqrt(4.5)
def wf(self, s_omega):
return s_omega**4* NP.exp(-s_omega**2/2.0)/3.4105319
class DOG1(Cwt):
"""
1st Derivative Gaussian wavelet
but reconstruction seems to work best with +!
"""
fourierwl=2.0* NP.pi/ NP.sqrt(1.5)
def wf(self, s_omega):
dog1= NP.zeros(len(s_omega),complex64)
dog1.imag=s_omega* NP.exp(-s_omega**2/2.0)/sqrt(pi)
return dog1
class DOG(Cwt):
"""
Derivative Gaussian wavelet of order m
but reconstruction seems to work best with +!
"""
def wf(self, s_omega):
try:
from scipy.special import gamma
except ImportError:
print "Requires scipy gamma function"
raise ImportError
Cwt.fourierwl=2* NP.pi/ NP.sqrt(self.order+0.5)
m=self.order
dog=1.0J**m*s_omega**m* NP.exp(-s_omega**2/2)/ NP.sqrt(gamma(self.order+0.5))
return dog
class Haar(Cwt):
"""
Continuous version of Haar wavelet
"""
# note: not orthogonal!
# note: s_omega/4 matches Lecroix scale defn.
# s_omega/2 matches orthogonal Haar
# 2/8/05 constants adjusted to match artem eim
fourierwl=1.0#1.83129 #2.0
def wf(self, s_omega):
haar= NP.zeros(len(s_omega),complex64)
om = s_omega[:]/self.currentscale
om[0]=1.0 #prevent divide error
#haar.imag=4.0*sin(s_omega/2)**2/om
haar.imag=4.0* NP.sin(s_omega/4)**2/om
return haar
class HaarW(Cwt):
"""
Continuous version of Haar wavelet (norm)
"""
# note: not orthogonal!
# note: s_omega/4 matches Lecroix scale defn.
# s_omega/2 matches orthogonal Haar
# normalised to unit power
fourierwl=1.83129*1.2 #2.0
def wf(self, s_omega):
haar= NP.zeros(len(s_omega),complex64)
om = s_omega[:]#/self.currentscale
om[0]=1.0 #prevent divide error
#haar.imag=4.0*sin(s_omega/2)**2/om
haar.imag=4.0* NP.sin(s_omega/2)**2/om
return haar
if __name__=="__main__":
import numpy as np
import pylab as mpl
wavelet=Morlet
maxscale=4
notes=16
scaling="log" #or "linear"
#scaling="linear"
plotpower2d=True
# set up some data
Ns=1024
#limits of analysis
Nlo=0
Nhi=Ns
# sinusoids of two periods, 128 and 32.
x=np.arange(0.0,1.0*Ns,1.0)
A=np.sin(2.0*np.pi*x/128.0)
B=np.sin(2.0*np.pi*x/32.0)
A[512:768]+=B[0:256]
# Wavelet transform the data
cw=wavelet(A,maxscale,notes,scaling=scaling)
scales=cw.getscales()
cwt=cw.getdata()
# power spectrum
pwr=cw.getpower()
scalespec=np.sum(pwr,axis=1)/scales # calculate scale spectrum
# scales
y=cw.fourierwl*scales
x=np.arange(Nlo*1.0,Nhi*1.0,1.0)
fig=mpl.figure(1)
# 2-d coefficient plot
ax=mpl.axes([0.4,0.1,0.55,0.4])
mpl.xlabel('Time [s]')
plotcwt=np.clip(np.fabs(cwt.real), 0., 1000.)
if plotpower2d: plotcwt=pwr
im=mpl.imshow(plotcwt,cmap=mpl.cm.jet,extent=[x[0],x[-1],y[-1],y[0]],aspect='auto')
#colorbar()
if scaling=="log": ax.set_yscale('log')
mpl.ylim(y[0],y[-1])
ax.xaxis.set_ticks(np.arange(Nlo*1.0,(Nhi+1)*1.0,100.0))
ax.yaxis.set_ticklabels(["",""])
theposition=mpl.gca().get_position()
# data plot
ax2=mpl.axes([0.4,0.54,0.55,0.3])
mpl.ylabel('Data')
pos=ax.get_position()
mpl.plot(x,A,'b-')
mpl.xlim(Nlo*1.0,Nhi*1.0)
ax2.xaxis.set_ticklabels(["",""])
mpl.text(0.5,0.9,"Wavelet example with extra panes",
fontsize=14,bbox=dict(facecolor='green',alpha=0.2),
transform = fig.transFigure,horizontalalignment='center')
# projected power spectrum
ax3=mpl.axes([0.08,0.1,0.29,0.4])
mpl.xlabel('Power')
mpl.ylabel('Period [s]')
vara=1.0
if scaling=="log":
mpl.loglog(scalespec/vara+0.01,y,'b-')
else:
mpl.semilogx(scalespec/vara+0.01,y,'b-')
mpl.ylim(y[0],y[-1])
mpl.xlim(1000.0,0.01)
mpl.show()