-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0098.py
69 lines (62 loc) · 2.22 KB
/
0098.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# Source: https://leetcode.com/problems/validate-binary-search-tree
# Title: Validate Binary Search Tree
# Difficulty: Medium
# Author: Mu Yang <http://muyang.pro>
################################################################################################################################
# Given the root of a binary tree, determine if it is a valid binary search tree (BST).
#
# A valid BST is defined as follows:
#
# The left subtree of a node contains only nodes with keys less than the node's key.
# The right subtree of a node contains only nodes with keys greater than the node's key.
# Both the left and right subtrees must also be binary search trees.
#
# Example 1:
#
# https://assets.leetcode.com/uploads/2020/12/01/tree1.jpg
#
# Input: root = [2,1,3]
# Output: true
#
# Example 2:
#
# https://assets.leetcode.com/uploads/2020/12/01/tree2.jpg
#
# Input: root = [5,1,4,null,null,3,6]
# Output: false
# Explanation: The root node's value is 5 but its right child's value is 4.
#
# Constraints:
#
# The number of nodes in the tree is in the range [1, 10^4].
# -23^1 <= Node.val <= 23^1 - 1
#
################################################################################################################################
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
if not root:
return True
valid, _, _ = self.isValidBSTInner(root)
return valid
def isValidBSTInner(self, root):
# Check left
if root.left:
left_valid, left_min, left_max = self.isValidBSTInner(root.left)
if not (left_valid and left_max < root.val):
return False, None, None
else:
left_min = root.val
# Check right
if root.right:
right_valid, right_min, right_max = self.isValidBSTInner(root.right)
if not (right_valid and root.val < right_min):
return False, None, None
else:
right_max = root.val
return True, left_min, right_max