-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path0509.go
63 lines (56 loc) · 1.41 KB
/
0509.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// Source: https://leetcode.com/problems/fibonacci-number
// Title: Fibonacci Number
// Difficulty: Easy
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,
//
// F(0) = 0, F(1) = 1
// F(n) = F(n - 1) + F(n - 2), for n > 1.
//
// Given n, calculate F(n).
//
// Example 1:
//
// Input: n = 2
// Output: 1
// Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
//
// Example 2:
//
// Input: n = 3
// Output: 2
// Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
//
// Example 3:
//
// Input: n = 4
// Output: 3
// Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
//
// Constraints:
//
// 0 <= n <= 30
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
import (
"math"
)
func fib(n int) int {
if n == 0 {
return 0
}
prev, curr := 0, 1
for i := 1; i < n; i++ {
prev, curr = curr, prev+curr
}
return curr
}
// F(n) = (Phi^n + Phi^-n)/sqrt(5)
// Since Phi^n < 1, we may use round instead
func fib2(n int) int {
invSqrt5 := math.Sqrt(0.2)
res := math.Pow(math.Phi, float64(n)) * invSqrt5
return int(math.Round(res))
}