-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1572.go
57 lines (53 loc) · 1.44 KB
/
1572.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// Source: https://leetcode.com/problems/matrix-diagonal-sum
// Title: Matrix Diagonal Sum
// Difficulty: Easy
// Author: Mu Yang <http://muyang.pro>
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Given a square matrix mat, return the sum of the matrix diagonals.
//
// Only include the sum of all the elements on the primary diagonal and all the elements on the secondary diagonal that are not part of the primary diagonal.
//
// Example 1:
//
// https://assets.leetcode.com/uploads/2020/08/14/sample_1911.png
//
// Input: mat = [[1,2,3],
// [4,5,6],
// [7,8,9]]
// Output: 25
// Explanation:
// Diagonals sum: 1 + 5 + 9 + 3 + 7 = 25
// Notice that element mat[1][1] = 5 is counted only once.
//
// Example 2:
//
// Input: mat = [[1,1,1,1],
// [1,1,1,1],
// [1,1,1,1],
// [1,1,1,1]]
// Output: 8
//
// Example 3:
//
// Input: mat = [[5]]
// Output: 5
//
// Constraints:
//
// n == mat.length == mat[i].length
// 1 <= n <= 100
// 1 <= mat[i][j] <= 100
//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
package main
func diagonalSum(mat [][]int) int {
n := len(mat)
sum := 0
for i := 0; i < n; i++ {
sum += mat[i][i] + mat[i][n-i-1]
}
if n%2 == 1 {
sum -= mat[n/2][n/2]
}
return sum
}