-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_im3shape.py
executable file
·426 lines (375 loc) · 20.5 KB
/
run_im3shape.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#Single epoch driver for im3shape (a model-fitting shape measurement code) for use on e.g. a coadd
#You need to install im3shape (https://bitbucket.org/joezuntz/im3shape) to use it
#The SExtractor segmentation map can (and usually should!) be used to mask neighbouring objects when fitting
#This process is a bit more complicated in Balrog, since within Balrog SExtractor will be run in assoc mode,
#which won't produce the necessary segmentation mask (you need to run SExtractor in normal mode, after inserting
#galaxies). Having a segmentation map both from the full run, and the assoc run allows both masking, and the matching
#of objects identified in the full run, to the assoc run. This allows the use of uberseg. Hence the option '--seg_filnames'
#can be used with two segmentation maps.
import py3shape
import numpy as np
import galsim
import galsim.des
import os
import time
import pyfits
import argparse
import logging
from scipy.stats import mode
from py3shape.analyse import get_psf_params
#im3shape defaults
class DEFAULT:
BALROG_DIR = '/'.join( os.path.realpath(__file__).split('/')[:-1] )
ASTRO_DIR = os.path.join( BALROG_DIR, 'astro_config' )
IM3_OPTIONS = os.path.join( ASTRO_DIR, 'im3_options.ini' )
#create galaxy catalog dictionary from fits catalog
def get_gal_cat(args):
gal_cat={}
ext=2
if args.cat_filename[-1]==']' and args.cat_filename[-3]=='[':
try:
ext=int(args.cat_filename[-2])
args.cat_filename = args.cat_filename[:-3]
except TypeError:
print 'specify catalog as fits filename (optionally) with extension appended in square brackets'
print 'e.g. bullet_cat.fits[2], 2 is the default extension'
gal_data = pyfits.getdata(args.cat_filename,ext)
gal_cat['X_IMAGE'] = gal_data[args.x_image_col]
gal_cat['Y_IMAGE'] = gal_data[args.y_image_col]
gal_cat['ID'] = gal_data[args.id_col]
gal_cat['RA'] = gal_data[args.ra_col]
gal_cat['DEC'] = gal_data[args.dec_col]
return gal_cat
#Read Balrog output catalog to get positions of galaxies
def read_Balrog_output(catalog):
return
def getPSFExarray(psfex, pos, nsidex, nsidey, upsampling=1, offset=None):
"""Return an image of the PSFEx model of the PSF as a NumPy array.
Arguments
---------
psfex A galsim.des.PSFEx instance opened using, for example,
`psfex = galsim.des.DES_PSFEx(psfex_file_name)`.
pos galsim PositionD
nsidex Size of PSF image along x [pixels]
nsidey Size of PSF image along y [pixels]
upsampling Upsampling (see Zuntz et al 2013)
Returns a NumPy array with shape (nsidey, nsidex) - note the reversal of y and x to match the
NumPy internal [y, x] style array ordering. This is to ensure that `pyfits.writeto()` using the
ouput array creates FITS-compliant output.
"""
image = galsim.ImageD(nsidex, nsidey)
psf = psfex.getPSF(pos)
psf.draw(image, scale=1./upsampling, offset=offset)
return image.array
def get_stamp(image,x_pos,y_pos,stamp_size):
"Get postage stamp to run im3shape on"
"Expects galsim image, SExtractor X_IMAGE,Y_IMAGE and stamp size as input"
"Returns stamp, x0 and y0 - coordinates of object in stamp (starting from 0)"
half=stamp_size/2.
x_min,x_max,y_min,y_max = int(x_pos-half),int(x_pos+half),int(y_pos-half),int(y_pos+half)
over_edge = (x_min<0) | (y_min<0) | (x_max>image.array.shape[1]) | (y_max>image.array.shape[0])
if over_edge:
logging.warning('galaxy stamp overlaps edge of image, skipping')
return 1
subBounds = galsim.BoundsI(x_min,x_max-1,y_min,y_max-1)
stamp = image[subBounds]
#stamp = img_data[ypos-half:ypos+half, xpos-half:xpos+half]
x0,y0 = x_pos - x_min, y_pos - y_min
return stamp.array, x0, y0
def convert_g_image2sky(local, g1image, g2image):
"""Return the ellipticity (g1sky, g2sky) in sky coordinates corresponding to the input
(g1image, g2image).
Uses the ellipticity convention |g| = (a-b)/(a+b).
Currently only works for scalar input g1image, g2image, but can be called in list
comprehensions.
"""
Aimage2sky = np.array([[local.dudx,local.dudy],[local.dvdx,local.dvdy]])
e1image, e2image = py3shape.utils.convert_e_linear_to_quadratic(g1image, g2image)
# Build the ellipticity matrix
Ei = np.array(((1. + e1image, e2image), (e2image, 1. - e1image)))
# Perform the transformation
Es = np.dot(np.dot(Aimage2sky, Ei), Aimage2sky.T)
# Extract the ellipticities and convert back to the linear |g|=(a-b)/(a+b) ellips
Estrace = Es.trace()
e1sky, e2sky = (Es[0, 0] - Es[1, 1]) / Estrace, 2. * Es[0, 1] / Estrace
g1sky, g2sky = py3shape.utils.convert_e_quadratic_to_linear(e1sky, e2sky)
return g1sky, g2sky
def seg_to_mask_basic(identifier,seg_stamp):
if identifier not in seg_stamp:
print 'target object not in segmentation mask...'
mask=np.ones(seg_stamp.shape)
mask[((seg_stamp!=0) & (seg_stamp!=identifier))] = 0
return mask
def seg_to_mask_uber(identifier,seg_stamp):
#Object id in seg map should be
#First check that expected object is in seg map
if identifier not in seg_stamp:
print 'ID not in seg...'
raise ValueError
#First get all indices of all seg map pixels which contain an object i.e. are not equal to zero
obj_inds = np.where(seg_stamp!=0)
mask=np.ones(seg_stamp.shape)
#Then loop through pixels in seg map, check which obj ind it is closest to.
#If the closest obj ind does not correspond to the target, set this pixel in the weight map to zero.
for i,row in enumerate(seg_stamp):
for j, element in enumerate(row):
obj_dists = (i-obj_inds[0])**2 + (j-obj_inds[1])**2
ind_min=np.argmin(obj_dists)
if seg_stamp[obj_inds[0][ind_min],obj_inds[1][ind_min]] != identifier:
mask[i,j] = 0.
return mask
def get_fits_extension(input_filename):
ext=0
output_filename=input_filename
if input_filename[-1]==']' and input_filename[-3]=='[':
try:
ext=int(input_filename[-2])
output_filename = input_filename[:-3]
except TypeError:
print 'specify image/weight/seg as fits filename with extension appended in square brackets'
print 'e.g. bullet.fits[2], default extension is 0'
raise
return output_filename,ext
def main(args):
# load the options file
options=py3shape.Options(args.ini_filename)
options.validate()
#Get extra command line ini file options
if args.extra_options is not None:
for opt in args.extra_options:
key,val = opt.split('=')
setattr(options, key, val)
# Read in the FITS data
img_filename,img_ext = get_fits_extension(args.img_filename)
if args.weight_filename:
weight_filename,weight_ext = get_fits_extension(args.weight_filename)
weight_gs = galsim.fits.read(weight_filename,hdu=weight_ext)
if args.seg_filenames:
seg_imgs=[]
for seg_file in args.seg_filenames:
seg_filename, seg_ext = get_fits_extension(seg_file)
seg_imgs.append(galsim.fits.read(seg_filename,hdu=seg_ext))
#Read in image
image_gs=galsim.fits.read(img_filename,hdu=img_ext)
img_data=image_gs.array
#Get wcs info:
wcs = image_gs.wcs
#Read psfex file
try:
psfexer = galsim.des.DES_PSFEx(args.psf_filename,args.img_filename)
except Exception:
logging.error('failed to read psf file %s',(args.psf_filename))
raise
#Read in catalog data
gal_cat = get_gal_cat(args)
# Create i3_image of certain stamp size
stamp_size = options.stamp_size
#overwrite the output filename
options.output_filename = args.out_filename
options.save_output = False
extra_cols=['e1_sky','e2_sky']
if args.psf_props:
extra_cols+=['psf_fwhm','psf_e1','psf_e2']
if args.masking_type=='all':
extra_cols+=['e1_nomask','e2_nomask','e1_uber','e2_uber']
#exclude following columns...this is messy, probably better to define new single epoch output object in im3shape...
excluded_cols = ['exposure_x','exposure_y','exposure_e1','exposure_e2','exposure_chi2',
'mean_flux','exposure_residual_stdev']
output = py3shape.output.Output(args.out_filename, options, excluded_cols=excluded_cols)
extra_lines=['driver: Balrog/run_im3shape.py',
'ini file: %s' % (args.ini_filename,),
'catalog file: %s' % (args.cat_filename,),
'image file: %s' % (args.img_filename,),
'psfex file: %s' % (args.psf_filename,),
'first object: %s' % (args.first,),
'last object: %s' % (args.last,)]
output.write_header(include_radec=True, extra_cols=extra_cols,extra_lines=extra_lines)
#Write extra lines to info() log
for extra_line in extra_lines:
logging.info(extra_line)
#main galaxy loop
ID=gal_cat['ID']
X_IMAGE=gal_cat['X_IMAGE']
Y_IMAGE=gal_cat['Y_IMAGE']
RA,DEC=gal_cat['RA'],gal_cat['DEC']
if args.last==None or args.last>len(ID)-1:
args.last = len(ID)-1
# Loop over objects in catalog
logging.info('Analyzing %d/%d galaxies' % (min(args.last-args.first+1,len(gal_cat['ID'])), len(gal_cat['ID'])))
start_time = time.clock()
for i in range(args.first,args.last+1):
# Read galaxy catalog entry
identifier = ID[i]
print identifier
xpos = X_IMAGE[i]
ypos = Y_IMAGE[i]
#Get image stamp
stamp_stuff = get_stamp(image_gs,X_IMAGE[i],Y_IMAGE[i],options.stamp_size)
try:
stamp,x0,y0 = stamp_stuff
except TypeError:
#if stamp_stuff==1:
# logging.warning('galaxy %d stamp overlaps edge of image, skipping',identifier)
#else:
# logging.warning('failed to get stamp for galaxy %d, skipping',identifier)
continue
#Get weight stamp and mask stamp:
if args.weight_filename:
weight_stamp,_,_ = get_stamp(weight_gs,xpos,ypos,options.stamp_size)
#Set negative values to zero
weight_stamp[weight_stamp<0]=0
else:
weight_stamp=None
if not args.masking_type=='none':
#Get seg stamp data...decide what to do depending on how many seg files provided.
#If only one provided, this should be the seg map from the original image. Set all non-zero pixels in this image
#to -1, then create mask, that way they won't match ID of any detected simulated objects.
if len(seg_imgs)==1:
seg_stamp,_,_ = get_stamp(seg_imgs[0],xpos,ypos,options.stamp_size)
#np.set_printoptions(threshold=np.nan)
#print 'seg_stamp',seg_stamp
seg_stamp[(seg_stamp!=0)] = -1
mask=seg_to_mask_basic(identifier,seg_stamp)
mask_stamp = py3shape.Image(mask)
#If two provided, combine them in the following way:
if len(seg_imgs)==2:
#np.set_printoptions(threshold=np.nan)
noassoc_seg_stamp,_,_ = get_stamp(seg_imgs[0],xpos,ypos,options.stamp_size)
assoc_seg_stamp,_,_ = get_stamp(seg_imgs[1],xpos,ypos,options.stamp_size)
#Find target object pixels in assoc stamp, and find which pixel value they overlap
#most with in noassoc stamp. What if this is zero? Can't see why this would happen if same SExtractor settings
#used for both seg maps, so for no just log a warning and skip object if this happens...
assoc_obj_inds=np.where(assoc_seg_stamp==identifier)
noassoc_seg_vals=noassoc_seg_stamp[assoc_obj_inds]
try:
noassoc_identifier=mode(noassoc_seg_vals)[0]
except UnboundLocalError:
logging.warning('No object found in seg map....skipping')
continue
#Set pixels in noassoc seg stamp with pixel value noassoc_identifier to identifier, and others to -1
noassoc_obj_inds=np.where(noassoc_seg_stamp==noassoc_identifier)
noassoc_seg_stamp[(noassoc_seg_stamp!=0)] = -1
noassoc_seg_stamp[noassoc_obj_inds] = identifier
if args.masking_type=='seg':
mask=seg_to_mask_basic(identifier,noassoc_seg_stamp)
mask_stamp=py3shape.Image(mask)
if args.masking_type=='uberseg':
mask = seg_to_mask_uber(identifier,noassoc_seg_stamp)
mask_stamp=py3shape.Image(mask)
if args.masking_type=='all':
mask=seg_to_mask_basic(identifier,noassoc_seg_stamp)
uberseg_mask=seg_to_mask_uber(identifier,noassoc_seg_stamp)
mask_stamp = py3shape.Image(mask)
extra_mask_stamps = [py3shape.Image(uberseg_mask),None]
else:
mask_stamp=None
#np.set_printoptions(threshold=np.nan)
#print 'mask_stamp',mask
options.sersics_x0_start = x0
options.sersics_y0_start = y0
#print 'starting coords:',x0,y0
#Get position in stamp for starting position:
galaxy = py3shape.Image(stamp)
#Get psf image
print xpos,ypos
pos = galsim.PositionD(float(xpos), float(ypos)) #Not quite sure why I need float() here...but get galism error if not
psf_size=(options.stamp_size+options.padding)*options.upsampling
try:
psf = getPSFExarray(psfexer, pos, psf_size, psf_size, upsampling=options.upsampling)
psf_Image=py3shape.Image(psf)
except Exception:
logging.warning('failed to get psf for galaxy %d, skipping',identifier)
continue
try:
result,model = py3shape.analyze(galaxy, py3shape.Image(psf), options, weight=weight_stamp, mask=mask_stamp, ID=identifier)
except Exception,emsg:
print emsg
logging.error('im3shape failed for galaxy %d, with following error message:',identifier)
logging.error(emsg)
continue
if args.masking_type=='all':
result_nomask,_=py3shape.analyze(galaxy, psf_Image, options, weight=weight_stamp, mask=extra_mask_stamps[1], ID=identifier)
e1_nomask,e2_nomask = result_nomask.get_params().e1,result_nomask.get_params().e2
result_uber,_=py3shape.analyze(galaxy, psf_Image, options, weight=weight_stamp, mask=extra_mask_stamps[0], ID=identifier)
e1_uber,e2_uber = result_uber.get_params().e1,result_uber.get_params().e2
#Convert e's to sky coordinates...not totally sure about this function...
local_wcs = wcs.local(image_pos=pos)
e1_sky,e2_sky = convert_g_image2sky(local_wcs,result.get_params().e1,result.get_params().e2)
#Measure psf properties
psf_fwhm,psf_e1,psf_e2=(get_psf_params([psf_Image], options, radialProfile=True, hsm=False))[0]
if args.plot:
pylab.subplot(231)
pylab.imshow(stamp,origin='lower',interpolation='nearest')
pylab.subplot(232)
pylab.imshow(model,origin='lower',interpolation='nearest')
pylab.subplot(233)
pylab.imshow(stamp-(model)*stamp.sum(),origin='lower',interpolation='nearest')
pylab.subplot(234)
pylab.imshow(mask,origin='lower',interpolation='nearest')
if args.masking_type=='all':
pylab.subplot(235)
pylab.imshow(uberseg_mask,origin='lower',interpolation='nearest')
pylab.show()
extra_output=[e1_sky,e2_sky]
if args.psf_props:
extra_output+=[psf_fwhm,psf_e1,psf_e2]
if args.masking_type=='all':
extra_output+=[e1_nomask,e2_nomask,e1_uber,e2_uber]
output.write_row(result, options, psf, extra_output=extra_output,ra=RA[i],dec=DEC[i])
total_time = time.clock() - start_time
ngal = args.last+1 - args.first
logging.info("Total time for processing in Python:" , total_time)
logging.info("Time per galaxy:" , total_time / ngal)
# Set up and parse the command line arguments
description = 'Im3shape measures the shapes of galaxies in astronomical survey images,\n \
taking into account that they have been distorted by a point-spread function.\n \
For more info visit https://bitbucket.org/joezuntz/im3shape\n\n \
Standard usage:\n \
image_file object_catalogue_file psf_file output_filename\n \
[first_object_to_process] [last_object_to_process] [additional options]'
parser = argparse.ArgumentParser(description=description, add_help=True,
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('img_filename', type=str, help='image file, with extension as filename[<ext>], otherwise defaults to 0')
parser.add_argument('cat_filename', type=str, help='object catalogue file, with extension as filename[<ext>], otherwise defaults to 2')
parser.add_argument('psf_filename', type=str, help='psfex file')
parser.add_argument('out_filename', type=str, help='output filename')
parser.add_argument('--first','-f', type=int, default=0, help='[first_image_to_process]')
parser.add_argument('--last', '-l', type=int, default=None, help='[last_image_to_process]')
parser.add_argument('--ini_filename', type=str, default=DEFAULT.IM3_OPTIONS, help='options filename')
parser.add_argument('--weight_filename', type=str, help='weight file, with extension as filename[<ext>], otherwise defaults to 0')
parser.add_argument('--seg_filenames', type=str, nargs='*', help="1 or 2 segmentation mask files (from SExtractor), \
with extension as filename[<ext>], otherwise defaults to 0. If only one, assume it is that from the original image, \
in which case all nonzero pixels are ignored in fit.If two seg files, first should be from simulated image full run, second \
should be from simulated image in assoc mode (allowing object matching/uberseg).")
parser.add_argument('--x_image_col', type=str, default='X_IMAGE', help='name of x column in catalog file, defaults to X_IMAGE')
parser.add_argument('--y_image_col', type=str, default='Y_IMAGE', help='name of y column in catalog file, defaults to X_IMAGE')
parser.add_argument('--id_col', type=str, default='NUMBER', help='name of id column in catalog file, defaults to NUMBER')
parser.add_argument('--ra_col', type=str, default='ALPHAPEAK_J2000', help='name of ra column in catalog file, defaults to ALPHAPEAK_J2000')
parser.add_argument('--dec_col', type=str, default='DELTAPEAK_J2000', help='name of dec column in catalog file, defaults to DELTAPEAK_J2000')
parser.add_argument('--log_file', type=str, default=None, help='name of log file, if not specified, no log file written')
parser.add_argument('--loglevel', type=str, default='INFO', help='python logging level (DEBUG,INFO,WARNING,ERROR...see https://docs.python.org/2/howto/logging.html#)')
parser.add_argument('--masking_type', type=str, default='seg',help="""One of 'seg' (neighbouring object segmentaiton pixels weighted to zero),
'uberseg','none' or 'all'. Need two seg maps to use uberseg""")
parser.add_argument('--psf_props','-pp', action='store_true',help="""Save psf fwhm and ellipticities""")
parser.add_argument('--plot', action='store_true', default=False, help='display image, model and residuals for each galaxy (using pylab.imshow())')
parser.add_argument('-p', '--option', dest='extra_options', action='append',
help='Additional options to be set. Can specify more than once in form -p option=value. Overrides ini file')
if __name__ == "__main__":
args = parser.parse_args()
if args.log_file:
logging.basicConfig(filename=args.log_file,level=getattr(logging, args.loglevel.upper()))
if args.plot:
import pylab
if args.masking_type not in ['seg','uberseg','none','all']:
print "invalid masking type, should be one of 'seg','uberseg','none','all', exiting"
logging.error("invalid masking type, should be one of 'seg','uberseg','none','all', exiting")
exit(1)
if args.masking_type==('uberseg' or 'all') and len(args.seg_filenames) < 2:
print "Need two seg maps to use uberseg, reverting to default 'seg' masking"
logging.warning("Need two seg maps to use uberseg, reverting to default 'seg' masking")
args.masking_type='seg'
if args.masking_type=='seg' and not args.seg_filenames:
print "Need a seg map to do 'seg' masking, but none provided, proceeding without masking"
logging.warning("Need a seg map to do 'seg' masking, but none provided, proceeding without masking")
args.masking_type='none'
main(args)