-
Notifications
You must be signed in to change notification settings - Fork 80
/
tempest_evaluation.py
129 lines (102 loc) · 4.03 KB
/
tempest_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os.path
import argparse
import numpy as np
import logging
import json
from utils import utils_logger
from utils import utils_image as util
from utils import utils_option as option
# OCR metrics
# First, must install Tesseract: https://tesseract-ocr.github.io/tessdoc/Installation.html
# Second, install CER/WER and tesseract python wrapper libraries
# pip install fastwer
# pip install pybind11
# pip install pytesseract
import pytesseract
import fastwer
'''
# -------------------------
# Evaluation metric code
# --------------------------------------------
# Emilio Martínez ([email protected]) 8/2023
'''
def calculate_cer_wer(img_E, img_H):
# Transcribe ground-truth image to text
text_H = pytesseract.image_to_string(img_H).strip().replace('\n',' ')
# Transcribe estimated image to text
text_E = pytesseract.image_to_string(img_E).strip().replace('\n',' ')
cer = fastwer.score_sent(text_E, text_H, char_level=True)
wer = fastwer.score_sent(text_E, text_H)
return cer, wer
def main(json_path='options/evaluation.json'):
'''
# ----------------------------------------
# Step--1 (prepare opt)
# ----------------------------------------
'''
parser = argparse.ArgumentParser()
parser.add_argument('--opt', type=str, default=json_path, help='Path to option JSON file.')
opt = json.load(open(json_path))
# ----------------------------------------
# configure logger
# ----------------------------------------
logger_name = 'evaluation_' + opt['dataroot_H'].split('/')[-2]
utils_logger.logger_info(logger_name, os.path.join(opt['logpath'], logger_name + '.log'))
logger = logging.getLogger(logger_name)
logger.info(option.dict2str(opt))
opt = option.dict_to_nonedict(opt)
border = opt['scale']
"""
# ----------------------------------------
# Step--2 (load paths)
# ----------------------------------------
"""
E_paths = util.get_image_paths(opt['dataroot_E'])
H_paths = util.get_image_paths(opt['dataroot_H'])
'''
# ----------------------------------------
# Step--4 (evaluate estimated images)
# ----------------------------------------
'''
avg_psnr = 0.0
avg_ssim = 0.0
avg_edgeJaccard = 0.0
avg_cer = 0.0
avg_wer = 0.0
idx = 0
for E_path, H_path in zip(E_paths,H_paths):
idx += 1
image_name_ext = os.path.basename(H_path)
###################
### Load images ###
###################
# Load ground-truth image and use mean of channels if is RGB
img_H = util.imread_uint(H_path, n_channels=3)
if img_H.ndim == 3:
img_H = np.mean(img_H, axis=2)
img_H = img_H.astype('uint8')
# Load estimated image in grayscale
img_E = util.imread_uint(E_path, n_channels=1)
img_E = img_E[:,:,0]
# ----------------------------------------
# compute PSNR, SSIM, edgeJaccard and CER
# ----------------------------------------
current_psnr = util.calculate_psnr(img_E, img_H)
current_ssim = util.calculate_ssim(img_E, img_H)
current_edgeJaccard = util.calculate_edge_jaccard(img_E, img_H)
current_cer, current_wer = calculate_cer_wer(img_E, img_H)
logger.info('{:->4d}--> {:>10s} | PSNR = {:<4.2f}dB ; SSIM = {:.3f} ; edgeJaccard = {:.3f} ; CER = {:.3f}% ; WER = {:.3f}%'.format(idx, image_name_ext, current_psnr, current_ssim, current_edgeJaccard, current_cer, current_wer))
avg_psnr += current_psnr
avg_ssim += current_ssim
avg_edgeJaccard += current_edgeJaccard
avg_cer += current_cer
avg_wer += current_wer
avg_psnr = avg_psnr / idx
avg_ssim = avg_ssim / idx
avg_edgeJaccard = avg_edgeJaccard / idx
avg_cer = avg_cer / idx
avg_wer = avg_wer / idx
# Average log
logger.info('[Average metrics] PSNR : {:<4.2f}dB, SSIM = {:.3f} : edgeJaccard = {:.3f} : CER = {:.3f}% : WER = {:.3f}%'.format(avg_psnr, avg_ssim, avg_edgeJaccard, avg_cer, avg_wer))
if __name__ == '__main__':
main()