-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate.py
253 lines (210 loc) · 11.6 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...)
on a text file or a dataset without using HuggingFace Trainer.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import argparse
import logging
import os
import random
import numpy as np
import datasets
import torch
from datasets import load_dataset
from torch.utils.data import DataLoader
import transformers
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
default_data_collator,
)
from transformers.utils.versions import require_version
import evaluate
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(description="Evaluate recognition memory in large language models")
parser.add_argument("--seen_file", type=str, default=None, help="A csv or a json file containing the seen examples.")
parser.add_argument("--save_prefix", type=str, default='', help="Informative string for saving purposes")
parser.add_argument("--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False)
parser.add_argument("--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).")
parser.add_argument("--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.")
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES)
parser.add_argument("--block_size", type=int, default=None, help="The training dataset will be truncated to blocks of this size (after tokenization) for training.")
parser.add_argument("--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.")
parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets")
parser.add_argument("--no_keep_linebreaks", action="store_true", help="Do not keep line breaks when using TXT files.")
args = parser.parse_args()
# Sanity checks
assert args.seen_file is not None, "`seen_file` cannot be None, please provide a valid file of seen examples."
assert args.seen_file.split(".")[-1] in ["csv", "json", "txt"], "`seen_file` should be a csv, json or txt file."
return args
def main():
args = parse_args()
print(args)
# Initialize the accelerator
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the output dir creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantees that only one local process can concurrently download the dataset.
data_files = {"seen": args.seen_file}
dataset_args = {}
extension = args.seen_file.split(".")[-1]
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = not args.no_keep_linebreaks
raw_datasets = load_dataset(extension, data_files=data_files, **dataset_args)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# LOAD PRETRAINED MODEL & TOKENIZER
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently download model & vocab.
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=not args.use_slow_tokenizer, model_max_length=2048) # TODO: pass this more beautifully
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=not args.use_slow_tokenizer, model_max_length=2048) # TODO: pass this more beautifully
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if args.model_name_or_path:
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config)
else:
logger.info("Training new model from scratch")
model = AutoModelForCausalLM.from_config(config)
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets. First we tokenize all the texts.
column_names = raw_datasets["seen"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
block_size = args.block_size
if args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = tokenizer.model_max_length
def tokenize_function(examples):
# no padding
return tokenizer(examples[text_column_name], truncation=True, max_length=block_size)
with accelerator.main_process_first():
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="Running tokenizer on dataset",
)
seen_dataset = tokenized_datasets["seen"]
# Log a few random samples from the seen set:
for index in random.sample(range(len(seen_dataset)), 3):
logger.info(f"Sample {index} of the seen set: {seen_dataset[index]}.")
logger.info(f"Sample {index} of the seen set (decoded): {tokenizer.decode(seen_dataset[index]['input_ids'], skip_special_tokens=True)}.")
# dataloader
seen_dataloader = DataLoader(seen_dataset, shuffle=False, collate_fn=default_data_collator, batch_size=args.per_device_eval_batch_size)
# Prepare everything with our `accelerator`.
model, seen_dataloader = accelerator.prepare(model, seen_dataloader)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
logger.info("***** Running evaluation *****")
logger.info(f"Instantaneous batch size per device = {args.per_device_eval_batch_size}")
logger.info(f"Seen dataset size = {len(seen_dataset)}")
logger.info(f"Seen loader size = {len(seen_dataloader)}")
model.eval()
# generate completions and evaluate
rouge = evaluate.load('rouge')
ground_truths = []
completions = []
prompts = []
for _, batch in enumerate(seen_dataloader):
with torch.no_grad():
len_input_tok = len(batch['input_ids'][0])
new_batch = {'input_ids': batch['input_ids'][:, :(len_input_tok//2)], 'attention_mask': batch['attention_mask'][:, :(len_input_tok//2)]}
output_tok = model.generate(**new_batch, max_length=len_input_tok, min_length=len_input_tok, return_dict_in_generate=False, output_scores=False)
output = tokenizer.decode(output_tok[0], skip_special_tokens=True)
input = tokenizer.decode(batch['input_ids'][0], skip_special_tokens=True)
prompt = tokenizer.decode(new_batch['input_ids'][0], skip_special_tokens=True)
print(input)
print(output)
ground_truths.append(input)
completions.append(output)
prompts.append(prompt)
results = rouge.compute(predictions=completions, references=ground_truths)
print('Rouge results:', results)
# save results
save_path = os.path.join(args.output_dir, args.save_prefix + '_results.npz')
np.savez(save_path, ground_truths=ground_truths, completions=completions, prompts=prompts, results=results)
if __name__ == "__main__":
main()