-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathutils.py
251 lines (211 loc) · 10.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
"""
Util functions
"""
import os
import sys
import torch
from huggingface_hub import hf_hub_download
def get_available_models():
available_models = [
'dino_say_vitb14', 'dino_s_vitb14', 'dino_a_vitb14', 'dino_y_vitb14', 'dino_sfp_vitb14',
'dino_imagenet100_vitb14', 'dino_imagenet10_vitb14', 'dino_imagenet1_vitb14',
'dino_kinetics-200h_vitb14', 'dino_ego4d-200h_vitb14',
'dino_say_resnext50', 'dino_s_resnext50', 'dino_a_resnext50', 'dino_y_resnext50', 'dino_sfp_resnext50',
'dino_say_vitl16', 'dino_s_vitl16', 'dino_a_vitl16', 'dino_y_vitl16',
'dino_say_vitb16', 'dino_s_vitb16', 'dino_a_vitb16', 'dino_y_vitb16',
'dino_say_vits16', 'dino_s_vits16', 'dino_a_vits16', 'dino_y_vits16',
'mugs_say_vitl16', 'mugs_s_vitl16', 'mugs_a_vitl16', 'mugs_y_vitl16',
'mugs_say_vitb16', 'mugs_s_vitb16', 'mugs_a_vitb16', 'mugs_y_vitb16',
'mugs_say_vits16', 'mugs_s_vits16', 'mugs_a_vits16', 'mugs_y_vits16',
'mae_say_vitl16', 'mae_s_vitl16', 'mae_a_vitl16', 'mae_y_vitl16',
'mae_say_vitb16', 'mae_s_vitb16', 'mae_a_vitb16', 'mae_y_vitb16',
'mae_say_vits16', 'mae_s_vits16', 'mae_a_vits16', 'mae_y_vits16',
]
return available_models
def load_model(model_name):
# parse identifier
alg, data, model_spec = model_name.split("_")
# checks
assert alg in ["dino", "mugs", "mae"], "Unrecognized algorithm!"
assert data in ["say", "sfp", "s", "a", "y", "imagenet100", "imagenet10", "imagenet1", "kinetics-200h", "ego4d-200h"], "Unrecognized data!"
assert model_spec in ["resnext50", "vitb14", "vitl16", "vitb16", "vits16"], "Unrecognized architecture!"
if model_spec == "resnext50":
arch, patch_size = "resnext50_32x4d", None
elif model_spec == "vitb14":
arch, patch_size = "vit_base", 14
elif model_spec == "vitl16":
arch, patch_size = "vit_large", 16
elif model_spec == "vitb16":
arch, patch_size = "vit_base", 16
elif model_spec == "vits16":
arch, patch_size = "vit_small", 16
# download checkpoint from hf
checkpoint = hf_hub_download(repo_id="eminorhan/"+model_name, filename=model_name+".pth")
if alg == "dino" or alg == "mugs":
model = build_dino_mugs(arch, patch_size)
load_dino_mugs(model, checkpoint, "teacher")
elif alg == "mae":
model = build_mae(arch, patch_size)
load_mae(model, checkpoint)
return model
def load_dino_mugs(model, pretrained_weights, checkpoint_key):
if os.path.isfile(pretrained_weights):
state_dict = torch.load(pretrained_weights, map_location="cpu")
if checkpoint_key is not None and checkpoint_key in state_dict:
print(f"Take key {checkpoint_key} in provided checkpoint dict")
state_dict = state_dict[checkpoint_key]
# remove `module.` prefix
state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()}
# remove `backbone.` prefix induced by multicrop wrapper
state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()}
# remove `encoder.` prefix if it exists
state_dict = {k.replace("encoder.", ""): v for k, v in state_dict.items()}
msg = model.load_state_dict(state_dict, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))
else:
print("There is no reference weights available for this model => We use random weights.")
def build_dino_mugs(arch, patch_size):
import vision_transformer_dino_mugs as vits
from torchvision import models as torchvision_models
# if the network is a Vision Transformer (i.e. vit_tiny, vit_small, vit_base, vit_large)
if arch in vits.__dict__.keys():
model = vits.__dict__[arch](patch_size=patch_size, num_classes=0)
# otherwise, we check if the architecture is in torchvision models
elif arch in torchvision_models.__dict__.keys():
model = torchvision_models.__dict__[arch]()
model.fc = torch.nn.Identity()
else:
print(f"Unknown architecture: {arch}")
sys.exit(1)
return model
def build_mae(arch, patch_size):
import vision_transformer_mae as vits
full_model_name = arch + "_patch" + str(patch_size)
model = vits.__dict__[full_model_name](num_classes=0, global_pool=False)
return model
def load_mae(model, pretrained_weights):
if os.path.isfile(pretrained_weights):
checkpoint = torch.load(pretrained_weights, map_location='cpu')
checkpoint_model = checkpoint['model']
# interpolate position embedding
interpolate_pos_embed(model, checkpoint_model)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print('Pretrained weights found at {} and loaded with msg: {}'.format(pretrained_weights, msg))
else:
print("There is no reference weights available for this model => We use random weights.")
def interpolate_pos_embed(model, checkpoint_model):
'''
Interpolate position embeddings for high-resolution.
Reference: https://github.com/facebookresearch/deit
'''
if 'pos_embed' in checkpoint_model:
pos_embed_checkpoint = checkpoint_model['pos_embed']
embedding_size = pos_embed_checkpoint.shape[-1]
num_patches = model.patch_embed.num_patches
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
# height (== width) for the checkpoint position embedding
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
# height (== width) for the new position embedding
new_size = int(num_patches ** 0.5)
# class_token and dist_token are kept unchanged
if orig_size != new_size:
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
# only the position tokens are interpolated
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
pos_tokens = torch.nn.functional.interpolate(
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
checkpoint_model['pos_embed'] = new_pos_embed
def preprocess_image(image_path, image_size):
from PIL import Image
from torchvision import transforms as pth_transforms
# open image
if image_path is None:
import requests
from io import BytesIO
# user has not specified any image - we use an image from the DINO repo
print("Since no image path have been provided, we take the first image in our paper.")
response = requests.get("https://dl.fbaipublicfiles.com/dino/img.png")
img = Image.open(BytesIO(response.content))
img = img.convert('RGB')
elif os.path.isfile(image_path):
with open(image_path, 'rb') as f:
img = Image.open(f)
img = img.convert('RGB')
else:
print(f"Provided image path {image_path} is non valid.")
sys.exit(1)
transform = pth_transforms.Compose([
pth_transforms.Resize(image_size),
pth_transforms.ToTensor(),
pth_transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
img = transform(img)
return img
def visualize_attentions(model, img, patch_size, save_name="atts", device=torch.device("cpu"), threshold=None, separate_heads=True):
from torch.nn.functional import interpolate
from torchvision.utils import save_image
import random, colorsys
def random_colors(N, bright=True):
"""
Generate random colors.
"""
brightness = 1.0 if bright else 0.7
hsv = [(i / N, 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.shuffle(colors)
return colors
# make the image divisible by the patch size
w, h = img.shape[1] - img.shape[1] % patch_size, img.shape[2] - img.shape[2] % patch_size
img = img[:, :w, :h].unsqueeze(0)
w_featmap = img.shape[-2] // patch_size
h_featmap = img.shape[-1] // patch_size
attentions = model.get_last_selfattention(img.to(device))
nh = attentions.shape[1] # number of heads
# we keep only the output patch attention (cls token)
attentions = attentions[0, :, 0, 1:].reshape(nh, -1)
if threshold is not None:
# thresholded attention maps: we keep only a certain percentage of the mass
val, idx = torch.sort(attentions)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - threshold)
idx2 = torch.argsort(idx)
for head in range(nh):
th_attn[head] = th_attn[head][idx2[head]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
# interpolate
attentions = interpolate(th_attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0]
else:
attentions = attentions.reshape(nh, w_featmap, h_featmap)
attentions = interpolate(attentions.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0]
# create some random colors for attention heads
colors = random_colors(nh, bright=True)
# bw maps
bw_attentions = torch.zeros(nh, 3, w, h)
for i in range(nh):
bw_attentions[i, 0, :, :] = attentions[i, :, :]
bw_attentions[i, 1, :, :] = attentions[i, :, :]
bw_attentions[i, 2, :, :] = attentions[i, :, :]
print('Attentions min, max:', bw_attentions.min(), bw_attentions.max())
if separate_heads:
save_image(bw_attentions[:7], 'all_heads_' + save_name, nrow=7, padding=0, normalize=True, scale_each=False)
else:
# combined (summed) bw map
bw_combined_map = torch.sum(bw_attentions, 0, keepdim=True)
# combined cl map (colored by maximally active head at each pixel)
cl_combined_map = torch.zeros(1, 3, w, h)
for i in range(w):
for j in range(h):
max_ind = torch.argmax(attentions[:, i, j])
cl_combined_map[0, 0, i, j] = (0.5*colors[max_ind][0] + 0.5) * bw_attentions[max_ind, 0, i, j]
cl_combined_map[0, 1, i, j] = (0.5*colors[max_ind][1] + 0.5) * bw_attentions[max_ind, 1, i, j]
cl_combined_map[0, 2, i, j] = (0.5*colors[max_ind][2] + 0.5) * bw_attentions[max_ind, 2, i, j]
# save combined bw attention map
save_image(bw_combined_map, 'composite_bw_' + save_name, nrow=1, padding=0, normalize=True, scale_each=True)
# save combined cl attention map
save_image(cl_combined_map, 'composite_cl_' + save_name, nrow=1, padding=0, normalize=True, scale_each=True)