-
Notifications
You must be signed in to change notification settings - Fork 0
/
srt.cpp
419 lines (367 loc) · 14.3 KB
/
srt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
/*
* Author: Mahbubur Rahman
*/
#include <iostream>
#include <cstdlib>
#include <string.h>
#include <fstream>
#include <iomanip>
#include <sstream>
using namespace std;
#define debug false // only shows the results after applying SRT method
#define simulation true // enable to see all the simulaiton steps inside SRT method
#define dout debug && cout
#define sout simulation && cout
int total_cost = 0; // counts the total execution time in delta_t
/////////////////////// Compound result structure ///////////////////
//self explanatory
class result{
public:
string remainder, quotient;
int execution_time;
};
/////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////// print helper functions////////////////////////////////////////////////////////////////////////////////////////////////
void println(){dout << endl;}
//specilized print function: decreses visual representation complexity for showing args in console
void println (string str){if(str[0] == '1'){str.insert(1, ".");}else if (str[0] == '0') {str[0] = '.';}else{}dout << str << endl;}
//specilized print function: decreses visual representation complexity for showing args in console
void print(string str){if(str[0] == '1'){str.insert(1, ".");}else if (str[0] == '0'){str[0] = '.';}else{}dout << " " << str << " ";}
//prints in special format to show simulaiton steps
void print_simulation_step(string description, string str, int b = 0, bool ir = false, bool st = false){
int w = 5; int x = 15;
if((str[0] == '1') && !st){str.insert(1, "."); w--;}else if (str[0] == '0') {str[0] = '.';}else{}
if (!b) str.insert(str.length()/2 + 1, " ");
if(b == 1) {str = "\33[4m" + str + "\33[0m";}
sout << std::setw(25) << std::left << description;
sout << std::setw(w) << std::left << ":";
sout << str << std::setw(x) << std::right;
if ((!b && !ir) || (b == 2 && ir)) sout << total_cost << " Δt";
sout << endl;
}
//print any label in middle of the window
void print_simulation_step(string step, int w){sout << std::setw(w) << std::right << "\33[4m" <<step << "\33[0m" << endl;}
//just a new line in simulaiton step
void print_simulation_step(){sout << endl;}
//print the result in proper format
void println(string aq, string b, result res){
dout<<"A = "<<aq<<"\tB = "<<b<<"\nRemainder = "<<res.remainder<<"\tQuotient = "<<res.quotient<<"\tT = "<<res.execution_time<<" Δt.";
dout << endl << endl;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////// check divide overflow function ////////////////////////
// arg1 is value of A, arg2 is the value of B
// returns 1 if devide by zero overflow occurs
// returns 2 if a >= b overflow occurs,
// 0 is no overflow
int arg_check_overflow(const string & arg1, const string & arg2){
int overflow = 1; //assuming devide by zero overflow will occur
// check if B is zero
for (int i = 1; i < arg2.length(); i++){
if(arg2[i] == '1'){
overflow = 0; // B has at least one '1' bit
break;
}
}
if (overflow){ return overflow; } // return divide by zero overflow if occurs;
//check if A >= B
//Assuming this overflow will occur
overflow = 2;
for(int j = 1; j < arg2.length(); j++){ // if no condition is satisfied inside forloop, A = B
if((arg1[j] != arg2[j]) && (arg2[j] == '1')){ // confirms that B > A
overflow = 0;
break;
}
else if((arg1[j] != arg2[j]) && (arg2[j] == '0')){ // confirms that A > B
break;
}
}
return overflow;
}
///////////////////////////////////////////////////////////////////////////////
////////////////////// Normalize Args/////////////////////////
// arg: inplace normalization pointer for argmuent
// factor: number of bits normalized
// mode: defines whether normalizing or adjusting. default: normalization
void arg_normalize(string & arg, int & factor, int mode = 0){
// normalize upto normalization factor
if (mode == 1){
int j = 1;
while (j <= factor)
{
for(int i = 1; i < arg.length()-1; i++){
arg[i] = arg[i+1];
}
arg[arg.length()-1] = '*';
j++;
total_cost += 3; // each shift for adjustment costs 3dt
}
}
// normalize and find the normalization factor
else {
while (arg[1] == '0'){
for (int i = 1; i < arg.length()-1; i ++){
arg[i] = arg[i+1];
}
arg[arg.length()-1] = '0';
factor++;
total_cost += 3; // each shift takes 3 dt time
}
}
}
//////////////////////////////////////////////////////////////
////////////////////// Compliment function ///////////////////
// arg1: unsigned value
// arg2: 2's compliment
void arg_compliment(const string & arg1, string & arg2){
//string arg2 = arg1;
total_cost += (arg1.length() -1); // cost for 2's complitent , n * dt , n : numer of bits in arg1
arg2 = arg1;
arg2[0] = '1'; // represents negetive sign
for (int i = 1; i < arg1.length(); i ++){
if(arg1[i] == '0') arg2[i] = '1';
else arg2 [i] = '0';
}
// if the least significant bit is 0, just change it to 1 and return
if (arg2[arg1.length()-1] == '0'){
arg2[arg1.length()-1] = '1';
return;
}
// least significant bit is not 0
// can't change the zero index, that represents the sign bit, j must be > 0.
// normalizaiton also makes sure that adding 1 does not overflow
for (int j = arg1.length()-1; j > 0; j --){
if (arg2[j] == '0'){
arg2[j] = '1';
break;
}
arg2[j] = '0';
}
}
//////////////////////////////////////////////////////////////
/////////////////////// Skip/Shift over zeroes //////////////
//arg: aq
//count: shift_count , will be decresing
//ch: skip over 0 or 1
int arg_skip_over(string & arg, int & count, char ch){
int flag = 0;
int skiped = 0;
while (arg[1] == ch){
skiped = 1;
for (int i = 1; i < arg.length() -1; i++){
arg[i] = arg[i+1];
}
arg[arg.length()-1] = ch;
count--;
total_cost += 3;
// check if shift_count is already n+1
if (count == 0) {
flag = 1;
break;
}
// we are done as far as SRT methods step count's concern
}
if(skiped){
string des = "Shift Over ";
stringstream ss;
ss << ch;
string temp;
ss >> temp;
des = des + temp + "'s";
print_simulation_step(des, arg);
}
return (flag == 1)? 0 : 1 ;
}
/////////////////////////////////////////////////////////////
//////////////////////// Add function (if-else-logic) ///////////////////////
//arg1: content of aq
//arg2: b or -b
/* addition logic
Cin A B R Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
*/
void arg_add(string & arg1, const string & arg2){
char carry = '0';
for (int i = arg2.length(); i >= 0; i--){
if (arg1[i] == '*') continue; // we don't perform addition on bit marked as *
if(carry == '0' && arg1[i] == '0' && arg2[i] == '0'){ arg1[i] = '0'; carry = '0'; }
else if(carry == '0' && arg1[i] == '0' && arg2[i] == '1'){ arg1[i] = '1'; carry = '0'; }
else if(carry == '0' && arg1[i] == '1' && arg2[i] == '0'){ arg1[i] = '1'; carry = '0'; }
else if(carry == '0' && arg1[i] == '1' && arg2[i] == '1'){ arg1[i] = '0'; carry = '1'; }
else if(carry == '1' && arg1[i] == '0' && arg2[i] == '0'){ arg1[i] = '1'; carry = '0'; }
else if(carry == '1' && arg1[i] == '0' && arg2[i] == '1'){ arg1[i] = '0'; carry = '1'; }
else if(carry == '1' && arg1[i] == '1' && arg2[i] == '0'){ arg1[i] = '0'; carry = '1'; }
else if(carry == '1' && arg1[i] == '1' && arg2[i] == '1'){ arg1[i] = '1'; carry = '1'; }
else{ /* do nothing, could also check for * marker here but not neccessarily.*/ }
}
// discard the final C_out
// cost calculation for one addition (carry select)
int m = 2; // 2 bit full adder
int N = arg2.length() - 1; // total number of bits to add
int m_t = 6; // total time for m bit full adder
int temp = (((N / m) - 1) * 2) + m_t; // generalized equation for cost calculation in addition
total_cost += temp;
}
/////////////////////////////////////////////////////////////
//////////////////////// shift-left-replace-q0 //////////////
// arg: aq
//ch: assign 0 or 1 to Q_0
void arg_shl_new_q(string & arg, char ch){
for (int i = 1; i < arg.length() -1; i++){
arg[i] = arg[i+1];
}
arg[arg.length()-1] = ch;
total_cost += 3; // one left shift operation costs 3 dt
}
//////////////////////////////////////////////////////////////
//////////////////////// SRT Method //////////////////////////
result division_srt(string aq, string b){
result div_result; // result will be placed here and send all together
int adjustment_factor = 0; // calculate how many bits to normalize
int shift_count = b.length(); // algorithm ends after exactly no-of-bits(b) + 1 left shifts
string comp_b; // holds the 2's compliment of normalized b
bool pos_result = true; // flag to keep track whether previsious result was negative or not
aq[0] = b[0] = '0'; // removing the dot (.) and will be used as carry bit
//////////// SRT algorithm starts ////////////////////////////////////////////////////////////////////////////////////
print_simulation_step(); //blank line
print_simulation_step();
print_simulation_step("Initializations", 20);
print_simulation_step("A Q", aq, 0, true);
print_simulation_step("B", b, 2);
arg_normalize(b , adjustment_factor); // normalize b
print_simulation_step("Normalize B", b, 2, true);
arg_compliment(b, comp_b); // calculates 2's compliment of normalized b
print_simulation_step("2's Com. (Normalize B)", comp_b, 2, true);
print_simulation_step("SRT Steps", 25);
arg_normalize(aq, adjustment_factor, 1); //adjust AQ, and insert * in LSBs
print_simulation_step("Adjust AQ", aq);
arg_skip_over(aq, shift_count, '0'); //shift over 0's and insert 0's in LSBs. left shift_count starts from here !
//simulation step is inside the function
// check if shift_count is equal n + 1, n = number of bit in b
while (shift_count > 0){
// substract B
if (pos_result){
arg_add(aq, comp_b);
print_simulation_step("Subtract B", comp_b, 1);
}
// check if result is positive or negetive
if (aq[0] == '0'){
print_simulation_step("Positive result", aq);
arg_shl_new_q(aq, '1'); // result positive, shift AQ left, q_0 = 1
shift_count--;
print_simulation_step("Shift AQ left, q_0 <- 1", aq);
// check if we already did n + 1 left shifts
if(shift_count == 0){
break;
}
// skip over zeroes
if( ! arg_skip_over(aq, shift_count, '0')){
break;
}
if (! pos_result){
pos_result = true;
}
}
else{
pos_result = false;
print_simulation_step("Negative result", aq);
arg_shl_new_q(aq, '0'); // result negetive, shift AQ left, q_0 = 0
shift_count--;
print_simulation_step("Shift AQ left, q_0 <- 0", aq);
// check if we already did n + 1 left shifts
if(shift_count == 0){
break;
}
// skip over 1's
if( ! arg_skip_over(aq, shift_count, '1')){
break;
}
arg_add(aq, b); // add B to A
print_simulation_step("Add B", b, 1);
}
}
//////////////////////////////Remainder Correction///////////////////////////////
// Remainder is negative, correct it.
bool i_r = false;
if(aq[0] == '1'){
i_r = true;
print_simulation_step("Remainder Correction", 20);
// Right Shift A once
for(int i = b.length()-1; i >0 ; i--){
aq[i] = aq[i-1];
}
total_cost += 3; // one right shift while correcting the remainder, costs 3 dt
print_simulation_step("RSH A", aq);
arg_add(aq, b); // Add B to A
print_simulation_step("Add B", b, 1);
}
//////Now AQ has the Remainder & Quotient, process the result/////////////////////
//print_simulation_step("A Q", aq, 0, true); // original code
print_simulation_step("A Q", aq, 0, i_r? false:true);
aq[0] = b[0] = '.'; // all the calculaitons are done, change back to original form
string quo = "." + aq.substr(b.length(), aq.length()); // get the quotient from Q
int r_factor = 1;
for (; (aq[r_factor] != '*') && (r_factor < b.length()) ; r_factor++); // find the position of * in A
string rmdr = aq.substr(0, r_factor); // get temporary Remainder value
// Convert to actual value of Remainder
for(int i = 0; i < aq.length() - r_factor; i++){
rmdr.insert(1, "0"); // insert as many zeroes as needed
}
print_simulation_step("Results", 25);
print_simulation_step("Remainder", rmdr, 2);
print_simulation_step("Quotient", quo, 2);
stringstream ss;
ss << total_cost;
string temp;
ss >> temp;
print_simulation_step("Total Cost", temp + " Δt", 2, false, true);
print_simulation_step();
print_simulation_step();
//////////////////////////// Load the result into result object////////////////////
div_result.remainder = rmdr;
div_result.quotient = quo;
div_result.execution_time = total_cost;
total_cost = 0; // set the total cost count to zero again
return div_result;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////// MAIN FUNCTION //////////////////////////////////////////////////////////////////
int main(int argc, char * argv[]){
string arg_aq, arg_b;
int overflow_type = 0;
ifstream file("input.txt");
if (!file.is_open()) {cout << "Can't open file !" << endl; exit(EXIT_FAILURE);}
int iteration_count = 1;
while (! file.eof()){
file >> arg_aq >> arg_b; // read input args from file
cout << "\n(" << iteration_count++ << ")\n";
////////////////Devide overflow testing/////////////////
overflow_type = arg_check_overflow(arg_aq, arg_b);
if (overflow_type == 1){
cout << "\nA Q = " << arg_aq << " B = " << arg_b << endl;
cout << "Divide by Zero overflow occured! \n" << endl;
continue;
}
else if(overflow_type == 2){
cout << "\nA Q = " << arg_aq << " B = " << arg_b << endl;
cout << "A >= B overflow occured! \n" << endl;
continue;
}
///////////////////////////////////////////////////////////
result res = division_srt(arg_aq, arg_b); // store the result in res.
println(arg_aq, arg_b, res);
}
file.close();
return 0;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////