-
Notifications
You must be signed in to change notification settings - Fork 44
/
WhyMathematica.nb
6048 lines (5819 loc) · 295 KB
/
WhyMathematica.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 8.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 301781, 6039]
NotebookOptionsPosition[ 291010, 5696]
NotebookOutlinePosition[ 292976, 5759]
CellTagsIndexPosition[ 292663, 5748]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
Evaluate the whole notebook first.(CRTL+A, then SHIFT+ENTER, or try \
Evaluation>>Evaluate Notebook)\
\>", "Text",
CellChangeTimes->{{3.5533925993245955`*^9, 3.5533926699856367`*^9}}],
Cell[CellGroupData[{
Cell["Table of Contents", "Section",
CellChangeTimes->{{3.572909517677595*^9, 3.572909531784956*^9}}],
Cell[TextData[ButtonBox["Preparation",
BaseStyle->"Hyperlink",
ButtonData->"Preparation"]], "Subsubsection",
CellChangeTimes->{{3.572909537171967*^9, 3.572909540069099*^9}, {
3.572909611935678*^9, 3.572909624253989*^9}, {3.57291011464457*^9,
3.572910114650831*^9}}],
Cell[TextData[ButtonBox["Visualization of Function",
BaseStyle->"Hyperlink",
ButtonData->"VisualizationOfFunction"]], "Subsubsection",
CellChangeTimes->{{3.572909673684565*^9, 3.572909678380549*^9}, {
3.572910075769683*^9, 3.572910075806359*^9}}],
Cell[TextData[ButtonBox["Import Data",
BaseStyle->"Hyperlink",
ButtonData->"ImportData"]], "Subsubsection",
CellChangeTimes->{{3.572909628002971*^9, 3.572909638660688*^9}, {
3.572910207021153*^9, 3.572910207027465*^9}}],
Cell[TextData[ButtonBox["Visualization of Data",
BaseStyle->"Hyperlink",
ButtonData->"VisualizationOfData"]], "Subsubsection",
CellChangeTimes->{{3.572909654389048*^9, 3.57290966126861*^9}, {
3.572910220731031*^9, 3.572910220738326*^9}}],
Cell[TextData[ButtonBox["Solve An Equation",
BaseStyle->"Hyperlink",
ButtonData->"SolveAnEquation"]], "Subsubsection",
CellChangeTimes->{{3.572909708940528*^9, 3.57290972599672*^9}, {
3.572910229919421*^9, 3.572910229925868*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Why Mathematica", "Title",
CellChangeTimes->{{3.5524861515845995`*^9, 3.5524861559768505`*^9}}],
Cell[TextData[{
"Some example to show ",
StyleBox["Mathematica",
FontSlant->"Italic"],
" can be useful in daily life, for Geeks of course."
}], "Subtitle",
CellChangeTimes->{{3.552486161085143*^9, 3.552486198718295*^9}}],
Cell[CellGroupData[{
Cell["What is Mathematica", "Section",
CellChangeTimes->{{3.5524862230266857`*^9, 3.5524862297100677`*^9}}],
Cell["\<\
Well, just check this link out. http://www.wolfram.com/mathematica/\
\>", "Text",
CellChangeTimes->{{3.552486232802245*^9, 3.5524862895994935`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["What are we going to do", "Section",
CellChangeTimes->{{3.5524862977019567`*^9, 3.5524863068564806`*^9}}],
Cell[TextData[{
"Information, which you recieve and deal with everyday, is an necessity for \
lief. So we are going to show you is how to process and present data with the \
help of ",
StyleBox["Mathematica",
FontSlant->"Italic"],
"."
}], "Text",
CellChangeTimes->{{3.5524863096276393`*^9, 3.552486346670758*^9}, {
3.552486775912308*^9, 3.5524868810623226`*^9}}]
}, Open ]],
Cell[CellGroupData[{
Cell["Let\[CloseCurlyQuote]s move", "Section",
CellChangeTimes->{{3.5524863642927656`*^9, 3.5524863680419803`*^9}}],
Cell[CellGroupData[{
Cell["Preparation", "Subsection",
CellChangeTimes->{{3.5524875290523853`*^9, 3.5524875342576833`*^9}},
CellTags->"Preparation"],
Cell[CellGroupData[{
Cell["\<\
What do you have to know about Mathmatica before we start\
\>", "Subsubsection",
CellChangeTimes->{{3.5524878252963295`*^9, 3.55248785362895*^9}}],
Cell[CellGroupData[{
Cell["\<\
What is a notebook?\[LineSeparator]A notebook is a file ending with \
\[OpenCurlyDoubleQuote].nb\[CloseCurlyDoubleQuote]. Right now, what you are \
reading is a notebook.\
\>", "Item",
CellChangeTimes->{{3.5524878659766564`*^9, 3.552488019928462*^9}}],
Cell["\<\
What is a cell?\[LineSeparator]Each cell has a square bracket on its right \
side. Cell can be put inside cells.\[LineSeparator]What I want you to know is \
that each can be formatted individually. Choose Format>>Style to format a \
cell. Or follow the advanced methods provided in documentation.\
\>", "Item",
CellChangeTimes->{{3.5524881034602394`*^9, 3.552488250518651*^9}, {
3.553394917770203*^9, 3.553394917775203*^9}}],
Cell[TextData[{
"What is the use of different kinds of cells?\[LineSeparator]",
StyleBox["Just try it yourself. Cells are very import",
FontWeight->"Bold"],
" when writing and document. ",
StyleBox["Mathematica",
FontSlant->"Italic"],
" is a good tool for word precessing, especially for scientific subjects."
}], "Item",
CellChangeTimes->{{3.5533949186822553`*^9, 3.553395032545768*^9}}],
Cell[TextData[{
"What do you mean by documentation here?\[LineSeparator]Mathematica\
\[CloseCurlyQuote]s documentation can be find at Help>>Documentation. Once \
you start to work with mathematica, you will find that they have written a \
marvelous documentation for ",
StyleBox["Mathematica",
FontSlant->"Italic"],
"."
}], "Item",
CellChangeTimes->{{3.5524882369108725`*^9, 3.5524883211276894`*^9}, {
3.5524883560596876`*^9, 3.5524884072886176`*^9}}]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["What else", "Subsubsection",
CellChangeTimes->{{3.5524878591542664`*^9, 3.552487860466341*^9}}],
Cell["\<\
Lets start with several documentation pages. For example,\
\>", "Text",
CellChangeTimes->{{3.5524863725502377`*^9, 3.552486410806425*^9}, {
3.552486443394289*^9, 3.5524865760478764`*^9}, {3.5524866284278727`*^9,
3.5524867057942977`*^9}, {3.5524867459115925`*^9, 3.552486773957196*^9}, {
3.5524868962441907`*^9, 3.552486910063981*^9}, 3.5524872678154435`*^9, {
3.552487320612463*^9, 3.5524873650110025`*^9}}],
Cell[TextData[ButtonBox["guide/DataVisualization",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://reference.wolfram.com/mathematica/guide/Statistics.html"],
None},
ButtonNote->
"http://reference.wolfram.com/mathematica/guide/Statistics.html"]], "Item",
CellChangeTimes->{3.5524873541963844`*^9}],
Cell[TextData[StyleBox["Keep using the Documentation Center in the Help menu, \
for that is really the best reference book.",
FontWeight->"Bold"]], "Text",
CellChangeTimes->{{3.5524873697402735`*^9, 3.552487423655357*^9}}],
Cell["\<\
Sometimes I do not want to move my mouse or something, I use the following \
command just inside the notebook to get help. Try them yourself. (Notes: \
Output is immediately printed below your codes if no hiding results commands \
are used.)\
\>", "Text",
CellChangeTimes->{{3.5524874402033033`*^9, 3.5524875179937525`*^9}, {
3.5533911170148125`*^9, 3.5533911882548866`*^9}}],
Cell[TextData[StyleBox["One question mark before a function or command to \
find the usage.",
FontWeight->"Bold"]], "Text",
CellChangeTimes->{{3.5533917358132057`*^9, 3.5533917670899944`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"?", "Plot"}]], "Input",
CellChangeTimes->{{3.5524874988056555`*^9, 3.552487500078728*^9}}],
Cell[BoxData[
RowBox[{
StyleBox["\<\"\!\(\*RowBox[{\\\"Plot\\\", \\\"[\\\", RowBox[{StyleBox[\\\"f\
\\\", \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{StyleBox[\\\"x\\\", \
\\\"TI\\\"], \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\) generates a plot of \
\!\(\*StyleBox[\\\"f\\\", \\\"TI\\\"]\) as a function of \!\(\*StyleBox[\\\"x\
\\\", \\\"TI\\\"]\) from \!\(\*SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]]\) to \
\!\(\*SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]\). \\n\!\(\*RowBox[{\\\"Plot\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"{\\\", RowBox[{SubscriptBox[StyleBox[\\\"f\\\", \
\\\"TI\\\"], StyleBox[\\\"1\\\", \\\"TR\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"f\\\", \\\"TI\\\"], StyleBox[\\\"2\\\", \
\\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TR\\\"]}], \\\"}\\\
\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{StyleBox[\\\"x\\\", \\\"TI\\\"], \
\\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\) plots several functions \
\!\(\*SubscriptBox[StyleBox[\\\"f\\\", \\\"TI\\\"], StyleBox[\\\"i\\\", \
\\\"TI\\\"]]\). \"\>", "MSG"], "\[NonBreakingSpace]",
ButtonBox[
StyleBox["\[RightSkeleton]", "SR"],
Active->True,
BaseStyle->"Link",
ButtonData->"paclet:ref/Plot"]}]], "Print", "PrintUsage",
CellChangeTimes->{3.572908958231612*^9},
CellTags->"Info3572937757-1242594"]
}, Open ]],
Cell[TextData[StyleBox["Use two question marks to get more information.",
FontWeight->"Bold"]], "Text",
CellChangeTimes->{{3.553391663494069*^9, 3.553391706124507*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"??", "Plot"}]], "Input",
CellChangeTimes->{{3.5524872223438425`*^9, 3.552487223792926*^9},
3.5524874450495806`*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
StyleBox["\<\"\!\(\*RowBox[{\\\"Plot\\\", \\\"[\\\", RowBox[{StyleBox[\\\"f\
\\\", \\\"TI\\\"], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{StyleBox[\\\"x\\\", \
\\\"TI\\\"], \\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\) generates a plot of \
\!\(\*StyleBox[\\\"f\\\", \\\"TI\\\"]\) as a function of \!\(\*StyleBox[\\\"x\
\\\", \\\"TI\\\"]\) from \!\(\*SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]]\) to \
\!\(\*SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]\). \\n\!\(\*RowBox[{\\\"Plot\\\", \\\"[\\\", \
RowBox[{RowBox[{\\\"{\\\", RowBox[{SubscriptBox[StyleBox[\\\"f\\\", \
\\\"TI\\\"], StyleBox[\\\"1\\\", \\\"TR\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"f\\\", \\\"TI\\\"], StyleBox[\\\"2\\\", \
\\\"TR\\\"]], \\\",\\\", StyleBox[\\\"\[Ellipsis]\\\", \\\"TR\\\"]}], \\\"}\\\
\"}], \\\",\\\", RowBox[{\\\"{\\\", RowBox[{StyleBox[\\\"x\\\", \\\"TI\\\"], \
\\\",\\\", SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], \
StyleBox[\\\"min\\\", \\\"TI\\\"]], \\\",\\\", \
SubscriptBox[StyleBox[\\\"x\\\", \\\"TI\\\"], StyleBox[\\\"max\\\", \
\\\"TI\\\"]]}], \\\"}\\\"}]}], \\\"]\\\"}]\) plots several functions \
\!\(\*SubscriptBox[StyleBox[\\\"f\\\", \\\"TI\\\"], StyleBox[\\\"i\\\", \
\\\"TI\\\"]]\). \"\>", "MSG"], "\[NonBreakingSpace]",
ButtonBox[
StyleBox["\[RightSkeleton]", "SR"],
Active->True,
BaseStyle->"Link",
ButtonData->"paclet:ref/Plot"]}]], "Print", "PrintUsage",
CellChangeTimes->{3.572908958928982*^9},
CellTags->"Info3572937758-1242594"],
Cell[BoxData[
InterpretationBox[GridBox[{
{
RowBox[{
RowBox[{"Attributes", "[", "Plot", "]"}], "=",
RowBox[{"{",
RowBox[{"HoldAll", ",", "Protected"}], "}"}]}]},
{" "},
{GridBox[{
{
RowBox[{
RowBox[{"Options", "[", "Plot", "]"}], "=",
RowBox[{"{",
RowBox[{
RowBox[{"AlignmentPoint", "\[Rule]", "Center"}], ",",
RowBox[{"AspectRatio", "\[Rule]",
FractionBox["1", "GoldenRatio"]}], ",",
RowBox[{"Axes", "\[Rule]", "True"}], ",",
RowBox[{"AxesLabel", "\[Rule]", "None"}], ",",
RowBox[{"AxesOrigin", "\[Rule]", "Automatic"}], ",",
RowBox[{"AxesStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"Background", "\[Rule]", "None"}], ",",
RowBox[{"BaselinePosition", "\[Rule]", "Automatic"}], ",",
RowBox[{"BaseStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"ClippingStyle", "\[Rule]", "None"}], ",",
RowBox[{"ColorFunction", "\[Rule]", "Automatic"}], ",",
RowBox[{"ColorFunctionScaling", "\[Rule]", "True"}], ",",
RowBox[{"ColorOutput", "\[Rule]", "Automatic"}], ",",
RowBox[{"ContentSelectable", "\[Rule]", "Automatic"}], ",",
RowBox[{"CoordinatesToolOptions", "\[Rule]", "Automatic"}], ",",
RowBox[{"DisplayFunction", "\[RuleDelayed]", "$DisplayFunction"}],
",",
RowBox[{"Epilog", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"Evaluated", "\[Rule]", "System`Private`$Evaluated"}], ",",
RowBox[{"EvaluationMonitor", "\[Rule]", "None"}], ",",
RowBox[{"Exclusions", "\[Rule]", "Automatic"}], ",",
RowBox[{"ExclusionsStyle", "\[Rule]", "None"}], ",",
RowBox[{"Filling", "\[Rule]", "None"}], ",",
RowBox[{"FillingStyle", "\[Rule]", "Automatic"}], ",",
RowBox[{
"FormatType", "\[RuleDelayed]", "\<\"TraditionalForm\"\>"}], ",",
RowBox[{"Frame", "\[Rule]", "False"}], ",",
RowBox[{"FrameLabel", "\[Rule]", "None"}], ",",
RowBox[{"FrameStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"FrameTicks", "\[Rule]", "Automatic"}], ",",
RowBox[{"FrameTicksStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "None"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"ImageMargins", "\[Rule]", "0.`"}], ",",
RowBox[{"ImagePadding", "\[Rule]", "All"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Automatic"}], ",",
RowBox[{"ImageSizeRaw", "\[Rule]", "Automatic"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"MaxRecursion", "\[Rule]", "Automatic"}], ",",
RowBox[{"Mesh", "\[Rule]", "None"}], ",",
RowBox[{"MeshFunctions", "\[Rule]",
RowBox[{"{",
RowBox[{"#1", "&"}], "}"}]}], ",",
RowBox[{"MeshShading", "\[Rule]", "None"}], ",",
RowBox[{"MeshStyle", "\[Rule]", "Automatic"}], ",",
RowBox[{"Method", "\[Rule]", "Automatic"}], ",",
RowBox[{"PerformanceGoal", "\[RuleDelayed]", "$PerformanceGoal"}],
",",
RowBox[{"PlotLabel", "\[Rule]", "None"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"Full", ",", "Automatic"}], "}"}]}], ",",
RowBox[{"PlotRangeClipping", "\[Rule]", "True"}], ",",
RowBox[{"PlotRangePadding", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRegion", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Automatic"}], ",",
RowBox[{"PreserveImageOptions", "\[Rule]", "Automatic"}], ",",
RowBox[{"Prolog", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"RegionFunction", "\[Rule]",
RowBox[{"(",
RowBox[{"True", "&"}], ")"}]}], ",",
RowBox[{"RotateLabel", "\[Rule]", "True"}], ",",
RowBox[{"Ticks", "\[Rule]", "Automatic"}], ",",
RowBox[{"TicksStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"WorkingPrecision", "\[Rule]", "MachinePrecision"}]}],
"}"}]}]}
},
BaselinePosition->{Baseline, {1, 1}},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}},
GridBoxItemSize->{"Columns" -> {{
Scaled[0.999]}}, "ColumnsIndexed" -> {}, "Rows" -> {{1.}},
"RowsIndexed" -> {}}]}
},
BaselinePosition->{Baseline, {1, 1}},
GridBoxAlignment->{
"Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}},
"RowsIndexed" -> {}}],
Definition[Plot],
Editable->False]], "Print",
CellChangeTimes->{3.572908959425247*^9},
CellTags->"Info3572937758-1242594"]
}, Open ]]
}, Open ]]
}, Open ]]
}, Closed]],
Cell[CellGroupData[{
Cell["Visualization of Function", "Subsection",
CellChangeTimes->{{3.572909735461615*^9, 3.572909741139019*^9}},
CellTags->"VisualizationOfFunction"],
Cell["\<\
Function visualization is an important function of Mathemtica.\
\>", "Text",
CellChangeTimes->{{3.57290977058954*^9, 3.572909802677695*^9}}],
Cell["\<\
\:753b\:56fe\:561b\:ff0c\:57fa\:672c\:4e0a\:662f\:4e09\:79cd\:ff0c\:4e00\:79cd\
\:662f\:628a\:51fd\:6570\:53ef\:89c6\:5316\:ff0c\:4e00\:79cd\:662f\:6570\:636e\
\:53ef\:89c6\:5316\:ff0c\:8fd8\:6709\:4e00\:79cd\:662f\:7ed8\:5236\:51e0\:4f55\
\:56fe\:5f62\:3002
\:6211\:4eec\:5148\:6765\:8bf4\:4e00\:4e0b\:51fd\:6570\:53ef\:89c6\:5316\:3002
Mathematica \
\:91cc\:9762\:51fd\:6570\:4f5c\:56fe\:7684\:51fd\:6570\:57fa\:672c\:4e0a\:5c31\
\:662f
Plot[]
LogPLot[]
Plot3D[]
ContourPlot[]
ContourPlot3D
DensityPlot[]
ParametricPLot[]
ParametricPlot3D[]
PolarPlot[]
DiscretePlot[]
DiscretePlot3D[]
ListPlot[]
ListLinePlot[]
\:ff08 \:66f4\:591a\:7684\:5185\:5bb9\:53ef\:4ee5\:5728 Documentation \:91cc\
\:9762\:641c\:7d22 FunctionVisualization \:83b7\:5f97\:3002\:ff09\
\>", "Text",
CellChangeTimes->{3.572909872137405*^9, 3.572909917092804*^9}],
Cell["\<\
\:6211\:4eec\:5148\:4ece\:6700\:57fa\:672c\:7684 Plot[] \:5f00\:59cb\:5427\
\:3002
\:6bd4\:5982\:6211\:4eec\:8981\:753b\:51fd\:6570 SIn[x]\:200bCos[x] \:7684\
\:56fe\:3002\:ff08\:53ef\:80fd\:4f60\:5df2\:7ecf\:6ce8\:610f\:5230\:4e86\:ff0c\
Mathemtica \:91cc\:9762\:7684\:51fd\:6570\:7684\:81ea\:53d8\:91cf\:662f\:7528 \
[] \:6765\:62ec\:8d77\:6765\:7684\:ff0c\:800c\:4e14\:ff0c\:5185\:7f6e\:51fd\
\:6570\:662f\:5927\:5199\:ff0c\:6240\:4ee5\:5f53\:4f60\:81ea\:5b9a\:4e49\:51fd\
\:6570\:7684\:65f6\:5019\:ff0c\:6700\:597d\:522b\:7528\:5927\:5199\:5b57\:6bcd\
\:5f00\:5934\:3002\:ff09\
\>", "Text",
CellChangeTimes->{3.572909929941081*^9}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"Sin", "[", "x", "]"}],
RowBox[{"Cos", "[", "x", "]"}]}], ",",
RowBox[{"{",
RowBox[{"x", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.572909948462547*^9, 3.572909972138968*^9}}],
Cell[BoxData[
GraphicsBox[{{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwlWnc8lt/7t8vej/AYD6WSVD6laJwraUnDTGZ2RkZFkhaVldISCokiopSQ
5FjZe4/nee6yycrK9ru/r99f9+v9us+5xvu6zrnP+34dmo27vj0bCwvLQ3YW
lv89Y27acO2wCz1QeuP/nyVN8rpn5Z2QfdbxOV3yuVqaHyAvfw0lVt7a9U/u
GoopCJPjlA9GWdFvhqzkgpHrfq+L/+SikMr40fc2MlGoafHCswm598h55+3b
seLv0Zqu7o2jct9QBXhsyZzNQfGVcZ5/5CpQvU70+ML1cjQd+VWZeFCBHHk7
/7vzqxwdcazqaZyvQDw1WVZYuwKNsP8zym2qRKxIqM+SrxLt2X9KMziwGhmc
7RPjjaxC9R+X2DaO16GYL562sq9r0a1KFZ0dVk3IbZ3oQuWuRpScka2U+rwJ
3fUMFvazaUSNkVrsG6qbUKa29u9/DxvRekeTvHUazajR2efdyYFGVMl+V5VF
tAUNsNObbcl5lP1dInWlrciel76vpr8ZpX8M7nJV7USnLOQFTpi1oWGR4Qc6
1p2o/lR51OSNNrTRW+fApmedaE39aoXl6zb0eh9vfM98J8oxrMkL6G1DTyoe
OJj+7EJ6EUTYrFM78u559PeoOQOx/6c7qO7UgT4fmXiz4REDFXD/PMoa1IHG
358xZC9ioB+uOetD33WgCx7C2fkbmejNWn5FencHMl1+4rdriolcgi2GnE06
URxvVYDw4V/od3jyrUX1LnRg/3Xz25a/UPUb5my0Xheiu23ZNX71F8rQPes4
49KF1jWG9len/EK7njgod8Z1oceRuseDhH6jK//KpM056ChgQ63AatdvxHqW
xs1bQEcKZ28OXJz5jR60PLDe10pHBUGqBXSBbrSN/yhj/QgdLf156Jl7sBtN
3Ji2lpJgIK/Pp5u9krqRmm8dfuzEQI6oIWrkUg/ynrmx7R4LE7G8mc3tCu1B
/U+B/ZswE0VyUOmViT1IirugPkGBicorHGTft/YgAXa9rzGHmGiT4dIbe81e
dNxQTV/Wn4kKsmglhga9KKj5+ivOx0xkInm075BrL/p6yiz1TRwTBTEfb1SI
7UVJt14GL39nosELGz8wWfuQ/7OJJ2p/meh2lW5NjVQfulhRc7RkmYnWqV4a
y/uvDyXc2/yNh4dAx6bytr+070PP7FpMv9II9MuoWy/kZh86SKTqSW4lkE/O
msvXXvShr1SBJzv2EOj9Df2vZyv6kOAJx7s3TxJI69fV1iPdfei9fwLbl7ME
6tSK+bdrsQ9JBM3avLQmEM/aQQ2xrf0o/aCZc+AVAjk/uZFfH96Pjqxjka+M
IBDbzBsCv+9Hp3+U7noZS6Dos+UsH4v60eFijzty7whUSRU9FDbdj3DS+ksH
Mwlkc2uPnR//AOJVo08zcwm08NvinovSANpe3nhhWyGBtiQllx03GUBOjN8D
g9UEKuGuHdzjOYA4191p1WskkLnrFPemkAGULnXxxsU2Ak3XrtsikTCA3Hce
qN9LJ9CDHQd0ufIGkNDtY8V5vwi0/pntxZnmAXSB5dWJiV4C5c0GPewdHUDj
uRxWrYMEMjyX/rGJaxAF1fNMu40QaOR7U32R3CDyfTbJmjtOoLuy838z9gyi
lPi829mTBKLekRWN1xtEXGMbnBxnCJTZc2hnuPMgWk9Pyqz4RyDdI05GtwIG
keIJHwvmPIF6kx96u70aRF8Tgy3fLhLIjzfzhcXXQWQzFPJFdplAYm4dObq1
g4j7+4CJzgqB0upXOvYODKIn9uUnNq0S6Mh/6xeVWYZQXZ9wSA6Jmc+PU6Uk
h1DsmL3IIom959z2c6sNof0jCr3jJBYwe2Y5pzOEKjjtViNI/O7Ht1sDtkOI
W4bVfoK0f0CeeN3qN4TMqx9Slkj/rf4cRT+fDyG6jSUld4lAbn2bezLTh1Al
84ajMhnvL8uOtYUVQ0grUI+LRuZj0B6kWtM7hDK+VB/JmyVQqd4ew47VIXTY
pXTb0hSB9lQNXOuTGkaW36Uqfk0QKFX7RdzfXcNILD5F2nmUQLL5R34unxlG
v8fNdkQOESh89+wwt+swOrVLUtylj0DsGW+FKIHDqCqqobGbrJ+3spG6wpth
FJzvc3W1i0CDCRzmqj+GUUAkl3BhK4FqI2yTjkwNI8+JSqv/qggEQqI1+gJ/
kMM9TvXeEgJ9CS6atNz8B2nGqR7SzCdQpB/twFWrP0gl6/rp1o9kf8/W2wb4
/kGb1PBVajKBbrjfDn70/A/a/33b5rWvyX61IZqTqv6g1jPTd+sfEqi56+HC
l/4/aPzP9fNp9wh01OiAfAHrCMpa/2Ljdj8CqRyLcWnfPYLclVj7N14gUGyh
7uNe/RG0q+QhJcaCQMJ7l7ImLpLjObe+zdEn0OxWMzbuxBG0PEc17dlLoEJR
ySgNoVEks39Xxf/W986w8vzDW0aRc2Z6cNYSE73j8unVOzKK7CJoP7jHmejB
fOs2Z79RVJcAUkmNTGRMPCuNHhxFUxLJO4qek/uTifbIO/YxNLlPa036PSba
2zgl/EV2DNktLidoeTGR/E99iyrDMbTdx3/cwYCJhlOEphcLxpCgZcLWeF4m
Ml9fILmWPoYenzv3rH2Ogepi3JHYvzHU++itYW4fA2WG14aobB1HHCdu/LiR
z0C3vB/QLKLGEbxqs+dxZSAe2t2NxJ4JZB3b2+qeTUfl+x5vu3l4AmU9LH3K
GU9H901id8voTyCDld8ChiF0xBaec9TMZQL907RXoJrT0cLKiGNbzASyUguR
sFrqQn/oRsl1bH8RfQ/rgb5tXShlzuaTm+BfdCxdrU1BvAtdEPPI4af+RXDl
3xqZhU7UeyKk/MSuv+i3yp/9x4o7ET03f7DM8S/SfJ91645+J6qO3Li5oPov
inlX++KHXQcKydy5w6rjL/IRF4juO9yBjtUf1Fjp+4ts6MzMWqUOVLLG/Pi+
1b+IxdDYuW+gHeV5hzvl7JhExUJenlsd21Ga4fz7TxGT6MGTtio30zb0UKhK
Of78FDotxqjnpbSgb7tlvp5ym0KqTkXZP0eaUa+lO1q6PoVS/WsuaxU3o71p
ooZnX0yh5Quuevfdm9HgcfMb/LVTyO7vX9HDP5vQoYDRumt7p9ExtOjJ59CI
5mYEvfQpM8h1je39BJY6ZNNliNmrZ9GfJa4YAdci5Pnzro37xgV0Ob38bP+J
T1i29wjX7H8LSJrPrThaJANXsXGn+MECWpdkbrihIwNvgLC/wecW0NiZpye+
2n/BHbnPbyeGLqBnevpuoX5Z+OCnd7Ed4wvo11Y/qlNcHhZ+Wd55KGcRmZmu
mDoal+D8byE3K0sWkXy0cqbe1xLs0q6roNewiL53TBzjFvuJf4o3OFkOL6K9
+gt36fU/8bXwjjkf6hKqO7zEsnC0DP++N0xJv72EqKafIo5tqcQZHnwG644v
o+uHh04JFtTh6mjRa2nGy6hw2l1ARrAe95dIxWnZLaOm3kxljgP1WEpy8x/X
W8uoOrrJ4fDLeny38HBA4ddlZD595PA9gwZsLHLri7PCCopTSt0cmNuIF778
Ff2xuILuVjK6KFYtWIw5p6HPvYoO9/5ccQxswaprWc4PUFbRU11fkesfW7Ct
ucAHYbVVNFM9eKBvpQVXc2zRdriwikqHp3f9iG7FsUZ2VwRbVhHfsM0pqdI2
HH/dZXj7WRao7tqo/26wA28v4J4LtGABg1QHbx2uTlzAkcxJ2LIAz9qDGmmK
nfhXWK98mAcLFI7IX0mz6MSyry3ODgWzQMeP3c3htZ04uuR0SXwe+V5JVuRd
QhdW5h5rmCtiAV1ZtimRH13428kHxOkKFjh6d8t6zdYu3N5avrDcwgJTSZrX
s9bQMWXo4A7TcRY4dvX0gfOOdPyEf2esiAIrnJzd46ktycAK+o2pTptYYYEp
sU9TlYEzIjy+FaiyQt6Lpux+LQaul0trdttLjm/qmLRxYWABNSXeKkNWyFy+
ONudw8Cx3iXrFMxYYRuHb1FQFQNv/W6jdM2aFYqHtmf2MBhYVzvu4EY3VnBZ
GjiTw8rEIcbrfAICWeFvUfWTtsNMLPUy615nGCs4VVil0IyZ+D1h+HTHM1bg
vO0aKufAxOUXHqcTr1lhk9Eqt/o9Jua6ztO3N5cVwj66FVdgJo7AyZNPClgh
yXv+T1oNE2/gOMoyXMoK8RuSM7S7mFg7LEA6sokc/+ntg+AZJvaPW9KbHmEF
npJ9M65KBD6zPcdzyxQrRCu8vPN+B4FlCy8/tplnhRDR2z+i9xE4t3u4vp6T
DQyy+zuj9QgcdPndxBo+NjC3zwx+b0ZgYw4bISTCBhGUeH9XewJPbug4nSbL
Bocijs0I+BC4IOuZe+96cv4nTq2x2wR+ePTMI+ktbODR0H/zTjCBlZ3KaoN3
s4GF7ZJ3cRSB5+b9xwr2s4Gi5gTPpXgCl4YcEJg7xAYftAKhOZnANh++nnQ4
wwbZaWt1vmQRePt+z4sxxmxQ7ee1tO0HgVdqVMKazdngXVII//liAkePJ1Rr
ObHBFq63Qp21BL5w22rkmjsbfMmd7ldsJrC6sDRfhhcbvBX075XvIHCj2pMT
cv5s4P++e8PObgK/Lj7pYhzEBlMZ1QY6/QR2M+QODXvIBjkUhRuiwwTe11eS
UvKMjG8oP/LRKIF5vG9XLkazgfIRjdj8CQK3c+0bVotnA3v73/deTxH43Yt/
3M5JbDD2qfDYrlkCX9n0ZXN8GhsENsX+8psj8MFvbsfbv7DBjvJ/R68uEFhA
R9lJMJfka4DTd/0SgemdfUFHCtigeTLv0t1lAqe4xCffKGWDMtkq1RcrBPZZ
Mi/PrGaDAKmoVPNVAh8JWzf4p5ENzlN0BppJLCbbvEaxgw1OlH//tUri7vRH
G00JNgh2u/+CQeJP6MTRx31skFK/xOtG4pv1XI7lf9ig6oAKyiDt61oX3V/9
ywbsj+hqSaR/qckb79Tn2EBSMnzoNBnfoL9G6cUVNvD9FOCQSsafJTrTl8jB
Dhav0tO+kfndTfzESedhB/SwqNiXzF9/l+sGUWF2uBmxJX2M5Ee+dONhHQl2
0JUQuiz+l8Bjxj12d2TYoeXrGclxkt+8gdi7OYrs8Op4UPJ1kv8QH9PE8c3s
sKWSd/N3sj4m3JQSpe3sMKg5nJBG1k8puqHHQp0dtJ+PKBgwCTytHMb+fB87
8GU8/5RK1jtcl+MQ+3F2ENEJ2uBdR2BLBrbRPM0O339f3TBYQWAVt+v+nkbs
oLjT1J6/hMDljyYLCWt20PfSZHpmEzhCPv035QI7/O1J3pXxicB2GU6sp9zY
IaB4mDvxPYFZmn5Bni87PB/JvZgYTeY/lB/ve4cd4j7zf2J9QmBulhg2jSB2
uFvXpc5JrgeRredKvj5nh032otdWvQj84tDuDVdesUOW0kPnWRcCU03F76sl
sIPg7nd8z6wJvCGw4ejHT+zgYPi9o/gE2Q8xH5MvZrNDmWWOljEQWDUzjFsl
nx1C2PTbH+0k8J7fx6uSq9gh8pu60Lw0gXX2Fp16088OYQptUUn9TFyr9/rj
+VF2SOgijl5tZ2KDCzeF5KbZgd5YcHy8gonNn2s2vmTlAPUYjfH2VCZ2G/9s
9JzKAQRnpP8LFyZ+mpBgHqTPAZe7/7L86WTgdbl3fhw5xwH+00b2RmUM/Kre
SpbzPAfo+/dtcPnCwO+WpX/ducgBVyjdsVEhDJxz9pnt9SAOiBfZSF+7i4Hp
vPec3fI5gO5fMuLgS8fnFWyrVH5yQJLL88QEazru23NQ5U8VBygSBzIeHaPj
MfvlUccODjiQITPgLU7HrAVentbTHEAJHCoPTu3CSlccfAyVOYHRQ3HgqOjE
WzUJg7jtnCD0WdHQJK0T72Qx2TaszgndIUv7nR93Yq0Hx/tvHeKE8kIVqQqT
TmyZqGKYas4JPQczUn17O3BE8+Q2tkecsJizNDcy3o45d90a+DjFCTKCew+r
dLRivsV/RQvznJCm+zqg4WsrFin0iD3MwgXefd0PDzxpxfInbYy6+LjgwqkP
rp46rXif/eFiLiUuoF0SXqud04KvPOeNszDhgqrk8rCR4GbcO/PCmPcHFzAN
vpX1rGnEbw7+d5lRzAUlR+2svnY2YKuw2kcfK7ng7ScufoO0Bty5nrPCoJ0L
jgTE5U7rNeAGg0t7X01xgfOJG5NEZD3Oz9CV36q8Bh7EXg2J3FuLX1xkHT71
Yg28Nt/3IUKwHOv0Od944rkWNBd45DT+fsWnesO3yMryALebs6DofxhVb+lt
Nl/PA2fVmZO50xiduLz75ktlHth/+d01HrMCdIyNWb9uNw9QVZz//ZEuRFry
W7xFz5Dv6/n2fnlZhHaZ/yxY688D6vsCW+8/+YmozfNGU308kBTNlrhgXIWi
pU+u7hjhgbR7Su7bM6qQpO3rZI9JHnCz+/JdgbcaUSaPLI6u8ECN8k9Xjfxq
JCT07PWgBC9oJXdaSNBqEbuu6h/GcV5wu/YjytW1Hg0X29wuT+MFgQBuH3PO
JiT3uN35YSYvCB7vn2va3oQMLU8ZGX7nheTt9ZfFzJtQ/pyG8q9yXsi6YXVh
LKMJPdkq3Pyvh7RvGtEzZ0qeX1/gjRul+MBvX/HcSnwL8rDbJTIqzwcnPq5Y
1lS0oHc7Upc+b+SDlvE0XYu/LUioOqLhwC4+kJi3nseoFfWyuF03PsMHbRJf
zO92tKIHztS6e/f5oJE7tv49Szsq3P3k24kwPti3/EncYn07muVYmyj8jA8u
Hn6sUHW0HZ2Pm/KJieeD0fdbVlrC2tHO5kqFr3l8EKFX0/CS0oEY+695907y
weUrqjueSnUiEd7x8ynzfJDNHSr8U6MTHWu3O+HBwg9S6sYFqSad6POlM/JL
/PzgH5m6MeJ5J7qftLFSdDM/7JgRetPC24VUhVtlDlnxg6VBMsoa6kL9Yf3+
z+35Iexk0KtTbHQUw/NvYMCFHwresrDHS9ERH8e6zw98+MnziOPCJR06Gp49
d6T1MT/EBYHkz3d09JbOcHMq4YeUSd7wCT0GMj831vS9kh++mxQ/EnBgILHW
lT0CDWQ8Ft7yPdcYyL9Ojv0Lgx/E19hv+/iagc4XWb9YmuWHs0mNP2uGGYia
3IcfbRaAgl8qOsseTNS8fnZ99zYBWBO2LdvtNhOFxnOF7FQXAIOz7VNPHzHR
QvRGww4tAYiqCzw8/4GJ2sOcBhXMBcBUStJ4Sy8ThfP4nvSyEYCOuJYju/8y
0dHAkM9lFwSgOOf26MwyE2XdTvVz9RKAPG9+ZgiFQE8vjwplPRSApSM6LELa
BNKZWPZa+1wA7rPeOp1+ikBsFwW6TF8KQNnyFpcVEwJ5OGx7u5okAHsZSfFf
XAm0qQfx6KcLQEjgvtB13gQirM64J2YKQLJfC1P1FoFOnfPUOF4oAG1X+Z3d
wwnE1Xon9mWZABhFPvOOiiTQD/0n7GM1AiCTOBFxhdTzKrpfap50CoBvpdvP
/aT+7y0vVuv7JQArfG/St2QR6OXh5he7BwTgT3+1dWUegXjQjDV9SgDsR1J6
JSsI5HNw09qsBQFgk7DNhToC9R8yS3/EKgifrW8e5mkhkOGRh4ZOawUhOYvd
y7uTQEXHChe0BAWBp4ZX4x5BoO0npl9TKYLw+Gyhv3ovgWJPbjw6SxUEwe3W
2iGDBOI7YzpapygI5bc0PW+PEMhXP+zpe2XSXm/68roJAg0aFmgE7BAE66dq
hMEUgYzPThHmewRB11uXb8csgUrOKd1XR4Kw+3iE36c5AqmZn1MROiIIvJ/z
NjUuEOi15YPGIV1BQMa3eCKWCCRgjX2KDcjxo5+o//sf5Gc7KRtjKgiup3eb
cawS6I/9hp/e1oJwzZ+3OJ3EphdMXM5cEISZQg39//1/KncOFVZ2FwSNe7/X
DJNY/WJ+Nru3IHTf2dXrS+JE978WDD9BOJ56fTBthUAil9ZzZAcIwk9VfokA
0t/tK2dTwkMEAbsaX15YJNCYd8gZ58eCkDXWyipGxmt+7cfsoUhBYDOlldf9
I1Dl9YlXMnGCEGDVVb11hkB7bioe+vdWEKjJPyRUJwn07rbxUP0HQRDJf5pR
P0YgsYDgRylfBOHw1N5E8T8E8r+Xt+turiCoaSctLPUTaCJwvMuiUBCGd3cU
3O8mUPUDo03CdYKwnW2x4U47gTQfBdUOtwhC/amTmlONBEp+/P1KCV0QVJqV
T66pIdDdCFrh1WFBEC0W+iZRQKDJSENHvb+C8MSRe4/YNwKdfxnIv2WOjPfE
xbQvGQSSrZ9VGWcTgrMWIk1d8QQy0hNiMecSgrmIygy7KAI9aNzcVM4tBGpx
XT3hZD8vNJtfeyMkBJuG36Y03SBQa0fRTyNZIRBxu9nJaUggfjN6ZBFNCPT/
qdp9OEYgbfqMy7YNQmBbPr313z4CfWZuEuFWEYKAmQ18vusJ9LDnoWWehhAU
8EXM7hlnop92yTs27xeC8w+4b3D+ZqKlvkKOCBACr43hl682MpHz4HSK+1Eh
sGqJNdfNJNf7qOk/BSMhkOGQ4cWXmShWLKDplokQ2DFeC/DZMtH03tSPdDMh
2C/Vq8yuz0SvQxYdI2yEID5/r/uEKrm/bHzVzu0hBFeyJZKqexnogw3j20SI
EBxrEe3PBQZiC+GMOPmQzPefM6VImYFMMrZeSnksBI1PzjZ6izEQJ8tNZbtI
Mh6+qaGhfjqyjJF92fZWCF49Gfu6HEhHQu1WfvkFQsBcsoqT+N6FHFYDTaRL
hKApVpNX4nUXylP6tNOnTAh+69lalt/tQk5eLKM7asn8l7UnDp7sQkUi8RZv
u4Rgmyp2iursRFdOdh94MCsE9zq/ZtIGOlB7kR2rqYowmFtld7JVtqGJg51S
N7YJg7ro/z4BbWhN4emdr9WEIeMAJc3pfhtSx5qO/XuEwf3G/MLgwTb07LtQ
zaXDwrDLKzd6b1YrOp2ZFxlqKQxFLpJVfs9aUOlbse0/woXh06CrzdDmJvQ1
qMRSfkYYThj80Xnzsgol61StC5wThkM+HqLHNcjzAF9j4+iiMNy7nCYX31qJ
bocTR76ziYCq8e1rTkKVSDdyQdVYSAQ2DxyP9b1djrqTtq+GbhGBP3Zq+a8M
fiKBsldx/6xFQHvdua7xlz+QA6fXr9paEfguNsLZbnoP2V66/pUvWhQkyxZu
lt0pw+pqzK+bY0Rh6dDv44bMMswzCVlHXovCofK3B5I0y/EnT67s2+9EoSvL
b+OryXK85PE4Z/qzKIx9/x3/3qoSR7gnfadXiUKRpfa9J1trcIVrU+GHZVHI
ZdxiMT/egF+pqBdVsIiBbv0upHa5AXuMRBb1s4uBJfPMLuarBkxxtSyW5xED
dXX1zK/jDdjGZajkGUUM7scL85o8bcRLTqtlftvE4GXdyrhoYxPe5rilVtda
DLzKOK1qlVsx00nOPc1ODA4745YkvVb8wFVUSOCCGFSy67076NOKhzwX9erc
xIDNyComs6QVJ/hVtej5iQGfD5XrgWkblnjiwjB+IQbHUnoOJl5rx6XPrG5m
R4sBKnphqPeqHV95YSC3LlYMpnil9uTkt+OGV3utOxLFYKGqdyiDrQOHJvH2
mX0Wgy2HjN11Ajvwal7qyPkaMbDI+Wma79+J03FcWGG9GDw+pbOf/roTmxc9
VVVoFoOwpJBt6fmd+FvZdY+eTjHY4TE27jrfiS83npi2HxSDpqyOcl2XLjww
8GfRmV0cSiX1Zk8DHUcME6+quMSBcmOpI+gcHWuPNu1X4RGHXWFpvR6X6Dh+
8vutUSFxKPT9Y3AygY7NlkPZPWTFYa/CZoHtrAxcJ6LC66UhDg7Zrc9t0xj4
wMWLQy/3iYOmSZiLdAEDp5ellxUh0t7oB8vgRgZ+6LfjrtARcXCsrey/P8vA
uv3qy6n64vBUTS+FfS8T54FPV6OROOg8l3nieIKJVV5++zZvIg6PVs7vv23G
xLxn9nkftRIHazcaqvNl4spvB8e7XcTh2l+bfOIrE2uKBdRwu4sDXTU5tK+Y
iVPcSlK3XxKHortKf2MbmDhY8eiFmz7iEHRbfXnLCBMfC9P9LXlPHMR9FB6m
yhA4ZyAMQ5A4LP27/UBnM4E3atXFOIaKg5ztsY2vSD3I9U/P9Otjcah/b11k
rEPgn+fPNp2JFYdLr8VSlS4ReOf3yIyr8eLw0aIh4ex1AieKdz6KTRSHzqHt
FzXvknq20lx3JEUc4qSMpMSfk/p6fayyaLo4nDp4oJkvhsC2t4i1mhniwJog
ypuVSGCtnTY/A7PFQffJlkTqFwJ/fpiQkJ4rDo3eKd0d3wisMNR7p+WHOIjF
PDQ+VkBg1ljHA4ol4mCc4hC3p5rAHnPJVJ0ycVDTyTTObSDwL/3hBY9KcVAZ
kFo72krggjUXs/PrxeHveUMl+18E3m6T/ryvSRziJ99cT+kl8Ou88ct8beIQ
vYHt1etBAgtJ7ND/r1Mc2O1f3jg6QuBbnpe2mzLEYeuwuUTcOIHHqr4I3Pkl
DpJN8+eTJglsqTQzktQjDjK7h/XPzxC49rZ6VW2/OIRouPRX/CPwga6r72eG
xOGu1C3x3nkCp+/6FkgdFYe2w6Od6YsElglfsD80QdbDSktNeZnAD4b3ajtP
iYOUXr2E8QqBl7RvKDyeFYftp9KD1FYJ7BqXz5IzLw6nf+X4YxLT51eZzCVx
GBh6zLFMYl3Dgz84WSiwPeU1/x8Sf0/3f6nCToHYfOHYYBJz6RpJveCiwHmf
zUdLSft6QxujWHkowOb5Leot6f/V/QUJV34KeNTwRm1cIvCAYk1EqxCFPD/4
HtddILBaYZz4QTEKyPl5fhKdI/ANy0vPUiUoULfBufkGmX/5orYoRZoCl/B4
XgjJj2iUxJPbsiQWjbmkSfJnqT4s9IdGAZda6uqDPwR+35T3yGgDBeZtNl/0
HyD7xeORQMEmCjgNPyiX6iEwErAJU1ahgDEbTdaYSeCQ1J18z7dRYFtS7fWd
HQRuObYmdFWNAi95H058bSKwS8CHoGYNCsz0XDz/pozAWfK31qD9FJj6r+Im
fyHZP/l6998DBZjPUhekcwn8Ym424OZRCny3krRQTCVw9/MKtiEdCly5rudO
TSDw1v9e3TE4RYGjD5zUv0UTuPjiwVubjCggcEnpCDOIwAK8YitPTCgg0f67
yOEWgc8l9/stm1HA/sd786deBB7vDvVttCHjnRAx6zhPYGmTVi8/Dwr4D38Z
kP6PwA4zydP9lylgJdz3vlyJwBlPrl/Wu0ryn50UKiVF4KM18p5KNylwV+G3
VvoqE1/WcnGtD6WAQ+N4dVQpE+cT+/9oPqIAj9SuhsvZTMx9Q8j57RMKCE81
aUwnMXFc9ldH3yiSf/7l0cFAJq5SYbFdn0SB4rVrxZIOMTGlsvH3wxQKUPkW
7b/tYGJrx7fn59PI+szYv7ksx8T/4nUsazMpQHtL//RrnoEVJZ6f8ymigODL
2t0JKQx8nVX5TDWDAlf9pCuXF+m4X5u3Xek3BU6mOX6R6KPjM0EjVnd6ST6s
9ln+qqHj9YIf3dX/UIA79ebKzVg6rqbufPR6jgLq9dw/5/bSseyeA7VXRCWg
R3b3JuqFLhx0Xc64jiIBXB6UT1q6XXgyn4W5WUoCNt9mu0rd3oXLDhePMuUl
YPuK2+rwbCf2MDjGf1xVAlb93duWbnfiIjd9XZnjEqA0m4D2k98blc//NV/V
lYAk59r4fIcOHDEjZt54WgLWv1aKnDvcgV382lwCjSXgu3fh5xfsHVgsxDz0
r60EpASW9D643o4d3jpU/rwpAXZRjv1Jlm2Yh+57zC1TAp6mCTm4Tjdj9avv
+R9lS8DJm5LJt2qbsbVIe+PHXAkIuDbPcT65Gecc22Xxt0ACLOvz7wabNWOH
r+OeV2okoDHt62gwbsKFD+1e+vZLAIuTwrVnNxuxz8FTY/fXrYNztTWjQtl1
uO8d7Vmc3zpwFv8HM6dL8LNNkhzfjCTBYOf1mKdN75G5pVJSj4kkOIoI5312
SEXrn/2nI2AuCVchRDls/gPKXD0ZbmsjCV7WGuvUBD+h5lZ/qoC7JIwEvjhJ
UfuCRO+N7LQNkgQpj/UNZm7f0JPf2J7/uyS0PDCLiekoQqYSNWv35EvC0+Pu
wWaaxUjhZGeqTaEkXNCw1hqKLkafc6b/ZpdJgiyvuoGHWQlqfLT5pk2zJFyS
uxoh0vkTCR94GpE9Kgn1ugn3W6vLUXi0Q5m1vBQc7z7p+PdOLbrq7X/ZT1EK
TtFLWeQ6apGlfqzcCyUpMFhR1mHbXodUeFqvVqtIAZgoJ/fT61DFtcObdmtI
gVr/65HAqHrEdm59MJ++FBR67LZaN9iAvCS6dbIDpKDAr/O1jF0zMp9anm24
LwWRyhZrdEOakXadZMJIsBQ4HsqYPPapGYkE6i3SwqVguGvP8IfFZpQ+W5D6
4JUUrM4o+YiGt6DBljg+m69SIJC/6Tb/x1Zk+syilm9ACqTvzSnbFrcj6hce
aZdhKVBIc79o09eOiIZsx4pR0r84TUR6TQeyExRhvT9N5tthy5F9vAO5hZT+
t8oqDWc11h57VNWB/G9vi/pLlYZrhV+qPAs7kXYcve+0vDRMnv0pTWd2ojX5
wWrpitLwQfjMzoXFTvRgsafKWVkafjmf9DqzqwtFeEeu9OyWBkWVVVvzxC70
3pXVrlVfGlT3hOxIv0xHrqHpn3YaS8OGCP//tj+gI9UUs+Un56Qh9d62fdaJ
dPR54GvE6fPSIJkqdqauiY7ybJwryi9KQ79ejEazKgPdvCNB2egpDUPvghTK
tBno4OsSm3tXpMHY4RmXoykDlTJklw5elwbd/a+rPtxloHqTJtXvQdKgIGxR
e7yFgZ5cvX1d8oE0ZFz9IhA7yEBGEVvLrz6ShntWntdiFhmosynQemeENOi/
Cv73Sp6Jek/te5aWIA0JJp0jkQ5M9O7i0C/eJGloTA+ph6tM5PQgYqtzijSc
0hfQeRLIRGMVE6VKGdJwzur8kR1JTDSn/XY+Ll8aTBzzwk27mcjve1xASaE0
XHE/ymtJ6j8WtWj+oRJpiOz2URRfYqI1co9oalXSUH509mOMGIEo8z7HS9qk
oZ2jYU5Mi0DR7pebBjulIWycKfVZl0Ay/Rct+JnSUHqZNs16lkDrm2w8jXul
YeCksuM3ZwL9l6YbNTghDRoFbl/vPiRQluJRRf5pabgYKjCZGUHq6+iDaTv+
SYNhseK2F7EE0gpUL/RdloaNqY8tPNMIVLq8/UQcCxVkxA8oO2US6PiVLS3F
7FSwzV2TLvKdQGes5Yf4eKigc2QgyreMQM1tUpd38FPBEMx69pD63OSU+LKR
EBVUB5PfJZP6nV4iGOgrSgXlXNvWijYCWe3lEY6jUOHN7t/2r+gE6s7geFks
SQU1Lo3j8r8J5LBpdf0glfTPf9jLqI9Aw7Hz6XzyVGgPjyf2DhHITXx6zw5F
KnzWTbvZNELq/9CxIiMlKkSFBB+nThDIi21I13czFdg1pPZQpgg059PTGqtC
hakVzkOFMwTyG2ecL95GBblTWbYycwRicWgfHlAj/V8++0x5gUB36Y1X+NRJ
nNheN7hIoLUGNSvbNajAwj8ibLJMoNCKsiCjfVRY7uA667NCIAEoEvFFVPgJ
1q+OrxLoSVbeq1gtKvAEzhJVJKZszVYqPkyF52vuya+SODoh49PAMSqc3/XQ
oofEslIfNPl0qVD7yviFD4njw9+VbD9NhZXuvtp80v76NfGnjPSpoFXMxZVF
+k++8bL9mhEVsniOIsslAqlMP7eJNaHC6ON/N7LJ+D85h48UmVGheKdKaSGZ
387fId4DllQ4Wf6demOWQNln77Hw2VDhlwAEDpH8aNbeCtluTyX1lTjfmr8E
ytf2FTO6QPLHZ/65ZZTsj+9XYq+5UCHPduaO0TDZHzvcN8W6UaEk9H7A/X4C
6SQ7fS7yJPOf8i640E2gGlm7fQNXqBAUPKG1xCD7g/fcme3XqXCnaVJ7dzPZ
H/4GnYY3ST7GounMWrI/5k7aXbtDhYgKnuHdFQTq6dPyKQqkwuXE1tiVPNJ/
XO0b5VAquBtHu3R9JdBrE9OaJw+p8G5tyE7zdAJZVnkq2D6nwoLZkogO2c8/
7i7rVkVS4bc47Wz2cwJRDwRf/e8VFY74fp0uf0Cgzk+vq9kTqPC08ldixzUC
aTir/HN5RwXzk05j7e4EilTMoTW/p8LkWu1VP3sCGUfUeSd+osLr07smvpwm
UOP1FfnD+VTw3JIa9UuOQDt2hZxIK6RCfP7meG5RAoWPiXuL/yTrE3P8Rjsn
gU5Zb63qqyLnJ4WfvDDMRJVHzL3ud1BB3vNAvuFHJtrMMhg3Rifzp8c2ffrf
/cRvlyuNf1EhYZsRX+YjJjqiEiq3cYAKay8avfnkxkRFwrkVZdNUqDhX8zlw
ExPRqg5Pb5ujwuD09FYFChPdvtsgG7lIhdmuKDN7diY68G/w8gU2Gfgd0Ux+
vxgoly4hyy0kAxNed/Z2hTLQ5ySvSzpbZGBZ4el8QQcdCVuzxnxWlYFnpcf3
sxXRkYdUWJmUmgzwzngITLwn9++wROqfPTIAWg6ejT50lHKpqTT0iAxs2/Zr
Xa4IHb3Zv0O6xloGBEf2TRrv7kJFp3gCFu1kQHvNxxk3ahfqtuoZ3nxBBoaF
ua21WLuQov/z3PtuMpAWtyGAWtmJEkvnz8F1GfDyupX41qQTvT1dFPnlmQzY
dRzkPOHUgZKtDSjRZTLAddD0CqtZGyq/pHKzvFIG+q7dNF23pw0NBnD2z9aQ
/o3s7kyLtaFN77K/GjTLwK7GlJnlmlb0fljaiP+3DByqyjOy2t+KUi73Pr29
IAOz5fu/fRBuQWn3vIQdt8pCvbf1Y7GnjWhkn4X/ve2ywBEacMHMuZFcb9pT
Cf/JQtlMi7fXwUaUYiPW8ktDFnQHTpWtH29AyehLpOkRWejOq1O7fqwBJc5P
yJ2ykoV7GzeWFvTXoeiLrqq7HstC8DF3h6ZzlSjQyPYE+4wsXH1yZ35C+gfa
RY9/H1gjB388LB4NvMzBQqoX5j7Wy8Gac86qEjbf8Mgt1aPtTXKw374leM2m
XJyo+L13U6ccRJYIFip8+Y7FXJrlKvvlYHghw46/NB8v+LGf4GKRh23jJ3MD
3IpwB6964TFJefjgsNyvYl2OS3dGDdKl5OHjfj5O3/xynGmxJOhJJcdf0boa
LF2Bwz8WWUbJyUNz5XLOn+YKfMzg9NLQBnl4/k3DN1G7CudEX9gdqiYPMjkZ
xnIStThy88u0mhPy8Pu/dwrChQ14eurI24CT8mBV5iQbMNaAT+dPvtI4LQ/r
L9jEFkg3Yi4DnQdv9eVhXHlQ8pVXI/bym3e+cU4eom0PpJQqNWH9urObtjrK
w6WnLlHXbjbj9Ch2+Z4L8rA5n2WDI3m+5bb7KBHlLA8vWjZrrmtsxgVzXGs4
3eShNbZOsnh9C96mkNVHvyIPmfzdd1TLWjCfl1jCA395KD/GOTq92oovoIJo
rbvy8O/ca7eeDW24mNv1ydw9eRBwX9j28EQb9o0tvmMXLA/SKtnfKBFteKjs
0vl94fKg+q2ed3BjOy6VapAZiZEHQzZNy20HOvCtgrDIE9/kYdHAsyVKrQsP
MwqezefKw51BTv2fp7qw8eJUeFKePPyoiitJcO7CKuqmwewF8qB3CfR94rtw
e6qS7/dSMn6Z1NSrvHSs9gKbbWmWh40mJiKP6uk4JnPybEeLPFxTb/lXOkDH
axs3GAa2ycP+h9f00lbomOB7oNvTKQ/62l+t7m5h4Af+Jvtf/paHXyNsQkZ3
GLj/4l9Z3nF5SDxKX9GVYWK90PXS3ybkwfPZStfpbUycl3xWwnFSHoK9tB4v
AxM/7fkhWDwjD/9xxf8wsWViOBfCcn1JHryr43vXJjJxqvePpU0r8rAyoHzI
4gup755NzLWuykN24glOsyImHq01/qvGTgNrfRk+fYKJo7UVu4e5aXB0y+aC
zeIE5rQxZkby0qDH6U99CY3AHreCO4/w02Ddlxr+taqkHs0db3wjRIPPj4P9
7x8m8Oc2hbozIjQouSXtU3iGwLIzRlUrojRg9h4QTzQj9fy2vGJTCRoodFtU
W3kQ2OrkOF4rSYMriV2pe3wJXOmskJclRQOutvEfOQEEfv02KFNElgbrr8UL
pj8nMG/x908FcjQ4sfM5VTGWwN6/xj640WjQda969sA7Ap+UNnpbuZ4G1Izb
Oc5fCRzZq1pgpkQD3/nVNvY8Avemre0a2UiD5u/1gqeLCOwHeUKCW2hgH2QS
ulhD4HLuiC2vVWggoeD42byJwGJN7kd2qNKA8tI7x72dwB/sFf0MdtDAccvd
7am/CTynuhzRq0YDvy3toU19BNaea83w2kkDDrGOyLQhAocXfqrmUqdB916R
UxqjBO4KCRl4sZsGi7p1b7wnCKxkaMe2WYMGr89RH9lPEfiSzAGZXE0a8E78
5OWaJXB+v8SeE/towK9yTsRkjsA8n/7q0/fToLdUMcZsgcDG16ouXkQ00Niw
M0loicBvtN4GrQANtGzPqVxdJvAY762ER1o04LFS3PxohcAaLSb58tpkPQu6
o01WCXw3Vq0j4zANWNje32oicb0j37TWURooex5r/d/9H+qOfoHmY2R9dxnG
/u/+z4UFvNlehwaXzsi3u5I4szhKe/YEOf9l4d000j5L2GWrwJM04P7J/y6O
9K9rfNJ33WkaNJ1+eeAQGV+k3Mbn78/QoDOwUC+SjL93kOWTpj4Nkvwie2LJ
/LZ/7qysMqBB1uzcnDGZv9/1zD5zIxq8cvF7UUDyU6b9kGXMmAaHJvx+dpH8
iQhckL5lQgO9zeIhySS/lm0H1YVMaZCtIT+qNEzglNfSevFmNLj4UeOfcT+B
Z51mXNQsaKDr9iNjTzeBtf6ru19sSQPxqDKlagaBHy4lxxuep0Giz05r4Q6y
Po/M27xtyXwiHI0yasn6mKhPrrGnAUP53Sa+CrI+NCH+KAca/OrZPb2umMBG
mcVa351osP3qnY/Hssj+vRFjoetCg6tC6fkuHwk8cuSqD8OVrPcKhfNgMsl/
h3L6qjsN+sbybrJFkfy/4agI9yT7SduhbSyc5N+V2UO7TNZPc/3nsCACf1l5
LKntTb5/3As93gTuVpy/G+RHgxCtLWoTpwmsOtoYJ3mTBoHP5zguk+vRN+tD
bsotcr192CT6XpPk6/j5iWp/GphEWOpuW0/gg25lZsLBNAigLh1OmmLihfah
IyUhNDig+uh9Wh8TZx7iU7v6gAY5+nWEaRsTK0nqrWU8osGN9kznlG9MzFfS
mZkcQc6/jfMVfJm4VHU5ziySBnutTLzsnJj4VpRcqEA0DeLLjO1PmTDxpJud
9ZUYGlg8K86W3sXE7ZJj/JBIg8Ic7Yr4YQZ+cldofvItDebzVvuV2xj4xLha
79skGrycVe61KGbg/JKrubypNJjEtjZF0Qyc6M7q2JZB7h+nL/0JPczAHj/F
CtwwDeYuNe8zCaVj5e27U2mFNFBMld316hId90Sfi2guooGhw6zww3N0bOwR
66pZSoP3TTde+inR8T7pTZJcNTS4bv5FKCyvC6/13HspppMGUV4qz3FHJ46j
2qyvniHt9VyUze1sx5r/bVG1+UeDsvDRrje57bj5+PTuuTkaYJc025PR7Xjt
1fsn1i/R4EVqv8SQSTv2aEi55MemALl6E7LaTW0Y7k8VqAgqwIvT9+ca81px
9/hdi7BNCjB34llgiX0zXl+cFHHKTAECL3W+u3ysFteqzCXSzRWg6yH3bMJE
DfaJOPbF2VIBpoM1u0Mja3CV01DdfWsFeLRysP/eQDW+JLSFGzsqQFTnBxFN
/yqMLdKvb7tC4oKq0vOp5dh0LvO8UJgCiDirc35tLMLhW4uUG/MVgIjipK3E
pGCHKY6GCmVFYG7aJH1yqRhZpmjXmqsoQr70z9whsxJkbH23anyrIuQeVhgw
+F6CjtSxl4rvUIR3gx07w679REqpbN+tdytC2R88cG2qFPXZsLydP6QI+uM3
g9zpFciucdFns4Ui5EX8CQr2q0PmwXu98ywVgVhz/d665jpkCNcvnz6vCDn0
i3ofxOuRdvrCRS9bRXh+hsXjims9Wh8yb1PopAghtUH/1q1rQD0H/+me81aE
6Xt2H40dG5FNxqR88CNFiD9dqtzW3Yxc/Q2WdB4rAnT9t1mPvwV5GWS28T1V
hHUKtRtCdregoBmvh+ERilCZXiO0O7QFpWvML76IUQSL1Usxbtta0Xzhauu7
VEWwat+f2+/chtienv98IU0Rohv0Dok/bkN8doVhyh/J+ZDKtZjVhmS5ArTT
PytCh+a/C8Os7Uhbh+vz12+KoMWivkb3WTsKb+QLKykj+dI7t5yT0kHqz4sX
7lcogqr1nmNK1R0o4UrtoWNVirBVf2ro0GgHyqKEL1TVKoJrxXDUQ9VORDcV
vdDUoggTPLnfjNM60cYeyUPdPYqgV3g2weJlF9qe6Sub2KcIY50bnrzJ7kKa
97rm7QcU4VSl4vDjpi6kuzHm09CwIlRsSLvhxkNHl1zkZf/+VYSkF1s4KVfo
yG/fnfnPU2R9On3Xvg2jo3v83c1XZhSh/wjtV9c7Oor8mBA6N6cIxp5iraid
1Be3ORxzFxThRAjDzHWCjlL17LX8lhQhwWTuLlrLQJkKpTIHVhRhidK05psc
A+VPKc2vripCSvPEy3Z1Bvo/3fEkEQ==
"]]}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesOrigin->{0, 0},
PlotRange->{{0, 10}, {-0.499999970880826, 0.4999997918677022}},
PlotRangeClipping->True,
PlotRangePadding->{
Scaled[0.02],
Scaled[0.02]}]], "Output",
CellChangeTimes->{{3.572909962253271*^9, 3.57290997324731*^9}},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJzFXXmgTVXfPrlc0TwplWgglaY3NJnKkAZFGZO5gVcloklIiTKlURkjQ0Io
EiKkhMwhumZlCl2zazjfftZ+9rPWvvecu+/75vu+P5K9PGet31p7/ebfWrta
k7bNn3imSdsWzZoUuadNk+eat2j2fJEqrdp4TSmnxGKnNI/FYkuLxPD3uPdX
/nFZLB6Px1Ji5sH7m/kPf1Y1f439f/y7/08pdy1e9Ef7oUMWlV26ZGusqWnL
XXn+/M21vp+xtvE336zOdfz4iSZ+c+GtW/c1mDJlTdvPRy7Nc/To8Zudzk3f
VUxD3oJ//XVgTf16n++qdv+nyxs3HP3Xgw8MGdOxw7Rz09MPxxr6mFOPHDk2
8O23Zh6udPeAKW3bTDpwT+WBs59pOeHinTsPxBoZTOornw1dfOyu8v2+b/XM
V5trPjxsfZ1aI2rPmJ52U/JJVTZ/5jv/778P/f5o3ZGdBw38Jfexo8fRetqh
Q0d/a1D/859bPDUu97Fjx2OP+dhUbyYTX3xh8qjXOk4DBq2YNBZlbb06I4pt
2vR3rIE/VqfBg35Z3KzpmGKbvbZcftu/x335K2Zx68oV22M3Jietkt92yokT
8T8eqfHZ4Le6zozl9ttSvOEmt2v7TbdPPp5HslK+fLX91I21aw43pBKHhVrV
oP4o9BGrT5I+Hbxwx0PVhlywZ8+hAFf9h9nrN9V6ZLhZ8BsiSWo0efJq7z19
gZWI5fHbCuzefXBb9YeG/mv16p2xR/2269eu3YWhLv/zz/QA55F34ufmT417
8qsJKwPcGQcOZGyv/uDQFuPHrYil+m3vvdvnx/7d355lnq5PTlJFv+30gwcz
ttZ46DMzfF6/DUPMeO7Zr81TPb9t6vOtJ7X88stf/Q3jt92Y9vtf+C36CHBd
BvSf/2m3N793cWfu33/kz4erf3bT72v+ygFJLw0ftnjE652n+/tXsz+OnX7X
okV/xOr6bRU8hkIbXmrsVL9t+Budp2M/mac6fhv26O4H7vv0sm3b9gU4TAV7
0TyVSE7S3X5b3oyMY1jo69av2x3L57c1+WbSb9NbP/e1O9S3bZ+fhHbzxKGw
rfEy8x0+fDTAdRjy6cJ+PbrPcnGpGRnHPTIH15g9a30OSGo8+ZvVGM7nLdtF
RsW7+lf6ZcGWWG2/7ZoNG/bgJeHfYvn9Nsy82cSJq8xTLTtFkHnt+vW7A9xw
7y2M9uSJeboukqR5zZ8cd//cnzaaJ3bRtd8n8/v26vmDO9Q777/3k+FAB4ff
zX/qiS9d3GNTp6yZ1qb1RBcH7ttz/72DsfWzI+kuO3tINMiZ2Gl+2yU7d+yH
xIRkjNW0s9/pSc8r/vgjPcBhX0EwYJsHJH3X+rmJD8+atc48EYcV0mpem1lU
k5C3P+77s+Z8upUytWfMWGueHvHbnpowfuX01q2+dnGvecIQa+biIL4xCRAe
4KrO+3nTD0+3nJCFkExrUyHgqaPH91WtMuim3735nWGXfMIrL33rDrWy4WOj
JFFOt5sawtXwHnFtRn2+dED3t0I4/DukW+FtW/flgKSKC3/5Y1OtmsPNE0k6
y5MeIBP/jz1sJQraztm793DsTL8N8rr+tKm/myfioEKMyHD6+6BP7zkvjBi+
xDxdE0lSn/ff/RHsap441PhXXp5S77tp/lA1/DY8ix+J+6JTh2laTeI8mb4X
/Gh2JHHlliz5c8GT3PzRJGFTGknkDAXVAsXqDvVFp452YxJXfOPGPXhxRrMR
N6RrlxkTX6IwPNO+OEi8Qtu378uOpPJ+GzQWZLF5Ostvg1LEFjWSp7rfBmsG
bdB6sbP9tl8bNfziltW/7TRP1e2Le2bsmF/d/qBWvLbl5qm4T5LPgmelxI/9
1WHG6w3bPdf9wz5vt2pU7s1Zu2LH4vErjqzts6LMtXXPnrXnhOHI+LE9jeZ/
+vK2ChcWeK1cpwl5tmXEA12eaFpQRT0/+mCueSK5MJ7umzvXl3IP+W0QuOI8
4sDtrw8csMDFBXvZmD/EQZzAJsk6rXw371/0zLwSpT/Msz4jfnnGuj7LSl3f
Ov+SA/Hc8aN7rl+9bPMpB72XSOsoNX5k7bzepW8p1mX14cBmSDSlOS3/PaHy
ggWbXVJfHvbZ4nffe/dHl1RM+9WhQxa6uPJLFv8pIU0cTCAYBy4umKYRTpyS
R433/ysPpb3fr/UTzWIpA5o1axY7rW+z5u0vGr81Q1TG40fapvW4aWjRBgti
++LxM+J7f06rd+XNV7yz9ghnmveU+In0Dgteb9qxTedu7bt1abfp/kKXdK/S
7p2CE/48kvBllvPbzktPP/T3fVUHG6rO8dtg9qTVqzvSndGyJo1GG3PImRH2
LX4LWyLAfdyrx+znPQvdPLE/bAJPiG0xT1f7M/c1FwyZg+8se654n+KtlsYO
xOP54weW/Nby6mtKtF1+0F+cWJ4iR9YPa/5C35V5Dx7O/mVySo/MnLlu0ovt
JrskgLMhYIps3bo39qDfBm0BbjZC51wrxB6dRiH2YALJwv4g/N4KNFeWKR1p
93v3m4YUbRh+W729t8UpeX9m1NjyZacb+i1dPq+XO6U8mFAZK5S1liQQNmDT
SRN9Y6qa3warR7YhcbDlBnfr+r2Lg97HZFxc6ZUrty96vOlYdyI+o6WS0T7K
s8Ew2ntiNPPPuT1+29Zxcuf2y58sYejP5o1AWd68Zs1Od2BMQkSTwGFdXp/+
xNdfrXJxUKobatca7uKeHTN6+Sc9e8x2cXiLMFaMJxKeiCfgdrWf2aVJ67a9
P+nZ6/mmZbvN3g1BSIrPP7Zz4ppGRW9Muq/K2v3yV7X7h5j9cp7fhv0EK96l
TqodT8RteeThYVf+sSXdPD1g91rd6d+luThoK+2/Yv4sEmkYklR/6tTfx3R8
dap5Ot9uV+M14ul+vw3b1/MmR7q4oW92maHFJg4KDl7Bhbt3HQxwnoe5QhZM
NElwq+UTZTMU3DNgXdzjE79ehT3g4iB0oAxdXIl163b99lj9UTkkaV3d2iOw
9zMP9VmXN2a4Q2E7Nvx28moXV3Tz5r/FM/fb7fdR714/uDgIGGw/E0HIhiSy
9qU7duzHPjFPFyQfCvsGxpGLw35T231232AzuLhx7V+ZUmf6dH9/FY0kCVvR
c/unmKcCfhuMIg11r98GbwDeg4sb2fm172AluyRhesZQckhC7ObDd3r/kEOS
3u/zzhwY0JmHgl3nkoRnuWTEtRo9ejkEqIu7asuWdIRxXNztv/66DcotC0kp
jiT+5YnHx9624tft7g+xySWEOACcuudGf7HMxUHC4vcuDrsME3FxsAgRhzIm
fTZrc6ffhvjC3nvvGWQMyQv9NjhlkLXuUEuaNhkjQ9IZar83lIlREAfFLb5l
fz+2bDFeZtFVkSTB4Jv17NNfuV1AosDqMcEgBv1g6KHNBJcu8tvwu7sXLvSd
EuLA9lIb7K/Xhx/M7fjp4IU5JAlhD+lpZ6h75s/zZ3WP3wZnA7N1cfBOX/ls
6CIXFxhxxsUjrubM79fK3ogm6euXXpyM8KY71FDP2fCk0XR3qHYjRyzp/cH7
P7k4hEG+epm+E3F4QTKziYM3j7hFDkmSZeR0AVad26L5OHco8Jg0FnEX7dp1
QEMRB9MZL8o8FfTbwHfgP/N0ZXKS7vDbIDnUbUE7FGSsOxQkkSQUcRCiUrZ+
VBgBzSkwDF1cSGpFk4TF13u+2A6l4SsnWBHixnZoP1XyuYolXXZCQfvS5XRE
k/Rm/37zERXOPJT2V+UE+4a4Fz03TvvLIR0msYurMn++3V/RJMHtkSfILuAy
de/70c/uUCBdrhRxEAAzn33mKxf34Jw5G8AyLg4OB2SfscRckgxFt/sgaGR4
1cYgvMRvA9srkMQBfmtQf1Td77ipL7Zsnu55NmYA4t4Y0H+BJM8ldlPL1roi
+dqQJOx/GCNuFyDv70xDQQ1cgTC3g1v92KOfI05hnhg6R2hFscVL7OsXj0aT
BAMBIRHzdKnd1Fdv4lCMP2OTS3USB3tJm5okyQZySMJr7vHRh3NzSBKcbMQY
3KFC/EOSwM5od3Fwl6T1iYNk06Ym7t6f525C2DKHJCHwDz5wu4BqUQCSQyG8
AeHn4uD5SrVUtPyoSDtxsLlhe0eRdJvd3tiiJmhUyG+DKlDYoaLdI4iBukPB
6Yf+N3uOOOQoOg8a6Edm2F/I/Ls8kiRwgizDQnZ7S2ZXtHsEksbFhfYcQ+cQ
toorEwcpprZokqCb4WeZp8vsUJK7d9k9Ai3o4vA72c8kCfa4CYc7JEEAQzjk
kCRAJbOdoRAzckl6aM4P6xU7JQ5Bb5glLg7CEALEBC+Jq/bjnA3fvNDumxyS
BI9Cls5ldlbaDxwK4k/DEweyEbN3cdjykuPEQSjI43FJMhSRkG01HhoqeXqZ
5RXFizkAtLlizcThlYrNiYPzIHVamGN4REhCFUm+Nrcm2MDsAsYFMpzuUHCv
TZrIwUH9aCjGqeELKxtGHF7VAz/9uDGHJMHOlhYrbMUBVCJYOxgKWgyqxBir
frcpeC0SB8Qtbdp4tOzswnaXKsIfTRIWGkkBB268B4X9GGiFna1gKXFIzsLu
cXGBM2S8G+Ie8dh+UrCpo0nCQiMy5g4Fr10OJYdC9FyZHOKQIFD0jDgkahGB
d3HQCYcqVxyQQ5JCvhi7aD5h/IrMQyHc8vSXY391cSE3srzlUeUoiMtFh8tk
gbIhqbTfhhguZmASsT5bGpc481BIYyLS7Q4FP25/sL+IG9/+5SmD3uo202Hz
FGToyyxbutXZX/9BjmLfB4taXrX8/BJ3zCxfvrz3X5n5JUs1PvOn9MQ5Ck4L
njByXy4ZyI6KHcrZ1dofON2+0k1BZEmqiLiQAcD+4DGbIoOs08pJjuL8Yzu/
7f/K45/kX3nApGHOPrpnRf6NB45nN60GU75d83nnTn7cgOTCoJTgYcQL5CuU
RBycN6hDd1ohAcVpYUqKbnFaJyFPwVkVzPjzq09efvLt82fuPBqUQiSaKdxH
1SxwBtACUsicKWYk94C4tz7uO69v756zXRwCbnLKiMOelGfDmeYkL+HHiHNf
emTzqFlPlHu0xAfL98dOxP24uInfl/T7hykG98WOmQtWFtceyhSPLkWQuCsa
NfjCpRwGvqQ9cdiu0PmJKU+efiDl3p/Ha24bXXb+paU+zrMxI57NjoNRJBOQ
o8O7lEYua3eX0vbE4Xdyd4iDoJei8F03Y5CZOhQ8XeYyUtIcRC5N9kTZPbOb
t6vRfXXsUDx+2965dZZfXqJz3t8OJxYPpfw2RKOgLY3NdKXlGSUaSC2cLvEW
ZxUY3qbYgjgIcOka9gf7Xs5ZeFbJEhJ+dij1nGO75wx4u1nTZ9q/13dw18aP
3N924vbY0XjC18QJQTT/9O/m410CIOcOVqk0EHUBQSAzvyeyUS5mQm9XWdEO
kW+enIBnyd9W7XD7g3PzYuCXcUKJNAtJCsVHOdTCJ5rZOCqDTwjwo07PxUEB
mpouBwdRjXdm0sTEwSWEns8hSRBr0qvsAj9XPQCHQlBIdQPEIZ4ssUgc/HkU
+rm4kJkQTRLsMelVdgHnV+GzO+3iy2sgDuESyS/iYI4j8O/ikNvFyhnFF00S
nFCT0nW6gHWqfDyHgiumQBNxQTTDxUGMS9D5ge2wji2UnCRKUkhv2fZFrXSR
Ec6hkLUWvxa1EkzBTQapoEMzpUaMBFOEMJok+Npyz4pa0SBrgkPBsALHwdBi
YsgoBokG4hDsRl7L7Q8vXCEnl6QUR8u0/mLUMsXxOABMbLE0Yxiw8JVIIw6S
WGU/xIFQmEkuwdCySrBErw3YFwk2dyiISPHZ7ZZ9FXwi7qkJE1bKHiYOhTTK
0RCHWJhUZTRJCGVrRdhFKMLOobr2+2TeawGfEQc7ATasi0OITRkc4iBUtXLZ
kHSL3S1gS7Nb/Iy1iUtpV3EoBAekWjlUoMBcHHhMLhv7w6ppV10aSRJ8aEVw
2AU0s9o4FKqa1C1xoXzfbZZ08dTVCXgvmiTwiVbEL5tJ0arh6dYEfEYcrHZl
ekgS5LWSwSQJPKZYRzRJ4Bjtm+J2f92xfPk2lySoAqXjiENwUhlC4kJKmTgI
VnFcNEnQYuK44gm4kEOhtkAFA8Qhwa+6W4d0cRxxKCLQdKJJggmhFSluZZVi
phwKiQCVhBGHKmbUZLk4xHvk+xS3sgomjnnp2ZD0L78t5O359XvGhVf8ikNB
gSqGzqEQZ1V4lrhQkIT9QSaJNS5xSDIUkRDoLoQS3R8iZ6c2DgD7E8LPxSEY
hTMO5qm05TOpYuKwe8Rnl0SuDfhMsWO/KDUFNcXiM1oHMCawWU3BGHGo/lPy
trQlXfkKQ1IusFj0SwJ3KWbHAWDl3Ll82VaXkBvS0nbJxScO+XclsYkLkt2G
u4jDuoi7otcGAQ2Zo+wCpq1qWkrZLaqMBHEIL8luJC6kz661beKuaJIQXFNM
hV3ARBV3cSgoBQWniUP88PtWPMpAHBSMTN5r7cohNmS4K5qk0G651nKXpDeH
CgVviQtq8Vwc1LBMXr+q3diN4q6Lk5PkHw4ydqPC+tfZNtmNpWy32E8uDtOR
GUwrAiskVXydnY74LJokrIhi4/6JhhS5k3i6JQGflbAvvexSvnSSFNLw19mX
Ln0WTRL2jY4j+DEZeNb7kwbeGCOGzjPnjvDkJ7DzJCwmvsBucYgF8+Q7lam5
40d3dpj6esO2rXr0e+mTbi2ebvH+wlx7j9MVTkFgFhFSZ2XygpEPVqnQblin
+o2av953UMe+nRu3b9hlVsquY5LW0HNicL/s/vRc8eP7Kq+a+umSl2889/NL
6/S+Y+yPf8GtThaDzBW5cIgAohhMS+ZNKFlYr7AVJSpfYrY5VKXMEh2oH/lx
XKuS+xa0nHVDuaEpW47F88UPLl/ywo2lruyRdoRrBeUqwcm18nys7Tuq31xk
QLFmJhp0enzf/NWNi/nRIK5VqGrIPw+AOMW+z+Y/VqzJrYM2Y43QmiyoGXMX
yqwTlwdS25y6wRMP9ITif4w4otREaSW/zif7embuJ1gNsB7M0xV6CYdfWtPt
xoHFmv4S2x+P54lnbPil7y1F7qw2J53Vt+ZIiI7QcKE8vzltfqsaJScVu29c
ru3H4xce2zZ2TdWiVS8avTWo1k7B2RiZmMkXKqpWO7sdhfpSBWT9A0xZ4ozc
SVDYinz6xTiJS6W5o2D2qbTUrtahLivbF59/Qale+VYcPFEoY9PQ9ZWL3FHk
w/UZwWrB/pddwtVCjrtb/4+nd531crl3Kj/XZVqrShXKtP9hd+x4XPYHDG2V
TZ+edLWSh1mzWS3/DKZJmSva4Mc/s8Q2uVqIAKgClqsVS1SFzdUCQ5ijeeHV
OtZwy5DbxhZ9eETTEQN7Dmrb5PGHXhu/IXY4rmhjyDXxFWNelLQ+P2lQ66W3
3NDOY5gTN+1f3GbB9SW75V1zWKuFeKosuOSrlTy0G71aMKpViJBXfyYPoHLp
gsCbSRH5Yj5L8Tc5EhYDOMRA/ZBQ6uVH1vX5qdztvVLTjiD/saPerBHTc28/
GkQz4VjLMeeCIUxYb+m4BvOuKW3eISK/K0pe2yL/4gNaMATEFBuxC7Z35M91
izYpnUVqZYkg52DB4BgpM+jLr6SxWabEQLlSqazpCtWXO6owU+Qw1RN5h2qv
HdWxTdteA9r379Lkgwdajs7zp6LzoQCKLy5ODZJ9Zx9KX9d7ZOv6T7/4/sAe
77WtV7vNqM2xI/E41yqUNjrNasPqK8a9N+ilJvXveebbHdB4RoAniU1HLxdc
WyVX/XO/KSixltChjIOxpJoM4hCK0ZmimxOwLHGISctyLhhJEvImynazC8gu
aQ0OBWMJkR8XB/mqGoqbbZvqdohDPBpWsvEvoklCrYWSHewCpR4qveZQsF5U
8UQc3EalKIiD8lRtnX8APAUYlVFclJwkwpEqVjaEbfi5vCsOBddWm/sGKxyw
A00pMXGwcVTiwP5Qy6MKl2iS4OwhL+G2YYH3BzUBXE2oYgmcmywPKnfBtpCp
yv6w31SsRZKM9WFuTXjYkOXSqLd2RgK6k7flDtoQMoJze3oC6JlJf54aavP+
AyPDB8n/H1ERbqNqh8JRWWjef9AfE7lIXOg8b6JsVfJphttIS8hVS/kH9NE2
QOoJuyPGd3xWAmieLHtT1az/5XsPqjT/s/eeO9Tm/ZcLvvBJeOlwq/WSTsJL
R4Zbm+gkvHQkVhSQOwkvPaiCMsWOOX7pUmT/5UtHThuFgv+Q2cGhCDqchPeO
bmAInKz3juNKOiV6Et47HGlVBvyT984bCJCzMKWaOX/pOo9G5RZUDJmtk+hN
siQA8ZdMVkkYx9N9wEgzXZ18aVMYpzZajdoKsQbkxpIuD2M/odxizqatYx6c
NkrNJCap06FoFUUlDn+H8jUZeQYBUeJm7oZw+kN4WLFK9odAhTKPF2YhSV4d
u0DIRCcDORTME1k5/g0qxmxRmTpxKFOXDcr+EEQ3pZIOSaHMY1aS5JqzC0Qs
ZD5wKAR/ZeWQJDzr2AhxqIhXVJa44M4bF4dgnzKPWUnSwWqShHAAbEm3C8QC
RSaHwrMK8olDUbVi18ShMEGBYuKwaso8ZiUJiSQTgSdJMOD1ktgFXoZeJoeC
oyCbkTik6WSDEheqTmOoNJR5LOCQZCjiD8FLSBWZIgj+EA6+NjpxoRKVf9mN
jt8ay5M4VK0q1cD+sFbKNxbIsjb4J3OFELuALY3aW7cLkAl72ogchn2DsgJT
yMOwL2xx8RlxONCgNAz7w2lLBAaTkIRlMwHy6+2rUVqbQ0HIqwSMUgaJYllm
xIVOh5EknCBQsookYdWUbwyRJO2JDQavpITdw8qzlbR7XXKOVMFSk+lAHKym
1zJlEc7et++IcnnE4UYUpRwTUwVOhGNSwjK7ktvsBWcNVcvM0XAmRWkZ4rBO
qnwgDslSUUAcjkmI0sRUwdtCmreElYoqgSlppaeKcjkassPKX5W0/KASEeIQ
ctDbciqE9FYvSEgV3FLUMLGXUKKWvUDNSLgRh/iUEn0lLUvIwSYOvpu2NfuD
NNT2T0xV4NOzF+htzZe9QOenB9rHSQWZemoHh+iN8pvMYqFrhRuIQ55QciIx
VQh0wGXnaKHUP7OpMCcl4hjVgTLS3QNOIlgKiFSha/mupAolCBKjIaryBFRB
6uhalmstMymxxCHh3qg0mqRBKel4FXGIueiQCXHoOz04u0Ic+pLScUnzzZgU
3AkkI4r9wCeW6GE/cLdVaUEciv9wqNzFhbQRcehfxxSIw/IrRZl4yfAfLuQx
paBcMth8SuGzK/Ad7Dl3SLwNVZOXtvyoyzmcWJ7ukmOZQHpwCQuezk9KGgST
UfvsKgiomBQjuwLzqaaQOLwNHNxwSUMuRAehnZCsCkTZHxhcKcvkpEFym/pC
dgWTQalCdgUOhBHmkoYXYg54OjgUJ+mkMVM3CK/jUJSLg0RUbjE5aWAdo+o4
ZKjC0jlAZe7MwBMNe5ClinPi8DsZaCQNFdJSryQtdAw4RFoWDzFIOLC3UHST
o8Lm0IVfpA6mndLQt1kOlalIHMQh3rPhUOIgRZU/y566oCyK1IHPFNRkb7BQ
VJTLUSEwJZ5us3yKmwxdHFSIwoTEhWprsqcuKDMmdaHg/W2WEqm/qy2rIjfg
4kJlv8SFThERFypByp66IJ97tf0l3oRxCm+3b1HcShyuN0Cqxx01xK3EQT4q
ynG7XQElY87LljqEaRBev9quuhIa7C2468ylTvecOTgwLKIJ5skpkZUqJQ4+
gjIgLnXUDPgrqqiMF8XxEJ3SWQWW2sLg1flTltqG7ha4w3KrTswUs5yOsKRL
F3hGyYvQqoU9b15KBmtCMovDh2qkOTxYTOlz4vAstk10CUBRu/TyoYmD4FFC
I5pM7CvtI3Ybqt1kt4jZoILExYWK5YnD75SEKppg/xIH10JJjmgyoUclPtgt
nCPZwOwWJrKOIxAXss2Ig65WXTFxYHb9lrhQ9W40maEyMKcuXzEVVrCD+3SQ
g8PjWWcE7rC/VXlQUSuXdBcg+4N0VOzl3EgyQ0cKEp1oYLeBlWzUAofHfjPX
vDg4FFbJ+rnKbizZ6cSFDnxEkxk6K89uYRjpLAiPsYR0K4+xhOoZiIMrphDR
VQkk1Z12XytGSTL/t04yMsYHEwJCzZ0C8n3yMjkF+MM6bEYcqsl1aqOMlTRK
dRIXui6mjJU0OnYWnupJP93IqUKwyZMgaSBfeoCkwc7U2UDisBxKgxIXkv3E
oX9d40xcSPZzqs5pun98pDElgaAkOdiIerskBxtRgpI4bGxdTUZc6HgdcVDo
cnDKJthB52Se3j845uhPDGxrhCNJCGn9sgmEKnGIFMuPK2OFqoohiYMFJTOd
/cEj0a7IMqWTcv6RLy1kYTrnRhHTdikKnaO+wrYpPs5Tn5DlsrCIg6cpGc3+
YPiJxc9x2e+kn4nkTEGlLtUhZaFoK2eAs3o6xM4KPqTW0wLrjzjsCTm0xAVH
Eo3SJA4WneR2eKYn8Zwk2+BT6twZiQp53iQK/KcDncR16/fxPNWjlEuwQMSF
DpISV2rVqh0K9XKSifQbyQyd1Wa3UJvaJeUC0nv+IAFPXOjkdDm7Y6XWiYM9
JulIXBBqM2G6aDJD52bYLawAFcCx26aTJq7Chw9cHHSLMuvEBceajVVhcObA
dAX/XxHZlC1xdiRxuDdERTUsz4Lu17n48n4bRKNqxElc6Fw8cUgryZZgf1g/
1YOXt1tHtkQ0maE7odhtqMyogiVJTgsr80JXnlSwJMkOYH+hy3VIJraIygCi
yQxJZnYbKvfg8KEjVyQTjofC8sThver6r8L29StFU8EuhbJn2ZDJe1sRP1e4
qbB9IQoOVrBMovQjcZ3cy3UqJGAS4tC/LiavYDcWch1ZyDRUkjgoZtnn7AwG
ssLI7AyWrK7GJS50JIk45Me0dYiDK6TbWnk1DRxObZ2zItcQN/MqW0BccNuk
eTXsFsW9UuqFLZNknk5wBaTZOsSFbji5y0oE3TYZTSbOjSs4ShxCTfKe2C28
KwyPU3YBDqFE3VzCq51ChyuIwxk2pSPYHzx9bZ1oMgMnz4hU4uBz6pYyDo9A
qfKOvFkKQTsl54nr26vn7PZBGL2QnSIYx6zw3XYT6UBPNmTSYIU1pthXIfuS
dIDQDm9jX8QhUKXzI8QhRK2SCOJwwkb34d+doC2aTBiDShOz21C9H7tFhF2l
u8QN6frm9/IxiYMhI71cyK6c7O+77QrjLZoVjiYTZr7it7x0LaigMB47b0ID
2UpAc3iQA6vTHT64Dsn8tpAVYW2D28Er2k2kPXxmJJkIKqginGQiqawVqZhg
D19q21R5Wcm+CVg6bn+LmzUZ4+n5TW5/2PsShNFkYtElfC61QkppkEoJ9vAl
9gVLSBGHeK4MPuJg9eIrMeamAOKw0TRGNmSygAlHBjKd/DSXgKhKnd1CtuoK
d+JgBCsJVcnuYYly4iDydfM1cbCJlMV0yTRUkjh0LsZhZxs8s6De9Glpbmeo
wlJqijgYuNppxEH6KihEHBxUWfKVLOPo1o7oNcQwsqeD41He5ocAN5+m4Q2Z
cDikgzk8npWmqmR/i51rfkscKjfkh7O/jbVqDm86ictzRiSZoWvMLk7Ay+wW
wx4Ihr/YMg6EtVkRXgWLvlSeTFzoRDn7Q5xKxQzRZEJrq26F3UL3SDJyeKjR
TAf5jOMLhnJxeDOKlxa0L1jqlTjUG6iKJBsyT7V8KwHObiHoxaPsFsygF1cw
+XTAXBD2Lg5yIfN0ECJWBWM0mRhGJBW0PC+RUyUBLzvTUeqCOMRVlTIpmIDn
iQvsJ1OvFk1mKOt0kd0IunGbNyfDfMs8fKiqqEr4BZvQbkH7JlSMyP5g+Ssm
c3okmRhekoxkhi4QZ7cQzIosO9OBM2IUAi8LD1mPxEEqajrsD9kS+azRZGJ4
JWzYLQS6QqgcHtUOmj3vKkeQW9OpaoeXQiAuuG3YnU7oOH42ZPIjZ0hLaVbs
Frke5bzZLdw1CRDiUJQhv4e40AWixCGarIgwcaHbi10yDZUkrqs3Z+WkCyRY
V15Bj0uGdFjcmYQKWpxB4Q6bQYkLnQVlf9heOoF4WuQaYvcot1YgwS5lt9iJ
IN28LuJCl03zAwihyxsK2F0q7/xeKxtkl0aTGbhihpcLJOD5++zml2jisTOY
JyqruM+KNVn0F9i3o9tEiYMnIGsoGzJZqg5hK1vwAjtT1ZyxWxgbsgWJg2hR
LTZxMC5klRMXumCFOAh1RemiyUT1gb6xw27hxCpcwm5xJVjm4eGjy6YiDhEi
FWURh6C8jJr77IbRPcjRZCIYqDgEPzkS+vYMvxeCOISCWc6nSZADMPVj/PYM