-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathexercise08.01.tex
81 lines (79 loc) · 2.75 KB
/
exercise08.01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
\paragraph{Exercise 8.1} Let $X$ and $Y$ be independent, uniform random variables
on $[0,1]$. We want to determine the density and the distribution function of the
sum of the two uniform random variables $X$ and $Y$. Let $Z$ be a random variable,
such that $Z = X + Y$. Hence, we want to determine $f_Z$ and $F_Z$. For all
$z \in \mathbb{R}$,
\[
F_Z(z) = \int_{- \infty}^{z} f_Z(u) \, du,
\]
and
\[
f_Z(z)
= \int_{- \infty}^{\infty} f_{X,Y}(x,z-x) \, dx
= \int_{- \infty}^{\infty} f_X(x)\cdot f_Y(z-x) \, dx.
\]
Furthermore, $f_Z(z) = 0$ for $z < 0$, and also for $z \geq 2$. In regard to the
case $z \in [0,2]$, we will distinguish two cases.
\begin{enumerate}
\item[(i)] Assume that $z \in [0,1]$. In order to have $f_Y(z-x) = 1$, we need
$z-x \geq 0$, that is, $x \leq z$. Consequently, it suffices to integrate from
$x=0$ to $x = z$,
\[
f_z(z)
= \int_{0}^{z} f_X(x)\cdot f_Y(z-x) \, dx
= \int_{0}^{z} 1 \, dx
= z.
\]
\item[(ii)] Assume that $z \in [1,2]$. In order to have $f_Y(z-x) = 1$, we
need $z-x \leq 1$, that is, we need $x \geq z-1$. So in this case, we integrate
from $z-1$ to 1,
\[
f_z(z)
= \int_{z-1}^{1} f_X(x)\cdot f_Y(z-x) \, dx
= \int_{z-1}^{1} 1 \, dx
= \left[ x \right]_{z-1}^1
= 1 - (z-1)
= 2 - z.
\]
\end{enumerate}
Thus, the density function of $Z$ is defined as
\[
f_Z: z \mapsto
\begin{cases}
z, &\text{if }z \in [0,1]; \\
2-z, &\text{if }z \in [1,2]; \\
0, &\text{else.}
\end{cases}
\]
Let us now consider the distribution function of $Z$. $F_Z(z) = 0$ for $z < 0$,
and $F_Z(z) = 1$ for $z \geq 2$. In regard to the case $z \in [0,2]$, we will
examine the two cases $z \in [0,1]$ and $z \in [1,2]$.
\begin{enumerate}
\item[(i)] Assume that $z \in [0,1]$.
\[
F_Z(z)
= \int_{- \infty}^{z} f_Z(u) \, du
= \int_{0}^{z} u \, du
= \left[\frac{u^2}{2}\right]_0^z
= \frac{z^2}{2}.
\]
\item[(ii)] Assume that $z \in [1,2]$.
\begin{align*}
F_Z(z)
&= \int_{- \infty}^{z} f_Z(u) \, du
= \int_{0}^{1} u du + \int_{1}^{z} 2-u \, du \\
&= \left[\frac{u^2}{2}\right]_0^1 + \left[2u - \frac{u^2}{2}\right]_1^z
= \frac{1}{2} + 2z - \frac{z^2}{2} - 2 + \frac{1}{2}
= - \frac{z^2}{2} + 2z - 1.
\end{align*}
\end{enumerate}
Thus, the distribution function of $Z$ is given by
\[
F_Z: z \mapsto
\begin{cases}
0, &\text{if }z < 0; \\
\frac{z^2}{2}, &\text{if }z \in [0,1]; \\
- \frac{z^2}{2} + 2z - 1, &\text{if }z \in [1,2]; \\
1, &\text{if }z > 2.
\end{cases}
\]