diff --git a/dbgpt/_private/config.py b/dbgpt/_private/config.py deleted file mode 100644 index 83ce4eecc..000000000 --- a/dbgpt/_private/config.py +++ /dev/null @@ -1,277 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -from __future__ import annotations - -import os -from typing import List, Optional, TYPE_CHECKING - -from dbgpt.util.singleton import Singleton - -if TYPE_CHECKING: - from auto_gpt_plugin_template import AutoGPTPluginTemplate - from dbgpt.component import SystemApp - - -class Config(metaclass=Singleton): - """Configuration class to store the state of bools for different scripts access""" - - def __init__(self) -> None: - """Initialize the Config class""" - - self.NEW_SERVER_MODE = False - self.SERVER_LIGHT_MODE = False - - # Gradio language version: en, zh - self.LANGUAGE = os.getenv("LANGUAGE", "en") - self.WEB_SERVER_PORT = int(os.getenv("WEB_SERVER_PORT", 7860)) - - self.debug_mode = False - self.skip_reprompt = False - self.temperature = float(os.getenv("TEMPERATURE", 0.7)) - - # self.NUM_GPUS = int(os.getenv("NUM_GPUS", 1)) - - self.execute_local_commands = ( - os.getenv("EXECUTE_LOCAL_COMMANDS", "False").lower() == "true" - ) - # User agent header to use when making HTTP requests - # Some websites might just completely deny request with an error code if - # no user agent was found. - self.user_agent = os.getenv( - "USER_AGENT", - "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_4) AppleWebKit/537.36" - " (KHTML, like Gecko) Chrome/83.0.4103.97 Safari/537.36", - ) - - # This is a proxy server, just for test_py. we will remove this later. - self.proxy_api_key = os.getenv("PROXY_API_KEY") - self.bard_proxy_api_key = os.getenv("BARD_PROXY_API_KEY") - - # In order to be compatible with the new and old model parameter design - if self.bard_proxy_api_key: - os.environ["bard_proxyllm_proxy_api_key"] = self.bard_proxy_api_key - - # tongyi - self.tongyi_proxy_api_key = os.getenv("TONGYI_PROXY_API_KEY") - if self.tongyi_proxy_api_key: - os.environ["tongyi_proxyllm_proxy_api_key"] = self.tongyi_proxy_api_key - - # zhipu - self.zhipu_proxy_api_key = os.getenv("ZHIPU_PROXY_API_KEY") - if self.zhipu_proxy_api_key: - os.environ["zhipu_proxyllm_proxy_api_key"] = self.zhipu_proxy_api_key - os.environ["zhipu_proxyllm_proxyllm_backend"] = os.getenv( - "ZHIPU_MODEL_VERSION", "chatglm_pro" - ) - - # wenxin - self.wenxin_proxy_api_key = os.getenv("WEN_XIN_API_KEY") - self.wenxin_proxy_api_secret = os.getenv("WEN_XIN_API_SECRET") - self.wenxin_model_version = os.getenv("WEN_XIN_MODEL_VERSION") - if self.wenxin_proxy_api_key and self.wenxin_proxy_api_secret: - os.environ["wenxin_proxyllm_proxy_api_key"] = self.wenxin_proxy_api_key - os.environ[ - "wenxin_proxyllm_proxy_api_secret" - ] = self.wenxin_proxy_api_secret - os.environ["wenxin_proxyllm_proxyllm_backend"] = self.wenxin_model_version - - # xunfei spark - self.spark_api_version = os.getenv("XUNFEI_SPARK_API_VERSION") - self.spark_proxy_api_key = os.getenv("XUNFEI_SPARK_API_KEY") - self.spark_proxy_api_secret = os.getenv("XUNFEI_SPARK_API_SECRET") - self.spark_proxy_api_appid = os.getenv("XUNFEI_SPARK_APPID") - if self.spark_proxy_api_key and self.spark_proxy_api_secret: - os.environ["spark_proxyllm_proxy_api_key"] = self.spark_proxy_api_key - os.environ["spark_proxyllm_proxy_api_secret"] = self.spark_proxy_api_secret - os.environ["spark_proxyllm_proxyllm_backend"] = self.spark_api_version - os.environ["spark_proxyllm_proxy_api_app_id"] = self.spark_proxy_api_appid - - # baichuan proxy - self.bc_proxy_api_key = os.getenv("BAICHUAN_PROXY_API_KEY") - self.bc_proxy_api_secret = os.getenv("BAICHUAN_PROXY_API_SECRET") - self.bc_model_version = os.getenv("BAICHUN_MODEL_NAME") - if self.bc_proxy_api_key and self.bc_proxy_api_secret: - os.environ["bc_proxyllm_proxy_api_key"] = self.bc_proxy_api_key - os.environ["bc_proxyllm_proxy_api_secret"] = self.bc_proxy_api_secret - os.environ["bc_proxyllm_proxyllm_backend"] = self.bc_model_version - - # gemini proxy - self.gemini_proxy_api_key = os.getenv("GEMINI_PROXY_API_KEY") - if self.gemini_proxy_api_key: - os.environ["gemini_proxyllm_proxy_api_key"] = self.gemini_proxy_api_key - os.environ["gemini_proxyllm_proxyllm_backend"] = os.getenv( - "GEMINI_MODEL_VERSION", "gemini-pro" - ) - - self.proxy_server_url = os.getenv("PROXY_SERVER_URL") - - self.elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY") - self.elevenlabs_voice_1_id = os.getenv("ELEVENLABS_VOICE_1_ID") - self.elevenlabs_voice_2_id = os.getenv("ELEVENLABS_VOICE_2_ID") - - self.use_mac_os_tts = False - self.use_mac_os_tts = os.getenv("USE_MAC_OS_TTS") - - self.authorise_key = os.getenv("AUTHORISE_COMMAND_KEY", "y") - self.exit_key = os.getenv("EXIT_KEY", "n") - self.image_provider = os.getenv("IMAGE_PROVIDER", True) - self.image_size = int(os.getenv("IMAGE_SIZE", 256)) - - self.huggingface_api_token = os.getenv("HUGGINGFACE_API_TOKEN") - self.image_provider = os.getenv("IMAGE_PROVIDER") - self.image_size = int(os.getenv("IMAGE_SIZE", 256)) - self.huggingface_image_model = os.getenv( - "HUGGINGFACE_IMAGE_MODEL", "CompVis/stable-diffusion-v1-4" - ) - self.huggingface_audio_to_text_model = os.getenv( - "HUGGINGFACE_AUDIO_TO_TEXT_MODEL" - ) - self.speak_mode = False - - from dbgpt.core._private.prompt_registry import PromptTemplateRegistry - - self.prompt_template_registry = PromptTemplateRegistry() - ### Related configuration of built-in commands - self.command_registry = [] - - ### Relate configuration of disply commands - self.command_disply = [] - - disabled_command_categories = os.getenv("DISABLED_COMMAND_CATEGORIES") - if disabled_command_categories: - self.disabled_command_categories = disabled_command_categories.split(",") - else: - self.disabled_command_categories = [] - - self.execute_local_commands = ( - os.getenv("EXECUTE_LOCAL_COMMANDS", "False").lower() == "true" - ) - ### message stor file - self.message_dir = os.getenv("MESSAGE_HISTORY_DIR", "../../message") - - ### The associated configuration parameters of the plug-in control the loading and use of the plug-in - - self.plugins: List["AutoGPTPluginTemplate"] = [] - self.plugins_openai = [] - self.plugins_auto_load = os.getenv("AUTO_LOAD_PLUGIN", "True").lower() == "true" - - self.plugins_git_branch = os.getenv("PLUGINS_GIT_BRANCH", "plugin_dashboard") - - plugins_allowlist = os.getenv("ALLOWLISTED_PLUGINS") - if plugins_allowlist: - self.plugins_allowlist = plugins_allowlist.split(",") - else: - self.plugins_allowlist = [] - - plugins_denylist = os.getenv("DENYLISTED_PLUGINS") - if plugins_denylist: - self.plugins_denylist = plugins_denylist.split(",") - else: - self.plugins_denylist = [] - ### Native SQL Execution Capability Control Configuration - self.NATIVE_SQL_CAN_RUN_DDL = ( - os.getenv("NATIVE_SQL_CAN_RUN_DDL", "True").lower() == "true" - ) - self.NATIVE_SQL_CAN_RUN_WRITE = ( - os.getenv("NATIVE_SQL_CAN_RUN_WRITE", "True").lower() == "true" - ) - - self.LOCAL_DB_MANAGE = None - - ###dbgpt meta info database connection configuration - self.LOCAL_DB_HOST = os.getenv("LOCAL_DB_HOST") - self.LOCAL_DB_PATH = os.getenv("LOCAL_DB_PATH", "data/default_sqlite.db") - self.LOCAL_DB_TYPE = os.getenv("LOCAL_DB_TYPE", "sqlite") - if self.LOCAL_DB_HOST is None and self.LOCAL_DB_PATH == "": - self.LOCAL_DB_HOST = "127.0.0.1" - - self.LOCAL_DB_NAME = os.getenv("LOCAL_DB_NAME", "dbgpt") - self.LOCAL_DB_PORT = int(os.getenv("LOCAL_DB_PORT", 3306)) - self.LOCAL_DB_USER = os.getenv("LOCAL_DB_USER", "root") - self.LOCAL_DB_PASSWORD = os.getenv("LOCAL_DB_PASSWORD", "aa123456") - self.LOCAL_DB_POOL_SIZE = int(os.getenv("LOCAL_DB_POOL_SIZE", 10)) - self.LOCAL_DB_POOL_OVERFLOW = int(os.getenv("LOCAL_DB_POOL_OVERFLOW", 20)) - - self.CHAT_HISTORY_STORE_TYPE = os.getenv("CHAT_HISTORY_STORE_TYPE", "db") - - ### LLM Model Service Configuration - self.LLM_MODEL = os.getenv("LLM_MODEL", "vicuna-13b-v1.5") - self.LLM_MODEL_PATH = os.getenv("LLM_MODEL_PATH") - - ### Proxy llm backend, this configuration is only valid when "LLM_MODEL=proxyllm" - ### When we use the rest API provided by deployment frameworks like fastchat as a proxyllm, "PROXYLLM_BACKEND" is the model they actually deploy. - ### We need to use "PROXYLLM_BACKEND" to load the prompt of the corresponding scene. - self.PROXYLLM_BACKEND = None - if self.LLM_MODEL == "proxyllm": - self.PROXYLLM_BACKEND = os.getenv("PROXYLLM_BACKEND") - - self.LIMIT_MODEL_CONCURRENCY = int(os.getenv("LIMIT_MODEL_CONCURRENCY", 5)) - self.MAX_POSITION_EMBEDDINGS = int(os.getenv("MAX_POSITION_EMBEDDINGS", 4096)) - self.MODEL_PORT = os.getenv("MODEL_PORT", 8000) - self.MODEL_SERVER = os.getenv( - "MODEL_SERVER", "http://127.0.0.1" + ":" + str(self.MODEL_PORT) - ) - - ### Vector Store Configuration - self.VECTOR_STORE_TYPE = os.getenv("VECTOR_STORE_TYPE", "Chroma") - self.MILVUS_URL = os.getenv("MILVUS_URL", "127.0.0.1") - self.MILVUS_PORT = os.getenv("MILVUS_PORT", "19530") - self.MILVUS_USERNAME = os.getenv("MILVUS_USERNAME", None) - self.MILVUS_PASSWORD = os.getenv("MILVUS_PASSWORD", None) - - # QLoRA - self.QLoRA = os.getenv("QUANTIZE_QLORA", "True") - self.IS_LOAD_8BIT = os.getenv("QUANTIZE_8bit", "True").lower() == "true" - self.IS_LOAD_4BIT = os.getenv("QUANTIZE_4bit", "False").lower() == "true" - if self.IS_LOAD_8BIT and self.IS_LOAD_4BIT: - self.IS_LOAD_8BIT = False - # In order to be compatible with the new and old model parameter design - os.environ["load_8bit"] = str(self.IS_LOAD_8BIT) - os.environ["load_4bit"] = str(self.IS_LOAD_4BIT) - - ### EMBEDDING Configuration - self.EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL", "text2vec") - self.KNOWLEDGE_CHUNK_SIZE = int(os.getenv("KNOWLEDGE_CHUNK_SIZE", 100)) - self.KNOWLEDGE_CHUNK_OVERLAP = int(os.getenv("KNOWLEDGE_CHUNK_OVERLAP", 50)) - self.KNOWLEDGE_SEARCH_TOP_SIZE = int(os.getenv("KNOWLEDGE_SEARCH_TOP_SIZE", 5)) - # default recall similarity score, between 0 and 1 - self.KNOWLEDGE_SEARCH_RECALL_SCORE = float( - os.getenv("KNOWLEDGE_SEARCH_RECALL_SCORE", 0.3) - ) - self.KNOWLEDGE_SEARCH_MAX_TOKEN = int( - os.getenv("KNOWLEDGE_SEARCH_MAX_TOKEN", 2000) - ) - # Whether to enable Chat Knowledge Search Rewrite Mode - self.KNOWLEDGE_SEARCH_REWRITE = ( - os.getenv("KNOWLEDGE_SEARCH_REWRITE", "False").lower() == "true" - ) - # Control whether to display the source document of knowledge on the front end. - self.KNOWLEDGE_CHAT_SHOW_RELATIONS = ( - os.getenv("KNOWLEDGE_CHAT_SHOW_RELATIONS", "False").lower() == "true" - ) - - ### SUMMARY_CONFIG Configuration - self.SUMMARY_CONFIG = os.getenv("SUMMARY_CONFIG", "FAST") - - self.MAX_GPU_MEMORY = os.getenv("MAX_GPU_MEMORY", None) - - ### Log level - self.DBGPT_LOG_LEVEL = os.getenv("DBGPT_LOG_LEVEL", "INFO") - - self.SYSTEM_APP: Optional["SystemApp"] = None - - ### Temporary configuration - self.USE_FASTCHAT: bool = os.getenv("USE_FASTCHAT", "True").lower() == "true" - - self.MODEL_CACHE_ENABLE: bool = ( - os.getenv("MODEL_CACHE_ENABLE", "True").lower() == "true" - ) - self.MODEL_CACHE_STORAGE_TYPE: str = os.getenv( - "MODEL_CACHE_STORAGE_TYPE", "disk" - ) - self.MODEL_CACHE_MAX_MEMORY_MB: int = int( - os.getenv("MODEL_CACHE_MAX_MEMORY_MB", 256) - ) - self.MODEL_CACHE_STORAGE_DISK_DIR: str = os.getenv( - "MODEL_CACHE_STORAGE_DISK_DIR" - )