forked from mismayil/crow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
682 lines (569 loc) · 23.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import json
import os, time
import openai
from openai.error import OpenAIError
import torch
import numpy as np
from collections import Counter
import codecs
import re
import sys
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
import spacy
import boto3
import math
import uuid
import tiktoken
import numbers
openai.api_key = os.getenv("OPENAI_API_KEY")
nlp = spacy.load("en_core_web_sm", exclude=["ner"])
CK_DIMENSIONS = {
"attribution": [
"HasProperty",
"CapableOf",
"HasA",
"HasSubEvent",
"IsA",
"MannerOf",
"DependsOn",
"InstanceOf",
"CreatedBy",
"HasContext",
"HasSubevent"
],
"physical": [
"ObjectUse",
"PartOf",
"MadeOf",
"UsedFor",
"AtLocation",
"LocatedNear"
],
"temporal": [
"IsAfter",
"IsBefore",
"IsDuring",
"IsSimultaneous",
"HappensIn",
"HasPrerequisite"
],
"causal": [
"Causes",
"CausesDesire",
"HinderedBy",
"ObstructedBy",
"Implies",
"xReason"
],
"social": [
"oEffect",
"oReact",
"oWant",
"xAttr",
"xEffect",
"xIntent",
"xNeed",
"xReact",
"xWant",
"MotivatedByGoal",
"Desires"
],
"comparison": [
"Antonym",
"Synonym",
"SimilarTo",
"RelatedTo",
"DistinctFrom",
"DefinedAs"
],
"other": [
"Other",
"DesireOf",
"HasFirstSubevent",
"HasLastSubevent",
"HasPainCharacter",
"HasPainIntensity",
"InheritsFrom",
"LocationOfAction",
"ReceivesAction",
"SymbolOf",
"IsFilledBy"
]
}
MODEL_COSTS = {
"gpt-3.5-turbo": {'input': 0.0000015, 'output': 0.000002},
"gpt-4": {'input': 0.00003, 'output': 0.00006},
"text-davinci-003": {'input': 0.00002, 'output': 0.00002},
}
MODEL_ENCODINGS = {
"gpt-3.5-turbo": "cl100k_base",
"gpt-4": "cl100k_base",
"text-davinci-003": "p50k_base"
}
def num_tokens_from_string(text, model):
encoding_name = MODEL_ENCODINGS[model]
encoding = tiktoken.get_encoding(encoding_name)
num_tokens = len(encoding.encode(text))
return num_tokens
def read_json(path):
with open(path, "r") as f:
data = json.load(f)
return data
def write_json(data, path):
with open(path, "w") as f:
json.dump(data, f, indent=4)
def chat_completion(messages, model="gpt-3.5-turbo", return_text=False):
while True:
try:
response = openai.ChatCompletion.create(model=model, messages=messages)
if return_text:
return response["choices"][0]["message"]["content"]
return response
except OpenAIError as e:
print("OpenAI error. Waiting for 1 minute.")
time.sleep(60)
continue
@torch.no_grad()
def score_decoder(text, model, tokenizer, device=torch.device("cpu")):
input_ids = tokenizer.encode(text, return_tensors="pt")
input_logprobs = []
logits = model(input_ids.to(device)).logits
all_logprobs = torch.log_softmax(logits.double(), dim=2)
for k in range(input_ids.shape[1]):
input_logprobs.append(all_logprobs[0, k-1, input_ids[0, k]].cpu())
score = np.mean(input_logprobs)
return score.item()
@torch.no_grad()
def score_encoder_decoder(context, text, model, tokenizer, device=torch.device("cpu")):
context_ids = tokenizer.encode(context, return_tensors="pt")
text_ids = tokenizer.encode(text, return_tensors="pt")
text_logprobs = []
logits = model(input_ids=context_ids.to(device), decoder_input_ids=text_ids.to(device)).logits
all_logprobs = torch.log_softmax(logits.double(), dim=2)
for k in range(text_ids.shape[1]):
text_logprobs.append(all_logprobs[0, k-1, text_ids[0, k]].cpu())
score = np.mean(text_logprobs)
return score.item()
def score_with_generation(context, text, model, tokenizer, device=torch.device("cpu")):
input_ids = tokenizer.encode(context, return_tensors="pt")
text_ids = tokenizer.encode(text, return_tensors="pt")
text_logprobs = []
for text_id in text_ids[0]:
output = model.generate(input_ids.to(device), max_new_tokens=1, pad_token_id=tokenizer.eos_token_id, output_scores=True, return_dict_in_generate=1)
probs = output.scores[0].log_softmax(dim=-1).squeeze()
text_logprobs.append(probs[text_id].cpu())
input_ids = torch.cat([input_ids, text_id.reshape(1, 1)], dim=-1)
score = np.mean(text_logprobs)
return score.item()
def score_with_generation_enc_dec(context, text, model, tokenizer, device=torch.device("cpu")):
context_ids = tokenizer.encode(context, return_tensors="pt")
text_ids = tokenizer.encode(text, return_tensors="pt")[0].tolist()
text_ids = [text_id for text_id in text_ids if text_id != model.config.bos_token_id]
text_logprobs = []
for index in range(1, len(text_ids)):
forced_decoder_ids = list(zip(range(1, index+1), text_ids[:index]))
output = model.generate(context_ids.to(device), max_new_tokens=index+2, output_scores=True, return_dict_in_generate=True, num_beams=1, forced_decoder_ids=forced_decoder_ids)
probs = output.scores[-2].log_softmax(dim=-1).squeeze()
next_id = text_ids[index]
text_logprobs.append(probs[next_id].item())
score = np.mean(text_logprobs)
return score
def clean(text, replace_emoji=True):
text = text.strip().replace(' .', '.').replace(' ?', '?').replace(' ,', ',').replace(' !', '!')
text = re.sub(r"\s\s+", " ", text)
if replace_emoji:
text = replace_emoji_characters(text)
return text
def replace_emoji_characters(s):
"""Replace 4-byte characters with HTML spans with bytes as JSON array
This function takes a Unicode string containing 4-byte Unicode
characters, e.g. 😀, and replaces each 4-byte character with an
HTML span with the 4 bytes encoded as a JSON array, e.g.:
<span class='emoji-bytes' data-emoji-bytes='[240, 159, 152, 128]'></span>
Args:
s (Unicode string):
Returns:
Unicode string with all 4-byte Unicode characters in the source
string replaced with HTML spans
"""
def _emoji_match_to_span(emoji_match):
"""
Args:
emoji_match (MatchObject):
Returns:
Unicode string
"""
bytes = codecs.encode(emoji_match.group(), 'utf-8')
bytes_as_json = json.dumps([b for b in bytearray(bytes)])
return u"<span class='emoji-bytes' data-emoji-bytes='%s'></span>" % \
bytes_as_json
# The procedure for stripping Emoji characters is based on this
# StackOverflow post:
# http://stackoverflow.com/questions/12636489/python-convert-4-byte-char-to-avoid-mysql-error-incorrect-string-value
if sys.maxunicode == 1114111:
# Python was built with '--enable-unicode=ucs4'
highpoints = re.compile(u'[\U00010000-\U0010ffff]')
elif sys.maxunicode == 65535:
# Python was built with '--enable-unicode=ucs2'
highpoints = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]')
else:
raise UnicodeError(
"Unable to determine if Python was built using UCS-2 or UCS-4")
return highpoints.sub(_emoji_match_to_span, s)
def parse_turn(text):
match = re.match(r"(?P<speaker>.*?):(?P<utterance>.*)", text.strip())
if match:
return match.group("speaker"), match.group("utterance")
def dim_from_relation(relation, dimensions=CK_DIMENSIONS, ignore_other=False):
for dim, rels in dimensions.items():
if not ignore_other or dim != "other":
rel_parts = relation.split(" ")
relation = rel_parts[0]
if len(rel_parts) > 1:
relation = rel_parts[1]
if relation in rels:
return dim
def get_dim_distribution(kgs, dimensions=CK_DIMENSIONS):
dim_distribution = Counter()
for kg in kgs:
if mturk_not_empty(kg["relation"]):
dim_distribution[dim_from_relation(kg["relation"], dimensions)] += 1
return dim_distribution
def mturk_not_empty(string):
if isinstance(string, float):
return not math.isnan(string)
return string and string != "" and string != "{}"
def mturk_convert_prefix(prefix):
return "" if prefix == "empty" else prefix
def mturk_process_dialogue_turn(turn):
return turn.replace("<strong class=\"highlight\">", "").replace("<strong>", "").replace("</strong>", "").strip()
def mturk_process_text(turn):
return turn.replace("<strong class=\"highlight\">", "").replace("<strong class=\"concept_a\">", "").replace("<strong class=\"concept_b\">", "").replace("<strong>", "").replace("</strong>", "").strip()
def mturk_process_dialogue(dialogue):
if isinstance(dialogue, str):
return [turn.strip() for turn in dialogue.replace("<strong class=\"highlight\">", "").replace("<strong>", "").replace("</strong>", "").strip().split("<br>") if turn.strip()]
def chunk(l, n):
for i in range(0, len(l), n):
yield l[i:i + n]
def mturk_extract_size(results, pattern, num_placeholder="<num>"):
nums = []
pattern = pattern.replace(num_placeholder, "(?P<num>\d+)")
for col in results.columns:
match = re.fullmatch(pattern, col)
num = match.group("num") if match else None
if num is not None:
nums.append(int(num))
max_num = max(nums) if nums else 0
return max_num
KG_OPTION_TEMPLATE = """
<kg-option>
<kg-id>{id}</kg-id>
<kg-head>{head}</kg-head>
<kg-relation>{relation}</kg-relation>
<kg-tail>{tail}</kg-tail>
</kg-option>
"""
KG_XML_TEMPLATE = """
<knowledge>
{options}
</knowledge>
"""
def kg_to_xml(knowledge):
options = []
for kg in knowledge:
options.append(KG_OPTION_TEMPLATE.format(id=kg["id"], head=kg["head"], relation=kg["relation"], tail=kg["tail"]))
return KG_XML_TEMPLATE.format(options="\n".join(options))
def escape_quotes(text):
return text.replace("'", "#squote#")
def unescape_quotes(text):
return text.replace("#squote#", "'")
MTURK_DIALOGUE_TEMPLATE = "<strong>{speaker}:</strong> {utterance}"
def mturk_prepare_dialogue_turn(speaker, utterance):
return MTURK_DIALOGUE_TEMPLATE.format(speaker=speaker.strip(), utterance=utterance.strip())
def mturk_prepare_dialogue(dialogue, include_index=False, highlight_phrase=None):
utterances = []
for t_index, turn in enumerate(dialogue):
if isinstance(turn, str):
if highlight_phrase is not None:
turn = turn.replace(highlight_phrase, "<strong class=\"highlight\">{}</strong>".format(highlight_phrase))
speaker, utterance = parse_turn(turn)
elif isinstance(turn, dict):
speaker = turn["speaker"]
utterance = turn["utterance"]
if highlight_phrase is not None:
utterance = utterance.replace(highlight_phrase, "<strong class=\"highlight\">{}</strong>".format(highlight_phrase))
else:
raise ValueError("Invalid turn: {}".format(turn))
if include_index:
speaker = "{}. {}".format(t_index+1, speaker)
utterances.append(mturk_prepare_dialogue_turn(speaker, clean(utterance)))
return "<br>".join(utterances)
def prepare_dialogue_turn_for_eval(turn):
return re.sub("^\d+\.", "", turn.strip()).strip()
def prepare_dialogue_for_eval(dialogue):
return [prepare_dialogue_turn_for_eval(turn) for turn in dialogue]
def mturk_process_json(json_str):
return json.loads(unescape_quotes(json_str.replace('"', "").replace("'", '"').replace("\\xa0", " ")))
def predict_with_strategy(prob_scores, strategy="top_k", num_positive=1):
predictions = [0] * len(prob_scores)
if strategy == "top_k":
sorted_prob_scores = sorted(list(enumerate(prob_scores)), key=lambda p: p[1], reverse=True)
for index, _ in sorted_prob_scores[:num_positive]:
predictions[index] = 1
for index, _ in sorted_prob_scores[num_positive:]:
predictions[index] = 0
return predictions
if strategy == "threshold":
random_threshold = num_positive / len(prob_scores)
for index, score in enumerate(prob_scores):
if score > random_threshold:
predictions[index] = 1
else:
predictions[index] = 0
return predictions
METRIC_MAP = {
"accuracy": accuracy_score,
"f1": f1_score,
"precision": precision_score,
"recall": recall_score
}
def compute_metric(references, predictions, metric="accuracy"):
return METRIC_MAP[metric](references, predictions)
def clean_utterance(utterance):
return re.sub(".*?:", "", utterance, count=1).strip()
def plot_dim_distribution(dim_distribution, save_path=None):
dimensions = sorted(list(dim_distribution.keys()))
values = [0] * len(dimensions)
for dim, count in dim_distribution.items():
values[dimensions.index(dim)] += count
colors = sns.color_palette('pastel')[0:5]
plt.pie(values, labels = dimensions, colors = colors, autopct='%.0f%%')
if save_path is not None:
plt.savefig(save_path, format="pdf", bbox_inches="tight")
plt.show()
return plt
def text_to_wordset(text, ignore_stopwords=False, ignore_punctuations=True):
if isinstance(text, str):
doc = nlp(text)
return sorted(set([token.lemma_ for token in doc if (not ignore_stopwords or not token.is_stop) and (not ignore_punctuations or not token.is_punct)]))
return []
def get_workers(qualification_type_id):
session = boto3.Session(profile_name='mturk')
mturk_client = session.client('mturk')
next_token = None
workers = []
while True:
if next_token is None:
response = mturk_client.list_workers_with_qualification_type(
QualificationTypeId=qualification_type_id,
Status='Granted',
MaxResults=100
)
else:
response = mturk_client.list_workers_with_qualification_type(
QualificationTypeId=qualification_type_id,
Status='Granted',
NextToken=next_token,
MaxResults=100
)
workers.extend(response["Qualifications"])
if "NextToken" not in response:
break
next_token = response["NextToken"]
return workers
def fleiss_kappa(ratings):
"""
Args:
ratings: An N x R numpy array. N is the number of
samples and R is the number of reviewers. Each
entry (n, r) is the category assigned to example
n by reviewer r.
Returns:
Fleiss' kappa score.
https://en.wikipedia.org/wiki/Fleiss%27_kappa
"""
N, R = ratings.shape
NR = N * R
categories = set(ratings.ravel().tolist())
P_example = -np.full(N, R)
p_class = 0.0
for c in categories:
c_sum = np.sum(ratings == c, axis=1)
P_example += c_sum**2
p_class += (np.sum(c_sum) / float(NR)) ** 2
P_example = np.sum(P_example) / float(NR * (R-1))
k = (P_example - p_class) / (1 - p_class)
return k
VERBALIZER_MAP = {
"HasProperty": "{head} has {tail} as a property",
"CapableOf": "{head} is capable of {tail}",
"HasA": "{head} has {tail}",
"HasSubEvent": "{tail} happens as a subevent of {head}",
"HasSubevent": "{tail} happens as a subevent of {head}",
"IsA": "{head} is a subtype or specific instance of {tail}",
"MannerOf": "{head} is a specific way to do {tail}",
"DependsOn": "{head} depends on {tail}",
"InstanceOf": "{head} is an instance of {tail}",
"CreatedBy": "{head} is created by {tail}",
"HasContext": "{head} has context {tail}",
"ObjectUse": "{head} can be used for {tail}",
"PartOf": "{head} is part of {tail}",
"MadeOf": "{head} is made up of {tail}",
"UsedFor": "{head} is used for {tail}",
"AtLocation": "{head} is located at {tail}",
"LocatedNear": "{head} is located near {tail}",
"IsAfter": "{head}. Before that, {tail}",
"IsBefore": "{head}. After that, {tail}",
"IsDuring": "{head} happens during {tail}",
"IsSimultaneous": "{head} happens at the same time as {tail}",
"HappensIn": "{head} happens in {tail}",
"HasPrerequisite": "In order for {head} to happen, {tail} needs to happen",
"Causes": "{head} causes {tail}",
"CausesDesire": "{head} causes a desire for {tail}",
"HinderedBy": "{head} is less likely to happen because of {tail}",
"ObstructedBy": "{head} is less likely to happen because of {tail}",
"Implies": "{head} implies {tail}",
"xReason": "{head}. This was done because {tail}",
"oEffect": "{head}. The effect on others will be {tail}",
"oReact": "{head}. As a result, others feel {tail}",
"oWant": "{head}. After, others will want to {tail}",
"xAttr": "{head}. Subject is {tail}",
"xEffect": "{head}. The effect on the subject will be {tail}",
"xIntent": "{head}. Subject did this to {tail}",
"xNeed": "{head}. Before, subject needs to {tail}",
"xReact": "{head}. subject will be {tail}",
"xWant": "{head}. After, subject will want to {tail}",
"MotivatedByGoal": "{head} is motivated by the goal of {tail}",
"Desires": "{head} desires {tail}",
"Antonym": "{head} is the opposite of {tail}",
"Synonym": "{head} is the same as {tail}",
"SimilarTo": "{head} is similar to {tail}",
"RelatedTo": "{head} is related to {tail}",
"DistinctFrom": "{head} is distinct from {tail}",
"DefinedAs": "{head} is defined as {tail}",
"ReceivesAction": "{head} receives the action {tail}",
"Other": "{head} has some relationship with {tail}",
"Not HasProperty": "{head} does not have {tail} as a property",
"Not CapableOf": "{head} is not capable of {tail}",
"Not HasA": "{head} does not have {tail}",
"Not HasSubEvent": "{tail} does not happen as a subevent of {head}",
"Not HasSubevent": "{tail} does not happen as a subevent of {head}",
"Not IsA": "{head} is not a subtype or specific instance of {tail}",
"Not MannerOf": "{head} is not a specific way to do {tail}",
"Not DependsOn": "{head} does not depend on {tail}",
"Not InstanceOf": "{head} is not an instance of {tail}",
"Not CreatedBy": "{head} is not created by {tail}",
"Not HasContext": "{head} does not have context {tail}",
"Not ObjectUse": "{head} is not used for {tail}",
"Not PartOf": "{head} is not part of {tail}",
"Not MadeOf": "{head} is not made up of {tail}",
"Not UsedFor": "{head} is not used for {tail}",
"Not AtLocation": "{head} is not located at {tail}",
"Not LocatedNear": "{head} is not located near {tail}",
"Not IsAfter": "{head}. After that, {tail}",
"Not IsBefore": "{head}. Before that, {tail}",
"Not IsDuring": "{head} does not happen during {tail}",
"Not IsSimultaneous": "{head} does not happen at the same time as {tail}",
"Not HappensIn": "{head} does not happen in {tail}",
"Not HasPrerequisite": "In order for {head} to happen, {tail} does not need to happen",
"Not Causes": "{head} does not cause {tail}",
"Not CausesDesire": "{head} does not cause a desire for {tail}",
"Not HinderedBy": "{head} is not less likely to happen because of {tail}",
"Not ObstructedBy": "{head} is not less likely to happen because of {tail}",
"Not Implies": "{head} does not imply {tail}",
"Not xReason": "{head}. Subject did not do this because {tail}",
"Not oEffect": "{head}. The effect on others will not be {tail}",
"Not oReact": "{head}. As a result, others do not feel {tail}",
"Not oWant": "{head}. After, others will not want {tail}",
"Not xAttr": "{head}. Subject is not {tail}",
"Not xEffect": "{head}. The effect on subject will not be {tail}",
"Not xIntent": "{head}. Subject did not do this for {tail}",
"Not xNeed": "{head}. Before, Subject does not need to {tail}",
"Not xReact": "{head}. Subject will not be {tail}",
"Not xWant": "{head}. After, Subject will not want to {tail}",
"Not MotivatedByGoal": "{head} is not motivated by the goal of {tail}",
"Not Desires": "{head} does not desire {tail}",
"Not Antonym": "{head} is not the opposite of {tail}",
"Not Synonym": "{head} is not the same as {tail}",
"Not SimilarTo": "{head} is not similar to {tail}",
"Not RelatedTo": "{head} is not related to {tail}",
"Not DistinctFrom": "{head} is not distinct from {tail}",
"Not DefinedAs": "{head} is not defined as {tail}",
"Not ReceivesAction": "{head} does not receive the action {tail}",
"Not Other": "{head} does not have some relationship with {tail}"
}
def enrich_kg(kg):
return {
**kg,
"dimension": dim_from_relation(kg["relation"]),
"verbalized": VERBALIZER_MAP[kg["relation"]].format(head=kg["head"], tail=kg["tail"])
}
def enrich_knowledge(knowledge):
return [enrich_kg(kg) for kg in knowledge]
def find_json_files(directory):
json_files = []
for root, dirs, files in os.walk(directory):
for file in files:
if file.endswith(".json"):
json_files.append(os.path.join(root, file))
return json_files
def generate_unique_id():
return str(uuid.uuid4()).split("-")[-1]
def get_avg_metrics_from_dicts(lst_of_dicts):
metrics = lst_of_dicts[0]
metric_names = []
avg_metrics = {}
for key, val in metrics.items():
if isinstance(val, numbers.Number):
metric_names.append(key)
elif isinstance(val, dict):
for subkey, subval in val.items():
if isinstance(subval, numbers.Number):
metric_names.append((key, subkey))
else:
raise ValueError("Unsupported metric type")
else:
raise ValueError("Unsupported metric type")
for metric_name in metric_names:
values = []
for task_metrics in lst_of_dicts:
if isinstance(metric_name, str):
values.append(task_metrics[metric_name])
elif isinstance(metric_name, tuple):
if metric_name[0] in task_metrics and metric_name[1] in task_metrics[metric_name[0]]:
values.append(task_metrics[metric_name[0]][metric_name[1]])
else:
print("Missing metric: {}".format(metric_name))
else:
raise ValueError("Unsupported metric type")
if isinstance(metric_name, str):
avg_metrics[metric_name] = sum(values) / len(values)
elif isinstance(metric_name, tuple):
if metric_name[0] not in avg_metrics:
avg_metrics[metric_name[0]] = {}
avg_metrics[metric_name[0]][metric_name[1]] = sum(values) / len(values)
return avg_metrics
def word_to_num(word):
regex = re.compile("^(?P<num>\d+)(?P<suffix>[bBmMkKtT]?)$")
match = regex.match(word)
num = word
if match:
num = int(match.group("num"))
suffix = match.group("suffix")
if suffix:
if suffix.lower() == "b":
num *= 1e9
elif suffix.lower() == "m":
num *= 1e6
elif suffix.lower() == "k":
num *= 1e3
elif suffix.lower() == "t":
num *= 1e12
num = int(num)
return num
def get_value(obj, keys):
for key in keys:
obj = obj[key]
return obj