-
Notifications
You must be signed in to change notification settings - Fork 26
/
README.html
1023 lines (1023 loc) · 34.7 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<h1 id="epic-kitchens-55-dataset"><a href="https://epic-kitchens.github.io/2018">EPIC KITCHENS-55 Dataset</a></h1>
<!-- start badges -->
<!-- end badges -->
<blockquote>
<p><a href="https://epic-kitchens.github.io/">EPIC-KITCHENS-55</a> is the largest dataset in first-person (egocentric) vision; 55 hours of multi-faceted, non-scripted recordings in native environments - i.e. the wearers’ homes, capturing all daily activities in the kitchen over multiple days. Annotations are collected using a novel `live’ audio commentary approach.</p>
</blockquote>
<h2 id="authors">Authors</h2>
<p>Dima Damen (1) Hazel Doughty (1) Giovanni Maria Farinella (3) Sanja Fidler (2) Antonino Furnari (3) Evangelos Kazakos (1) Davide Moltisanti (1) Jonathan Munro (1) Toby Perrett (1) Will Price (1) Michael Wray (1)</p>
<ul>
<li>(1 University of Bristol)</li>
<li>(2 University of Toronto)</li>
<li>(3 University of Catania)</li>
</ul>
<p><strong>Contact:</strong> <a href="mailto:[email protected]">[email protected]</a></p>
<h2 id="citing">Citing</h2>
<p>When using the dataset, kindly reference:</p>
<pre><code>@INPROCEEDINGS{Damen2018EPICKITCHENS,
title={Scaling Egocentric Vision: The EPIC-KITCHENS Dataset},
author={Damen, Dima and Doughty, Hazel and Farinella, Giovanni Maria and Fidler, Sanja and
Furnari, Antonino and Kazakos, Evangelos and Moltisanti, Davide and Munro, Jonathan
and Perrett, Toby and Price, Will and Wray, Michael},
booktitle={European Conference on Computer Vision (ECCV)},
year={2018}
} </code></pre>
<p>(Check publication <a href="https://epic-kitchens.github.io">here</a>)</p>
<h2 id="dataset-details">Dataset Details</h2>
<h3 id="ground-truth">Ground Truth</h3>
<p>We provide ground truth for action segments and object bounding boxes.</p>
<ul>
<li><strong>Objects:</strong> Full bounding boxes of narrated objects for every annotated frame.</li>
<li><strong>Actions:</strong> Split into narrations and action labels:
<ul>
<li>Narrations containing the narrated sentence with the timestamp.</li>
<li>Action labels containing the verb and noun labels along with the start and end times of the segment.</li>
</ul></li>
</ul>
<h3 id="dataset-splits">Dataset Splits</h3>
<p>The dataset is comprised of three splits with the corresponding ground truth:</p>
<ul>
<li>Training set - Full ground truth.</li>
<li>Seen Kitchens (S1) Test set - Start/end times only.</li>
<li>Unseen Kitchens (S2) Test set - Start/end times only.</li>
</ul>
<p>Initially we are only releasing the full ground truth for the training set in order to run action and object challenges.</p>
<h3 id="important-files">Important Files</h3>
<ul>
<li><code>README.md (this file)</code></li>
<li><code>README.html</code></li>
<li><code>README.pdf</code></li>
<li><a href="#license"><code>license.txt</code></a></li>
<li><a href="EPIC_train_action_labels.csv"><code>EPIC_train_action_labels.csv</code></a> (<a href="#epic_train_action_labelscsv">Info</a>) (<a href="EPIC_train_action_labels.pkl">Pickle</a>)</li>
<li><a href="EPIC_train_object_labels.csv"><code>EPIC_train_object_labels.csv</code></a> (<a href="#epic_train_object_labelscsv">Info</a>)</li>
<li><a href="EPIC_test_s1_timestamps.csv"><code>EPIC_test_s1_timestamps.csv</code></a> (<a href="#epic_test_s1_timestampscsv">Info</a>) (<a href="EPIC_test_s1_timestamps.pkl">Pickle</a>)</li>
<li><a href="EPIC_test_s2_timestamps.csv"><code>EPIC_test_s2_timestamps.csv</code></a> (<a href="#epic_test_s2_timestampscsv">Info</a>) (<a href="EPIC_test_s2_timestamps.pkl">Pickle</a>)</li>
<li><a href="EPIC_train_object_action_correspondence.csv"><code>EPIC_train_object_action_correspondence.csv</code></a> (<a href="#epic_train_object_action_correspondencecsv">Info</a>) (<a href="EPIC_train_object_action_correspondence.pkl">Pickle</a>)</li>
<li><a href="EPIC_test_s1_object_action_correspondence.csv"><code>EPIC_test_s1_object_action_correspondence.csv</code></a> (<a href="#epic_test_s1_object_action_correspondencecsv">Info</a>) (<a href="EPIC_test_s1_object_action_correspondence.pkl">Pickle</a>)</li>
<li><a href="EPIC_test_s2_object_action_correspondence.csv"><code>EPIC_test_s2_object_action_correspondence.csv</code></a> (<a href="#epic_test_s2_object_action_correspondencecsv">Info</a>) (<a href="EPIC_test_s2_object_action_correspondence.pkl">Pickle</a>)</li>
<li><a href="EPIC_test_s1_object_video_list.csv"><code>EPIC_test_s1_object_video_list.csv</code></a> (<a href="#epic_test_s1_object_video_listcsv">Info</a>)</li>
<li><a href="EPIC_test_s2_object_video_list.csv"><code>EPIC_test_s2_object_video_list.csv</code></a> (<a href="#epic_test_s2_object_video_listcsv">Info</a>)</li>
<li><a href="EPIC_noun_classes.csv"><code>EPIC_noun_classes.csv</code></a> (<a href="#epic_noun_classescsv">Info</a>)</li>
<li><a href="EPIC_verb_classes.csv"><code>EPIC_verb_classes.csv</code></a> (<a href="#epic_verb_classescsv">Info</a>)</li>
</ul>
<h3 id="additional-files">Additional Files</h3>
<ul>
<li><a href="EPIC_train_invalid_labels.csv"><code>EPIC_train_invalid_labels.csv</code></a> (<a href="#epic_train_invalid_labelscsv">Info</a>) (<a href="EPIC_train_invalid_labels.pkl">Pickle</a>)</li>
<li><a href="EPIC_train_action_narrations.csv"><code>EPIC_train_action_narrations.csv</code></a> (<a href="#epic_train_action_narrationscsv">Info</a>)</li>
<li><a href="EPIC_descriptions.csv"><code>EPIC_descriptions.csv</code></a> (<a href="#epic_descriptionscsv">Info</a>)</li>
<li><a href="EPIC_many_shot_verbs.csv"><code>EPIC_many_shot_verbs.csv</code></a> (<a href="#epic_many_shot_verbscsv">Info</a>)</li>
<li><a href="EPIC_many_shot_nouns.csv"><code>EPIC_many_shot_nouns.csv</code></a> (<a href="#epic_many_shot_nounscsv">Info</a>)</li>
<li><a href="EPIC_many_shot_actions.csv"><code>EPIC_many_shot_actions.csv</code></a> (<a href="#epic_many_shot_actionscsv">Info</a>)</li>
<li><a href="EPIC_video_info.csv"><code>EPIC_video_info.csv</code></a> (<a href="#epic_video_infocsv">info</a>)</li>
</ul>
<p>We direct the reader to <a href="https://data.bris.ac.uk/data/dataset/3h91syskeag572hl6tvuovwv4d">RDSF</a> for the videos and rgb/flow frames.</p>
<p>We provide html and pdf alternatives to this README which are auto-generated.</p>
<h2 id="files-structure">Files Structure</h2>
<h3 id="epic_train_action_labels.csv">EPIC_train_action_labels.csv</h3>
<p>CSV file containing 14 columns:</p>
<table>
<colgroup>
<col style="width: 10%" />
<col style="width: 15%" />
<col style="width: 8%" />
<col style="width: 65%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>uid</code></td>
<td>int</td>
<td><code>6374</code></td>
<td>Unique ID of the segment.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P03_01</code></td>
<td>Video the segment is in.</td>
</tr>
<tr class="odd">
<td><code>narration</code></td>
<td>string</td>
<td><code>close fridge</code></td>
<td>English description of the action provided by the participant.</td>
</tr>
<tr class="even">
<td><code>start_timestamp</code></td>
<td>string</td>
<td><code>00:23:43.847</code></td>
<td>Start time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="odd">
<td><code>stop_timestamp</code></td>
<td>string</td>
<td><code>00:23:47.212</code></td>
<td>End time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="even">
<td><code>start_frame</code></td>
<td>int</td>
<td><code>85430</code></td>
<td>Start frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="odd">
<td><code>stop_frame</code></td>
<td>int</td>
<td><code>85643</code></td>
<td>End frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P03</code></td>
<td>ID of the participant.</td>
</tr>
<tr class="odd">
<td><code>verb</code></td>
<td>string</td>
<td><code>close</code></td>
<td>Parsed verb from the narration.</td>
</tr>
<tr class="even">
<td><code>noun</code></td>
<td>string</td>
<td><code>fridge</code></td>
<td>First parsed noun from the narration.</td>
</tr>
<tr class="odd">
<td><code>verb_class</code></td>
<td>int</td>
<td><code>3</code></td>
<td>Numeric ID of the parsed verb’s class.</td>
</tr>
<tr class="even">
<td><code>noun_class</code></td>
<td>int</td>
<td><code>10</code></td>
<td>Numeric ID of the parsed noun’s class.</td>
</tr>
<tr class="odd">
<td><code>all_nouns</code></td>
<td>list of string (1 or more)</td>
<td><code>['fridge']</code></td>
<td>List of all parsed nouns from the narration.</td>
</tr>
<tr class="even">
<td><code>all_noun_classes</code></td>
<td>list of int (1 or more)</td>
<td><code>[10]</code></td>
<td>List of numeric IDs corresponding to all of the parsed nouns’ classes from the narration.</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_train_invalid_labels.csv">EPIC_train_invalid_labels.csv</h3>
<p>CSV file containing 14 columns:</p>
<table>
<colgroup>
<col style="width: 10%" />
<col style="width: 15%" />
<col style="width: 8%" />
<col style="width: 65%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>uid</code></td>
<td>int</td>
<td><code>6374</code></td>
<td>Unique ID of the segment.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P03_01</code></td>
<td>Video the segment is in.</td>
</tr>
<tr class="odd">
<td><code>narration</code></td>
<td>string</td>
<td><code>close fridge</code></td>
<td>English description of the action provided by the participant.</td>
</tr>
<tr class="even">
<td><code>start_timestamp</code></td>
<td>string</td>
<td><code>00:23:43.847</code></td>
<td>Start time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="odd">
<td><code>stop_timestamp</code></td>
<td>string</td>
<td><code>00:23:47.212</code></td>
<td>End time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="even">
<td><code>start_frame</code></td>
<td>int</td>
<td><code>85430</code></td>
<td>Start frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="odd">
<td><code>stop_frame</code></td>
<td>int</td>
<td><code>85643</code></td>
<td>End frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P03</code></td>
<td>ID of the participant.</td>
</tr>
<tr class="odd">
<td><code>verb</code></td>
<td>string</td>
<td><code>close</code></td>
<td>Parsed verb from the narration.</td>
</tr>
<tr class="even">
<td><code>noun</code></td>
<td>string</td>
<td><code>fridge</code></td>
<td>First parsed noun from the narration.</td>
</tr>
<tr class="odd">
<td><code>verb_class</code></td>
<td>int</td>
<td><code>3</code></td>
<td>Numeric ID of the parsed verb’s class.</td>
</tr>
<tr class="even">
<td><code>noun_class</code></td>
<td>int</td>
<td><code>10</code></td>
<td>Numeric ID of the parsed noun’s class.</td>
</tr>
<tr class="odd">
<td><code>all_nouns</code></td>
<td>list of string (1 or more)</td>
<td><code>['fridge']</code></td>
<td>List of all parsed nouns from the narration.</td>
</tr>
<tr class="even">
<td><code>all_noun_classes</code></td>
<td>list of int (1 or more)</td>
<td><code>[10]</code></td>
<td>List of numeric IDs corresponding to all of the parsed nouns’ classes from the narration.</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_train_action_narrations.csv">EPIC_train_action_narrations.csv</h3>
<p>CSV file containing 5 columns:</p>
<p><em>Note: The start/end timestamp refers to the start/end time of the narration, not the action itself.</em></p>
<table>
<colgroup>
<col style="width: 17%" />
<col style="width: 6%" />
<col style="width: 15%" />
<col style="width: 62%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P03</code></td>
<td>ID of the participant.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P03_01</code></td>
<td>Video the segment is in.</td>
</tr>
<tr class="odd">
<td><code>start_timestamp</code></td>
<td>string</td>
<td><code>00:23:43.847</code></td>
<td>Start time in <code>HH:mm:ss.SSS</code> of the narration.</td>
</tr>
<tr class="even">
<td><code>stop_timestamp</code></td>
<td>string</td>
<td><code>00:23:47.212</code></td>
<td>End time in <code>HH:mm:ss.SSS</code> of the narration.</td>
</tr>
<tr class="odd">
<td><code>narration</code></td>
<td>string</td>
<td><code>close fridge</code></td>
<td>English description of the action provided by the participant.</td>
</tr>
</tbody>
</table>
<h3 id="epic_train_object_labels.csv">EPIC_train_object_labels.csv</h3>
<p>CSV file containing 6 columns:</p>
<table>
<colgroup>
<col style="width: 11%" />
<col style="width: 19%" />
<col style="width: 17%" />
<col style="width: 51%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>noun_class</code></td>
<td>int</td>
<td><code>20</code></td>
<td>Integer value representing the class in noun-classes.csv.</td>
</tr>
<tr class="even">
<td><code>noun</code></td>
<td>string</td>
<td><code>bag</code></td>
<td>Original string name for the object.</td>
</tr>
<tr class="odd">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of participant.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_01</code></td>
<td>Video the object was annotated in.</td>
</tr>
<tr class="odd">
<td><code>frame</code></td>
<td>int</td>
<td><code>056581</code></td>
<td>Frame number of the annotated object.</td>
</tr>
<tr class="even">
<td><code>bounding_boxes</code></td>
<td>list of 4-tuple (0 or more)</td>
<td><code>"[(76, 1260, 462, 186)]"</code></td>
<td>Annotated boxes with format <code>(<top:int>,<left:int>,<height:int>,<width:int>)</code>.</td>
</tr>
</tbody>
</table>
<h3 id="epic_train_object_action_correspondence.csv">EPIC_train_object_action_correspondence.csv</h3>
<p>CSV file containing 5 columns:</p>
<table>
<colgroup>
<col style="width: 12%" />
<col style="width: 5%" />
<col style="width: 10%" />
<col style="width: 72%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of participant.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_01</code></td>
<td>Video the frames are part of.</td>
</tr>
<tr class="odd">
<td><code>object_frame</code></td>
<td>int</td>
<td><code>56581</code></td>
<td>Frame number of the object detection image from <code>object_detection_images</code>.</td>
</tr>
<tr class="even">
<td><code>action_frame</code></td>
<td>int</td>
<td><code>56638</code></td>
<td>Frame number of the corresponding image in the released frames for action recognition in <code>frames_rgb_flow</code>.</td>
</tr>
<tr class="odd">
<td><code>timestamp</code></td>
<td>string</td>
<td><code>00:00:00.00</code></td>
<td>Timestamp in <code>HH:mm:ss.SS</code> corresponding to the frame.</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_test_s1_object_action_correspondence.csv">EPIC_test_s1_object_action_correspondence.csv</h3>
<p>CSV file containing 5 columns:</p>
<table>
<colgroup>
<col style="width: 12%" />
<col style="width: 5%" />
<col style="width: 10%" />
<col style="width: 72%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of participant.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_11</code></td>
<td>Video containing the object s1 test frames.</td>
</tr>
<tr class="odd">
<td><code>object_frame</code></td>
<td>int</td>
<td><code>33601</code></td>
<td>Frame number of the object detection image from <code>object_detection_images</code>.</td>
</tr>
<tr class="even">
<td><code>action_frame</code></td>
<td>int</td>
<td><code>33635</code></td>
<td>Frame number of the corresponding image in the released frames for action recognition in <code>frames_rgb_flow</code>.</td>
</tr>
<tr class="odd">
<td><code>timestamp</code></td>
<td>string</td>
<td><code>00:09:20.58</code></td>
<td>Timestamp in <code>HH:mm:ss.SS</code> corresponding to the frames.</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_test_s2_object_action_correspondence.csv">EPIC_test_s2_object_action_correspondence.csv</h3>
<p>CSV file containing 5 columns:</p>
<table>
<colgroup>
<col style="width: 12%" />
<col style="width: 5%" />
<col style="width: 10%" />
<col style="width: 72%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P09</code></td>
<td>ID of participant.</td>
</tr>
<tr class="even">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P09_05</code></td>
<td>Video containing the object s2 test frames.</td>
</tr>
<tr class="odd">
<td><code>object_frame</code></td>
<td>int</td>
<td><code>15991</code></td>
<td>Frame number of the object detection image from <code>object_detection_images</code>.</td>
</tr>
<tr class="even">
<td><code>action_frame</code></td>
<td>int</td>
<td><code>16007</code></td>
<td>Frame number of the corresponding image in the released frames for action recognition in <code>frames_rgb_flow</code>.</td>
</tr>
<tr class="odd">
<td><code>timestamp</code></td>
<td>string</td>
<td><code>00:04:26.78</code></td>
<td>Timestamp in <code>HH:mm:ss.SS</code> corresponding to the frames.</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_test_s1_object_video_list.csv">EPIC_test_s1_object_video_list.csv</h3>
<p>CSV file listing the videos used to obtain the object s1 test frames. The frames can be obtained from <a href="https://data.bris.ac.uk/data/dataset/3h91syskeag572hl6tvuovwv4d">RDSF</a> under <code>object_detection_images/test</code>. Please test all frames from this folder for the videos listed in this csv.</p>
<table>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_11</code></td>
<td>Video containing the object s1 test frames.</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of the participant.</td>
</tr>
</tbody>
</table>
<h3 id="epic_test_s2_object_video_list.csv">EPIC_test_s2_object_video_list.csv</h3>
<p>CSV file listing the videos used to obtain the object s2 test frames. The frames can be obtained from <a href="https://data.bris.ac.uk/data/dataset/3h91syskeag572hl6tvuovwv4d">RDSF</a> under <code>object_detection_images/test</code>. Please test all frames from this folder for the videos listed in this csv.</p>
<table>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_11</code></td>
<td>Video containing the object s2 test frames.</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of the participant.</td>
</tr>
</tbody>
</table>
<h3 id="epic_test_s1_timestamps.csv">EPIC_test_s1_timestamps.csv</h3>
<p>CSV file containing 7 columns:</p>
<table>
<colgroup>
<col style="width: 10%" />
<col style="width: 3%" />
<col style="width: 9%" />
<col style="width: 75%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>uid</code></td>
<td>int</td>
<td><code>1924</code></td>
<td>Unique ID of the segment.</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P01</code></td>
<td>ID of the participant.</td>
</tr>
<tr class="odd">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_11</code></td>
<td>Video the segment is in.</td>
</tr>
<tr class="even">
<td><code>start_timestamp</code></td>
<td>string</td>
<td><code>00:00:00.000</code></td>
<td>Start time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="odd">
<td><code>stop_timestamp</code></td>
<td>string</td>
<td><code>00:00:01.890</code></td>
<td>End time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="even">
<td><code>start_frame</code></td>
<td>int</td>
<td><code>1</code></td>
<td>Start frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="odd">
<td><code>stop_frame</code></td>
<td>int</td>
<td><code>93</code></td>
<td>End frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_test_s2_timestamps.csv">EPIC_test_s2_timestamps.csv</h3>
<p>CSV file containing 7 columns:</p>
<table>
<colgroup>
<col style="width: 10%" />
<col style="width: 3%" />
<col style="width: 9%" />
<col style="width: 75%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>uid</code></td>
<td>int</td>
<td><code>15582</code></td>
<td>Unique ID of the segment.</td>
</tr>
<tr class="even">
<td><code>participant_id</code></td>
<td>string</td>
<td><code>P09</code></td>
<td>ID of the participant.</td>
</tr>
<tr class="odd">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P09_01</code></td>
<td>Video the segment is in.</td>
</tr>
<tr class="even">
<td><code>start_timestamp</code></td>
<td>string</td>
<td><code>00:00:01.970</code></td>
<td>Start time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="odd">
<td><code>stop_timestamp</code></td>
<td>string</td>
<td><code>00:00:03.090</code></td>
<td>End time in <code>HH:mm:ss.SSS</code> of the action.</td>
</tr>
<tr class="even">
<td><code>start_frame</code></td>
<td>int</td>
<td><code>118</code></td>
<td>Start frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
<tr class="odd">
<td><code>stop_frame</code></td>
<td>int</td>
<td><code>185</code></td>
<td>End frame of the action (WARNING only for frames extracted as detailed in <a href="#video-information">Video Information</a>).</td>
</tr>
</tbody>
</table>
<p>Please note we have included a python pickle file for ease of use. This includes a pandas dataframe with the same layout as above. This pickle file was created with pickle protocol 2 on pandas version 0.22.0.</p>
<h3 id="epic_noun_classes.csv">EPIC_noun_classes.csv</h3>
<p>CSV file containing 3 columns:</p>
<p><em>Note: a colon represents a compound noun with the more generic noun first. So pan:dust should be read as dust pan.</em></p>
<table>
<colgroup>
<col style="width: 9%" />
<col style="width: 23%" />
<col style="width: 25%" />
<col style="width: 41%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>noun_id</code></td>
<td>int</td>
<td><code>2</code></td>
<td>ID of the noun class.</td>
</tr>
<tr class="even">
<td><code>class_key</code></td>
<td>string</td>
<td><code>pan:dust</code></td>
<td>Key of the noun class.</td>
</tr>
<tr class="odd">
<td><code>nouns</code></td>
<td>list of string (1 or more)</td>
<td><code>"['pan:dust', 'dustpan']"</code></td>
<td>All nouns within the class (includes the key).</td>
</tr>
</tbody>
</table>
<h3 id="epic_verb_classes.csv">EPIC_verb_classes.csv</h3>
<p>CSV file containing 3 columns:</p>
<table>
<colgroup>
<col style="width: 9%" />
<col style="width: 22%" />
<col style="width: 29%" />
<col style="width: 38%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>verb_id</code></td>
<td>int</td>
<td><code>3</code></td>
<td>ID of the verb class.</td>
</tr>
<tr class="even">
<td><code>class_key</code></td>
<td>string</td>
<td><code>close</code></td>
<td>Key of the verb class.</td>
</tr>
<tr class="odd">
<td><code>verbs</code></td>
<td>list of string (1 or more)</td>
<td><code>"['close', 'close-off', 'shut']"</code></td>
<td>All verbs within the class (includes the key).</td>
</tr>
</tbody>
</table>
<h3 id="epic_descriptions.csv">EPIC_descriptions.csv</h3>
<p>CSV file containing 4 columns:</p>
<table>
<colgroup>
<col style="width: 10%" />
<col style="width: 5%" />
<col style="width: 39%" />
<col style="width: 44%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>video_id</code></td>
<td>string</td>
<td><code>P01_01</code></td>
<td>ID of the video.</td>
</tr>
<tr class="even">
<td><code>date</code></td>
<td>string</td>
<td><code>30/04/2017</code></td>
<td>Date on which the video was shot.</td>
</tr>
<tr class="odd">
<td><code>time</code></td>
<td>string</td>
<td><code>13:49:00</code></td>
<td>Local recording time of the video.</td>
</tr>
<tr class="even">
<td><code>description</code></td>
<td>string</td>
<td><code>prepared breakfast with soy milk and cereals</code></td>
<td>Description of the activities contained in the video.</td>
</tr>
</tbody>
</table>
<h3 id="epic_many_shot_verbs.csv">EPIC_many_shot_verbs.csv</h3>
<p>CSV file containing the many shot verbs. A verb class is considered many shot if it appears more than 100 times in training. (NOTE: this file is derived from <code>EPIC_train_action_labels.csv</code>, checkout the <a href="https://github.com/epic-kitchens/epic-many-shot-classes">accompanying notebook</a> demonstrating how we compute these classes)</p>
<table>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>verb_class</code></td>
<td>int</td>
<td><code>1</code></td>
<td>Numeric ID of the verb class</td>
</tr>
<tr class="even">
<td><code>verb</code></td>
<td>string</td>
<td><code>put</code></td>
<td>Verb corresponding to the verb class</td>
</tr>
</tbody>
</table>
<h3 id="epic_many_shot_nouns.csv">EPIC_many_shot_nouns.csv</h3>
<p>CSV file containing the many shot nouns. A noun class is considered many shot if it appears more than 100 times in training. (NOTE: this file is derived from <code>EPIC_train_action_labels.csv</code>, checkout the <a href="https://github.com/epic-kitchens/epic-many-shot-classes">accompanying notebook</a> demonstrating how we compute these classes)</p>
<table>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>noun_class</code></td>
<td>int</td>
<td><code>3</code></td>
<td>Numeric ID of the noun class</td>
</tr>
<tr class="even">
<td><code>noun</code></td>
<td>string</td>
<td><code>tap</code></td>
<td>Noun corresponding to the noun class</td>
</tr>
</tbody>
</table>
<h3 id="epic_many_shot_actions.csv">EPIC_many_shot_actions.csv</h3>
<p>CSV file containing the many shot actions. An action class (composed of a verb class and noun class) is considered many shot if BOTH the verb class and noun class are many shot AND the action class appears in training at least once. (NOTE: this file is derived from <code>EPIC_train_action_labels.csv</code>, checkout the <a href="https://github.com/epic-kitchens/epic-many-shot-classes">accompanying notebook</a> demonstrating how we compute these classes)</p>
<table>
<colgroup>
<col style="width: 11%" />
<col style="width: 7%" />
<col style="width: 38%" />
<col style="width: 42%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>action_class</code></td>
<td>(int, int)</td>
<td><code>(9, 84)</code></td>
<td>Numeric Pair of IDs, first the verb, then the noun</td>
</tr>
<tr class="even">
<td><code>verb_class</code></td>
<td>int</td>
<td><code>9</code></td>
<td>Numeric ID of the verb class</td>
</tr>
<tr class="odd">
<td><code>verb</code></td>
<td>string</td>
<td><code>move</code></td>
<td>Verb corresponding to the verb class</td>
</tr>
<tr class="even">
<td><code>noun_class</code></td>
<td>int</td>
<td><code>84</code></td>
<td>Numeric ID of the noun class</td>
</tr>
<tr class="odd">
<td><code>noun</code></td>
<td>string</td>
<td><code>sausage</code></td>
<td>Noun corresponding to the noun class</td>
</tr>
</tbody>
</table>
<h3 id="epic_video_info.csv">EPIC_video_info.csv</h3>
<p>CSV file containing information for each video</p>
<table>
<colgroup>
<col style="width: 11%" />
<col style="width: 7%" />
<col style="width: 38%" />
<col style="width: 42%" />
</colgroup>
<thead>
<tr class="header">
<th>Column Name</th>
<th>Type</th>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>video</code></td>
<td>(string)</td>
<td><code>P01_01</code></td>
<td>Video ID</td>
</tr>
<tr class="even">
<td><code>resolution</code></td>
<td>(string)</td>
<td><code>1920x1080</code></td>
<td>Resolution of the video, format is <code>WIDTHxHEIGHT</code></td>
</tr>
<tr class="odd">
<td><code>duration</code></td>
<td>(float)</td>
<td><code>1652.152817</code></td>
<td>Duration of the video, in seconds</td>
</tr>
<tr class="even">
<td><code>fps</code></td>
<td>(float)</td>
<td><code>59.9400599400599</code></td>
<td>Frame rate of the video</td>
</tr>
</tbody>
</table>
<h2 id="file-downloads">File Downloads</h2>
<p>Due to the size of the dataset we provide scripts for downloading parts of the dataset:</p>
<ul>
<li><a href="https://github.com/epic-kitchens/download-scripts/blob/master/download_videos.sh">videos</a> (750GB)</li>
<li><a href="https://github.com/epic-kitchens/download-scripts/blob/master/download_frames_rgb_flow.sh">frames</a> (320GB)
<ul>
<li><a href="https://raw.githubusercontent.com/epic-kitchens/download-scripts/master/frames_rgb_flow/download_rgb.sh">rgb-frames</a> (220GB)</li>
<li><a href="https://raw.githubusercontent.com/epic-kitchens/download-scripts/master/frames_rgb_flow/download_flow.sh">flow-frames</a> (100GB)</li>
</ul></li>
<li><a href="https://github.com/epic-kitchens/download-scripts/blob/master/download_object_detection_images.sh">object annotation images</a> (80GB)</li>