-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNmf_normal
53 lines (51 loc) · 2.34 KB
/
Nmf_normal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def normal_nmf_l1(v1, winil, hinil, niter, lambdasmooth):
''' NMF decomposition in python without'''
n = hinil.shape[1]
f = v1.shape[0]
# intilization
scale_1 = np.sum(winil, axis=0)
w1 = np.multiply(winil, np.matlib.repmat((1 / scale_1), f, 1))
h1 = np.multiply(hinil, np.matlib.repmat((scale_1[:, np.newaxis]), 1, n))
for i in range(1, niter + 1):
# update h1
ratio = np.divide(v1, np.dot(w1, h1))
inds = np.where(np.isnan(ratio))
ratio[inds] = 1
psi_k_n = np.multiply(h1, (np.dot((w1.T), ratio)))
for j in range(0, n):
psi_k = psi_k_n[:, j] # returns array of first colum
h_n_prech = h1[:, max(0, j - 1)]
h_n_suiv = h1[:, min(n - 1, j + 1)]
h_min = np.minimum(h_n_prech, h_n_suiv)
h_max = np.maximum(h_n_prech, h_n_suiv)
val_p1l = 1 - (2 * lambdasmooth) - np.divide(psi_k, h_min)
val_p1r = val_p1l + (2 * lambdasmooth)
val_p2l = 1 - np.divide(psi_k, h_max)
val_p2r = val_p2l + 2 * lambdasmooth
force_h_min = 1 * \
(numpy.logical_and((val_p1l <= 0), (val_p1r >= 0)))
force_h_max = 1 * \
(numpy.logical_and((val_p2l <= 0), (val_p2r >= 0)))
h1[:, j] = np.divide(psi_k, (1 + 2 * lambdasmooth *
(1 * (val_p2r < 0) - 1 *
(val_p1l > 0))))
h1[np.where(force_h_min)[0], np.array(j)] = h_min[
np.where(force_h_min)] # look closely
h1[np.where(force_h_max)[0], np.array(j)] = h_max[
np.where(force_h_max)] # look closely
'''update w1'''
ratio = np.divide(v1, np.dot(w1, h1))
inds = np.where(np.isnan(ratio))
ratio[inds] = 1
phi_f_k = np.multiply(w1, np.dot(ratio, h1.T))
w1 = (phi_f_k) / ((np.sum(h1, axis=1)).T + lambdasmooth *
(np.sum((abs(h1[:, :1] - h1[:, :-1])), axis=1)).T)
'''renormalisation'''
scale_1 = np.sum(w1, axis=0)
wtile_size = w1.shape[0]
w1 = np.multiply(w1, np.tile((1 / scale_1), (wtile_size, 1)))
htile_size = h1.shape[1]
h1 = np.multiply(h1, np.tile(scale_1[:, np.newaxis], (1, htile_size)))
max_h1 = h1.max(axis=0)
h1 = h1 / max_h1
return w1, h1