-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper_impose_priya.py
94 lines (80 loc) · 3.29 KB
/
super_impose_priya.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
import io
import glob
import cv2
import csv
import argparse
import numpy as np
from PIL import Image
#f_test = open('data/test_text_iraq.txt','w')
ap=argparse.ArgumentParser()
ap.add_argument('-s','--source', type=str, default='true',
help="path to source folder")
ap.add_argument('-d','--destination', type=str, default='true',
help="path to destination folder")
args=vars(ap.parse_args())
src=args['source']
dst=args['destination']
os.mkdir(dst)
i = 0
def findjpgfile(src,dst):
global i
for filename in os.listdir(src):
full_path = os.path.join(src, filename)
print(full_path)
if os.path.isfile(full_path):
print("entered")
if full_path.split('.')[-1] == 'jpg':# or full_path.split('.')[-1] == 'JPG':
print("twice")
full_path_txt = full_path.replace('jpg', 'txt')
if os.path.isfile(full_path_txt):
aa=''
else:
continue
img = cv2.imread(full_path)
imge_name=filename.split('.')
a=str(imge_name[0])
print(a)
pil_img = Image.open(full_path)
print(type(pil_img))
w = img.shape[1]
print(w)
h = img.shape[0]
print(h)
with open(full_path_txt, 'r') as f:
reader = csv.reader(f)
j=0
for line in reader:
j += 1
seperator = ','
label = seperator.join(line[8:])
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(int, line[:8]))
img_new = img[y1:y3, x1:x3]
# print(img_new)
kernel_size = 10
kernel_h = np.zeros((kernel_size, kernel_size))
kernel_h[int((kernel_size - 1)/2), :] = np.ones(kernel_size)
kernel_h /= kernel_size
print(kernel_h.shape)
horizonal_mb = cv2.filter2D(img_new,-1, kernel_h)
horizonal_mb = cv2.cvtColor(horizonal_mb, cv2.COLOR_BGR2RGB)
new_im = Image.fromarray(horizonal_mb)
pil_img.paste(new_im, [x1,y1])
pil_img.save(dst+'/'+a+"_text_blur.jpg")
# cv2.imwrite('k'+str(filename) + "_" + 'front2-{}-{}.jpg'.format(i, j), horizonal_mb)
# if len(label)>0:
# print(label)
# print(i)
# print(j)
# # f_imglist.write('front2-{}-{}.jpg' + ' ' + '{}\n'.format(i, j, label))
# f_imglist.write(str(filename) + "_" + 'front2-' + str(i) + "-" + str(j) + '.jpg' + '_' + str(label) + '\n')
i += 1
else:
findjpgfile(full_path)
# path = 'sep_29_200'
findjpgfile(src,dst)
# f_imglist.close()
#f_train.close()
#f_test.close()