-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex_research.py
238 lines (208 loc) · 7.18 KB
/
index_research.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import numpy as np
import rasterio as rio
import rasterio.plot as rioplot
import rasterio.mask as riomask
import geopandas as gpd
from PIL import Image
import earthpy.spatial as es
from tqdm import tqdm
BASE_DIR = os.getcwd()
DEFAULT_CRS = 'EPSG:32636'
DATES_DIRS = ['WV/20190427T083601',
'WV/20190527T083601',
'XA/20190427T083601',
'XA/20190527T110449',
'XV/20190427T083601',
'XV/20190527T083601',
'YA/20190427T083601',
'YA/20190527T083601',
'YV/20190427T083601',
'YV/20190527T083601']
STACKING_INDEXES = {
'swir': ['B12', 'B8A', 'B4'],
'geology': ['B12', 'B11', 'B02'],
'agriculture': ['B11', 'B8A', 'B02'],
'false_color': ['B8A', 'B04', 'B03']
}
STACKING_INDEXES_10m = {
'nrg': ['B08', 'B04', 'B03']
}
def stack_layer(directory, bands, name,
scale=False):
print(directory)
exit()
files = []
for d in os.listdir(directory):
try:
if d.split('_')[-2] in bands:
files.append(os.path.join(directory, d))
except Exception as e:
print('Preparing layer', name, '...')
try:
array, raster_prof = es.stack(files)
except Exception:
print('Converting to common CRS')
#print(array, raster_prof)
raster_prof.update(driver='GTiff')
raster_prof.update(dtype=rio.float32)
f_name = directory.split('/')[-2]+'_'+directory.split('/')[-1]+'_'+name+'.tif'
f_name = f_name.replace('B02_10m', 'b2')
f_name = f_name.replace('B03_10m', 'b3')
f_name = f_name.replace('B04_10m', 'b4')
f_name = f_name.replace('B08_10m', 'b8')
with rio.open(f_name, 'w', **raster_prof) as dst:
dst.meta['nodata'] = -999
dst.write(array.astype(rio.float32))
if scale:
scale_img(f_name)
def get_nvdi(red_file, nir_file,
save=True, outname='NDVI'):
if red_file.endswith('.jp2') and nir_file.endswith('.jp2'):
print('Converting to tif')
# red = rio.open(red_file, driver='JP2OpenJPEG')
# nir = rio.open(nir_file, driver='JP2OpenJPEG')
elif (red_file.endswith('.tif') and nir_file.endswith('.tif')) or \
(red_file.endswith('.tiff') and nir_file.endswith('.tiff')):
red = rio.open(red_file, driver='GTiff')
nir = rio.open(nir_file, driver='GTiff')
else:
raise Exception('Bands images must be of the same format')
meta = red.meta
red = red.read()
nir = nir.read()
ndvi = (nir.astype(float)-red.astype(float))/(nir+red)
ndvi = ndvi.astype(rio.float32)
if save:
ndvi = ndvi
meta.update(driver='GTiff')
meta.update(dtype=rio.float32)
with rio.open(outname+'.tif', 'w', **meta) as dst:
dst.meta['nodata'] = -999
dst.meta['max'] = 1
dst.meta['min'] = 0
dst.write(ndvi.astype(rio.float32))
try:
scale_img(outname+'.tif', min_value=0, max_value=255, output_type='Byte')
except Exception as e:
print(e)
return np.nan_to_num(ndvi, nan=-999)
def get_savi(red_file, nir_file, L=0.5,
save=True, outname='SAVI'):
if red_file.endswith('.jp2') and nir_file.endswith('.jp2'):
print('Converting to tif')
# red = rio.open(red_file, driver='JP2OpenJPEG')
# nir = rio.open(nir_file, driver='JP2OpenJPEG')
elif (red_file.endswith('.tif') and nir_file.endswith('.tif')) or \
(red_file.endswith('.tiff') and nir_file.endswith('.tiff')):
red = rio.open(red_file, driver='GTiff')
nir = rio.open(nir_file, driver='GTiff')
else:
raise Exception('Bands images must be of the same format')
meta = red.meta
red = red.read()
nir = nir.read()
L = np.full(red.shape, L)
savi = ((1+L)*(nir.astype(float)-red.astype(float)))/(nir+red+L)
savi = savi.astype(rio.float32)
if save:
savi = savi
meta.update(driver='GTiff')
meta.update(dtype=rio.float32)
with rio.open(outname+'.tif', 'w', **meta) as dst:
dst.meta['nodata'] = -999
dst.meta['max'] = 1
dst.meta['min'] = 0
dst.write(savi.astype(rio.float32))
try:
scale_img(outname+'.tif', min_value=0, max_value=255, output_type='Byte')
except Exception as e:
print(e)
return np.nan_to_num(savi, nan=-999)
def get_mi(b8a_file, b11_file,
save=True, outname='MI'):
if b8a_file.endswith('.jp2') and b11_file.endswith('.jp2'):
b8a = rio.open(b8a_file, driver='JP2OpenJPEG')
b11 = rio.open(b11_file, driver='JP2OpenJPEG')
elif (b8a_file.endswith('.tif') and b11_file.endswith('.tif')) or \
(b8a_file.endswith('.tiff') and b11_file.endswith('.tiff')):
b8a = rio.open(b8a_file, driver='GTiff')
b11 = rio.open(b11_file, driver='GTiff')
else:
raise Exception('Bands images must be of the same format')
meta = b8a.meta
b8a = b8a.read()
b11 = b11.read()
mi = ((b8a.astype(float)-b11.astype(float)))/(b8a+b11)
mi = mi.astype(rio.float32)
if save:
mi = mi
meta.update(driver='GTiff')
meta.update(dtype=rio.float32)
with rio.open(outname+'.tif', 'w', **meta) as dst:
dst.meta['nodata'] = -999
dst.meta['max'] = 1
dst.meta['min'] = 0
dst.write(mi.astype(rio.float32))
return np.nan_to_num(mi, nan=-999)
def get_metrics(DATES_DIRS=DATES_DIRS):
for directory in DATES_DIRS:
for ind in STACKING_INDEXES.keys():
stack_layer('../'+directory, STACKING_INDEXES[ind], ind)
for ind in STACKING_INDEXES_10m.keys():
stack_layer('../'+directory+'/10m', STACKING_INDEXES_10m[ind], ind)
for each in os.listdir('../'+directory+'/10m'):
if 'B04' in each.split('_'):
red = os.path.join('../'+directory+'/10m/'+each)
if 'B08' in each.split('_'):
nir = os.path.join('../'+directory+'/10m/'+each)
if 'B03' in each.split('_'):
b03 = each
if 'B02' in each.split('_'):
b02 = each
get_nvdi(red, nir, True, directory.split('/')[0]+'_'+directory.split('/')[1]+'_ndvi'+'.tif')
get_savi(red, nir, 0.5, True, directory.split('/')[0]+'_'+directory.split('/')[1]+'_savi'+'.tif')
def merge(save_path, *images):
os.system(f'gdal_merge.py -separate -o {save_path} {" ".join(images)}')
def scale_img(img_file, min_value=0, max_value=255, output_type='Byte'):
with rio.open(img_file) as src:
img = src.read(1)
img = np.nan_to_num(img)
mean_ = img.mean()
std_ = img.std()
min_ = max(img.min(), mean_ - 2 * std_)
max_ = min(img.max(), mean_ + 2 * std_)
os.system(
f"gdal_translate -ot {output_type} \
-scale {min_} {max_} {min_value} {max_value} \
{img_file} {f'{os.path.splitext(img_file)[0]}_scaled.tif'}"
)
def convert_to_tif(dates_dirs=DATES_DIRS):
for each in dates_dirs:
for file in os.listdir('../'+each+'/10m'):
img_path = os.path.join('../'+each+'/10m', file)
if img_path.endswith('.jp2'):
geo_path = img_path.replace('.jp2', '.tif')
print('Converting to tif')
os.system(f'gdalwarp -of GTiff -overwrite -ot Byte -t_srs EPSG:4326 ' \
f'-wm 4096 -multi -wo NUM_THREADS=ALL_CPUS ' \
f'-co COMPRESS=DEFLATE -co PREDICTOR=2 {img_path} {geo_path}')
os.system(f'rm {img_path}')
if __name__ == '__main__':
for directory in tqdm(DATES_DIRS):
for file in os.listdir(os.path.join('..', directory)):
if '10m' in file and file.endswith('.tif'):
#print(os.path.join('..', directory, file))
if 'B04' in file.split('_'):
red = os.path.join('..', directory, file)
if 'B08' in file.split('_'):
nir = os.path.join('..', directory, file)
if 'B03' in file.split('_'):
b03 = os.path.join('..', directory, file)
#print(red, nir, b03)
scale_img(b03)
#print(directory)
nvdi_name = directory.replace('/', '_')+'_ndvi'
savi_name = directory.replace('/', '_')+'_savi'
get_nvdi(red, nir, True, nvdi_name)
get_savi(red, nir, savi_name)