-
Notifications
You must be signed in to change notification settings - Fork 2
/
TurbineAnalysis
208 lines (168 loc) · 5.72 KB
/
TurbineAnalysis
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# -*- coding: utf-8 -*-
"""
Created on Fri Dec 07 11:53:26 2018
@author: Erfan
"""
import CoolProp.CoolProp as cp
import numpy as np
Cp,Cv,P,T,s,h,hf,hd,Ts,Tst,ss,rho,alpha_hp,beta_hp,w_hp,V_hp,A_hp,M_hp,Tst_hp,Cp_hp={},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{},{}
h0_hp,P0_hp,h0_hprel,h0_lp,h0_lprel={},{},{},{},{}
alpha_lp,beta_lp,w_lp,V_lp,Tst_lp,P0_lp,Cp_lp,A_lp,M_lp={},{},{},{},{},{},{},{},{}
Pamb=101325
Tamb=15+273.15
Mexh=289 #Exhuast air Flow
eff=0.365 #Efficiency
Pel=97.7 #Electrical output
P[1]=Pamb
T[1]=Tamb
P[4]=Pamb
T[4]=538+273.15
P[2]=17*P[1]
P[3]=P[2]*0.95 #5% pressure loss in Combustion Chamber
eta_pC=0.80 #Polytropic Efficiency
eta_pT=0.75
gas='Air'
ch4='CH4'
Cp[1]=cp.PropsSI('C','T',T[1],'P',P[1],gas)
Cv[1]=cp.PropsSI ('CVMASS','T',T[1],'P',P[1],gas)
gamma=Cp[1]/Cv[1]
gamma1=(gamma-1)/gamma
gamma2=gamma1/eta_pC
gamma3=gamma1*eta_pT
LHV=50000
T[2]=T[1]*(17**gamma2)
T[3]=T[4]*((P[3]/P[4])**gamma3)
h[2]=cp.PropsSI('H','T',T[2],'P',P[2],gas)
h[3]=cp.PropsSI('H','T',T[3],'P',P[3],gas)
h[4]=cp.PropsSI('H','T',T[4],'P',P[4],gas)
deltaHAir=h[3]-h[2]
hf[3]=cp.PropsSI('H','T',T[3],'P',P[3],ch4)
hf[1]=cp.PropsSI('H','T',T[1],'P',P[1],ch4)
deltaHFuel=hf[3]-hf[1]
x=((deltaHAir+deltaHFuel)/1000)/LHV
M_air=Mexh/(1+x)
hd[3]=h[3]+x*hf[3]
h[1]=cp.PropsSI('H','T',T[1],'P',P[1],gas)
P_comp=M_air*((h[2]-h[1])/1000)
P_turb=Mexh*((hd[3]-h[4])/1000)
P_el=(P_turb-P_comp)*0.36*0.99
s[1]=cp.PropsSI('S','T',T[1],'P',P[1],gas)
s[2]=cp.PropsSI('S','T',T[2],'P',P[2],gas)
s[3]=cp.PropsSI('S','T',T[3],'P',P[3],gas)
s[4]=cp.PropsSI('S','T',T[4],'P',P[4],gas)
Ts[2]=cp.PropsSI('T','S',s[1],'P',P[2],gas)
Ts[3]=cp.PropsSI('T','S',s[3],'P',P[3],gas)
ss[2]=cp.PropsSI('S','T',Ts[2],'P',P[2],gas)
ss[3]=cp.PropsSI('S','T',Ts[3],'P',P[3],gas)
ss[4]=cp.PropsSI('S','T',T[4],'P',P[4],gas)
r_hub=0.215
r_top=0.86
r_hp=0.5*(r_hub+r_top)
N_hp=4580
U_hp=(N_hp*2*np.pi/60)*r_hp
W_hp=P_comp/M_air #High pressure turbine work is equal to the compressor work
psi_hp=((W_hp*1000)/U_hp**2)/2 #Load factor for each stage
phi_hp=0.95 #Based on smith diagram
R_hp=0
alpha_hp[1]=np.arctan((1-psi_hp/2-R_hp)/(-phi_hp))
alpha_hp[2]=np.arctan((2*(1-R_hp)/(phi_hp))+np.tan(alpha_hp[1]))
beta_hp[2]=np.arctan(np.tan(alpha_hp[2])-1/phi_hp)
beta_hp[3]=beta_hp[2]
alpha_hp[3]=np.arctan(np.tan(beta_hp[3])-1/phi_hp)
V_a=phi_hp*U_hp
DVw=psi_hp*U_hp
w_hp[3]=(DVw/2)/np.sin(beta_hp[3])
V_hp[3]=(DVw/2-U_hp)/np.sin(alpha_hp[3])
V_hp[2]=(DVw-V_hp[3]*np.sin(alpha_hp[3]))/np.sin(alpha_hp[2])
rho[3]=cp.PropsSI('D','T',T[3],'P',P[3],gas)
Ax=Mexh/(rho[3]*V_a)
V_hp[1]=Mexh/(rho[3]*Ax*np.cos(alpha_hp[1]))
Cp_hp[1]=cp.PropsSI('C','T',T[3],'P',P[3],gas)
Tst_hp[1]=T[3]+(V_hp[3]**2)/(2*Cp_hp[1])
A_hp[1]=cp.PropsSI('A','T',Tst_hp[1],'P',P[3],gas)
M_hp[1]=V_hp[1]/A_hp[1]
h0_hp[1]=h[3]+(V_hp[1]**2)/2
P0_hp[1]=P[3]*(Tst_hp[1]/T[3])**(1/gamma3)
h0_hp[2]=h0_hp[1]
Tst_hp[2]=h0_hp[2]/Cp_hp[1]
P0_hp[2]=P0_hp[1]*(Tst_hp[2]/Tst_hp[1])**(1/gamma3)
A_hp[2]=cp.PropsSI('A','T',Tst_hp[2],'P',P0_hp[2],gas)
M_hp[2]=V_hp[2]/A_hp[2]
h0_hprel[2]=h0_hp[2]-(V_hp[2]**2)/2+(w_hp[3]**2)/2
h0_hprel[3]=h0_hprel[2]
h0_hp[3]=h0_hprel[3]-((w_hp[3]**2)/2)+(V_hp[3]**2)/2
Tst_hp[3]=(h0_hprel[3]-(W_hp**2)/2+(V_hp[3]**2)/2)/Cp_hp[1]
P0_hp[3]=P0_hp[2]*(Tst_hp[3]/Tst_hp[2])**(1/gamma3)
A_hp[3]=cp.PropsSI('A','T',Tst_hp[3],'P',P0_hp[3],gas)
M_hp[3]=V_hp[3]/A_hp[3]
#### 2nd Stage
M_hp[4]=M_hp[3]
Tst_hp[4]=Tst_hp[3]
h0_hp[4]=h0_hp[3]
h0_hp[5]=h0_hp[4]
Tst_hp[5]=h0_hp[5]/Cp_hp[1]
P0_hp[5]=P0_hp[3]*(Tst_hp[5]/Tst_hp[4])**(1/gamma3)
A_hp[5]=cp.PropsSI('A','T',Tst_hp[5],'P',P0_hp[5],gas)
M_hp[5]=V_hp[2]/A_hp[5]
h0_hprel[5]=h0_hp[5]-(V_hp[2]**2)/2+(w_hp[3]**2)/2
h0_hprel[6]=h0_hprel[5]
h0_hp[6]=h0_hprel[6]-((w_hp[3]**2)/2)+(V_hp[3]**2)/2
Tst_hp[6]=(h0_hprel[6]-(W_hp**2)/2+(V_hp[3]**2)/2)/Cp_hp[1]
P0_hp[6]=P0_hp[5]*(Tst_hp[6]/Tst_hp[5])**(1/gamma3)
A_hp[6]=cp.PropsSI('A','T',Tst_hp[6],'P',P0_hp[6],gas)
M_hp[6]=V_hp[3]/A_hp[6]
#### Low pressure Part
r_hublp=0.215
r_toplp=0.86
r_lp=0.6
N_lp=3000
U_lp=(N_lp*2*np.pi/60)*r_lp
W_lp=P_el/Mexh #High pressure turbine work is equal to the compressor work
psi_lp=((W_lp*1000)/U_lp**2)/2 #Load factor for each stage
phi_lp=0.95 #Based on smith diagram
R_lp=0.5
alpha_lp[1]=np.arctan((1-psi_lp/2-R_lp)/(-phi_lp))
alpha_lp[2]=np.arctan((2*(1-R_lp)/(phi_lp))+np.tan(alpha_lp[1]))
beta_lp[2]=alpha_lp[1]
beta_lp[3]=alpha_lp[2]
alpha_lp[3]=alpha_lp[1]
DVw_lp=psi_lp*U_lp
w_lp[3]=(V_a)/np.cos(beta_lp[3])
V_lp[3]=(V_a)/np.cos(alpha_lp[3])
V_lp[2]=(V_a)/np.cos(alpha_lp[2])
w_lp[2]=(V_a)/np.cos(beta_lp[2])
V_lp[1]=V_hp[3]
Tst_lp[1]=Tst_hp[6]
P0_lp[1]=P0_hp[6]
A_lp[1]=cp.PropsSI('A','T',Tst_lp[1],'P',P0_lp[1],gas)
M_lp[1]=V_lp[1]/A_lp[1]
h0_lp[1]=h0_hp[6]
Cp_lp[1]=cp.PropsSI('C','T',Tst_lp[1],'P',P0_lp[1],gas)
h0_lp[2]=h0_lp[1]
Tst_lp[2]=h0_lp[2]/Cp_hp[1]
P0_lp[2]=P0_lp[1]*(Tst_lp[2]/Tst_lp[1])**(1/gamma3)
A_lp[2]=cp.PropsSI('A','T',Tst_lp[2],'P',P0_lp[2],gas)
M_lp[2]=V_lp[2]/A_lp[2]
h0_lprel[2]=h0_lp[2]-(V_lp[2]**2)/2+(w_lp[2]**2)/2
h0_lprel[3]=h0_lprel[2]
h0_lp[3]=h0_lprel[3]-((w_lp[3]**2)/2)+(V_lp[3]**2)/2
Tst_lp[3]=(h0_lprel[3]-(w_lp[3]**2)/2+(V_lp[3]**2)/2)/Cp_lp[1]
P0_lp[3]=P0_lp[2]*(Tst_lp[3]/Tst_lp[2])**(1/gamma3)
A_lp[3]=cp.PropsSI('A','T',Tst_lp[3],'P',P0_lp[3],gas)
M_lp[3]=V_lp[3]/A_lp[3]
##### 2nd Stage
M_lp[4]=M_lp[3]
Tst_lp[4]=Tst_lp[3]
h0_lp[4]=h0_lp[3]
h0_lp[5]=h0_lp[4]
Tst_lp[5]=h0_lp[5]/Cp_lp[1]
P0_lp[5]=P0_lp[3]*(Tst_lp[5]/Tst_lp[4])**(1/gamma3)
A_lp[5]=cp.PropsSI('A','T',Tst_lp[5],'P',P0_lp[5],gas)
M_lp[5]=V_lp[2]/A_lp[5]
h0_lprel[5]=h0_lp[5]-(V_lp[2]**2)/2+(w_lp[3]**2)/2
h0_lprel[6]=h0_lprel[5]
h0_lp[6]=h0_lprel[6]-((w_lp[3]**2)/2)+(V_lp[3]**2)/2
Tst_lp[6]=(h0_lprel[6]-(W_lp**2)/2+(V_lp[3]**2)/2)/Cp_lp[1]
P0_lp[6]=P0_lp[5]*(Tst_lp[6]/Tst_lp[5])**(1/gamma3)
A_lp[6]=cp.PropsSI('A','T',Tst_lp[6],'P',P0_lp[6],gas)
M_lp[6]=V_lp[3]/A_lp[6]