-
Notifications
You must be signed in to change notification settings - Fork 6
/
validate.py
201 lines (171 loc) · 7.07 KB
/
validate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# This validation script Based on impl:
# "https://github.com/rwightman/pytorch-image-models/validate.py"
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import csv
import glob
import time
import logging
import torch
import torch.nn as nn
import torch.nn.parallel
from collections import OrderedDict
from timm.models import create_model, apply_test_time_pool, load_checkpoint, is_model, list_models
from timm.data import Dataset, DatasetTar, create_loader, resolve_data_config
from timm.utils import accuracy, AverageMeter, natural_key, setup_default_logging
from utils.dataset.folder2lmdb import ImageFolderLMDB
from model import *
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(description='PyTorch ImageNet Validation')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--model', '-m', metavar='MODEL', default='get_model',
help='model architecture (default: dpn92)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 2)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument(
'--img-size',
default=None,
type=int,
metavar='N',
help='Input image dimension, uses model default if empty')
parser.add_argument('--crop-pct', default=None, type=float,
metavar='N', help='Input image center crop pct')
parser.add_argument(
'--mean',
type=float,
nargs='+',
default=None,
metavar='MEAN',
help='Override mean pixel value of dataset')
parser.add_argument(
'--std',
type=float,
nargs='+',
default=None,
metavar='STD',
help='Override std deviation of of dataset')
parser.add_argument('--interpolation', default='', type=str, metavar='NAME',
help='Image resize interpolation type (overrides model)')
parser.add_argument('--num-classes', type=int, default=1000,
help='Number classes in dataset')
parser.add_argument('--log-freq', default=10, type=int,
metavar='N', help='batch logging frequency (default: 10)')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--num-gpu', type=int, default=1,
help='Number of GPUS to use')
parser.add_argument('--no-test-pool', dest='no_test_pool', action='store_true',
help='disable test time pool')
parser.add_argument('--no-prefetcher', action='store_true', default=False,
help='disable fast prefetcher')
parser.add_argument('--lmdb', action='store_true', default=False,
help='Load lmdb dataset')
parser.add_argument('--se', type=bool, default=False,
help='Equiped SE module')
parser.add_argument('--activation', type=str, default="relu",
help='Activation function')
parser.add_argument('--bn-momentum', type=float, default=None,
help='BatchNorm momentum override (if not None)')
# SGNAS
parser.add_argument('--target_flops', type=float, required=True,
help='Target flops to generate')
parser.add_argument('--config_path', type=str,
help='Config file path')
def validate(args):
# might as well try to validate something
args.pretrained = False
args.prefetcher = True
# create model
model = eval(args.model)(
config_path=args.config_path,
target_flops=args.target_flops,
num_classes=args.num_classes,
bn_momentum=args.bn_momentum,
activation=args.activation,
se=args.se)
if args.checkpoint:
load_checkpoint(model, args.checkpoint, True)
param_count = sum([m.numel() for m in model.parameters()])
logging.info(
'Model %s created, param count: %d' %
(args.model, param_count))
data_config = resolve_data_config(vars(args), model=model)
#model, test_time_pool = apply_test_time_pool(model, data_config, args)
if args.num_gpu > 1:
model = torch.nn.DataParallel(
model, device_ids=list(
range(
args.num_gpu))).cuda()
else:
model = model.cuda()
criterion = nn.CrossEntropyLoss().cuda()
if args.lmdb:
eval_dir = os.path.join(args.data, 'test_lmdb', 'test.lmdb')
dataset_eval = ImageFolderLMDB(eval_dir, None, None)
else:
eval_dir = os.path.join(args.data, 'val')
dataset_eval = Dataset(eval_dir)
#crop_pct = 1.0 if test_time_pool else data_config['crop_pct']
crop_pct = 1.0
loader = create_loader(
dataset_eval,
input_size=data_config['input_size'],
batch_size=args.batch_size,
is_training=False,
use_prefetcher=args.prefetcher,
interpolation=data_config['interpolation'],
mean=data_config['mean'],
std=data_config['std'],
num_workers=args.workers)
# crop_pct=crop_pct)
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, (input, target) in enumerate(loader):
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
top5.update(prec5.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.log_freq == 0:
logging.info(
'Test: [{0:>4d}/{1}] '
'Time: {batch_time.val:.3f}s ({batch_time.avg:.3f}s, {rate_avg:>7.2f}/s) '
'Loss: {loss.val:>7.4f} ({loss.avg:>6.4f}) '
'Prec@1: {top1.val:>7.3f} ({top1.avg:>7.3f}) '
'Prec@5: {top5.val:>7.3f} ({top5.avg:>7.3f})'.format(
i, len(loader), batch_time=batch_time,
rate_avg=input.size(0) / batch_time.avg,
loss=losses, top1=top1, top5=top5))
results = OrderedDict(
top1=round(top1.avg, 4), top1_err=round(100 - top1.avg, 4),
top5=round(top5.avg, 4), top5_err=round(100 - top5.avg, 4),
param_count=round(param_count / 1e6, 2),
img_size=data_config['input_size'][-1],
cropt_pct=crop_pct,
interpolation=data_config['interpolation'])
logging.info(' * Prec@1 {:.3f} ({:.3f}) Prec@5 {:.3f} ({:.3f})'.format(
results['top1'], results['top1_err'], results['top5'], results['top5_err']))
return results
def main():
setup_default_logging()
args = parser.parse_args()
validate(args)
if __name__ == '__main__':
main()