-
Notifications
You must be signed in to change notification settings - Fork 0
/
TwoLevelErrors.tex
executable file
·237 lines (233 loc) · 10 KB
/
TwoLevelErrors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
The main goal of this section is to develop a rigorous numerical analysis for
\autoref{alg:TwoLevel}, the two-level algorithm introduced in
\autoref{sec:TwoLevel}. The proof for the error bounds follows a pattern that is
similar to that presented in \cite{Fairag98}.
To this end, we first introduce an improved bound on the trilinear form
$b(\zeta; \xi, \chi)$ using the discrete Sobolev inequality
\cite{Ciarlet,Fairag98}:
\begin{equation*}
\|\nabla \varphi^h\|_{L^{\infty}} \le c \sqrt{|\ln(h)|}\, |\varphi^h|_2.
\end{equation*}
The following lemma follows from the above inequality and \eqref{eqn:BH2Bounds}
and was proven in \cite{Fairag98}:
\begin{lemma} \label{lma:bImproved}
For any $\chi^h\in X^h$, the following inequalities hold:
\begin{align*}
|b(\psi;\chi^h,\xi)| &\le C\sqrt{|\ln(h)|} \, |\psi|_2 |\xi|_1 |\chi^h|_2, \\
|b(\psi;\xi,\chi^h)| &\le C\sqrt{|\ln(h)|} \, |\psi|_2 |\xi|_1 |\chi^h|_2.
\end{align*}
\end{lemma}
The following lemma will prove useful for proving the error bounds for
\autoref{alg:TwoLevel}:
\begin{lemma} \label{lma:trilinear}
For $\psi,\,\xi,\,\chi\in H^2_0(\Omega)$, we have
\begin{equation}
b(\psi; \xi, \chi) = b^*(\xi; \chi, \psi) - b^*(\chi; \xi, \psi),
\label{eqn:eqn:trilinear}
\end{equation}
where
\begin{equation}
b^*(\xi; \chi, \psi) = \int_{\Omega}\! (\chi_y\xi_{xy}-\xi_x\chi_{yy}) \psi_y -
(\xi_y\chi_{yx}-\xi_y\chi_{xx}) \psi_x \,d\mathbf{x}.
\label{eqn:trilinear}
\end{equation}
\end{lemma}
For a proof see the corresponding Lemma 5.6 in \cite{Fairag98}.
Before proving any error bounds we first prove that the continuous problem
linearized about $\psi^H$ has a unique solution.
\begin{lemma}\label{lma:Fine}
Given a solution $\psi^H$ of \eqref{eqn:Coarse}, then the solution to the
following problem exists uniquely:
\begin{equation}
\begin{split}
&\text{Find } \hat{\psi} \in H^2_0(\Omega) \text{ such that, for all }
\chi\in H^2_0(\Omega), \\
Re^{-1}&(\Delta \hat{\psi}, \Delta \chi)
+ b(\psi^H; \hat{\psi}, \chi)
- Ro^{-1} (\hat{\psi}_x,\chi)
= Ro^{-1} (F,\chi),
\end{split}
\label{eqn:FineProb}
\end{equation}
and satisfies $\|\hat{\psi}\|_2 \le Re\, Ro^{-1} \|F\|_{-2}$.
\end{lemma}
\begin{proof}
First we introduce a new continuous bilinear form $B:\, H^2_0(\Omega) \times
H^2_0(\Omega) \to \R$ given by
\begin{equation*}
B(\psi,\chi) = Re^{-1} (\Delta \psi, \Delta \chi)
+ b(\psi^H;\psi,\chi)
- Ro^{-1} (\psi_x,\chi).
\end{equation*}
B is continuous and coercive and therefore $\hat{\psi}$ exists and is unique.
Now setting $\chi=\hat{\psi}$ in \eqref{eqn:FineProb} and noting that
$(\psi_x,\chi) = -(\chi_x,\psi)$ which implies that
$(\hat{\psi}_x,\hat{\psi}) = 0$ gives
\begin{align*}
Re^{-1} \|\hat{\psi}\|_2^2 &= Ro^{-1} (F,\hat{\psi}) \\
\|\hat{\psi}\|_2 &= Re\, Ro^{-1} \frac{(F,\hat{\psi})}{\|\hat{\psi}\|_2}.
\end{align*}
Taking the supremum over all $\hat{\psi}\in X$ leads to
\begin{equation*}
\|\hat{\psi}\|_{2} \le Re\, Ro^{-1} \sup_{\hat{\psi}\in X} \frac{(F,
\hat{\psi})}{|\hat{\psi}\|_2}.
\end{equation*}
Therefore, by definition it follows that $\|\hat{\psi}\|_2 \le Re\, Ro^{-1} \|F\|_{-2}$.
\end{proof}
The following lemma shows that the solution to the fine mesh problem,
\eqref{eqn:Fine} exists and has a stability bound dependent on $Re,\, Ro$, and
the forcing function $F$.
\begin{lemma} \label{lma:Fineh}
The solution to \eqref{eqn:Fine} exists and satisfies
\begin{equation*}
\|\psi^h\|_2 \le Re\, Ro^{-1} \|F\|_{-2}.
\end{equation*}
\end{lemma}
\begin{proof}
The bilinear form $B$ is continuous and coercive on $X^h$ and so $\psi^h$
exists and is unique. Setting $\chi^h=\psi^h$ in \eqref{eqn:Fine} and again
noting that $(\psi_x^h,\psi^h)=0$ and using \eqref{eqn:lCont} gives
\begin{align*}
Re^{-1} \|\psi^h\|_2^2 &= Ro^{-1} (F,\psi^h) \\
\|\psi^h\|_2 &= Re Ro^{-1} \frac{(F,\psi^h)}{\|\psi^h\|_2},
\end{align*}
which implies
\begin{equation*}
\|\psi^h\| \le Re\, Ro^{-1} \|F\|_{-2}.
\end{equation*}
\end{proof}
The following theorem gives the error bound after Step 2 and is the main result
of this section. The proof of this theorem is similar to the proof for a similar
theorem in \cite{Fairag98}.
\begin{thm} \label{thm:2LTwoLevel}
Let $X^h,\, X^H\subset H^2_0(\Omega)$ be two finite element spaces. Let $\psi$ be
the solution to \eqref{eqn:SQGEWF} and $\psi^h$ the solution to
\eqref{eqn:Fine}. Then $\psi^h$ satisfies
\begin{equation}
|\psi-\psi^h|_2 \le C_1 \inf_{\lambda^h\in X^h} |\psi-\lambda^h|_2 + C_2
\sqrt{|\ln h|}\, |\psi - \psi^H|_1,
\label{eqn:Error}
\end{equation}
where $C_1 = 2 + Re\,Ro^{-1} + Re^2 Ro^{-1} \Gamma_1 \|F\|_{-2}$ and $C_2= 2
Re^2 Ro^{-1} \Gamma_1 C\,\|F\|_{-2}$.
\end{thm}
\begin{proof}
Subtracting \eqref{eqn:Fine} from \eqref{eqn:SQGEWF} and letting $\chi=\chi^h$
yields
\begin{equation*}
Re^{-1} (\Delta \left[\psi - \psi^h\right], \Delta \chi^h) + b(\psi;\psi,\chi^h)
- b(\psi^H;\psi^h,\chi^h) - Ro^{-1} (\left[\psi-\psi^h\right]_x,\chi^h)
= 0, \quad \forall \chi^h \in X^h.
\end{equation*}
Using \autoref{lma:trilinear} gives
\begin{equation*}
\begin{split}
Re^{-1} \left(\Delta \left[\psi - \psi^h\right], \Delta \chi^h\right)
&+ b^*(\psi;\chi^h, \psi) - b^*(\chi^h;\psi,\psi) \\
&- b^*(\psi^h;\chi^h,\psi^H) + b^*(\chi^h; \psi^h,\psi^H)
- Ro^{-1} \left(\left[\psi-\psi^h\right]_x,\chi^h \right) = 0,
\quad \forall \chi^h \in X^h.
\end{split}
\end{equation*}
Now, adding the terms
\begin{equation*}
-b^*(\psi^h;\chi^h,\psi) + b^*(\chi^h;\psi^h,\psi) + b^*(\psi^h;\chi^h,\psi) - b^*(\chi^h;\psi^h,\psi)
\end{equation*}
gives
\begin{equation*}
\begin{split}
&Re^{-1} (\Delta \left[\psi - \psi^h\right], \Delta \chi^h)
+ b^*(\psi-\psi^h;\chi^h, \psi) + b^*(\chi^h;\psi^h-\psi,\psi) \\
&\quad+ b^*(\psi^h;\chi^h,\psi-\psi^H) + b^*(\chi^h; \psi^h,\psi^H-\psi)
- Ro^{-1} (\left[\psi-\psi^h\right]_x,\chi^h) = 0,
\quad \forall \chi^h \in X^h.
\end{split}
\end{equation*}
Take $\lambda^h\in H^2_0(\Omega)$ arbitrary and define $e:= \psi - \psi^h =
\eta - \Phi^h$, where $\Phi^h = \psi^h-\lambda^h$ and $\eta=\psi-\lambda^h$.
We have
\begin{equation*}
\begin{split}
&Re^{-1}(\Delta \Phi^h, \Delta \chi^h)
+ b^*(\Phi^h;\chi^h, \psi) - b^*(\chi^h;\Phi^h,\psi)
- Ro^{-1} (\Phi^h_x,\chi^h) \\
&\quad = Re^{-1} (\eta,\chi^h)
+ b^*(\eta;\chi^h, \psi) - b^*(\chi^h;\eta,\psi) \\
&\quad+ b^*(\psi^h;\chi^h,\psi-\psi^H) + b^*(\chi^h; \psi^h,\psi^H-\psi)
- Ro^{-1} (\eta_x,\chi^h),
\quad \forall \chi^h \in X^h.
\end{split}
\end{equation*}
Since this holds for any $\chi^h\in H^2_0(\Omega)$, it holds in particular for
$\chi^h=\Phi^h\in H^2_0(\Omega)$, which implies
\begin{equation*}
\begin{split}
Re^{-1} (\Delta \Phi^h, \Delta \Phi^h) - Ro^{-1} (\Phi^h_x,\Phi^h)
&= Re^{-1} (\Delta \eta, \Delta \Phi^h)
+ b^*(\eta;\Phi^h, \psi) - b^*(\Phi^h;\eta,\psi) \\
&\quad+ b^*(\psi^h;\Phi^h,\psi-\psi^H) + b^*(\Phi^h; \psi^h,\psi^H-\psi)
- Ro^{-1} (\eta_x,\Phi^h).
\end{split}
\end{equation*}
Note that $(\Phi_x,\Phi) = -(\Phi,\Phi_x)$ and so it follows that
$(\Phi^h_x,\Phi^h) = 0$. This combined with \autoref{lma:trilinear} implies
\begin{equation*}
\begin{split}
Re^{-1} (\Delta \Phi^h, \Delta \Phi^h) &= Re^{-1} (\Delta \eta, \Delta \Phi^h)
+ b(\psi;\eta,\Phi^h) \\
&\quad+ b^*(\psi^h;\Phi^h,\psi-\psi^H) + b^*(\Phi^h; \psi^h,\psi^H-\psi)
- Ro^{-1} (\eta_x,\Phi^h).
\end{split}
\end{equation*}
Using the error bounds given in \eqref{eqn:a1Cont}, \eqref{eqn:BH2Bounds},
\eqref{eqn:a3Cont}, \eqref{eqn:lCont}, \autoref{lma:bImproved},
\autoref{thm:stability_sqge}, \autoref{thm:stability_fem_sqge} and
\autoref{lma:Fine} gives
\begin{align*}
Re^{-1} |\Phi^h|_2^2 &\le Re^{-1} |\eta|_2\, |\Phi^h|_2 + \Gamma_1\,
|\psi|_2\, |\eta|_2\, |\Phi^h|_2 \\
&\quad+ 2 \Gamma_1\, C\, |\psi^H|_2\, |\Phi^h|_2\, |\psi - \psi^H|_1
\sqrt{|\ln(h)|} + Ro^{-1}\, \Gamma_2 |\eta|_2\, |\Phi^h|_2 \\
&= \left(Ro^{-1}\, \Gamma_2 + Re^{-1} + \Gamma_1\, |\psi|_2\right) |\eta|_2\,
|\Phi^h|_2 + 2 \Gamma_1\, C\, |\psi^H|_2\, |\Phi^h|_2 |\psi - \psi^H|_1
\sqrt{|\ln(h)|} \\
|\Phi^h|_2 &\le \left(1 + Re\, Ro^{-1}\, \Gamma_2 + Re^2 Ro^{-1} \Gamma_1\,
\|F\|_{-2}\right) |\eta|_2 \\
&\quad + 2 Re^2 Ro^{-1} \Gamma_1\, C\, \|F\|_{-2}\, |\psi - \psi^H|_1 \sqrt{|\ln(h)|} \\
\end{align*}
Adding $|\eta|_2$ to both sides and using the triangle inequality ($|\psi -
\psi^h|_2 \le |\Phi^h|_2 + |\eta|_2$) gives
\begin{align*}
|\Phi^h|_2 &\le \left(2 + Re\, Ro^{-1}\, \Gamma_2 + Re^2 Ro^{-1} \Gamma_1\,
\|F\|_{-2}\right) |\eta|_2 \\
&\quad + 2 Re^2 Ro^{-1} \Gamma_1\, C\, \|F\|_{-2}\, |\psi - \psi^H|_1
\sqrt{|\ln(h)|} \\
\end{align*}
Thus, we have the following estimate for the error bounds:
\begin{equation*}
|\psi-\psi^h|_2 \le C_1 \inf_{\lambda^h\in X^h} |\psi-\lambda^h|_2 + C_2
\sqrt{|\ln h|}\, |\psi - \psi^H|_1
\end{equation*}
where $C_1 = 2 + Re\,Ro^{-1}\, \Gamma_2 + Re^2 Ro^{-1} \Gamma_1 \|F\|_{-2}$
and $C_2= 2 Re^2 Ro^{-1} \Gamma_1 C\,\|F\|_{-2}$.
\end{proof}
As an example, consider the case of the Argyris triangle. For this element we
have the following inequalities, which follow from approximation theory
\cite{Bernadou94} and Theorem 6.1.1 \cite{Ciarlet}:
\begin{align}
|\psi - \psi^h|_j &\le C\,h^{6-j}\, |\psi|_6 \label{eqn:fineOrder} \\
|\psi - \psi^H|_j &\le C\,H^{6-j}\, |\psi|_6 \label{eqn:coarseOrder}
\end{align}
\begin{corollary} \label{crl:Argyris2L}
Let $X^h,\, X^H \in H^2_0(\Omega)$ be the Argyris finite elements. Then,
$\psi^h$ satisfies
\begin{equation}
|\psi - \psi^h|_2 \le C_1\, h^4\, |\psi|_6 + C_2\, \sqrt{|\ln(h)|}\, H^5\,
|\psi|_6.
\label{eqn:TwoLevelError}
\end{equation}
\end{corollary}
\begin{proof}
This follows directly by substituting \eqref{eqn:fineOrder} and
\eqref{eqn:coarseOrder} into \eqref{eqn:Error}.
\end{proof}