diff --git a/codes/quantum/qudits_galois/stabilizer/galois_stabilizer.yml b/codes/quantum/qudits_galois/stabilizer/galois_stabilizer.yml index c5bf5b602..3ab2289ab 100644 --- a/codes/quantum/qudits_galois/stabilizer/galois_stabilizer.yml +++ b/codes/quantum/qudits_galois/stabilizer/galois_stabilizer.yml @@ -42,7 +42,7 @@ description: | The sets of \(GF(q^2)\)-represented vectors for all generators yield a trace-alternating self-orthogonal additive code over \(GF(q^2)\). Recalling that \(q=p^m\), Galois-qudit stabilizer codes can also be treated as prime-qudit stabilizer codes on \(mn\) qudits, giving \(k=nm-r\) \cite{doi:10.1109/18.959288}. - As such, modular-qudit stabilizer states can be expressed in terms of linear and quadratic functions over \(\mathbb{Z}_p^{mn\) \cite{arxiv:quant-ph/0408190}. + As such, modular-qudit stabilizer states can be expressed in terms of linear and quadratic functions over \(\mathbb{Z}_p^{mn}\) \cite{arxiv:quant-ph/0408190}. Such states correspond to the set of states with positive Wigner functions \cite{arxiv:quant-ph/0602001,arxiv:quant-ph/0702004}. Galois-qudit stabilizer codes can equivalently \cite{arxiv:quant-ph/0111080} (see also \cite{arxiv:quant-ph/0308151,arxiv:quant-ph/0703112}) be defined using graphs, yielding an analytical form for the codewords \cite{arxiv:quant-ph/0012111}.