-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
308 lines (259 loc) · 7.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
import argparse
from model import ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, VGG
from datasets import MIAS
from PIL import Image
parser = argparse.ArgumentParser(description='ResNet-MIAS')
parser.add_argument(
'--batch-size',
type=int,
default=10,
metavar='N',
help='input batch size for training (default: 20)'
)
parser.add_argument(
'--epochs',
type=int,
default=10,
metavar='N',
help='number of epochs to train (default: 10)'
)
parser.add_argument(
'--lr',
type=float,
default=0.1,
metavar='LR',
help='learning rate (default: 0.1)'
)
parser.add_argument(
'--cuda',
action='store_true',
default=True,
help='CUDA training'
)
parser.add_argument(
'--seed',
type=int,
default=1,
metavar='S',
help='random seed (default: 1)'
)
parser.add_argument(
'--data-folder',
type=str,
default='./data',
metavar='DF',
help='where to store the datasets'
)
parser.add_argument(
'--weight-decay',
type=float,
default=1e-4,
metavar='WD',
help='weight decay (default: 0)'
)
parser.add_argument(
'--model',
type=str,
default='ResNet18',
metavar='MD',
help='which model to use'
)
parser.add_argument(
'--scheduler-step',
type=int,
default=40,
metavar='SS',
help='reduce lr scheduler step size'
)
parser.add_argument(
'--dropout',
type=float,
default=0.5,
metavar='SS',
help='reduce lr scheduler step size'
)
args = parser.parse_args()
"""
Set a custom seed to ensure reproducibility.
"""
torch.manual_seed(args.seed)
np.random.seed(args.seed)
"""
Specify the running device (CPU or GPU with CUDA support).
"""
device = torch.device("cuda:0" if torch.cuda.is_available()
and args.cuda else "cpu")
"""
Load the dataset.
"""
data_path = os.path.join(args.data_folder)
mias_dataset = MIAS(
data_path,
download=True,
transform=transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((128, 128), interpolation=Image.LANCZOS),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
)
num_samples = len(mias_dataset)
num_classes = len(mias_dataset.labels_info)
training_set_size = int(num_samples * .7)
validation_set_size = num_samples - training_set_size
print(f"Train Size: {str(training_set_size)}")
print(f"Validation Size: {str(validation_set_size)}")
train_dataset, val_dataset = torch.utils.data.random_split(
mias_dataset,
[training_set_size, validation_set_size]
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size,
shuffle=True
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size,
shuffle=True
)
dataloaders = {
'train': train_loader,
'val': val_loader
}
dataset_sizes = {
'train': training_set_size,
'val': validation_set_size
}
"""
Training function
"""
def train_model(model, criterion, optimizer, scheduler, num_epochs):
best_acc = 0.0
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
for epoch in range(num_epochs):
# Each epoch has a training and validation phase
epoch_since = time.time()
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
epoch_time_elapsed = time.time() - epoch_since
eta = ((num_epochs - epoch) + 1) * epoch_time_elapsed
print('Epoch: {}/{} Phase: {:<5} Loss: {:.4f} Acc: {:.4f} Epoch Time: {:.0f}s ETA: {:.0f}m {:.0f}s'.format(
epoch + 1,
num_epochs,
phase,
epoch_loss,
epoch_acc,
epoch_time_elapsed,
eta // 60,
eta % 60)
)
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60,
time_elapsed % 60
)
)
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def print_number_parameters(model):
total_params = sum(p.numel()
for p in model.parameters() if p.requires_grad)
print(f"Number of Trainables Params: {str(total_params)}")
"""
Main Function
"""
def get_model():
if args.model == 'ResNet18':
return ResNet18(p_dropout=args.dropout)
elif args.model == 'ResNet34':
return ResNet34(p_dropout=args.dropout)
elif args.model == 'ResNet50':
return ResNet50(p_dropout=args.dropout)
elif args.model == 'ResNet101':
return ResNet101(p_dropout=args.dropout)
elif args.model == 'ResNet152':
return ResNet152(p_dropout=args.dropout)
elif args.model == 'VGG11':
return VGG('VGG11', p_dropout=args.dropout)
elif args.model == 'VGG13':
return VGG('VGG13', p_dropout=args.dropout)
elif args.model == 'VGG16':
return VGG('VGG16', p_dropout=args.dropout)
elif args.model == 'VGG19':
return VGG('VGG19', p_dropout=args.dropout)
else:
raise 'Model Not found'
def main():
model_ft = get_model()
print(model_ft)
print_number_parameters(model_ft)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(
model_ft.parameters(),
lr=args.lr,
momentum=0.9,
weight_decay=args.weight_decay)
# # Decay LR by a factor of 0.1 every 40 epochs
exp_lr_scheduler = lr_scheduler.StepLR(
optimizer_ft,
step_size=args.scheduler_step,
gamma=0.1
)
train_model(
model_ft,
criterion,
optimizer_ft,
exp_lr_scheduler,
num_epochs=args.epochs
)
if __name__ == "__main__":
main()