-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrna_distmap.py
executable file
·107 lines (93 loc) · 3.36 KB
/
rna_distmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python
#2345678901234567890123456789012345678901234567890123456789012345678901234567890
################################################################################
## File: rna_distmap.py
## Authors: Mauricio Esguerra
## Date: February 21, 2013
## Email: [email protected]
##
## Description:
## The following python script is aimed at recreating
## interatomic distance plots such as the one in Figure 2
## of Malathi and Yathindra, Biochemical Journal, 1982,
## 205, 457-460.
## http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1158502/?page=3
##
################################################################################
import os, sys
if len(sys.argv) != 2:
print '===================================='
print 'Usage: rna_distmap.py <pdbid>'
print '===================================='
print 'Notice that the pdb extension is'
print 'not needed to invoke the map maker.'
print '===================================='
sys.exit(1)
from numpy import *
import scipy.spatial.distance as dista
import matplotlib
matplotlib.use('Agg') #Call before importing matplotlib.pyplot or pylab!
import matplotlib.pyplot as plt
from pylab import *
#A file called Pmat.dat is created to contains P atom coordinates
pdbname=sys.argv[1]
os.system("awk '{if (substr($0,1,6) ~ /ATOM/ && substr($0,14,1) ~ /P/) \
print substr($0,32,23) }' %s.pdb > Pmat.dat" % (pdbname))
inp = genfromtxt("Pmat.dat")
#Arrange the data in an array
#cart_arr = []
#for line in inp.readlines():
# cart_arr.append([])
# for i in line.split():
# cart_arr[-1].append(float(i))
#inp.close()
#M = array(cart_arr)
M = inp
#Compute the distance matrix
#Thanks to scipy's distance function it's easy to play around
#with other metrics
D = dista.cdist(M,M, metric='minkowski', p=2)
#D = dista.cdist(M,M)
#This is a trick to get a lower diagonal displayed alone.
mask = triu(D) # the upper diagonal is masked
D = ma.array(D, mask=mask) # mask out the upper triangle
#Define the color map
cdict = {'red': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.66, 1, 1),
(0.89, 1, 1),
(1, 1.0, 1.0)),
'green': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.375, 1, 1),
(0.64, 1, 1),
(0.91, 0, 0),
(1, 1, 1)),
'blue': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 1, 1),
(0.34, 1, 1),
(0.65, 0, 0),
(1, 1, 1))}
my_cmap = matplotlib.colors.LinearSegmentedColormap('my_colormap',cdict,256)
#Make the plot.
plt.clf()
plt.suptitle('Interatomic Phosphorus Distance Matrix', fontsize=18)
#plt.title('RNA P4-P6 Ribozyme Domain of Group I Intron (PDB_ID:1GID)')
plt.title('%s.pdb'%(pdbname))
plt.xlabel('Residue Number')
plt.ylabel('Residue Number')
cmap = cm.get_cmap('gist_heat',10)
#cmap = cm.get_cmap('Reds_r',20)
#cmap = cm.get_cmap('Blues_r',16)
#cmap = my_cmap
#cmap.set_bad('w')
plt.imshow(D, vmin=0.2, vmax=30, origin='upper',
cmap=cmap, aspect='equal', interpolation='nearest')
plt.colorbar()
plt.grid(True)
#If you want to get a png figure uncomment the next line.
plt.savefig('%s_dmap.png'%(pdbname), dpi=200, format="png")
#plt.show()