-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblack-box.py
170 lines (117 loc) · 4.86 KB
/
black-box.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
from torch.utils.data import DataLoader
import tqdm
from datasets import load_dataset
from torchvision.models import resnet50, ResNet50_Weights
from torchvision import transforms
from torchvision.datasets import ImageFolder
import torch.nn as nn
import pickle
from sklearn.metrics import accuracy_score
class TinyImageNetDataset(torch.utils.data.Dataset):
def __init__(self, dataset, transform=None):
self.dataset = dataset
self.transform = transform
def __getitem__(self, index):
image = self.dataset[index]["image"]
label = self.dataset[index]["label"]
if self.transform:
image = self.transform(image)
# if grayscale, convert to 3-channel
if image.size(0) == 1:
image = image.repeat(3, 1, 1)
label = torch.tensor(label)
return image, label
def __len__(self):
return len(self.dataset)
class Resnet50TinyImageNet(nn.Module):
def __init__(self):
super(Resnet50TinyImageNet, self).__init__()
self.model = resnet50(weights=ResNet50_Weights.DEFAULT)
num_features = self.model.fc.in_features
self.model.fc = nn.Linear(num_features, 200)
def forward(self, x):
return self.model(x)
def train(self, train_loader, val_loader, criterion, optimizer, num_epochs=10):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
for epoch in range(num_epochs):
train_loss = 0.0
train_acc = 0.0
self.model.train()
for image, label in tqdm.tqdm(train_loader):
image = image.to(device)
label = label.to(device)
optimizer.zero_grad()
outputs = self.model(image)
loss = criterion(outputs, label)
loss.backward()
optimizer.step()
train_loss += loss.item() * image.size(0)
_, prediction = torch.max(outputs, 1)
train_acc += torch.sum(prediction == label.data)
train_loss = train_loss / len(train_loader.dataset)
train_acc = train_acc / len(train_loader.dataset)
self.model.eval()
val_loss = 0.0
val_acc = 0.0
for image, label in tqdm.tqdm(val_loader):
image = image.to(device)
label = label.to(device)
outputs = self.model(image)
loss = criterion(outputs, label)
val_loss += loss.item() * image.size(0)
_, prediction = torch.max(outputs, 1)
val_acc += torch.sum(prediction == label.data)
val_loss = val_loss / len(val_loader.dataset)
val_acc = val_acc / len(val_loader.dataset)
print("Epoch: {} \tTraining Loss: {:.6f} \tTraining Accuracy: {:.6f} \tValidation Loss: {:.6f} \tValidation Accuracy: {:.6f}".format(epoch+1, train_loss, train_acc, val_loss, val_acc))
def test(self, test_loader, device):
self.model.eval()
predictions = []
true = []
for image, label in tqdm.tqdm(test_loader):
image = image.to(device)
label = label.to(device)
outputs = self.model(image)
_, prediction = torch.max(outputs, 1)
predictions.append(prediction)
true.append(label.data)
predictions = torch.cat(predictions, dim=0)
true = torch.cat(true, dim=0)
print("Accuracy: ", accuracy_score(true.cpu(), predictions.cpu()))
return predictions
## ______________
# Hyperparameters
BATCH_SIZE = 64
EPOCHS = 3
LEARNING_RATE = 0.001
MOMENTUM = 0.9
## ______________
# Load dataset
dataset = load_dataset("Maysee/tiny-imagenet")
train = dataset["train"]
val = dataset["valid"]
transform = transforms.Compose([
transforms.ToTensor(),
])
train_dataset = TinyImageNetDataset(train, transform)
val_dataset = TinyImageNetDataset(val, transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=True)
## ______________
# Train model
model = Resnet50TinyImageNet()
criterion = nn.CrossEntropyLoss()
# optimizer = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, momentum=MOMENTUM)
# model.train(train_loader, val_loader, criterion, optimizer, EPOCHS)
# torch.save(model.state_dict(), './model/res3.pth')
## ______________
# Test model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.load_state_dict(torch.load('./model/res3.pth', map_location=device))
pred = model.test(val_loader, device)
# with open('pred_15.pkl', 'wb') as f:
# pickle.dump(pred, f)