-
Notifications
You must be signed in to change notification settings - Fork 4
/
L1normInteractions.m
82 lines (65 loc) · 3.28 KB
/
L1normInteractions.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
%
% This function computes the L1-norm distance between the class-conditional
% distribution of a single parameter and the class-conditional distribution
% of that parameter additionally conditioned to a second parameter.
% By default, the distance is computed for all parameters, except the conditional parameter
% Author: Celine Scheidt
% Date: August 2012
function InteractionSensitivity = L1normInteractions(ParametersValues,CondIdx,Clustering,NbBins,WhichParam)
%% Input Parameters
% - ParametersValues: matrix (NbModels x NbParams) of the parameter values
% - CondIdx: intdex of the conditional parameter (e.g. y in x|y)
% - Clustering: Clustering results
% - NbBins: number of bins for the conditional parameter
% - WhichParam (optional). To compute only the distance for one parameter
% (ParametersValues(:,WhichParam)|ParametersValues(:,CondIdx))
%% Output Parameters
% - InteractionSensitivity: Array ((NbParams-1) x Nbcluster x NbBins) containing the L1norm for each
% parameter (i.e x|y, z|y, t|y, ..), 1st dim), each cluster (2nd dim) and for each level (3rd dim).
NbClusters = length(Clustering.medoids);
NbParams = size(ParametersValues,2);
%% definition of the levels (bin) for the conditional parameter
if length(unique(ParametersValues(:,CondIdx))) == NbBins
levels = sort(unique(ParametersValues(:,CondIdx)));
else
levels = quantile(ParametersValues(:,CondIdx),(1:NbBins-1)/NbBins);
end
%% Compute the distance
if nargin < 5
InteractionSensitivity = zeros(NbParams,NbClusters,NbBins);
else
InteractionSensitivity = zeros(NbClusters,NbBins);
end
for j = 1:NbClusters
idx_c = find(Clustering.T == j); % find points in the cluster
% Bin the conditional parameter and store the indices in a vector
for l = 1:NbBins
if l == 1
idx_cl = idx_c(ParametersValues(idx_c,CondIdx) <= levels(l));
elseif l == NbBins
idx_cl = idx_c(ParametersValues(idx_c,CondIdx) > levels(l-1));
else
idx_cl = idx_c(all(horzcat(ParametersValues(idx_c,CondIdx) <= levels(l),ParametersValues(idx_c,CondIdx) > levels(l-1)),2));
end
% Compute the L1norm
if nargin < 5 % compute distance for all parameters
for i =1:NbParams
if i == CondIdx
continue
else
q_prior = quantile(ParametersValues(idx_c,i),(1:1:99)./100); % distribution of parameter p in the entire cluster: F(p|c)
q_inter = quantile(ParametersValues(idx_cl,i),(1:1:99)./100); % distribution of parameter p conditioned to pj in bin l: F(p|i(pj,tl),c)
InteractionSensitivity(i,j,l) = norm(q_prior-q_inter,1); % L1-norm
end
end
else % compute only the given interaction
q_prior = quantile(ParametersValues(idx_c,WhichParam),(1:1:99)./100); % distribution of parameter p in the entire cluster: F(p|c)
q_inter = quantile(ParametersValues(idx_cl,WhichParam),(1:1:99)./100); % distribution of parameter p conditioned to pj in bin l: F(p|i(pj,tl),c)
InteractionSensitivity(j,l) = norm(q_prior-q_inter,1); % L1-norm
end
end
end
if nargin < 5
InteractionSensitivity(CondIdx,:,:) = [];
end
end