Skip to content

Latest commit

 

History

History
executable file
·
38 lines (25 loc) · 2.02 KB

README.md

File metadata and controls

executable file
·
38 lines (25 loc) · 2.02 KB

Semi-Supervised GAN (Improved GAN) in PyTorch

See requirements.txt for package versions. A Jupyter notebook ssgan_notebook.ipynb is also provided with Bokeh plots of live updated training metrics.

Note: Implementation and hyperparameters used may vary slightly from what the papers describe.

Example usage

python ssgan_exp.py --dataset mnist --epochs 10 --perc_labeled 0.00167 --lr 0.003 --noise_dist uniform --use_weight_norm

python ssgan_exp.py --dataset mreo --epochs 100 --perc_labeled 0.08 --lr 0.0006 --noise_dist normal --no_eq_union

Results and models

Dataset Labeled training data Accuracy Reference Checkpoint
MNIST 100 samples 0.9509 [1], see Table 1 model
MREO 8% 0.8658 [2], see Table 1 model

Getting data

MNIST data is used from torchvision.datasets.

MREO data can be downloaded from here, we use the compact version.

tar -xvf data_processed_compact.tar.gz mreo_data/

References

[1]: Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen, "Improved Techniques for Training GANs", 2016.

[2]: Z. Erickson, S. Chernova, and C. C. Kemp, "Semi-Supervised Haptic Material Recognition for Robots using Generative Adversarial Networks", 2017.

Changelog

  • (Dec. 28, 2019) Update to PyTorch 1.3. Add results for MNIST and MREO. Add weight normalization, easier setting of hyperparameters, and data loading improvements.
  • (Dec. 26, 2019) Fix bug in labeled loss function, now properly indexes prediction probabilities