-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdetect.py
144 lines (132 loc) · 4.88 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import json
import copy
import argparse
from typing import NoReturn
import torch
from torch.utils.data.dataloader import DataLoader
from utils import collate_fn
from dataset import get_coco_dataset
from model import get_fasterrcnn_resnet50_fpn
# ### Global Variables ###
DEBUG = False
# ## Model ##
CONFIDENCE_SCORE_THRESHOLD = 0.5
# ## Data Fetching ##
BATCH_SIZE = 2
NUM_WORKERS = 2
def detect(dataset_path: str, model_path: str) -> NoReturn:
"""Makes inferences on a coco format dataset, using a model saved
during the training phase. The output coco annotation file is stored in
"outputs/inferences/<dataset name>_annotations.json" where <dataset name>
is the name of the directory in `dataset_path`.
Note: the resulting annotation file will drop all annotations that existed
in the input dataset.
Args:
dataset_path (str): path to the coco dataset directory.
model_path (str): path to the model snapshot output by the
"train.py" script.
Returns:
NoReturn: [description]
"""
inferences_output_path = os.path.join("outputs", "inferences")
os.makedirs(inferences_output_path, exist_ok=True)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
dataset = get_coco_dataset(dataset_path, train=False)
dataloader = DataLoader(
dataset,
batch_size=BATCH_SIZE,
num_workers=NUM_WORKERS,
shuffle=True,
collate_fn=collate_fn,
)
model_metadata = torch.load(model_path)
state_dict = model_metadata.get("state_dict")
categories = model_metadata.get("categories")
model = get_fasterrcnn_resnet50_fpn(
state_dict=state_dict,
number_classes=len(categories) + 1,
)
model.to(device)
model.eval()
result_dataset = copy.deepcopy(dataset.coco.dataset)
result_dataset["annotations"] = []
result_dataset["categories"] = categories
id_annotation = 1
for images, targets in dataloader:
images = list(img.to(device) for img in images)
outputs = model(images)
for target, output in zip(targets, outputs):
boxes = output["boxes"].to("cpu")
labels = output["labels"].to("cpu")
scores = output["scores"].to("cpu")
for index_detection in range(boxes.shape[0]):
bbox = boxes[index_detection].tolist()
category_id = labels[index_detection].tolist()
score = scores[index_detection].tolist()
if score > CONFIDENCE_SCORE_THRESHOLD:
if DEBUG:
print(
"[ Annotation ] {} with score {}".format(
result_dataset["categories"][category_id - 1].get(
"name"
),
score,
)
)
width = bbox[0] - bbox[2]
height = bbox[3] - bbox[1]
result_dataset["annotations"].append(
{
"id": id_annotation,
"image_id": target["image_id"].item(),
"category_id": category_id,
"segmentation": [
[
bbox[0],
bbox[1],
bbox[2],
bbox[1],
bbox[2],
bbox[3],
bbox[0],
bbox[3],
bbox[0],
bbox[1],
]
],
"area": width * height,
"bbox": [bbox[0], bbox[1], width, height],
"iscrowd": 0,
}
)
id_annotation += 1
print("Created {} annotations.".format(id_annotation))
json.dump(
result_dataset,
open(
os.path.join(
inferences_output_path,
"{}_coco-annotations.json".format(os.path.basename(dataset_path)),
),
"w",
),
)
def main():
parser = argparse.ArgumentParser(description="Make inference on a coco dataset.")
parser.add_argument(
"--dataset-path",
dest="dataset_path",
help="path to your coco dataset directory",
required=True,
)
parser.add_argument(
"--model-path",
dest="model_path",
help="path to your model weights",
required=True,
)
args = parser.parse_args()
detect(args.dataset_path, args.model_path)
if __name__ == "__main__":
main()