diff --git a/CHANGELOG.md b/CHANGELOG.md
index 729813490..53a902d45 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -13,8 +13,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Add `ChronosModel` ([#511](https://github.com/etna-team/etna/pull/511))
- Add `ChronosBoltModel` ([#511](https://github.com/etna-team/etna/pull/511))
- Add usage example of `ChronosModel` and `ChronosBoltModel` in `202-NN_examples` notebook ([#511](https://github.com/etna-team/etna/pull/511))
--
--
+- Add `TimesFMModel` ([#544](https://github.com/etna-team/etna/pull/544))
+- Add usage example of `TimesFMModel` in `202-NN_examples` notebook ([#544](https://github.com/etna-team/etna/pull/544))
-
-
- Add `MissingCounter` metric ([#520](https://github.com/etna-team/etna/pull/520))
diff --git a/README.md b/README.md
index baae3b461..64016e1ad 100644
--- a/README.md
+++ b/README.md
@@ -149,7 +149,8 @@ Available user extensions are the following:
* `auto`: adds AutoML functionality,
* `statsforecast`: adds models from [statsforecast](https://nixtla.github.io/statsforecast/),
* `classiciation`: adds time series classification functionality,
-* `chronos`: adds Chronos-like pretrained models.
+* `chronos`: adds Chronos-like pretrained models,
+* `timesfm`: adds TimesFM pretrained models.
Install extension:
```bash
diff --git a/docs/source/api_reference/models.rst b/docs/source/api_reference/models.rst
index daea65539..ef06daee4 100644
--- a/docs/source/api_reference/models.rst
+++ b/docs/source/api_reference/models.rst
@@ -122,4 +122,5 @@ Pretrained neural network models:
:template: class.rst
nn.ChronosModel
- nn.ChronosBoltModel
\ No newline at end of file
+ nn.ChronosBoltModel
+ nn.TimesFMModel
\ No newline at end of file
diff --git a/docs/source/installation.rst b/docs/source/installation.rst
index 86cd18123..90ac3d214 100644
--- a/docs/source/installation.rst
+++ b/docs/source/installation.rst
@@ -24,7 +24,8 @@ Available user extensions are the following:
- ``auto``: adds AutoML functionality,
- ``statsforecast``: adds models from `statsforecast `_,
- ``classiciation``: adds time series classification functionality,
-- ``chronos``: adds Chronos-like pretrained models.
+- ``chronos``: adds Chronos-like pretrained models,
+- ``timesfm``: adds TimesFM pretrained models.
Install extension:
diff --git a/etna/libs/timesfm/__init__.py b/etna/libs/timesfm/__init__.py
new file mode 100644
index 000000000..2346aa8a2
--- /dev/null
+++ b/etna/libs/timesfm/__init__.py
@@ -0,0 +1,155 @@
+"""
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+ 1. Definitions.
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+"""
+
+
+from etna.libs.timesfm.timesfm import TimesFmTorch
+from etna.libs.timesfm.timesfm_base import TimesFmHparams, TimesFmCheckpoint
diff --git a/etna/libs/timesfm/patched_decoder.py b/etna/libs/timesfm/patched_decoder.py
new file mode 100644
index 000000000..53cd5c6c1
--- /dev/null
+++ b/etna/libs/timesfm/patched_decoder.py
@@ -0,0 +1,948 @@
+"""
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+ 1. Definitions.
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+"""
+
+# Copyright 2024 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Note: Copied from timesfm repository (https://github.com/google-research/timesfm/blob/154248137ccce29b01f4c3a765e85c3d9e4d92ba/src/timesfm/patched_decoder.py)
+
+"""Pytorch version of patched decoder."""
+
+import dataclasses
+import math
+from typing import List, Tuple, Optional
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+
+def _create_quantiles() -> List[float]:
+ return [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
+
+
+@dataclasses.dataclass
+class TimesFMConfig:
+ """Config for initializing timesfm patched_decoder class."""
+
+ # The number of blocks in the model.
+ num_layers: int = 20
+ # The number of attention heads used in the attention layers of the model.
+ num_heads: int = 16
+ # The number of key-value heads for implementing attention.
+ num_kv_heads: int = 16
+ # The hidden size of the model.
+ hidden_size: int = 1280
+ # The dimension of the MLP representations.
+ intermediate_size: int = 1280
+ # The number of head dimensions.
+ head_dim: int = 80
+ # The epsilon used by the rms normalization layers.
+ rms_norm_eps: float = 1e-6
+ # Patch length
+ patch_len: int = 32
+ # Horizon length
+ horizon_len: int = 128
+ # quantiles
+ quantiles: List[float] = dataclasses.field(default_factory=_create_quantiles)
+ # Padding value
+ pad_val: float = 1123581321.0
+ # Tolerance
+ tolerance: float = 1e-6
+ # The dtype of the weights.
+ dtype: str = "bfloat32"
+ # use positional embedding
+ use_positional_embedding: bool = True
+
+
+def _masked_mean_std(
+ inputs: torch.Tensor,
+ padding: torch.Tensor
+) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Calculates mean and standard deviation of `inputs` across axis 1.
+
+ It excludes values where `padding` is 1.
+
+ Args:
+ inputs: A PyTorch tensor of shape [b, n, p].
+ padding: A PyTorch tensor of shape [b, n, p] with values 0 or 1.
+
+ Returns:
+ A tuple containing the mean and standard deviation.
+ We return the statistics of the first patch with more than three non-padded
+ values.
+ """
+ # Selecting the first patch with more than 3 unpadded values.
+ pad_sum = torch.sum(1 - padding, dim=2)
+
+ def _get_patch_index(arr: torch.Tensor):
+ indices = torch.argmax((arr >= 3).to(torch.int32), dim=1)
+ row_sum = (arr >= 3).to(torch.int32).sum(dim=1)
+ return torch.where(row_sum == 0, arr.shape[1] - 1, indices)
+
+ patch_indices = _get_patch_index(pad_sum)
+ bidxs = torch.arange(inputs.shape[0])
+
+ arr = inputs[bidxs, patch_indices, :]
+ pad = padding[bidxs, patch_indices, :]
+
+ # Create a mask where padding is 0
+ mask = 1 - pad
+
+ # Calculate the number of valid elements
+ num_valid_elements = torch.sum(mask, dim=1)
+ num_valid_elements = torch.where(
+ num_valid_elements == 0,
+ torch.tensor(1,
+ dtype=num_valid_elements.dtype,
+ device=num_valid_elements.device),
+ num_valid_elements,
+ )
+
+ # Calculate the masked sum and squared sum
+ masked_sum = torch.sum(arr * mask, dim=1)
+ masked_squared_sum = torch.sum((arr * mask)**2, dim=1)
+
+ # Calculate the masked mean and standard deviation
+ masked_mean = masked_sum / num_valid_elements
+ masked_var = masked_squared_sum / num_valid_elements - masked_mean**2
+ masked_var = torch.where(
+ masked_var < 0.0,
+ torch.tensor(0.0, dtype=masked_var.dtype, device=masked_var.device),
+ masked_var,
+ )
+ masked_std = torch.sqrt(masked_var)
+
+ return masked_mean, masked_std
+
+
+def _shift_padded_seq(mask: torch.Tensor, seq: torch.Tensor) -> torch.Tensor:
+ """Shifts rows of seq based on the first 0 in each row of the mask.
+
+ Args:
+ mask: mask tensor of shape [B, N]
+ seq: seq tensor of shape [B, N, P]
+
+ Returns:
+ Returns the shifted sequence.
+ """
+ batch_size, num_seq, feature_dim = seq.shape
+
+ new_mask: torch.BoolTensor = mask == 0
+
+ # Use argmax to find the first True value in each row
+ indices = new_mask.to(torch.int32).argmax(dim=1)
+
+ # Handle rows with all zeros
+ indices[~new_mask.any(dim=1)] = -1
+
+ # Create index ranges for each sequence in the batch
+ idx_range = (torch.arange(num_seq).to(
+ seq.device).unsqueeze(0).unsqueeze(-1).expand(batch_size, -1,
+ feature_dim))
+
+ # Calculate shifted indices for each element in each sequence
+ shifted_idx = (idx_range - indices[:, None, None]) % num_seq
+
+ # Gather values from seq using shifted indices
+ shifted_seq = seq.gather(1, shifted_idx)
+
+ return shifted_seq
+
+
+def get_large_negative_number(dtype: torch.dtype) -> torch.Tensor:
+ """Returns a large negative value for the given dtype."""
+ if dtype.is_floating_point:
+ dtype_max = torch.finfo(dtype).max
+ else:
+ dtype_max = torch.iinfo(dtype).max
+ return torch.tensor(-0.7 * dtype_max, dtype=dtype)
+
+
+def apply_mask_to_logits(logits: torch.Tensor, mask: torch.Tensor) -> torch.Tensor:
+ """Applies a floating-point mask to a set of logits.
+
+ Args:
+ logits: A torch.Tensor of logit values.
+ mask: A torch.Tensor (float32) of mask values with the encoding described
+ in the function documentation.
+
+ Returns:
+ Masked logits.
+ """
+
+ min_value = get_large_negative_number(logits.dtype)
+
+ return torch.where((mask >= min_value * 0.5), logits, min_value)
+
+
+def convert_paddings_to_mask(paddings: torch.Tensor, dtype: torch.dtype = torch.float32) -> torch.Tensor:
+ """Converts binary paddings to a logit mask ready to add to attention matrix.
+
+ Args:
+ paddings: binary torch.Tensor of shape [B, T], with 1 denoting padding
+ token.
+ dtype: data type of the input.
+
+ Returns:
+ A torch.Tensor of shape [B, 1, 1, T] ready to add to attention logits.
+ """
+ attention_mask = paddings.detach().clone()
+ attention_mask = attention_mask[:, None, None, :] # Equivalent to jnp.newaxis
+ attention_mask *= get_large_negative_number(dtype)
+ return attention_mask
+
+
+def causal_mask(input_t: torch.Tensor) -> torch.Tensor:
+ """Computes and returns causal mask.
+
+ Args:
+ input_t: A torch.Tensor of shape [B, T, D].
+
+ Returns:
+ An attention_mask torch.Tensor of shape [1, 1, T, T]. Attention mask has
+ already been converted to large negative values.
+ """
+ assert input_t.dtype.is_floating_point, input_t.dtype
+ large_negative_number = get_large_negative_number(input_t.dtype)
+ t = input_t.shape[1]
+ col_idx = torch.arange(t).unsqueeze(0).repeat(t, 1)
+ row_idx = torch.arange(t).unsqueeze(1).repeat(1, t)
+ mask = (row_idx < col_idx).to(input_t.dtype) * large_negative_number
+ return mask.unsqueeze(0).unsqueeze(0).to(input_t.device) # Equivalent to jnp.newaxis
+
+
+def merge_masks(a: torch.Tensor, b: torch.Tensor) -> torch.Tensor:
+ """Merges 2 masks.
+
+ logscale mask is expected but 0/1 mask is also fine.
+
+ Args:
+ a: torch.Tensor of shape [1|B, 1, 1|T, S].
+ b: torch.Tensor of shape [1|B, 1, 1|T, S].
+
+ Returns:
+ torch.Tensor of shape [1|B, 1, 1|T, S].
+ """
+
+ def expand_t(key_mask):
+ query_mask = key_mask.transpose(-1, -2) # Equivalent of jnp.transpose
+ return torch.minimum(query_mask, key_mask)
+
+ if a.shape[2] != b.shape[2]:
+ if a.shape[2] == 1:
+ a = expand_t(a)
+ else:
+ assert b.shape[2] == 1
+ b = expand_t(b)
+
+ assert a.shape[1:] == b.shape[1:], f"a.shape={a.shape}, b.shape={b.shape}."
+ return torch.minimum(a, b) # Element-wise minimum, similar to jnp.minimum
+
+
+class ResidualBlock(nn.Module):
+ """TimesFM residual block."""
+
+ def __init__(
+ self,
+ input_dims,
+ hidden_dims,
+ output_dims,
+ ):
+ super(ResidualBlock, self).__init__()
+ self.input_dims = input_dims
+ self.hidden_dims = hidden_dims
+ self.output_dims = output_dims
+
+ # Hidden Layer
+ self.hidden_layer = nn.Sequential(
+ nn.Linear(input_dims, hidden_dims),
+ nn.SiLU(),
+ )
+
+ # Output Layer
+ self.output_layer = nn.Linear(hidden_dims, output_dims)
+ # Residual Layer
+ self.residual_layer = nn.Linear(input_dims, output_dims)
+
+ def forward(self, x):
+ hidden = self.hidden_layer(x)
+ output = self.output_layer(hidden)
+ residual = self.residual_layer(x)
+ return output + residual
+
+
+class RMSNorm(torch.nn.Module):
+ """Pax rms norm in pytorch."""
+
+ def __init__(
+ self,
+ dim: int,
+ eps: float = 1e-6,
+ add_unit_offset: bool = False,
+ ):
+ super().__init__()
+ self.eps = eps
+ self.add_unit_offset = add_unit_offset
+ self.weight = nn.Parameter(torch.zeros(dim))
+
+ def _norm(self, x):
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
+
+ def forward(self, x):
+ output = self._norm(x.float())
+ if self.add_unit_offset:
+ output = output * (1 + self.weight.float())
+ else:
+ output = output * self.weight.float()
+ return output.type_as(x)
+
+
+class TransformerMLP(nn.Module):
+ """Pax transformer MLP in pytorch."""
+
+ def __init__(
+ self,
+ hidden_size: int,
+ intermediate_size: int,
+ ):
+ super().__init__()
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size)
+ self.down_proj = nn.Linear(intermediate_size, hidden_size)
+ self.layer_norm = nn.LayerNorm(normalized_shape=hidden_size, eps=1e-6)
+
+ def forward(self, x, paddings=None):
+ gate_inp = self.layer_norm(x)
+ gate = self.gate_proj(gate_inp)
+ gate = F.relu(gate)
+ outputs = self.down_proj(gate)
+ if paddings is not None:
+ outputs = outputs * (1.0 - paddings[:, :, None])
+ return outputs + x
+
+
+class TimesFMAttention(nn.Module):
+ """Implements the attention used in TimesFM."""
+
+ def __init__(
+ self,
+ hidden_size: int,
+ num_heads: int,
+ num_kv_heads: int,
+ head_dim: int,
+ ):
+ super().__init__()
+
+ self.num_heads = num_heads
+ self.num_kv_heads = num_kv_heads
+
+ assert self.num_heads % self.num_kv_heads == 0
+ self.num_queries_per_kv = self.num_heads // self.num_kv_heads
+
+ self.hidden_size = hidden_size
+ self.head_dim = head_dim
+
+ self.q_size = self.num_heads * self.head_dim
+ self.kv_size = self.num_kv_heads * self.head_dim
+ self.scaling = nn.Parameter(
+ torch.empty((self.head_dim,), dtype=torch.float32),)
+
+ self.qkv_proj = nn.Linear(
+ self.hidden_size,
+ (self.num_heads + 2 * self.num_kv_heads) * self.head_dim,
+ )
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size)
+
+ def _per_dim_scaling(self, query: torch.Tensor) -> torch.Tensor:
+ # [batch_size, n_local_heads, input_len, head_dim]
+ r_softplus_0 = 1.442695041
+ softplus_func = torch.nn.Softplus()
+ scale = r_softplus_0 / math.sqrt(self.head_dim)
+ scale = scale * softplus_func(self.scaling)
+ return query * scale[None, None, None, :]
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ mask: torch.Tensor,
+ kv_write_indices: Optional[torch.Tensor] = None,
+ kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ ) -> torch.Tensor:
+ hidden_states_shape = hidden_states.shape
+ assert len(hidden_states_shape) == 3
+
+ batch_size, input_len, _ = hidden_states_shape
+
+ qkv = self.qkv_proj(hidden_states)
+ xq, xk, xv = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
+
+ xq = xq.view(batch_size, -1, self.num_heads, self.head_dim)
+ xk = xk.view(batch_size, -1, self.num_kv_heads, self.head_dim)
+ xv = xv.view(batch_size, -1, self.num_kv_heads, self.head_dim)
+ xq = self._per_dim_scaling(xq)
+
+ # Write new kv cache.
+ # [batch_size, input_len, n_local_kv_heads, head_dim]
+ if kv_cache is not None and kv_write_indices is not None:
+ k_cache, v_cache = kv_cache
+ k_cache.index_copy_(1, kv_write_indices, xk)
+ v_cache.index_copy_(1, kv_write_indices, xv)
+
+ key = k_cache
+ value = v_cache
+ else:
+ key = xk
+ value = xv
+ if self.num_kv_heads != self.num_heads:
+ # [batch_size, max_seq_len, n_local_heads, head_dim]
+ key = torch.repeat_interleave(key, self.num_queries_per_kv, dim=2)
+ value = torch.repeat_interleave(value, self.num_queries_per_kv, dim=2)
+
+ # [batch_size, n_local_heads, input_len, head_dim]
+ q = xq.transpose(1, 2)
+ # [batch_size, n_local_heads, max_seq_len, head_dim]
+ k = key.transpose(1, 2)
+ v = value.transpose(1, 2)
+
+ # [batch_size, n_local_heads, input_len, max_seq_len]
+ scores = torch.matmul(q, k.transpose(2, 3))
+ scores = scores + mask
+ scores = F.softmax(scores.float(), dim=-1).type_as(q)
+
+ # [batch_size, n_local_heads, input_len, head_dim]
+ output = torch.matmul(scores, v)
+ # return scores, output.transpose(1, 2).contiguous()
+
+ # [batch_size, input_len, hidden_dim]
+ output = output.transpose(1, 2).contiguous().view(batch_size, input_len, -1)
+ output = self.o_proj(output)
+ return scores, output
+
+
+class TimesFMDecoderLayer(nn.Module):
+ """Transformer layer."""
+
+ def __init__(
+ self,
+ hidden_size: int,
+ intermediate_size: int,
+ num_heads: int,
+ num_kv_heads: int,
+ head_dim: int,
+ rms_norm_eps: float = 1e-6,
+ ):
+ super().__init__()
+ self.self_attn = TimesFMAttention(
+ hidden_size=hidden_size,
+ num_heads=num_heads,
+ num_kv_heads=num_kv_heads,
+ head_dim=head_dim,
+ )
+ self.mlp = TransformerMLP(
+ hidden_size=hidden_size,
+ intermediate_size=intermediate_size,
+ )
+ self.input_layernorm = RMSNorm(hidden_size, eps=rms_norm_eps)
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ mask: torch.Tensor,
+ paddings: torch.Tensor,
+ kv_write_indices: Optional[torch.Tensor] = None,
+ kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
+ ) -> torch.Tensor:
+ # Self Attention
+ residual = hidden_states
+ hidden_states = self.input_layernorm(hidden_states)
+ scores, hidden_states = self.self_attn(
+ hidden_states=hidden_states,
+ mask=mask,
+ kv_write_indices=kv_write_indices,
+ kv_cache=kv_cache,
+ )
+ hidden_states = residual + hidden_states
+
+ # MLP
+ hidden_states = self.mlp(hidden_states, paddings=paddings)
+
+ return scores, hidden_states
+
+
+class StackedDecoder(nn.Module):
+ """Stacked transformer layer."""
+
+ def __init__(
+ self,
+ hidden_size: int,
+ intermediate_size: int,
+ num_heads: int,
+ num_kv_heads: int,
+ head_dim: int,
+ num_layers: int,
+ rms_norm_eps: float = 1e-6,
+ ):
+ super().__init__()
+
+ self.layers = nn.ModuleList()
+ for _ in range(num_layers):
+ self.layers.append(
+ TimesFMDecoderLayer(
+ hidden_size=hidden_size,
+ intermediate_size=intermediate_size,
+ num_heads=num_heads,
+ num_kv_heads=num_kv_heads,
+ head_dim=head_dim,
+ rms_norm_eps=rms_norm_eps,
+ ))
+
+ def forward(
+ self,
+ hidden_states: torch.Tensor,
+ paddings: torch.Tensor,
+ kv_write_indices: Optional[torch.Tensor] = None,
+ kv_caches: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
+ ) -> torch.Tensor:
+ padding_mask = convert_paddings_to_mask(paddings, hidden_states.dtype)
+ atten_mask = causal_mask(hidden_states)
+ mask = merge_masks(padding_mask, atten_mask)
+ for i in range(len(self.layers)):
+ layer = self.layers[i]
+ kv_cache = kv_caches[i] if kv_caches is not None else None
+ _, hidden_states = layer(
+ hidden_states=hidden_states,
+ mask=mask,
+ paddings=paddings,
+ kv_write_indices=kv_write_indices,
+ kv_cache=kv_cache,
+ )
+ return hidden_states
+
+
+class PositionalEmbedding(torch.nn.Module):
+ """Generates position embedding for a given 1-d sequence.
+
+ Attributes:
+ min_timescale: Start of the geometric index. Determines the periodicity of
+ the added signal.
+ max_timescale: End of the geometric index. Determines the frequency of the
+ added signal.
+ embedding_dims: Dimension of the embedding to be generated.
+ """
+
+ def __init__(
+ self,
+ embedding_dims: int,
+ min_timescale: int = 1,
+ max_timescale: int = 10_000,
+ ) -> None:
+ super().__init__()
+ self.min_timescale = min_timescale
+ self.max_timescale = max_timescale
+ self.embedding_dims = embedding_dims
+
+ def forward(self, seq_length=None, position=None):
+ """Generates a Tensor of sinusoids with different frequencies.
+
+ Args:
+ seq_length: an optional Python int defining the output sequence length.
+ if the `position` argument is specified.
+ position: [B, seq_length], optional position for each token in the
+ sequence, only required when the sequence is packed.
+
+ Returns:
+ [B, seqlen, D] if `position` is specified, else [1, seqlen, D]
+ """
+ if position is None:
+ assert seq_length is not None
+ # [1, seqlen]
+ position = torch.arange(seq_length, dtype=torch.float32).unsqueeze(0)
+ else:
+ assert position.ndim == 2, position.shape
+
+ num_timescales = self.embedding_dims // 2
+ log_timescale_increment = math.log(
+ float(self.max_timescale) / float(self.min_timescale)) / max(
+ num_timescales - 1, 1)
+ inv_timescales = self.min_timescale * torch.exp(
+ torch.arange(num_timescales, dtype=torch.float32) *
+ -log_timescale_increment)
+ scaled_time = position.unsqueeze(2) * inv_timescales.unsqueeze(0).unsqueeze(
+ 0)
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2)
+ # Padding to ensure correct embedding dimension
+ signal = F.pad(signal, (0, 0, 0, self.embedding_dims % 2))
+ return signal
+
+
+class PatchedTimeSeriesDecoder(nn.Module):
+ """Patched time-series decoder."""
+
+ def __init__(self, config: TimesFMConfig):
+ super().__init__()
+ self.config = config
+ self.input_ff_layer = ResidualBlock(
+ input_dims=2 * config.patch_len,
+ output_dims=config.hidden_size,
+ hidden_dims=config.intermediate_size,
+ )
+ self.freq_emb = nn.Embedding(num_embeddings=3,
+ embedding_dim=config.hidden_size)
+ self.horizon_ff_layer = ResidualBlock(
+ input_dims=config.hidden_size,
+ output_dims=config.horizon_len * (1 + len(config.quantiles)),
+ hidden_dims=config.intermediate_size,
+ )
+ self.stacked_transformer = StackedDecoder(
+ hidden_size=self.config.hidden_size,
+ intermediate_size=self.config.intermediate_size,
+ num_heads=self.config.num_heads,
+ num_kv_heads=self.config.num_kv_heads,
+ head_dim=self.config.head_dim,
+ num_layers=self.config.num_layers,
+ rms_norm_eps=self.config.rms_norm_eps,
+ )
+ if self.config.use_positional_embedding:
+ self.position_emb = PositionalEmbedding(self.config.hidden_size)
+
+ def _forward_transform(
+ self, inputs: torch.Tensor, patched_pads: torch.Tensor
+ ) -> Tuple[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
+ """Input is of shape [B, N, P]."""
+ mu, sigma = _masked_mean_std(inputs, patched_pads)
+ sigma = torch.where(
+ sigma < self.config.tolerance,
+ torch.tensor(1.0, dtype=sigma.dtype, device=sigma.device),
+ sigma,
+ )
+
+ # Normalize each patch
+ outputs = (inputs - mu[:, None, None]) / sigma[:, None, None]
+ outputs = torch.where(
+ torch.abs(inputs - self.config.pad_val) < self.config.tolerance,
+ torch.tensor(self.config.pad_val,
+ dtype=outputs.dtype,
+ device=outputs.device),
+ outputs,
+ )
+ return outputs, (mu, sigma)
+
+ def _reverse_transform(self, outputs: torch.Tensor, stats: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
+ """Output is of shape [B, N, P, Q]."""
+ mu, sigma = stats
+ return outputs * sigma[:, None, None, None] + mu[:, None, None, None]
+
+ def _preprocess_input(
+ self,
+ input_ts: torch.Tensor,
+ input_padding: torch.Tensor,
+ ) -> Tuple[
+ torch.Tensor,
+ torch.Tensor,
+ Optional[Tuple[torch.Tensor, torch.Tensor]],
+ torch.Tensor,
+ ]:
+ """Preprocess input for stacked transformer."""
+
+ # Reshape into patches (using view for efficiency)
+ bsize = input_ts.shape[0]
+ patched_inputs = input_ts.view(bsize, -1, self.config.patch_len)
+ patched_pads = input_padding.view(bsize, -1, self.config.patch_len)
+
+ patched_inputs = torch.where(
+ torch.abs(patched_pads - 1.0) < self.config.tolerance,
+ torch.tensor(0.0,
+ dtype=patched_inputs.dtype,
+ device=patched_inputs.device),
+ patched_inputs,
+ )
+ patched_pads = torch.where(
+ torch.abs(patched_inputs - self.config.pad_val) < self.config.tolerance,
+ torch.tensor(1.0, dtype=patched_pads.dtype, device=patched_pads.device),
+ patched_pads,
+ )
+ patched_inputs, stats = self._forward_transform(patched_inputs,
+ patched_pads)
+
+ # B x N x D
+ patched_inputs = patched_inputs * (1.0 - patched_pads)
+ concat_inputs = torch.cat([patched_inputs, patched_pads], dim=-1)
+ model_input = self.input_ff_layer(concat_inputs)
+
+ # A patch should not be padded even if there is at least one zero.
+ patched_padding = torch.min(patched_pads,
+ dim=-1)[0] # Get the values from the min result
+ if self.config.use_positional_embedding:
+ pos_emb = self.position_emb(model_input.shape[1]).to(model_input.device)
+ pos_emb = torch.concat([pos_emb] * model_input.shape[0], dim=0)
+ pos_emb = _shift_padded_seq(patched_padding, pos_emb)
+ model_input += pos_emb
+
+ return model_input, patched_padding, stats, patched_inputs
+
+ def _postprocess_output(
+ self,
+ model_output: torch.Tensor,
+ num_outputs: int,
+ stats: Tuple[torch.Tensor, torch.Tensor],
+ ) -> torch.Tensor:
+ """Postprocess output of stacked transformer."""
+
+ # B x N x (H.Q)
+ output_ts = self.horizon_ff_layer(model_output)
+
+ # Reshape using view
+ b, n, _ = output_ts.shape
+ output_ts = output_ts.view(b, n, self.config.horizon_len, num_outputs)
+
+ return self._reverse_transform(output_ts, stats)
+
+ def forward(
+ self,
+ input_ts: torch.Tensor,
+ input_padding: torch.LongTensor,
+ freq: torch.Tensor,
+ ) -> torch.Tensor:
+ num_outputs = len(self.config.quantiles) + 1
+ model_input, patched_padding, stats, _ = self._preprocess_input(
+ input_ts=input_ts,
+ input_padding=input_padding,
+ )
+ f_emb = self.freq_emb(freq) # B x 1 x D
+ model_input += f_emb
+ model_output = self.stacked_transformer(model_input, patched_padding)
+
+ output_ts = self._postprocess_output(model_output, num_outputs, stats)
+ return output_ts
+
+ def decode(
+ self,
+ input_ts: torch.Tensor,
+ paddings: torch.Tensor,
+ freq: torch.LongTensor,
+ horizon_len: int,
+ output_patch_len: Optional[int] = None,
+ max_len: int = 512,
+ return_forecast_on_context: bool = False,
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
+ """Auto-regressive decoding without caching.
+
+ Args:
+ input_ts: input time-series and paddings. Time-series shape B x C.
+ paddings: padding shape B x (C + H) where H is the prediction length.
+ freq: frequency shape B x 1
+ horizon_len: prediction length.
+ output_patch_len: output length to be fetched from one step of
+ auto-regressive decoding.
+ max_len: maximum training context length.
+ return_forecast_on_context: whether to return the model forecast on the
+ context except the first input patch.
+
+ Returns:
+ Tuple of two forecasting results:
+ - Point (mean) output predictions as a tensor with shape B x H'.
+ - Full predictions (mean and quantiles) as a tensor with shape
+ B x H' x (1 + # quantiles).
+ In particular, if return_forecast_on_context is True, H' is H plus
+ the forecastable context length, i.e. context_len - (first) patch_len.
+ """
+ final_out = input_ts
+ context_len = final_out.shape[1]
+ full_outputs = []
+ if paddings.shape[1] != final_out.shape[1] + horizon_len:
+ raise ValueError(
+ "Length of paddings must match length of input + horizon_len:"
+ f" {paddings.shape[1]} != {final_out.shape[1]} + {horizon_len}")
+ if output_patch_len is None:
+ output_patch_len = self.config.horizon_len
+ num_decode_patches = (horizon_len + output_patch_len - 1) // output_patch_len
+ for step_index in range(num_decode_patches):
+ current_padding = paddings[:, 0:final_out.shape[1]]
+ input_ts = final_out[:, -max_len:]
+ input_padding = current_padding[:, -max_len:]
+ fprop_outputs = self(input_ts, input_padding, freq)
+ if return_forecast_on_context and step_index == 0:
+ # For the first decodings step, collect the model forecast on the
+ # context except the unavailable first input batch forecast.
+ new_full_ts = fprop_outputs[:, :-1, :self.config.patch_len, :]
+ new_full_ts = fprop_outputs.view(new_full_ts.size(0), -1,
+ new_full_ts.size(3))
+
+ full_outputs.append(new_full_ts)
+
+ # (full batch, last patch, output_patch_len, index of mean forecast = 0)
+ new_ts = fprop_outputs[:, -1, :output_patch_len, 0]
+ new_full_ts = fprop_outputs[:, -1, :output_patch_len, :]
+ # (full batch, last patch, output_patch_len, all output indices)
+ full_outputs.append(new_full_ts)
+ final_out = torch.concat([final_out, new_ts], dim=-1) # TODO torch.concatenate(axis) => torch.concat(dim)
+
+ if return_forecast_on_context:
+ # `full_outputs` indexing starts at after the first input patch.
+ full_outputs = torch.concat( # TODO torch.concatenate(axis) => torch.concat(dim)
+ full_outputs,
+ dim=1)[:, :(context_len - self.config.patch_len + horizon_len), :]
+ else:
+ # `full_outputs` indexing starts at the forecast horizon.
+ full_outputs = torch.concat(full_outputs, dim=1)[:, 0:horizon_len, :] # TODO torch.concatenate(axis) => torch.concat(dim)
+
+ return full_outputs[:, :, 0], full_outputs
diff --git a/etna/libs/timesfm/timesfm.py b/etna/libs/timesfm/timesfm.py
new file mode 100644
index 000000000..d46782e3c
--- /dev/null
+++ b/etna/libs/timesfm/timesfm.py
@@ -0,0 +1,325 @@
+"""
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+ 1. Definitions.
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+"""
+
+# Copyright 2024 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Note: Copied from timesfm repository (https://github.com/google-research/timesfm/blob/154248137ccce29b01f4c3a765e85c3d9e4d92ba/src/timesfm/timesfm_torch.py)
+# Add method to change horizon after initialization.
+# Minor logic change of loading model.
+
+"""TimesFM pytorch forecast API for inference."""
+
+import logging
+from os import path
+from typing import Any, Sequence, Optional, Tuple
+import os
+import numpy as np
+import torch
+from huggingface_hub import snapshot_download
+from etna.libs.timesfm import timesfm_base
+
+from etna.libs.timesfm import patched_decoder as ppd
+
+_TOL = 1e-6
+
+
+class TimesFmTorch(timesfm_base.TimesFmBase):
+ """TimesFM forecast API for inference."""
+
+ def __post_init__(self):
+ self._model_config = ppd.TimesFMConfig(
+ num_layers=self.num_layers,
+ num_heads=self.num_heads,
+ hidden_size=self.model_dims,
+ intermediate_size=self.model_dims,
+ patch_len=self.input_patch_len,
+ horizon_len=self.output_patch_len,
+ head_dim=self.model_dims // self.num_heads,
+ quantiles=self.quantiles,
+ use_positional_embedding=self.use_pos_emb,
+ )
+ self._model = None
+ self.num_cores = 1
+ self.global_batch_size = self.per_core_batch_size
+ self._device = torch.device("cuda:0" if (
+ torch.cuda.is_available() and self.backend == "gpu") else "cpu")
+ self._median_index = -1
+
+ def _set_horizon(self, horizon): # changed: added to change horizon after initialization
+ self.horizon_len = horizon
+
+ def load_from_checkpoint(
+ self,
+ checkpoint: timesfm_base.TimesFmCheckpoint,
+ ) -> None:
+ """Loads a checkpoint and compiles the decoder."""
+ checkpoint_path = checkpoint.path
+ repo_id = checkpoint.huggingface_repo_id
+ if not os.path.exists(checkpoint_path): # changed: make loading similar to chronos
+ checkpoint_path = path.join(snapshot_download(checkpoint_path, cache_dir=checkpoint.local_dir), "torch_model.ckpt")
+ self._model = ppd.PatchedTimeSeriesDecoder(self._model_config)
+ loaded_checkpoint = torch.load(checkpoint_path) # changed: remove weights_only=True due to attribute absence in low torch versions
+ logging.info("Loading checkpoint from %s", checkpoint_path)
+ self._model.load_state_dict(loaded_checkpoint)
+ logging.info("Sending checkpoint to device %s", f"{self._device}")
+ self._model.to(self._device)
+ self._model.eval()
+ # TODO: add compilation.
+
+ def _forecast(
+ self,
+ inputs: Sequence[Any],
+ freq: Optional[Sequence[int]] = None,
+ window_size: Optional[int] = None,
+ forecast_context_len: Optional[int] = None,
+ return_forecast_on_context: bool = False,
+ ) -> Tuple[np.ndarray, np.ndarray]:
+ """Forecasts on a list of time series.
+
+ Args:
+ inputs: list of time series forecast contexts. Each context time series
+ should be in a format convertible to JTensor by `jnp.array`.
+ freq: frequency of each context time series. 0 for high frequency
+ (default), 1 for medium, and 2 for low. Notice this is different from
+ the `freq` required by `forecast_on_df`.
+ window_size: window size of trend + residual decomposition. If None then
+ we do not do decomposition.
+ forecast_context_len: optional max context length.
+ return_forecast_on_context: True to return the forecast on the context
+ when available, i.e. after the first input patch.
+
+ Returns:
+ A tuple for JTensors:
+ - the mean forecast of size (# inputs, # forecast horizon),
+ - the full forecast (mean + quantiles) of size
+ (# inputs, # forecast horizon, 1 + # quantiles).
+
+ Raises:
+ ValueError: If the checkpoint is not properly loaded.
+ """
+ if not self._model:
+ raise ValueError(
+ "Checkpoint not loaded. Call `load_from_checkpoint` before"
+ " `forecast`.")
+ if forecast_context_len is None:
+ fcontext_len = self.context_len
+ else:
+ fcontext_len = forecast_context_len
+ inputs = [np.array(ts)[-fcontext_len:] for ts in inputs]
+
+ if window_size is not None:
+ new_inputs = []
+ for ts in inputs:
+ new_inputs.extend(timesfm_base.moving_average(ts, window_size))
+ inputs = new_inputs
+
+ if freq is None:
+ logging.info("No frequency provided via `freq`. Default to high (0).")
+ freq = [0] * len(inputs)
+
+ input_ts, input_padding, inp_freq, pmap_pad = self._preprocess(inputs, freq)
+ with torch.no_grad():
+ mean_outputs = []
+ full_outputs = []
+ assert input_ts.shape[0] % self.global_batch_size == 0
+ for i in range(input_ts.shape[0] // self.global_batch_size):
+ input_ts_in = torch.from_numpy(
+ np.array(input_ts[i * self.global_batch_size:(i + 1) *
+ self.global_batch_size],
+ dtype=np.float32)).to(self._device)
+ input_padding_in = torch.from_numpy(
+ np.array(input_padding[i * self.global_batch_size:(i + 1) *
+ self.global_batch_size],
+ dtype=np.float32)).to(self._device)
+ inp_freq_in = torch.from_numpy(
+ np.array(inp_freq[
+ i * self.global_batch_size:(i + 1) * self.global_batch_size,
+ :,
+ ],
+ dtype=np.int32)).long().to(self._device)
+ mean_output, full_output = self._model.decode(
+ input_ts=input_ts_in,
+ paddings=input_padding_in,
+ freq=inp_freq_in,
+ horizon_len=self.horizon_len,
+ return_forecast_on_context=return_forecast_on_context,
+ )
+ mean_output = mean_output.detach().cpu().numpy()
+ full_output = full_output.detach().cpu().numpy()
+ mean_output = np.array(mean_output)
+ full_output = np.array(full_output)
+ mean_outputs.append(mean_output)
+ full_outputs.append(full_output)
+
+ mean_outputs = np.concatenate(mean_outputs, axis=0)
+ full_outputs = np.concatenate(full_outputs, axis=0)
+
+ if pmap_pad > 0:
+ mean_outputs = mean_outputs[:-pmap_pad, ...]
+ full_outputs = full_outputs[:-pmap_pad, ...]
+
+ if window_size is not None:
+ mean_outputs = mean_outputs[0::2, ...] + mean_outputs[1::2, ...]
+ full_outputs = full_outputs[0::2, ...] + full_outputs[1::2, ...]
+ return mean_outputs, full_outputs
\ No newline at end of file
diff --git a/etna/libs/timesfm/timesfm_base.py b/etna/libs/timesfm/timesfm_base.py
new file mode 100644
index 000000000..14755cbb3
--- /dev/null
+++ b/etna/libs/timesfm/timesfm_base.py
@@ -0,0 +1,812 @@
+"""
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+ 1. Definitions.
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+"""
+
+# Copyright 2024 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Note: Copied from timesfm repository (https://github.com/google-research/timesfm/blob/154248137ccce29b01f4c3a765e85c3d9e4d92ba/src/timesfm/timesfm_base.py)
+# replace print with logging
+
+import warnings
+
+"""Base class for TimesFM inference. This will be common to PAX and Pytorch."""
+
+import collections
+import dataclasses
+import logging
+import multiprocessing
+from typing import Any, Literal, Sequence, Optional, Tuple, List, Dict, Union
+from pathlib import Path
+import numpy as np
+import pandas as pd
+
+from utilsforecast.processing import make_future_dataframe
+
+from etna.libs.timesfm import xreg_lib
+
+Category = xreg_lib.Category
+XRegMode = xreg_lib.XRegMode
+
+_TOL = 1e-6
+DEFAULT_QUANTILES = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9)
+
+
+def process_group(key, group, value_name, forecast_context_len):
+ group = group.tail(forecast_context_len)
+ return np.array(group[value_name], dtype=np.float32), key
+
+
+def moving_average(arr, window_size):
+ """Calculates the moving average using NumPy's convolution function."""
+ # Pad with zeros to handle initial window positions
+ arr_padded = np.pad(arr, (window_size - 1, 0), "constant")
+ smoothed_arr = (np.convolve(arr_padded, np.ones(window_size), "valid") /
+ window_size)
+ return [smoothed_arr, arr - smoothed_arr]
+
+
+def freq_map(freq: Optional[str]):
+ """Returns the frequency map for the given frequency string."""
+ if freq is None: # changed: added this case to handle int timestamps during forecasting with exogenous features
+ warnings.warn("Frequency is None. Mapping it to 0, that can be not optimal. Better to set it to known frequency")
+ return 0
+ freq = str.upper(freq)
+ if (freq.endswith("H") or freq.endswith("T") or freq.endswith("MIN") or
+ freq.endswith("D") or freq.endswith("B") or freq.endswith("U")):
+ return 0
+ elif freq.endswith(("W", "M", "MS")):
+ return 1
+ elif freq.endswith("Y") or freq.endswith("Q"):
+ return 2
+ else:
+ raise ValueError(f"Invalid frequency: {freq}")
+
+
+# Per time series normalization: forward.
+def _normalize(batch):
+ stats = [
+ (np.mean(x), np.where((w := np.std(x)) > _TOL, w, 1.0)) for x in batch
+ ]
+ new_batch = [(x - stat[0]) / stat[1] for x, stat in zip(batch, stats)]
+ return new_batch, stats
+
+
+# Per time series normalization: inverse.
+def _renormalize(batch, stats):
+ return [x * stat[1] + stat[0] for x, stat in zip(batch, stats)]
+
+
+@dataclasses.dataclass()
+class TimesFmHparams:
+ """Hparams used to initialize a TimesFM model for inference.
+
+ These are the sufficient subset of hparams to configure TimesFM inference
+ agnostic to the checkpoint version, and are not necessarily the same as the
+ hparams used to train the checkpoint.
+
+ Attributes:
+ context_len: Largest context length the model allows for each decode call.
+ This technically can be any large, but practically should set to the
+ context length the checkpoint was trained with.
+ horizon_len: Forecast horizon.
+ input_patch_len: Input patch len.
+ output_patch_len: Output patch len. How many timepoints is taken from a
+ single step of autoregressive decoding. Can be set as the training horizon
+ of the checkpoint.
+ num_layers: Number of transformer layers in the model.
+ model_dims: Model dimension.
+ per_core_batch_size: Batch size on each core for data parallelism.
+ backend: One of "cpu", "gpu" or "tpu".
+ quantiles: Which quantiles are output by the model.
+ """
+
+ context_len: int = 512
+ horizon_len: int = 128
+ input_patch_len: int = 32
+ output_patch_len: int = 128
+ num_layers: int = 20
+ num_heads: int = 16
+ model_dims: int = 1280
+ per_core_batch_size: int = 32
+ backend: Literal["cpu", "gpu", "tpu"] = "cpu"
+ quantiles: Optional[Sequence[float]] = DEFAULT_QUANTILES
+ use_positional_embedding: bool = True
+ # Hparams beyond the model.
+ point_forecast_mode: Literal["mean", "median"] = "median"
+
+
+@dataclasses.dataclass()
+class TimesFmCheckpoint:
+ """Checkpoint used to initialize a TimesFM model for inference.
+
+ Attributes:
+ version: Version of the checkpoint, e.g. "jax", "torch", "tensorflow", etc.
+ The factory will create the corresponding TimesFm inference class based on
+ this version.
+ path: Path to the checkpoint.
+ type: If provided, type of the checkpoint used by the specific checkpoint
+ loader per version.
+ step: If provided, step of the checkpoint.
+ """
+
+ version: str = "jax"
+ path: Optional[Union[str, Path]] = None
+ huggingface_repo_id: Optional[str] = None
+ type: Any = None
+ step: Optional[int] = None
+ local_dir: Optional[Union[str, Path]] = None
+
+
+class TimesFmBase:
+ """Base TimesFM forecast API for inference.
+
+ This class is the scaffolding for calling TimesFM forecast. To properly use:
+ 1. Create an instance with the correct hyperparameters of a TimesFM model.
+ 2. Call `load_from_checkpoint` to load a compatible checkpoint.
+ 3. Call `forecast` for inference.
+ """
+
+ def _logging(self, s):
+ print(s)
+
+ def __post_init__(self) -> None:
+ """Additional initialization for subclasses before checkpoint loading."""
+ pass
+
+ def __init__(self, hparams: TimesFmHparams,
+ checkpoint: TimesFmCheckpoint) -> None:
+ """Initializes the TimesFM forecast API.
+
+ Args:
+ hparams: Hyperparameters of the model.
+ checkpoint: Checkpoint to load. Notice `checkpoint.version` will decide
+ which TimesFM version to use.
+ """
+ self.hparams = hparams
+
+ # Expand hparams for conciseness within the model code.
+ self.context_len = hparams.context_len
+ self.horizon_len = hparams.horizon_len
+ self.input_patch_len = hparams.input_patch_len
+ self.output_patch_len = hparams.output_patch_len
+ self.num_layers = hparams.num_layers
+ self.model_dims = hparams.model_dims
+ self.backend = hparams.backend
+ self.quantiles = hparams.quantiles
+ self.num_heads = hparams.num_heads
+ self.use_pos_emb = hparams.use_positional_embedding
+
+ # Rewrite these values in __post_init__ for SPMD.
+ self.num_cores = 1
+ self.per_core_batch_size = hparams.per_core_batch_size
+ self.global_batch_size = hparams.per_core_batch_size
+
+ self._horizon_start = self.context_len - self.input_patch_len
+ self.__post_init__()
+ self.load_from_checkpoint(checkpoint)
+
+ def load_from_checkpoint(self, checkpoint: TimesFmCheckpoint) -> None:
+ """Loads a checkpoint and compiles the decoder."""
+ raise NotImplementedError("`load_from_checkpoint` is not implemented.")
+
+ def _preprocess(
+ self, inputs: Sequence[np.ndarray],
+ freq: Sequence[int]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, int]:
+ """Formats and pads raw inputs to feed into the model.
+
+ This function both pads each time series to match the context length, and
+ pads the inputs to meet the SPMD shape requirement.
+
+ Args:
+ inputs: A list of 1d JTensors. Each JTensor is the context time series of
+ a single forecast task.
+ freq: list of frequencies
+
+ Returns:
+ A tuple of:
+ - the padded input time series to meet the model required context.
+ - the padding indicator.
+ - the frequency of each input time series.
+ - the number of padded examples for SPMD so that each core has the same
+ number (a multiple of `batch_size`) of examples.
+ """
+
+ input_ts, input_padding, inp_freq = [], [], []
+
+ pmap_pad = ((len(inputs) - 1) // self.global_batch_size +
+ 1) * self.global_batch_size - len(inputs)
+
+ for i, ts in enumerate(inputs):
+ input_len = ts.shape[0]
+ padding = np.zeros(shape=(input_len + self.horizon_len,), dtype=float)
+ if input_len < self.context_len:
+ num_front_pad = self.context_len - input_len
+ ts = np.concatenate([np.zeros(shape=(num_front_pad,), dtype=float), ts],
+ axis=0)
+ padding = np.concatenate(
+ [np.ones(shape=(num_front_pad,), dtype=float), padding], axis=0)
+ elif input_len > self.context_len:
+ ts = ts[-self.context_len:]
+ padding = padding[-(self.context_len + self.horizon_len):]
+
+ input_ts.append(ts)
+ input_padding.append(padding)
+ inp_freq.append(freq[i])
+
+ # Padding the remainder batch.
+ for _ in range(pmap_pad):
+ input_ts.append(input_ts[-1])
+ input_padding.append(input_padding[-1])
+ inp_freq.append(inp_freq[-1])
+
+ return (
+ np.stack(input_ts, axis=0),
+ np.stack(input_padding, axis=0),
+ np.array(inp_freq).astype(np.int32).reshape(-1, 1),
+ pmap_pad,
+ )
+
+ def _forecast(
+ self,
+ inputs: Sequence[Any],
+ freq: Optional[Sequence[int]] = None,
+ window_size: Optional[int] = None,
+ forecast_context_len: Optional[int] = None,
+ return_forecast_on_context: bool = False,
+ ) -> Tuple[np.ndarray, np.ndarray]:
+ """Forecasts on a list of time series.
+
+ Args:
+ inputs: list of time series forecast contexts. Each context time series
+ should be in a format convertible to JTensor by `jnp.array`.
+ freq: frequency of each context time series. 0 for high frequency
+ (default), 1 for medium, and 2 for low. Notice this is different from
+ the `freq` required by `forecast_on_df`.
+ window_size: window size of trend + residual decomposition. If None then
+ we do not do decomposition.
+ forecast_context_len: optional max context length.
+ return_forecast_on_context: True to return the forecast on the context
+ when available, i.e. after the first input patch.
+
+ Returns:
+ A tuple for np.array:
+ - the mean forecast of size (# inputs, # forecast horizon),
+ - the full forecast (mean + quantiles) of size
+ (# inputs, # forecast horizon, 1 + # quantiles).
+
+ Raises:
+ ValueError: If the checkpoint is not properly loaded.
+ """
+ raise NotImplementedError("`_forecast` is not implemented.")
+
+ def forecast(
+ self,
+ inputs: Sequence[Any],
+ freq: Optional[Sequence[int]] = None,
+ window_size: Optional[int] = None,
+ forecast_context_len: Optional[int] = None,
+ return_forecast_on_context: bool = False,
+ normalize: bool = False,
+ ) -> Tuple[np.ndarray, np.ndarray]:
+ """Forecasts on a list of time series.
+
+ Args:
+ inputs: list of time series forecast contexts. Each context time series
+ should be in a format convertible to JTensor by `jnp.array`.
+ freq: frequency of each context time series. 0 for high frequency
+ (default), 1 for medium, and 2 for low. Notice this is different from
+ the `freq` required by `forecast_on_df`.
+ window_size: window size of trend + residual decomposition. If None then
+ we do not do decomposition.
+ forecast_context_len: optional max context length.
+ return_forecast_on_context: True to return the forecast on the context
+ when available, i.e. after the first input patch.
+ normalize: If True, then we normalize the inputs before forecasting and
+ the outputs are then renormalized to the original scale.
+
+ Returns:
+ A tuple for np.array:
+ - the mean forecast of size (# inputs, # forecast horizon),
+ - the full forecast (mean + quantiles) of size
+ (# inputs, # forecast horizon, 1 + # quantiles).
+
+ Raises:
+ ValueError: If the checkpoint is not properly loaded.
+ """
+ stats = None
+ if normalize:
+ inputs, stats = _normalize(inputs)
+ mean_forecast, quantile_forecast = self._forecast(
+ inputs,
+ freq,
+ window_size,
+ forecast_context_len,
+ return_forecast_on_context,
+ )
+ if stats is not None:
+ stats = np.array(stats)
+ mu = stats[:, 0]
+ sigma = stats[:, 1]
+ mean_forecast = mean_forecast * sigma[:, None] + mu[:, None]
+ quantile_forecast = (quantile_forecast * sigma[:, None, None] +
+ mu[:, None, None])
+ if self.hparams.point_forecast_mode == "mean":
+ return mean_forecast, quantile_forecast
+ elif self.hparams.point_forecast_mode == "median":
+ if self._median_index == -1:
+ for i, quantile in enumerate(self.quantiles):
+ if quantile == 0.5:
+ self._median_index = i
+ break
+ if self._median_index == -1:
+ raise ValueError("Median (0.5) is not found in the model quantiles:"
+ f" {self.quantiles}. Please check the hparams.")
+ return (
+ quantile_forecast[:, :, 1 + self._median_index],
+ quantile_forecast,
+ )
+ else:
+ raise ValueError(
+ "Unsupported point forecast mode:"
+ f" {self.hparams.point_forecast_mode}. Use 'mean' or 'median'.")
+
+ def forecast_with_covariates(
+ self,
+ inputs: List[Sequence[float]],
+ dynamic_numerical_covariates: Optional[Dict[str, Sequence[Sequence[float]]]] = None,
+ dynamic_categorical_covariates: Optional[Dict[str, Sequence[Sequence[Category]]]] = None,
+ static_numerical_covariates: Optional[Dict[str, Sequence[float]]] = None,
+ static_categorical_covariates: Optional[Dict[str, Sequence[Category]]]= None,
+ freq: Optional[Sequence[int]] = None,
+ window_size: Optional[int] = None,
+ forecast_context_len: Optional[int]= None,
+ xreg_mode: XRegMode = "xreg + timesfm",
+ normalize_xreg_target_per_input: bool = True,
+ ridge: float = 0.0,
+ max_rows_per_col: int = 0,
+ force_on_cpu: bool = False,
+ ):
+ """Forecasts on a list of time series with covariates.
+
+ To optimize inference speed, avoid string valued categorical covariates.
+
+ Args:
+ inputs: A list of time series forecast contexts. Each context time series
+ should be in a format convertible to JTensor by `jnp.array`.
+ dynamic_numerical_covariates: A dict of dynamic numerical covariates.
+ dynamic_categorical_covariates: A dict of dynamic categorical covariates.
+ static_numerical_covariates: A dict of static numerical covariates.
+ static_categorical_covariates: A dict of static categorical covariates.
+ freq: frequency of each context time series. 0 for high frequency
+ (default), 1 for medium, and 2 for low. Notice this is different from
+ the `freq` required by `forecast_on_df`.
+ window_size: window size of trend + residual decomposition. If None then
+ we do not do decomposition.
+ forecast_context_len: optional max context length.
+ xreg_mode: one of "xreg + timesfm" or "timesfm + xreg". "xreg + timesfm"
+ fits a model on the residuals of the TimesFM forecast. "timesfm + xreg"
+ fits a model on the targets then forecasts on the residuals via TimesFM.
+ normalize_xreg_target_per_input: whether to normalize the xreg target per
+ input in the given batch.
+ ridge: ridge penalty for the linear model.
+ max_rows_per_col: max number of rows per column for the linear model.
+ force_on_cpu: whether to force running on cpu for the linear model.
+
+ Returns:
+ A tuple of two lists. The first is the outputs of the model. The second is
+ the outputs of the xreg.
+ """
+
+ # Verify and bookkeep covariates.
+ if not (dynamic_numerical_covariates or dynamic_categorical_covariates or
+ static_numerical_covariates or static_categorical_covariates):
+ raise ValueError(
+ "At least one of dynamic_numerical_covariates,"
+ " dynamic_categorical_covariates, static_numerical_covariates,"
+ " static_categorical_covariates must be set.")
+
+ # Track the lengths of (1) each input, (2) the part that can be used in the
+ # linear model, and (3) the horizon.
+ input_lens, train_lens, test_lens = [], [], []
+
+ for i, input_ts in enumerate(inputs):
+ input_len = len(input_ts)
+ input_lens.append(input_len)
+
+ if xreg_mode == "timesfm + xreg":
+ # For fitting residuals, no TimesFM forecast on the first patch.
+ train_lens.append(max(0, input_len - self.input_patch_len))
+ elif xreg_mode == "xreg + timesfm":
+ train_lens.append(input_len)
+ else:
+ raise ValueError(f"Unsupported mode: {xreg_mode}")
+
+ if dynamic_numerical_covariates:
+ test_lens.append(
+ len(list(dynamic_numerical_covariates.values())[0][i]) - input_len)
+ elif dynamic_categorical_covariates:
+ test_lens.append(
+ len(list(dynamic_categorical_covariates.values())[0][i]) -
+ input_len)
+ else:
+ test_lens.append(self.horizon_len)
+
+ if test_lens[-1] > self.horizon_len:
+ raise ValueError(
+ "Forecast requested longer horizon than the model definition "
+ f"supports: {test_lens[-1]} vs {self.horizon_len}.")
+
+ # Prepare the covariates into train and test.
+ train_dynamic_numerical_covariates = collections.defaultdict(list)
+ test_dynamic_numerical_covariates = collections.defaultdict(list)
+ train_dynamic_categorical_covariates = collections.defaultdict(list)
+ test_dynamic_categorical_covariates = collections.defaultdict(list)
+ for covariates, train_covariates, test_covariates in (
+ (
+ dynamic_numerical_covariates,
+ train_dynamic_numerical_covariates,
+ test_dynamic_numerical_covariates,
+ ),
+ (
+ dynamic_categorical_covariates,
+ train_dynamic_categorical_covariates,
+ test_dynamic_categorical_covariates,
+ ),
+ ):
+ if not covariates:
+ continue
+ for covariate_name, covariate_values in covariates.items():
+ for input_len, train_len, covariate_value in zip(
+ input_lens, train_lens, covariate_values):
+ train_covariates[covariate_name].append(
+ covariate_value[(input_len - train_len):input_len])
+ test_covariates[covariate_name].append(covariate_value[input_len:])
+
+ # Fit models.
+ if xreg_mode == "timesfm + xreg":
+ # Forecast via TimesFM then fit a model on the residuals.
+ mean_outputs, _ = self.forecast(
+ inputs,
+ freq,
+ window_size,
+ forecast_context_len,
+ return_forecast_on_context=True,
+ )
+ targets = [
+ (np.array(input_ts)[-train_len:] -
+ mean_output[(self._horizon_start - train_len):self._horizon_start])
+ for input_ts, mean_output, train_len in zip(inputs, mean_outputs,
+ train_lens)
+ ]
+ per_instance_stats = None
+ if normalize_xreg_target_per_input:
+ targets, per_instance_stats = _normalize(targets)
+ xregs = xreg_lib.BatchedInContextXRegLinear(
+ targets=targets,
+ train_lens=train_lens,
+ test_lens=test_lens,
+ train_dynamic_numerical_covariates=train_dynamic_numerical_covariates,
+ test_dynamic_numerical_covariates=test_dynamic_numerical_covariates,
+ train_dynamic_categorical_covariates=
+ train_dynamic_categorical_covariates,
+ test_dynamic_categorical_covariates=
+ test_dynamic_categorical_covariates,
+ static_numerical_covariates=static_numerical_covariates,
+ static_categorical_covariates=static_categorical_covariates,
+ ).fit(
+ ridge=ridge,
+ one_hot_encoder_drop=None if ridge > 0 else "first",
+ max_rows_per_col=max_rows_per_col,
+ force_on_cpu=force_on_cpu,
+ debug_info=False,
+ assert_covariates=True,
+ assert_covariate_shapes=True,
+ )
+ if normalize_xreg_target_per_input:
+ xregs = _renormalize(xregs, per_instance_stats)
+ outputs = [
+ (mean_output[self._horizon_start:(self._horizon_start + test_len)] +
+ xreg)
+ for mean_output, test_len, xreg in zip(mean_outputs, test_lens, xregs)
+ ]
+
+ else:
+ # Fit a model on the targets then forecast on the residuals via TimesFM.
+ targets = [
+ np.array(input_ts)[-train_len:]
+ for input_ts, train_len in zip(inputs, train_lens)
+ ]
+ per_instance_stats = None
+ if normalize_xreg_target_per_input:
+ targets, per_instance_stats = _normalize(targets)
+ xregs, xregs_on_context, _, _, _ = xreg_lib.BatchedInContextXRegLinear(
+ targets=targets,
+ train_lens=train_lens,
+ test_lens=test_lens,
+ train_dynamic_numerical_covariates=train_dynamic_numerical_covariates,
+ test_dynamic_numerical_covariates=test_dynamic_numerical_covariates,
+ train_dynamic_categorical_covariates=
+ train_dynamic_categorical_covariates,
+ test_dynamic_categorical_covariates=
+ test_dynamic_categorical_covariates,
+ static_numerical_covariates=static_numerical_covariates,
+ static_categorical_covariates=static_categorical_covariates,
+ ).fit(
+ ridge=ridge,
+ one_hot_encoder_drop=None if ridge > 0 else "first",
+ max_rows_per_col=max_rows_per_col,
+ force_on_cpu=force_on_cpu,
+ debug_info=True,
+ assert_covariates=True,
+ assert_covariate_shapes=True,
+ )
+ mean_outputs, _ = self.forecast(
+ [
+ target - xreg_on_context
+ for target, xreg_on_context in zip(targets, xregs_on_context)
+ ],
+ freq,
+ window_size,
+ forecast_context_len,
+ return_forecast_on_context=True,
+ )
+ outputs = [
+ (mean_output[self._horizon_start:(self._horizon_start + test_len)] +
+ xreg)
+ for mean_output, test_len, xreg in zip(mean_outputs, test_lens, xregs)
+ ]
+ if normalize_xreg_target_per_input:
+ outputs = _renormalize(outputs, per_instance_stats)
+
+ return outputs, xregs
+
+ def forecast_on_df(
+ self,
+ inputs: pd.DataFrame,
+ freq: str,
+ forecast_context_len: int = 0,
+ value_name: str = "values",
+ model_name: str = "timesfm",
+ window_size: Optional[int] = None,
+ num_jobs: int = 1,
+ verbose: bool = True,
+ ) -> pd.DataFrame:
+ """Forecasts on a list of time series.
+
+ Args:
+ inputs: A pd.DataFrame of all time series. The dataframe should have a
+ `unique_id` column for identifying the time series, a `ds` column for
+ timestamps and a value column for the time series values.
+ freq: string valued `freq` of data. Notice this is different from the
+ `freq` required by `forecast`. See `freq_map` for allowed values.
+ forecast_context_len: If provided none zero, we take the last
+ `forecast_context_len` time-points from each series as the forecast
+ context instead of the `context_len` set by the model.
+ value_name: The name of the value column.
+ model_name: name of the model to be written into future df.
+ window_size: window size of trend + residual decomposition. If None then
+ we do not do decomposition.
+ num_jobs: number of parallel processes to use for dataframe processing.
+ verbose: output model states in terminal.
+
+ Returns:
+ Future forecasts dataframe.
+ """
+ if not ("unique_id" in inputs.columns and "ds" in inputs.columns and
+ value_name in inputs.columns):
+ raise ValueError(
+ f"DataFrame must have unique_id, ds and {value_name} columns.")
+ if not forecast_context_len:
+ forecast_context_len = self.context_len
+ logging.info("Preprocessing dataframe.")
+ df_sorted = inputs.sort_values(by=["unique_id", "ds"])
+ new_inputs = []
+ uids = []
+ if num_jobs == 1:
+ if verbose:
+ logging.info("Processing dataframe with single process.") # changed: replace print
+ for key, group in df_sorted.groupby("unique_id"):
+ inp, uid = process_group(
+ key,
+ group,
+ value_name,
+ forecast_context_len,
+ )
+ new_inputs.append(inp)
+ uids.append(uid)
+ else:
+ if num_jobs == -1:
+ num_jobs = multiprocessing.cpu_count()
+ if verbose:
+ logging.info("Processing dataframe with multiple processes.") # changed: replace print
+ with multiprocessing.Pool(processes=num_jobs) as pool:
+ results = pool.starmap(
+ process_group,
+ [(key, group, value_name, forecast_context_len)
+ for key, group in df_sorted.groupby("unique_id")],
+ )
+ new_inputs, uids = zip(*results)
+ if verbose:
+ logging.info("Finished preprocessing dataframe.") # changed: replace print
+ freq_inps = [freq_map(freq)] * len(new_inputs)
+ _, full_forecast = self.forecast(new_inputs,
+ freq=freq_inps,
+ window_size=window_size)
+ if verbose:
+ logging.info("Finished forecasting.")
+ fcst_df = make_future_dataframe(
+ uids=uids,
+ last_times=df_sorted.groupby("unique_id")["ds"].tail(1),
+ h=self.horizon_len,
+ freq=freq,
+ )
+ fcst_df[model_name] = full_forecast[:, 0:self.horizon_len, 0].reshape(-1, 1)
+
+ for i, q in enumerate(self.quantiles):
+ q_col = f"{model_name}-q-{q}"
+ fcst_df[q_col] = full_forecast[:, 0:self.horizon_len,
+ 1 + i].reshape(-1, 1)
+ if q == 0.5:
+ fcst_df[model_name] = fcst_df[q_col]
+ logging.info("Finished creating output dataframe.")
+ return fcst_df
\ No newline at end of file
diff --git a/etna/libs/timesfm/xreg_lib.py b/etna/libs/timesfm/xreg_lib.py
new file mode 100644
index 000000000..4521009bf
--- /dev/null
+++ b/etna/libs/timesfm/xreg_lib.py
@@ -0,0 +1,643 @@
+"""
+ Apache License
+ Version 2.0, January 2004
+ http://www.apache.org/licenses/
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
+ 1. Definitions.
+ "License" shall mean the terms and conditions for use, reproduction,
+ and distribution as defined by Sections 1 through 9 of this document.
+ "Licensor" shall mean the copyright owner or entity authorized by
+ the copyright owner that is granting the License.
+ "Legal Entity" shall mean the union of the acting entity and all
+ other entities that control, are controlled by, or are under common
+ control with that entity. For the purposes of this definition,
+ "control" means (i) the power, direct or indirect, to cause the
+ direction or management of such entity, whether by contract or
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
+ outstanding shares, or (iii) beneficial ownership of such entity.
+ "You" (or "Your") shall mean an individual or Legal Entity
+ exercising permissions granted by this License.
+ "Source" form shall mean the preferred form for making modifications,
+ including but not limited to software source code, documentation
+ source, and configuration files.
+ "Object" form shall mean any form resulting from mechanical
+ transformation or translation of a Source form, including but
+ not limited to compiled object code, generated documentation,
+ and conversions to other media types.
+ "Work" shall mean the work of authorship, whether in Source or
+ Object form, made available under the License, as indicated by a
+ copyright notice that is included in or attached to the work
+ (an example is provided in the Appendix below).
+ "Derivative Works" shall mean any work, whether in Source or Object
+ form, that is based on (or derived from) the Work and for which the
+ editorial revisions, annotations, elaborations, or other modifications
+ represent, as a whole, an original work of authorship. For the purposes
+ of this License, Derivative Works shall not include works that remain
+ separable from, or merely link (or bind by name) to the interfaces of,
+ the Work and Derivative Works thereof.
+ "Contribution" shall mean any work of authorship, including
+ the original version of the Work and any modifications or additions
+ to that Work or Derivative Works thereof, that is intentionally
+ submitted to Licensor for inclusion in the Work by the copyright owner
+ or by an individual or Legal Entity authorized to submit on behalf of
+ the copyright owner. For the purposes of this definition, "submitted"
+ means any form of electronic, verbal, or written communication sent
+ to the Licensor or its representatives, including but not limited to
+ communication on electronic mailing lists, source code control systems,
+ and issue tracking systems that are managed by, or on behalf of, the
+ Licensor for the purpose of discussing and improving the Work, but
+ excluding communication that is conspicuously marked or otherwise
+ designated in writing by the copyright owner as "Not a Contribution."
+ "Contributor" shall mean Licensor and any individual or Legal Entity
+ on behalf of whom a Contribution has been received by Licensor and
+ subsequently incorporated within the Work.
+ 2. Grant of Copyright License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ copyright license to reproduce, prepare Derivative Works of,
+ publicly display, publicly perform, sublicense, and distribute the
+ Work and such Derivative Works in Source or Object form.
+ 3. Grant of Patent License. Subject to the terms and conditions of
+ this License, each Contributor hereby grants to You a perpetual,
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
+ (except as stated in this section) patent license to make, have made,
+ use, offer to sell, sell, import, and otherwise transfer the Work,
+ where such license applies only to those patent claims licensable
+ by such Contributor that are necessarily infringed by their
+ Contribution(s) alone or by combination of their Contribution(s)
+ with the Work to which such Contribution(s) was submitted. If You
+ institute patent litigation against any entity (including a
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
+ or a Contribution incorporated within the Work constitutes direct
+ or contributory patent infringement, then any patent licenses
+ granted to You under this License for that Work shall terminate
+ as of the date such litigation is filed.
+ 4. Redistribution. You may reproduce and distribute copies of the
+ Work or Derivative Works thereof in any medium, with or without
+ modifications, and in Source or Object form, provided that You
+ meet the following conditions:
+ (a) You must give any other recipients of the Work or
+ Derivative Works a copy of this License; and
+ (b) You must cause any modified files to carry prominent notices
+ stating that You changed the files; and
+ (c) You must retain, in the Source form of any Derivative Works
+ that You distribute, all copyright, patent, trademark, and
+ attribution notices from the Source form of the Work,
+ excluding those notices that do not pertain to any part of
+ the Derivative Works; and
+ (d) If the Work includes a "NOTICE" text file as part of its
+ distribution, then any Derivative Works that You distribute must
+ include a readable copy of the attribution notices contained
+ within such NOTICE file, excluding those notices that do not
+ pertain to any part of the Derivative Works, in at least one
+ of the following places: within a NOTICE text file distributed
+ as part of the Derivative Works; within the Source form or
+ documentation, if provided along with the Derivative Works; or,
+ within a display generated by the Derivative Works, if and
+ wherever such third-party notices normally appear. The contents
+ of the NOTICE file are for informational purposes only and
+ do not modify the License. You may add Your own attribution
+ notices within Derivative Works that You distribute, alongside
+ or as an addendum to the NOTICE text from the Work, provided
+ that such additional attribution notices cannot be construed
+ as modifying the License.
+ You may add Your own copyright statement to Your modifications and
+ may provide additional or different license terms and conditions
+ for use, reproduction, or distribution of Your modifications, or
+ for any such Derivative Works as a whole, provided Your use,
+ reproduction, and distribution of the Work otherwise complies with
+ the conditions stated in this License.
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
+ any Contribution intentionally submitted for inclusion in the Work
+ by You to the Licensor shall be under the terms and conditions of
+ this License, without any additional terms or conditions.
+ Notwithstanding the above, nothing herein shall supersede or modify
+ the terms of any separate license agreement you may have executed
+ with Licensor regarding such Contributions.
+ 6. Trademarks. This License does not grant permission to use the trade
+ names, trademarks, service marks, or product names of the Licensor,
+ except as required for reasonable and customary use in describing the
+ origin of the Work and reproducing the content of the NOTICE file.
+ 7. Disclaimer of Warranty. Unless required by applicable law or
+ agreed to in writing, Licensor provides the Work (and each
+ Contributor provides its Contributions) on an "AS IS" BASIS,
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
+ implied, including, without limitation, any warranties or conditions
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
+ PARTICULAR PURPOSE. You are solely responsible for determining the
+ appropriateness of using or redistributing the Work and assume any
+ risks associated with Your exercise of permissions under this License.
+ 8. Limitation of Liability. In no event and under no legal theory,
+ whether in tort (including negligence), contract, or otherwise,
+ unless required by applicable law (such as deliberate and grossly
+ negligent acts) or agreed to in writing, shall any Contributor be
+ liable to You for damages, including any direct, indirect, special,
+ incidental, or consequential damages of any character arising as a
+ result of this License or out of the use or inability to use the
+ Work (including but not limited to damages for loss of goodwill,
+ work stoppage, computer failure or malfunction, or any and all
+ other commercial damages or losses), even if such Contributor
+ has been advised of the possibility of such damages.
+ 9. Accepting Warranty or Additional Liability. While redistributing
+ the Work or Derivative Works thereof, You may choose to offer,
+ and charge a fee for, acceptance of support, warranty, indemnity,
+ or other liability obligations and/or rights consistent with this
+ License. However, in accepting such obligations, You may act only
+ on Your own behalf and on Your sole responsibility, not on behalf
+ of any other Contributor, and only if You agree to indemnify,
+ defend, and hold each Contributor harmless for any liability
+ incurred by, or claims asserted against, such Contributor by reason
+ of your accepting any such warranty or additional liability.
+"""
+
+# Copyright 2024 Google LLC
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+# Note: Copied from timesfm repository (https://github.com/google-research/timesfm/blob/154248137ccce29b01f4c3a765e85c3d9e4d92ba/src/timesfm/xreg_lib.py)
+# add check of sklearn version for OHE
+"""Helper functions for in-context covariates and regression."""
+
+import itertools
+import math
+from typing import Any, Iterable, Literal, Mapping, Sequence, Union, Optional, Tuple, List
+
+import jax
+import jax.numpy as jnp
+import numpy as np
+from sklearn import preprocessing
+from sklearn import __version__ as sklearn_version
+
+Category = Union[int, str]
+
+_TOL = 1e-6
+XRegMode = Literal["timesfm + xreg", "xreg + timesfm"]
+
+
+def _unnest(nested: Sequence[Sequence[Any]]) -> np.ndarray:
+ return np.array(list(itertools.chain.from_iterable(nested)))
+
+
+def _repeat(elements: Iterable[Any], counts: Iterable[int]) -> np.ndarray:
+ return np.array(
+ list(
+ itertools.chain.from_iterable(map(itertools.repeat, elements,
+ counts))))
+
+
+def _to_padded_jax_array(x: np.ndarray) -> jax.Array:
+ if x.ndim == 1:
+ (i,) = x.shape
+ di = 2**math.ceil(math.log2(i)) - i
+ return jnp.pad(x, ((0, di),), mode="constant", constant_values=0.0)
+ elif x.ndim == 2:
+ i, j = x.shape
+ di = 2**math.ceil(math.log2(i)) - i
+ dj = 2**math.ceil(math.log2(j)) - j
+ return jnp.pad(x, ((0, di), (0, dj)), mode="constant", constant_values=0.0)
+ else:
+ raise ValueError(f"Unsupported array shape: {x.shape}")
+
+
+class BatchedInContextXRegBase:
+ """Helper class for in-context regression covariate formatting.
+
+ Attributes:
+ targets: List of targets (responses) of the in-context regression.
+ train_lens: List of lengths of each target vector from the context.
+ test_lens: List of lengths of each forecast horizon.
+ train_dynamic_numerical_covariates: Dict of covariate names mapping to the
+ dynamic numerical covariates of each forecast task on the context. Their
+ lengths should match the corresponding lengths in `train_lens`.
+ train_dynamic_categorical_covariates: Dict of covariate names mapping to the
+ dynamic categorical covariates of each forecast task on the context. Their
+ lengths should match the corresponding lengths in `train_lens`.
+ test_dynamic_numerical_covariates: Dict of covariate names mapping to the
+ dynamic numerical covariates of each forecast task on the horizon. Their
+ lengths should match the corresponding lengths in `test_lens`.
+ test_dynamic_categorical_covariates: Dict of covariate names mapping to the
+ dynamic categorical covariates of each forecast task on the horizon. Their
+ lengths should match the corresponding lengths in `test_lens`.
+ static_numerical_covariates: Dict of covariate names mapping to the static
+ numerical covariates of each forecast task.
+ static_categorical_covariates: Dict of covariate names mapping to the static
+ categorical covariates of each forecast task.
+ """
+
+ def __init__(
+ self,
+ targets: Sequence[Sequence[float]],
+ train_lens: Sequence[int],
+ test_lens: Sequence[int],
+ train_dynamic_numerical_covariates: Optional[Mapping[str, Sequence[Sequence[float]]]] = None,
+ train_dynamic_categorical_covariates: Optional[Mapping[str, Sequence[Sequence[Category]]]] = None,
+ test_dynamic_numerical_covariates: Optional[Mapping[str, Sequence[Sequence[float]]]] = None,
+ test_dynamic_categorical_covariates: Optional[Mapping[str, Sequence[Sequence[Category]]]] = None,
+ static_numerical_covariates: Optional[Mapping[str, Sequence[float]]] = None,
+ static_categorical_covariates: Optional[Mapping[str, Sequence[Category]]] = None,
+ ) -> None:
+ """Initializes with the exogenous covariate inputs.
+
+ Here we use model fitting language to refer to the context as 'train' and
+ the horizon as 'test'. We assume batched inputs. To properly format the
+ request:
+
+ - `train_lens` represents the contexts in the batch. Targets and all train
+ dynamic covariates should have the same lengths as the corresponding
+ elements
+ in `train_lens`. Notice each `train_len` can be different from the exact
+ length of the corresponding context depending on how much of the context is
+ used for fitting the in-context model.
+ - `test_lens` represents the horizon lengths in the batch. All tesdt
+ dynamic
+ covariates should have the same lengths as the corresponding elements in
+ `test_lens`.
+ - Static covariates should be one for each input.
+ - For train and test dynamic covariates, they should have the same
+ covariate
+ names.
+
+ Pass an empty dict {} for a covariate type if it is not present.
+
+ Example:
+ Here is a set of valid inputs whose schema can be used for reference.
+ ```
+ targets = [
+ [0.0, 0.1, 0.2],
+ [0.0, 0.1, 0.2, 0.3],
+ ] # Two inputs in this batch.
+ train_lens = [3, 4]
+ test_lens = [2, 5] # Forecast horizons 2 and 5 respectively.
+ train_dynamic_numerical_covariates = {
+ "cov_1_dn": [[0.0, 0.5, 1.0], [0.0, 0.5, 1.0, 1.5]],
+ "cov_2_dn": [[0.0, 1.5, 1.0], [0.0, 1.5, 1.0, 2.5]],
+ } # Each train dynamic covariate has 3 and 4 elements respectively.
+ test_dynamic_numerical_covariates = {
+ "cov_1_dn": [[0.1, 0.6], [0.1, 0.6, 1.1, 1.6, 2.4]],
+ "cov_2_dn": [[0.1, 1.1], [0.1, 1.6, 1.1, 2.6, 10.0]],
+ } # Each test dynamic covariate has 2 and 5 elements respectively.
+ train_dynamic_categorical_covariates = {
+ "cov_1_dc": [[0, 1, 0], [0, 1, 2, 3]],
+ "cov_2_dc": [["good", "bad", "good"], ["good", "good", "bad",
+ "bad"]],
+ }
+ test_dynamic_categorical_covariates = {
+ "cov_1_dc": [[1, 0], [1, 0, 2, 3, 1]],
+ "cov_2_dc": [["bad", "good"], ["bad", "bad", "bad", "bad", "bad"]],
+ }
+ static_numerical_covariates = {
+ "cov_1_sn": [0.0, 3.0],
+ "cov_2_sn": [2.0, 1.0],
+ "cov_3_sn": [1.0, 2.0],
+ } # Each static covariate has 1 element for each input.
+ static_categorical_covariates = {
+ "cov_1_sc": ["apple", "orange"],
+ "cov_2_sc": [2, 3],
+ }
+ ```
+
+ Args:
+ targets: List of targets (responses) of the in-context regression.
+ train_lens: List of lengths of each target vector from the context.
+ test_lens: List of lengths of each forecast horizon.
+ train_dynamic_numerical_covariates: Dict of covariate names mapping to the
+ dynamic numerical covariates of each forecast task on the context. Their
+ lengths should match the corresponding lengths in `train_lens`.
+ train_dynamic_categorical_covariates: Dict of covariate names mapping to
+ the dynamic categorical covariates of each forecast task on the context.
+ Their lengths should match the corresponding lengths in `train_lens`.
+ test_dynamic_numerical_covariates: Dict of covariate names mapping to the
+ dynamic numerical covariates of each forecast task on the horizon. Their
+ lengths should match the corresponding lengths in `test_lens`.
+ test_dynamic_categorical_covariates: Dict of covariate names mapping to
+ the dynamic categorical covariates of each forecast task on the horizon.
+ Their lengths should match the corresponding lengths in `test_lens`.
+ static_numerical_covariates: Dict of covariate names mapping to the static
+ numerical covariates of each forecast task.
+ static_categorical_covariates: Dict of covariate names mapping to the
+ static categorical covariates of each forecast task.
+ """
+ self.targets = targets
+ self.train_lens = train_lens
+ self.test_lens = test_lens
+ self.train_dynamic_numerical_covariates = (
+ train_dynamic_numerical_covariates or {})
+ self.train_dynamic_categorical_covariates = (
+ train_dynamic_categorical_covariates or {})
+ self.test_dynamic_numerical_covariates = (test_dynamic_numerical_covariates
+ or {})
+ self.test_dynamic_categorical_covariates = (
+ test_dynamic_categorical_covariates or {})
+ self.static_numerical_covariates = static_numerical_covariates or {}
+ self.static_categorical_covariates = static_categorical_covariates or {}
+
+ def _assert_covariates(self, assert_covariate_shapes: bool = False) -> None:
+ """Verifies the validity of the covariate inputs."""
+
+ # Check presence.
+ if (self.train_dynamic_numerical_covariates and
+ not self.test_dynamic_numerical_covariates) or (
+ not self.train_dynamic_numerical_covariates and
+ self.test_dynamic_numerical_covariates):
+ raise ValueError(
+ "train_dynamic_numerical_covariates and"
+ " test_dynamic_numerical_covariates must be both present or both"
+ " absent.")
+
+ if (self.train_dynamic_categorical_covariates and
+ not self.test_dynamic_categorical_covariates) or (
+ not self.train_dynamic_categorical_covariates and
+ self.test_dynamic_categorical_covariates):
+ raise ValueError(
+ "train_dynamic_categorical_covariates and"
+ " test_dynamic_categorical_covariates must be both present or both"
+ " absent.")
+
+ # Check keys.
+ for dict_a, dict_b, dict_a_name, dict_b_name in (
+ (
+ self.train_dynamic_numerical_covariates,
+ self.test_dynamic_numerical_covariates,
+ "train_dynamic_numerical_covariates",
+ "test_dynamic_numerical_covariates",
+ ),
+ (
+ self.train_dynamic_categorical_covariates,
+ self.test_dynamic_categorical_covariates,
+ "train_dynamic_categorical_covariates",
+ "test_dynamic_categorical_covariates",
+ ),
+ ):
+ if w := set(dict_a.keys()) - set(dict_b.keys()):
+ raise ValueError(
+ f"{dict_a_name} has keys not present in {dict_b_name}: {w}")
+ if w := set(dict_b.keys()) - set(dict_a.keys()):
+ raise ValueError(
+ f"{dict_b_name} has keys not present in {dict_a_name}: {w}")
+
+ # Check shapes.
+ if assert_covariate_shapes:
+ if len(self.targets) != len(self.train_lens):
+ raise ValueError(
+ "targets and train_lens must have the same number of elements.")
+
+ if len(self.train_lens) != len(self.test_lens):
+ raise ValueError(
+ "train_lens and test_lens must have the same number of elements.")
+
+ for i, (target, train_len) in enumerate(zip(self.targets,
+ self.train_lens)):
+ if len(target) != train_len:
+ raise ValueError(
+ f"targets[{i}] has length {len(target)} != expected {train_len}.")
+
+ for key, values in self.static_numerical_covariates.items():
+ if len(values) != len(self.train_lens):
+ raise ValueError(
+ f"static_numerical_covariates has key {key} with number of"
+ f" examples {len(values)} != expected {len(self.train_lens)}.")
+
+ for key, values in self.static_categorical_covariates.items():
+ if len(values) != len(self.train_lens):
+ raise ValueError(
+ f"static_categorical_covariates has key {key} with number of"
+ f" examples {len(values)} != expected {len(self.train_lens)}.")
+
+ for lens, dict_cov, dict_cov_name in (
+ (
+ self.train_lens,
+ self.train_dynamic_numerical_covariates,
+ "train_dynamic_numerical_covariates",
+ ),
+ (
+ self.train_lens,
+ self.train_dynamic_categorical_covariates,
+ "train_dynamic_categorical_covariates",
+ ),
+ (
+ self.test_lens,
+ self.test_dynamic_numerical_covariates,
+ "test_dynamic_numerical_covariates",
+ ),
+ (
+ self.test_lens,
+ self.test_dynamic_categorical_covariates,
+ "test_dynamic_categorical_covariates",
+ ),
+ ):
+ for key, cov_values in dict_cov.items():
+ if len(cov_values) != len(lens):
+ raise ValueError(
+ f"{dict_cov_name} has key {key} with number of examples"
+ f" {len(cov_values)} != expected {len(lens)}.")
+ for i, cov_value in enumerate(cov_values):
+ if len(cov_value) != lens[i]:
+ raise ValueError(
+ f"{dict_cov_name} has key {key} with its {i}-th example"
+ f" length {len(cov_value)} != expected {lens[i]}.")
+
+ def create_covariate_matrix(
+ self,
+ one_hot_encoder_drop: Optional[str]= "first",
+ use_intercept: bool = True,
+ assert_covariates: bool = False,
+ assert_covariate_shapes: bool = False,
+ ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
+ """Creates target vector and covariate matrices for in context regression.
+
+ Here we use model fitting language to refer to the context as 'train' and
+ the horizon as 'test'.
+
+ Args:
+ one_hot_encoder_drop: Which drop strategy to use for the one hot encoder.
+ use_intercept: Whether to prepare an intercept (all 1) column in the
+ matrices.
+ assert_covariates: Whether to assert the validity of the covariate inputs.
+ assert_covariate_shapes: Whether to assert the shapes of the covariate
+ inputs when `assert_covariates` is True.
+
+ Returns:
+ A tuple of the target vector, the covariate matrix for the context, and
+ the covariate matrix for the horizon.
+ """
+ if assert_covariates:
+ self._assert_covariates(assert_covariate_shapes)
+
+ x_train, x_test = [], []
+
+ # Numerical features.
+ for name in sorted(self.train_dynamic_numerical_covariates):
+ x_train.append(
+ _unnest(self.train_dynamic_numerical_covariates[name])[:, np.newaxis])
+ x_test.append(
+ _unnest(self.test_dynamic_numerical_covariates[name])[:, np.newaxis])
+
+ for covs in self.static_numerical_covariates.values():
+ x_train.append(_repeat(covs, self.train_lens)[:, np.newaxis])
+ x_test.append(_repeat(covs, self.test_lens)[:, np.newaxis])
+
+ if x_train:
+ x_train = np.concatenate(x_train, axis=1)
+ x_test = np.concatenate(x_test, axis=1)
+
+ # Normalize for robustness.
+ x_mean = np.mean(x_train, axis=0, keepdims=True)
+ x_std = np.where((w := np.std(x_train, axis=0, keepdims=True)) > _TOL, w,
+ 1.0)
+ x_train = [(x_train - x_mean) / x_std]
+ x_test = [(x_test - x_mean) / x_std]
+
+ sklearn_version_tuple = tuple(map(int, sklearn_version.split(".")))
+ encoder_params = {}
+ if sklearn_version_tuple < (1, 2):
+ encoder_params["sparse"] = False
+ else:
+ encoder_params["sparse_output"] = False
+
+ # Categorical features. Encode one by one.
+ one_hot_encoder = preprocessing.OneHotEncoder(
+ drop=one_hot_encoder_drop,
+ handle_unknown="ignore",
+ **encoder_params
+ )
+ for name in sorted(self.train_dynamic_categorical_covariates.keys()):
+ ohe_train = _unnest(
+ self.train_dynamic_categorical_covariates[name])[:, np.newaxis]
+ ohe_test = _unnest(
+ self.test_dynamic_categorical_covariates[name])[:, np.newaxis]
+ x_train.append(np.array(one_hot_encoder.fit_transform(ohe_train)))
+ x_test.append(np.array(one_hot_encoder.transform(ohe_test)))
+
+ for covs in self.static_categorical_covariates.values():
+ ohe = one_hot_encoder.fit_transform(np.array(covs)[:, np.newaxis])
+ x_train.append(_repeat(ohe, self.train_lens))
+ x_test.append(_repeat(ohe, self.test_lens))
+
+ x_train = np.concatenate(x_train, axis=1)
+ x_test = np.concatenate(x_test, axis=1)
+
+ if use_intercept:
+ x_train = np.pad(x_train, ((0, 0), (1, 0)), constant_values=1.0)
+ x_test = np.pad(x_test, ((0, 0), (1, 0)), constant_values=1.0)
+
+ return _unnest(self.targets), x_train, x_test
+
+ def fit(self) -> Any:
+ raise NotImplementedError("Fit is not implemented.")
+
+
+class BatchedInContextXRegLinear(BatchedInContextXRegBase):
+ """Linear in-context regression model."""
+
+ def fit(
+ self,
+ ridge: float = 0.0,
+ one_hot_encoder_drop: Optional[str] = "first",
+ use_intercept: bool = True,
+ force_on_cpu: bool = False,
+ max_rows_per_col: int = 0,
+ max_rows_per_col_sample_seed: int = 42,
+ debug_info: bool = False,
+ assert_covariates: bool = False,
+ assert_covariate_shapes: bool = False,
+ ) -> Union[List[np.ndarray], Tuple[List[np.ndarray], List[np.ndarray], jax.Array, jax.Array, jax.Array]]:
+ """Fits a linear model for in-context regression.
+
+ Args:
+ ridge: A non-negative value for specifying the ridge regression penalty.
+ If 0 is provided, fallback to ordinary least squares. Note this penalty
+ is added to the normalized covariate matrix.
+ one_hot_encoder_drop: Which drop strategy to use for the one hot encoder.
+ use_intercept: Whether to prepare an intercept (all 1) column in the
+ matrices.
+ force_on_cpu: Whether to force execution on cpu for accelerator machines.
+ max_rows_per_col: How many rows to subsample per column. 0 for no
+ subsampling. This is for speeding up model fitting.
+ max_rows_per_col_sample_seed: The seed for the subsampling if needed by
+ `max_rows_per_col`.
+ debug_info: Whether to return debug info.
+ assert_covariates: Whether to assert the validity of the covariate inputs.
+ assert_covariate_shapes: Whether to assert the shapes of the covariate
+ inputs when `assert_covariates` is True.
+
+ Returns:
+ If `debug_info` is False:
+ The linear fits on the horizon.
+ If `debug_info` is True:
+ A tuple of:
+ - the linear fits on the horizon,
+ - the linear fits on the context,
+ - the flattened target vector,
+ - the covariate matrix for the context, and
+ - the covariate matrix for the horizon.
+ """
+ flat_targets, x_train_raw, x_test = self.create_covariate_matrix(
+ one_hot_encoder_drop=one_hot_encoder_drop,
+ use_intercept=use_intercept,
+ assert_covariates=assert_covariates,
+ assert_covariate_shapes=assert_covariate_shapes,
+ )
+
+ x_train = x_train_raw.copy()
+ if max_rows_per_col:
+ nrows, ncols = x_train.shape
+ if nrows > (w := ncols * max_rows_per_col):
+ subsample = jax.random.choice(
+ jax.random.PRNGKey(max_rows_per_col_sample_seed),
+ nrows,
+ (w,),
+ replace=False,
+ )
+ x_train = x_train[subsample]
+ flat_targets = flat_targets[subsample]
+
+ device = jax.devices("cpu")[0] if force_on_cpu else None
+ # Runs jitted version of the solvers which are quicker at the cost of
+ # running jitting during the first time calling. Re-jitting happens whenever
+ # new (padded) shapes are encountered.
+ # Occasionally it helps with the speed and the accuracy if we force single
+ # thread execution on cpu for accelerator machines:
+ # 1. Avoid moving data to accelerator memory.
+ # 2. Avoid precision loss if any.
+ with jax.default_device(device):
+ x_train_raw = _to_padded_jax_array(x_train_raw)
+ x_train = _to_padded_jax_array(x_train)
+ flat_targets = _to_padded_jax_array(flat_targets)
+ x_test = _to_padded_jax_array(x_test)
+ beta_hat = (jnp.linalg.pinv(
+ x_train.T @ x_train + ridge * jnp.eye(x_train.shape[1]),
+ hermitian=True,
+ ) @ x_train.T @ flat_targets)
+ y_hat = x_test @ beta_hat
+ y_hat_context = x_train_raw @ beta_hat if debug_info else None
+
+ outputs = []
+ outputs_context = []
+
+ # Reconstruct the ragged 2-dim batched forecasts from flattened linear fits.
+ train_index, test_index = 0, 0
+ for train_index_delta, test_index_delta in zip(self.train_lens,
+ self.test_lens):
+ outputs.append(np.array(y_hat[test_index:(test_index +
+ test_index_delta)]))
+ if debug_info:
+ outputs_context.append(
+ np.array(y_hat_context[train_index:(train_index +
+ train_index_delta)]))
+ train_index += train_index_delta
+ test_index += test_index_delta
+
+ if debug_info:
+ return outputs, outputs_context, flat_targets, x_train, x_test
+ else:
+ return outputs
\ No newline at end of file
diff --git a/etna/models/nn/__init__.py b/etna/models/nn/__init__.py
index b972e2aab..4512ac420 100644
--- a/etna/models/nn/__init__.py
+++ b/etna/models/nn/__init__.py
@@ -16,3 +16,6 @@
if SETTINGS.chronos_required:
from etna.models.nn.chronos import ChronosBoltModel
from etna.models.nn.chronos import ChronosModel
+
+if SETTINGS.timesfm_required:
+ from etna.models.nn.timesfm import TimesFMModel
diff --git a/etna/models/nn/chronos/base.py b/etna/models/nn/chronos/base.py
index a20514a1a..7505b150c 100644
--- a/etna/models/nn/chronos/base.py
+++ b/etna/models/nn/chronos/base.py
@@ -202,10 +202,9 @@ def _forecast(
if max_context_size < self.context_size:
warnings.warn("Actual length of a dataset is less that context size. All history will be used as context.")
- available_context_size = min(max_context_size, self.context_size)
- target = ts.df.loc[:, pd.IndexSlice[:, "target"]]
- context = torch.tensor(target.values.T[:, :available_context_size])
+ target = ts.df.loc[:, pd.IndexSlice[:, "target"]].dropna()
+ context = torch.tensor(target.values.T)
if prediction_interval:
quantiles_forecast, target_forecast = self.pipeline.predict_quantiles(
diff --git a/etna/models/nn/timesfm.py b/etna/models/nn/timesfm.py
new file mode 100644
index 000000000..793665269
--- /dev/null
+++ b/etna/models/nn/timesfm.py
@@ -0,0 +1,376 @@
+import os
+import reprlib
+import warnings
+from pathlib import Path
+from typing import Dict
+from typing import List
+from typing import Literal
+from typing import Optional
+from urllib import request
+
+import numpy as np
+import pandas as pd
+
+from etna import SETTINGS
+from etna.datasets import TSDataset
+from etna.distributions import BaseDistribution
+from etna.models.base import NonPredictionIntervalContextRequiredAbstractModel
+
+if SETTINGS.timesfm_required:
+ from etna.libs.timesfm import TimesFmCheckpoint
+ from etna.libs.timesfm import TimesFmHparams
+ from etna.libs.timesfm import TimesFmTorch
+ from etna.libs.timesfm.timesfm_base import freq_map
+
+_DOWNLOAD_PATH = Path.home() / ".etna" / "timesfm"
+
+
+class TimesFMModel(NonPredictionIntervalContextRequiredAbstractModel):
+ """
+ Class for pretrained timesfm models.
+
+ This model is only for zero-shot forecasting: it doesn't support training on data during ``fit``.
+
+ This model doesn't support forecasting on misaligned data with `freq=None` without exogenous features.
+
+ This model doesn't support NaN in the middle or at the end of target and exogenous features.
+ Use :py:class:`~etna.transforms.TimeSeriesImputerTransform` to fill them.
+
+ Official implementation: https://github.com/google-research/timesfm
+
+ Note
+ ----
+ This model requires ``timesfm`` extension to be installed.
+ Read more about this at :ref:`installation page `.
+ """
+
+ def __init__(
+ self,
+ path_or_url: str,
+ encoder_length: int = 512,
+ device: Literal["cpu", "gpu"] = "cpu",
+ batch_size: int = 128,
+ static_reals: Optional[List[str]] = None,
+ static_categoricals: Optional[List[str]] = None,
+ time_varying_reals: Optional[List[str]] = None,
+ time_varying_categoricals: Optional[List[str]] = None,
+ cache_dir: Path = _DOWNLOAD_PATH,
+ ):
+ """
+ Init TimesFM model.
+
+ Parameters
+ ----------
+ path_or_url:
+ Path to the model. It can be huggingface repository, local path or external url.
+
+ - If huggingface repository, the available models are:
+
+ - 'google/timesfm-1.0-200m-pytorch'.
+ During the first initialization model is downloaded from huggingface and saved to local ``cache_dir``.
+ All following initializations model will be loaded from ``cache_dir``.
+ - If local path, it should be a file with model weights, that can be loaded by :py:func:`torch.load`.
+ - If external url, it must be a file with model weights, that can be loaded by :py:func:`torch.load`. Model will be downloaded to ``cache_dir``.
+ device:
+ Device type. Can be "cpu" or "gpu".
+ encoder_length:
+ Number of last timestamps to use as a context. It needs to be a multiplier of 32.
+ batch_size:
+ Batch size. It can be useful when inference is done on gpu.
+ static_reals:
+ Continuous features that have one unique feature value for the whole series. The first value in the series will be used for each feature.
+ static_categoricals:
+ Categorical features that have one unique feature value for the whole series. The first value in the series will be used for each feature.
+ time_varying_reals:
+ Time varying continuous features known for future.
+ time_varying_categoricals:
+ Time varying categorical features known for future.
+ cache_dir:
+ Local path to save model from huggingface during first model initialization. All following class initializations appropriate model version will be downloaded from this path.
+ """
+ self.path_or_url = path_or_url
+ self.encoder_length = encoder_length
+ self.device = device
+ self.batch_size = batch_size
+ self.static_reals = static_reals
+ self.static_categoricals = static_categoricals
+ self.time_varying_reals = time_varying_reals
+ self.time_varying_categoricals = time_varying_categoricals
+ self.cache_dir = cache_dir
+
+ self._set_pipeline()
+
+ def _set_pipeline(self):
+ """Set ``tfm`` attribute."""
+ if self._is_url():
+ full_model_path = self._download_model_from_url()
+ self.tfm = TimesFmTorch(
+ hparams=TimesFmHparams(
+ context_len=self.encoder_length, per_core_batch_size=self.batch_size, backend=self.device
+ ),
+ checkpoint=TimesFmCheckpoint(path=full_model_path),
+ )
+ else:
+ self.tfm = TimesFmTorch(
+ hparams=TimesFmHparams(
+ context_len=self.encoder_length, per_core_batch_size=self.batch_size, backend=self.device
+ ),
+ checkpoint=TimesFmCheckpoint(path=self.path_or_url, local_dir=self.cache_dir),
+ )
+
+ def _is_url(self):
+ """Check whether ``path_or_url`` is url."""
+ return self.path_or_url.startswith("https://") or self.path_or_url.startswith("http://")
+
+ def _download_model_from_url(self) -> str:
+ """Download model from url to local cache_dir."""
+ model_file = self.path_or_url.split("/")[-1]
+ full_model_path = f"{self.cache_dir}/{model_file}"
+ if not os.path.exists(full_model_path):
+ request.urlretrieve(url=self.path_or_url, filename=full_model_path)
+ return full_model_path
+
+ @property
+ def context_size(self) -> int:
+ """Context size for model."""
+ return self.encoder_length
+
+ def get_model(self) -> TimesFmTorch:
+ """Get model."""
+ return self.tfm
+
+ def fit(self, ts: TSDataset):
+ """Fit model.
+
+ For this model, fit does nothing.
+
+ Parameters
+ ----------
+ ts:
+ Dataset with features.
+
+ Returns
+ -------
+ :
+ Model after fit
+ """
+ return self
+
+ def predict(
+ self,
+ ts: TSDataset,
+ prediction_size: int,
+ return_components: bool = False,
+ ) -> TSDataset:
+ """Make predictions using true values as autoregression context (teacher forcing).
+
+ Parameters
+ ----------
+ ts:
+ Dataset with features.
+ prediction_size:
+ Number of last timestamps to leave after making prediction.
+ Previous timestamps will be used as a context.
+ return_components:
+ If True additionally returns forecast components.
+
+ Returns
+ -------
+ :
+ Dataset with predictions.
+ """
+ raise NotImplementedError("Method predict isn't currently implemented!")
+
+ def _exog_columns(self) -> List[str]:
+ static_reals = [] if self.static_reals is None else self.static_reals
+ static_categoricals = [] if self.static_categoricals is None else self.static_categoricals
+ time_varying_reals = [] if self.time_varying_reals is None else self.time_varying_reals
+ time_varying_categoricals = [] if self.time_varying_categoricals is None else self.time_varying_categoricals
+
+ return static_reals + static_categoricals + time_varying_reals + time_varying_categoricals
+
+ def forecast(
+ self,
+ ts: TSDataset,
+ prediction_size: int,
+ return_components: bool = False,
+ ) -> TSDataset:
+ """Make autoregressive forecasts.
+
+ Parameters
+ ----------
+ ts:
+ Dataset with features.
+ prediction_size:
+ Number of last timestamps to leave after making prediction.
+ Previous timestamps will be used as a context.
+ return_components:
+ If True additionally returns forecast components.
+
+ Returns
+ -------
+ :
+ Dataset with predictions.
+
+ Raises
+ ------
+ NotImplementedError:
+ if return_components mode is used.
+ ValueError:
+ if dataset doesn't have any context timestamps.
+ ValueError:
+ if there are NaNs in the middle or end of the time series.
+ NotImplementedError:
+ if forecasting is done without exogenous features and dataset has None frequency.
+ """
+ if return_components:
+ raise NotImplementedError("This mode isn't currently implemented!")
+
+ max_context_size = len(ts.index) - prediction_size
+ if max_context_size <= 0:
+ raise ValueError("Dataset doesn't have any context timestamps.")
+
+ if max_context_size < self.context_size:
+ warnings.warn("Actual length of a dataset is less that context size. All history will be used as context.")
+
+ self.tfm._set_horizon(prediction_size)
+
+ end_idx = len(ts.index)
+
+ all_exog = self._exog_columns()
+ df_slice = ts.df.loc[:, pd.IndexSlice[:, all_exog + ["target"]]]
+ first_valid_index = (
+ df_slice.isna().any(axis=1).idxmin()
+ ) # If all timestamps contains NaNs, idxmin() returns the first timestamp
+
+ target_df = df_slice.loc[first_valid_index : ts.index[-prediction_size - 1], pd.IndexSlice[:, "target"]]
+
+ nan_segment_mask = target_df.isna().any()
+ if nan_segment_mask.any():
+ nan_segments = nan_segment_mask.loc[:, nan_segment_mask].index.get_level_values(0).unique().tolist()
+ raise ValueError(
+ f"There are NaNs in the middle or at the end of target. Segments with NaNs: {reprlib.repr(nan_segments)}."
+ )
+
+ future_ts = ts.tsdataset_idx_slice(start_idx=end_idx - prediction_size, end_idx=end_idx)
+
+ if len(all_exog) > 0:
+ target = target_df.values.swapaxes(1, 0).tolist()
+
+ exog_df = df_slice.loc[first_valid_index:, pd.IndexSlice[:, all_exog]]
+
+ nan_segment_mask = exog_df.isna().any()
+ if nan_segment_mask.any():
+ nan_segments = nan_segment_mask.loc[:, nan_segment_mask].index.get_level_values(0).unique().tolist()
+ raise ValueError(
+ f"There are NaNs in the middle or at the end of exogenous features. Segments with NaNs: {reprlib.repr(nan_segments)}."
+ )
+
+ static_reals_dict = (
+ {
+ column: exog_df.loc[exog_df.index[0], pd.IndexSlice[:, column]].values.tolist()
+ for column in self.static_reals
+ }
+ if self.static_reals is not None
+ else None
+ )
+ static_categoricals_dict = (
+ {
+ column: exog_df.loc[exog_df.index[0], pd.IndexSlice[:, column]].values.tolist()
+ for column in self.static_categoricals
+ }
+ if self.static_categoricals is not None
+ else None
+ )
+ time_varying_reals_dict = (
+ {
+ column: exog_df.loc[:, pd.IndexSlice[:, column]].values.swapaxes(1, 0).tolist()
+ for column in self.time_varying_reals
+ }
+ if self.time_varying_reals is not None
+ else None
+ )
+ time_varying_categoricals_dict = (
+ {
+ column: exog_df.loc[:, pd.IndexSlice[:, column]].values.swapaxes(1, 0).tolist()
+ for column in self.time_varying_categoricals
+ }
+ if self.time_varying_categoricals is not None
+ else None
+ )
+
+ complex_forecast, _ = self.tfm.forecast_with_covariates(
+ inputs=target,
+ dynamic_numerical_covariates=time_varying_reals_dict,
+ dynamic_categorical_covariates=time_varying_categoricals_dict,
+ static_numerical_covariates=static_reals_dict,
+ static_categorical_covariates=static_categoricals_dict,
+ freq=[freq_map(ts.freq)] * len(ts.segments),
+ )
+ future_ts.df.loc[:, pd.IndexSlice[:, "target"]] = np.vstack(complex_forecast).swapaxes(1, 0)
+ else:
+ if ts.freq is None:
+ raise NotImplementedError(
+ "Forecasting misaligned data with freq=None without exogenous features isn't currently implemented."
+ )
+
+ target = TSDataset.to_flatten(df=target_df)
+ target = target.rename(columns={"segment": "unique_id", "timestamp": "ds"})
+
+ predictions = self.tfm.forecast_on_df(target, freq=ts.freq, value_name="target")
+
+ predictions = predictions.rename(columns={"unique_id": "segment", "ds": "timestamp", "timesfm": "target"})
+ predictions = TSDataset.to_dataset(predictions)
+ future_ts.df.loc[:, pd.IndexSlice[:, "target"]] = predictions.loc[
+ :, pd.IndexSlice[:, "target"]
+ ].values # .values is needed to cast predictions type of initial target type in ts
+ return future_ts
+
+ @staticmethod
+ def list_models() -> List[str]:
+ """
+ Return a list of available pretrained timesfm models.
+
+ Returns
+ -------
+ :
+ List of available pretrained chronos models.
+ """
+ return ["google/timesfm-1.0-200m-pytorch"]
+
+ def save(self, path: Path):
+ """Save the model. This method doesn't save model's weights.
+
+ During ``load`` weights are loaded from the path where they were saved during ``init``
+
+ Parameters
+ ----------
+ path:
+ Path to save object to.
+ """
+ self._save(path=path, skip_attributes=["tfm"])
+
+ @classmethod
+ def load(cls, path: Path):
+ """Load the model.
+
+ Parameters
+ ----------
+ path:
+ Path to load object from.
+ """
+ obj: TimesFMModel = super().load(path=path)
+ obj._set_pipeline()
+ return obj
+
+ def params_to_tune(self) -> Dict[str, BaseDistribution]:
+ """Get default grid for tuning hyperparameters.
+
+ This grid is empty.
+
+ Returns
+ -------
+ :
+ Grid to tune.
+ """
+ return {}
diff --git a/etna/settings.py b/etna/settings.py
index 987525548..afbcc5d8a 100644
--- a/etna/settings.py
+++ b/etna/settings.py
@@ -52,6 +52,21 @@ def _is_chronos_available():
return False
+def _is_timesfm_available():
+ true_case = (
+ _module_available("torch")
+ & _module_available("jax")
+ & _module_available("jaxlib")
+ & _module_available("huggingface_hub")
+ & _module_available("utilsforecast")
+ )
+ if true_case:
+ return True
+ else:
+ warnings.warn("etna[timesfm] is not available, to install it, run `pip install etna[timesfm]`")
+ return False
+
+
def _is_wandb_available():
if _module_available("wandb"):
return True
@@ -112,6 +127,7 @@ def __init__( # noqa: D107
self,
torch_required: Optional[bool] = None,
chronos_required: Optional[bool] = None,
+ timesfm_required: Optional[bool] = None,
prophet_required: Optional[bool] = None,
wandb_required: Optional[bool] = None,
classification_required: Optional[bool] = None,
@@ -131,6 +147,11 @@ def __init__( # noqa: D107
_is_chronos_available,
"etna[chronos] is not available, to install it, run `pip install etna[chronos]`.",
)
+ self.timesfm_required: bool = _get_optional_value(
+ timesfm_required,
+ _is_timesfm_available,
+ "etna[timesfm] is not available, to install it, run `pip install etna[timesfm]`.",
+ )
self.wandb_required: bool = _get_optional_value(
wandb_required, _is_wandb_available, "wandb is not available, to install it, " "run `pip install wandb`."
)
diff --git a/examples/202-NN_examples.ipynb b/examples/202-NN_examples.ipynb
index 29bdeee07..d6a53d551 100644
--- a/examples/202-NN_examples.ipynb
+++ b/examples/202-NN_examples.ipynb
@@ -33,7 +33,8 @@
" * [N-BEATS Model](#section_3_9)\n",
" * [PatchTS Model](#section_3_10)\n",
" * [Chronos Model](#section_3_11)\n",
- " * [Chronos Bolt Model](#section_3_12)"
+ " * [Chronos Bolt Model](#section_3_12)\n",
+ " * [TimesFM Model](#section_3_13)"
]
},
{
@@ -43,7 +44,7 @@
"metadata": {},
"outputs": [],
"source": [
- "!pip install \"etna[torch,chronos]\" -q"
+ "!pip install \"etna[torch,chronos,timesfm]\" -q"
]
},
{
@@ -4717,15 +4718,15 @@
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.5s finished\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.3s finished\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s finished\n"
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.0s finished\n"
]
}
],
@@ -4760,27 +4761,6 @@
"print(f\"Average SMAPE for Chronos tiny: {score:.3f}\")"
]
},
- {
- "cell_type": "code",
- "execution_count": 88,
- "id": "8334cd6a",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAB9sAAAPzCAYAAAAXr2wFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3gc1f328e/srnrvxZYlW+69G1cMNs2hGAKEjoFgOgH+QICHJLRQDaEkoSR0Qu8QMG6AK67YuBfZcpPVe98yz4vFShzbWGWl0Ur3h8sX0u7sOfdKs6s985s5xzBN00REREREREREREREREREREQazWZ1ABEREREREREREREREREREX+jYruIiIiIiIiIiIiIiIiIiEgTqdguIiIiIiIiIiIiIiIiIiLSRCq2i4iIiIiIiIiIiIiIiIiINJGK7SIiIiIiIiIiIiIiIiIiIk2kYruIiIiIiIiIiIiIiIiIiEgTqdguIiIiIiIiIiIiIiIiIiLSRCq2i4iIiIiIiIiIiIiIiIiINJGK7SIiIiIiIiIiIiIiIiIiIk2kYruIiIiIiIiIiIiIiLRIdnY2hmEwa9Ysq6OIiIi0GRXbRUREpE09/PDDfPrpp1bHEBEREREREZEj0LhdRESk8VRsFxERkTalQbuIiIiIiIhI+6Vxu4iISOOp2C4iIiIiIiIiIiIiIiIiItJEKraLiIi0kYqKCm655RYyMjIICgoiMTGRk046iTVr1jRss3z5ck499VSioqIIDQ3l+OOPZ8mSJYe19d133zFy5EiCg4PJzMzkxRdf5L777sMwjEO2MwyDG2+8kQ8++ID+/fsTEhLC2LFjWb9+PQAvvvgiPXv2JDg4mMmTJ5OdnX1YX43JdLDvHTt2MGPGDKKjo4mKiuKKK66gurr6kDxVVVW8/vrrGIaBYRjMmDGj0T/DWbNmMW7cOOLi4ggJCWHEiBF8+OGHjX68iIiIiIiIyNFo3N7ycftBf/nLX0hPTyckJITjjz+eDRs2NLkNERERf2CYpmlaHUJERKQzuPjii/nwww+58cYb6d+/P0VFRSxevJjf/OY3XHzxxSxYsIDTTjuNESNGcO6552Kz2Xj11VfZsmULixYtYvTo0QD8+OOPjB07lpSUFK699lrcbjd/+9vfSEhIYN26dfz3n3bDMBg8eDAlJSXccMMNADzyyCNERUVx55138ve//52rrrqKkpISHn/8ccaPH8+CBQsaHt/YTPfddx/3338/w4YNo3v37kydOpU1a9bwz3/+kzvvvJPHHnsMgLfeeovf/va3jB49mpkzZwKQmZnJ2LFjG/UzTEtL48wzz6R///7U19fz7rvvsmLFCr788kt+9atftfyXJCIiIiIiIp2Wxu0tG7dnZ2fTvXt3Bg0aREVFBddddx21tbU888wz2O121q9fT1JSkm9+WSIiIu2Eiu0iIiJtJDo6mksuuYS//vWvh91nmiZ9+vShR48efP311w1nutfU1DBgwAB69uzJnDlzADjzzDOZP38+27dvJzU1FYAdO3bQr18/XC7XYYP2oKAgtmzZQkZGBgAvvfQS11xzDcnJyWzbto2IiAgA7rnnHh555BF27dpFRkZGkzIdHLRfeeWVvPzyyw39n3POOSxcuJDCwsKG28LDwzn33HN57bXXmvwzrKmpISQkpOF7p9PJ8OHDSUxMZP78+U1uT0REREREROQgjdu9mjtuP1hsDwkJYfv27XTp0gWAFStWMGbMGG699VaeeuqpJrUpIiLS3mkaeRERkTYSHR3N8uXLycnJOey+tWvXsn37di666CKKioooLCyksLCQqqoqpkyZwsKFC/F4PLjdbubNm8f06dMbBuwAPXv25LTTTjtiv1OmTGkYsAOMGTMGgF//+tcNA/b/vn3nzp1NyvTfrr322kO+nzhxIkVFRZSXlzfhJ3V0/11oLykpoaysjIkTJx4ypZ+IiIiIiIhIc2jc7hvTp09vKLQDjB49mjFjxvDVV1/5rA8REZH2wmF1ABERkc7i8ccf5/LLLyctLY0RI0Ywbdo0LrvsMnr06MH27dsBuPzyy4/6+LKyMmpra6mpqaFnz56H3X+k2wC6det2yPdRUVGAd0r2I91eUlIC0OhMMTExR+3r4H0lJSVERkYetZ3G+vLLL3nooYdYu3YtdXV1Dbf/75p3IiIiIiIiIk2lcXvLx+0AvXr1Ouy23r178/777/ukfRERkfZExXYREZE2cv755zNx4kQ++eQT5syZwxNPPMFjjz3Gxx9/3HCm+RNPPMHQoUOP+Pjw8HBqa2ub3K/dbm/S7Qens2tspqa02RKLFi3izDPPZNKkSfz9738nJSWFgIAAXn31Vd5+++0Wty8iIiIiIiKdm8btIiIi0lQqtouIiLShlJQUrr/+eq6//nry8/MZPnw4f/7zn/nLX/4CQGRkJFOnTj3q4xMTEwkODmbHjh2H3Xek21oiMzOzUZmaqrlXoX/00UcEBwfzzTffEBQU1HD7q6++6qtoIiIiIiIi0slp3N7y2eMOXnH/37Zt23bIVPkiIiIdhdZsFxERaQNut5uysrJDbktMTCQ1NZW6ujpGjBhBZmYms2bNorKy8rDHFxQUAN4z0KdOncqnn356yBpyO3bs4Ouvv/Zp5sZmaqqwsDBKS0ub/Di73Y5hGLjd7obbsrOz+fTTT5uVQ0REREREROQgjdv/o7nj9oM+/fRT9u/f3/D9ihUrWL58+VHXrBcREfFnurJdRESkDVRUVNC1a1fOPfdchgwZQnh4OPPmzWPlypU8+eST2Gw2/vnPf3LaaacxYMAArrjiCrp06cL+/fv59ttviYyM5IsvvgDgvvvuY86cOYwfP57rrrsOt9vNX//6VwYOHMjatWt9lrkpmZpixIgRzJs3j6eeeorU1FS6d+/OmDFjjvm4X/3qVzz11FOceuqpXHTRReTn5/O3v/2Nnj178tNPPzXnKYqIiIiIiIgAGrf/t+aO2w/q2bMnEyZM4LrrrqOuro6nn36auLg47rzzziZnERERae9UbBcREWkDoaGhXH/99cyZM6dhrbeePXvy97//neuuuw6AyZMns2zZMh588EH++te/UllZSXJyMmPGjOGaa65paGvEiBF8/fXX3H777fzhD38gLS2NBx54gM2bN7Nlyxaf5m5spqZ46qmnmDlzJvfeey81NTVcfvnljRq0n3jiibz88ss8+uij3HLLLXTv3p3HHnuM7OxsFdtFRERERESkRTRu/4/mjtsPuuyyy7DZbDz99NPk5+czevRo/vrXv5KSktKsPCIiIu2ZYZqmaXUIERERabnp06ezcePGI66NJiIiIiIiIiLW0rhdRESk49Ga7SIiIn6opqbmkO+3b9/OV199xeTJk60JJCIiIiIiIiINNG4XERHpHHRlu4iIiB9KSUlhxowZ9OjRg927d/P8889TV1fHjz/+SK9evayO1yRut5uCgoJf3CY8PJzw8PA2SiQiIiIiIiLSMhq3i4iIdA5as11ERMQPnXrqqbzzzjvk5uYSFBTE2LFjefjhh/1uwA6wd+9eunfv/ovb/OlPf+K+++5rm0AiIiIiIiIiLaRxu4iISOegK9tFRETEUrW1tSxevPgXt+nRowc9evRoo0QiIiIiIiIicpDG7SIiIkenYruIiIiIiIiIiIiIiIiIiEgT2awOICIiIiIiIiIiIiIiIiIi4m/8cs12j8dDTk4OERERGIZhdRwRERERERGRJjFNk4qKClJTU7HZOt558Bq3i4iIiIiIiD9r7LjdL4vtOTk5pKWlWR1DREREREREpEX27t1L165drY7hcxq3i4iIiIiISEdwrHG7XxbbIyIiAO+Ti4yMtDhN23M6ncyZM4eTTz6ZgIAAq+OI+C29lsRX/GVfcnlMCmpc2DCw6wKzdsvlcrJ60QJGTDwRh6P97k9Oj0m1y01csIMA7VDtksvpZPG385lwwhQc7fi9yek2Kap1EeqwE2DTviQtU+d0snbxAk6cehIhQYFWx/lF5eXlpKWlNYxvOxqN2/3j86FIe6fXkviKv+xLGrf7B43bxVc0bpfOqCOO2/2y2H5wCrrIyMhOO2gPDQ0lMjKyXX84FGnv9FoSX/GXfcnlMakNcBFgGNj1wbjdcrm8+1N0dFT7HrS7PdicbqJCHATaO970xx2B6+f3puioqHY+aPdQF+giMsBOgPYlaaG6+vqGv8ntfdB+UEedYl3jdv/4fCjS3um1JL7iL/uSxu3+QeN28RWN26Uz6ojjdr0qREREREREREREREREREREmkjFdhERERERERERERERERERkSZSsV1ERERERERERERERERERKSJ/HLN9sYwTROXy4Xb7bY6is85nU4cDge1tbV++/zsdjsOh6PDrk8oIiIiIiIiv0zj9vYtICAAu91udQwREREREZF2rUMW2+vr6zlw4ADV1dVWR2kVpmmSnJzM3r17/bpYHRoaSkpKCoGBgVZHERERERERkTakcXv7ZxgGXbt2JTw83OooIiIiIiIi7VaHK7Z7PB527dqF3W4nNTWVwMBAvx3YHo3H46GyspLw8HBsNv9bCcA0Terr6ykoKGDXrl306tXLL5+HiIiIiIiINJ3G7e2faZoUFBSwb98+evXqpSvcRUREREREjqLDFdvr6+vxeDykpaURGhpqdZxW4fF4qK+vJzg42C8H7QAhISEEBASwe/fuhuciIiIiIiIiHZ/G7f4hISGB7OxsnE6niu0iIiIiIiJH4Z8jvkbw18FsZ6LfkYiIiIiISOelMWH71tFmGxAREREREWkNGtmKiIiIiIiIiIiIiIiIiIg0kYrtIiIiIiIiIiIiIiIiIiIiTaRi+y9we0yWZRXx2dr9LMsqwu0xW7W/yZMnc8sttxz1fsMw+PTTT1s1g4iIiIiIiIg/aOsxO2jcLiIiIiIiIodyWB2gvZq94QD3f7GJA2W1DbelRAXzpzP6c+rAFEsyHThwgJiYmEZtaxgGn3zyCdOnT2/dUCIiIiIiIiJtrD2O2UHjdhERERERkc5GV7YfwewNB7jurTWHDNoBcstque6tNczecMCSXMnJyQQFBbVpn06ns037ExEREREREfkl7XXMDhq3i4iIiIiIdDadothumibV9a5G/auodfKnzzdypMnnDt523+ebqKh1Nqo902zaNHYej4c777yT2NhYkpOTue+++xru++/p6Orr67nppptISUkhODiY9PR0HnnkEQAyMjIAOPvsszEMo+F7gOeff57MzEwCAwPp06cPb7755iH9G4bB888/z5lnnklYWBgPPfQQPXv2ZNasWYdst3btWgzDYMeOHU16fiIiIiIi4pW/ewsb3rmXypICq6OIWK6x43arx+ygcbuIiIh0TqbHw5oPHmPnukVWRxERaVc6xTTyNU43/f/4jU/aMoHc8loG3TenUdtveuAUQgMb/2N+/fXXue2221i+fDnLli1jxowZjB8/npNOOumQ7V588UW++OIL3n//fbp168bevXvZu3cvACtXriQxMZFXX32VU089FbvdDsAnn3zC7373O55++mmmTp3Kl19+yRVXXEHXrl054YQTGtq+7777ePTRR3n66adxOBwEBQXx6quvcvvttzds8+qrrzJp0iR69uzZ6OcmIiIiIiJeOdt/JPmjX9OXUhZ/WkH/K56xOpKIpXw1bm/tMTto3C4iIiKd045V8xi/9VGqtgSzL+RruvYeanUkEZF2oVMU2/3J4MGD+dOf/gRAr169+Otf/8r8+fMPG7Tv27ePXr16MWHCBAzDID09veG+hIQEAKKjo0lOTm64fdasWcyYMYPrr78egNtuu40ffviBWbNmHTJov+iii7jiiisavp8xYwZ//OMfWbFiBaNHj8bpdPL2228fdta8iIiIiIgc277NK+n62XnEUg5AWv63FicSkabQuF1EREQ6o+r8nQCEGbU4Pryc6psXEhoeZXEqERHrdYpie0iAnU0PnNKobVfsKmbGqyuPud1rV4xidPfYRvXdFIMHDz7k+5SUFPLz8w/b7qKLLuKcc86hT58+nHrqqZx++umcfPLJv9j25s2bmTlz5iG3jR8/nmeeOfQqmpEjRx7yfWpqKr/61a945ZVXGD16NF988QV1dXWcd955TXlqIiIiIiKd3t6Ny+j2xQXEUEGWrTvd3HtIZx+bdm4gucdAq+OJWKax43arx+ygcbuIiIh0Tu6K/yx/1d2zh5Uv/5YBN72HYesUqxWLiBxVp3gXNAyD0EBHo/5N7JVASlQwxtHaAlKigpnYK6FR7RnG0Vo6soCAgMOyezyew7YbMmQIWVlZPPjgg9TU1HD++edz7rnnNqmvowkLCzvstt/+9re8++671NTU8Oqrr/Kb3/yG0NBQn/QnIiIiItIZ7PlpERlfnE8MFWy19ybg6tlsCRoEQOHqT60NJ2Kxxo7brR6zg8btIiIi0jkZVd6TC7c4+uEybYyqmMfaT56yOJWIiPU6RbG9Kew2gz+d0R/gsMH7we//dEZ/7LamD8h9LTIykt/85jf84x//4L333uOjjz6iuLgY8A7+3W73Idv369ePJUuWHHLbkiVL6N+//zH7mjZtGmFhYTz//PPMnj2bK6+80ndPRERERESkg9u1Zj6Z/76AKKrY7OhHyMx/Ex6TQEnaFABi9s63OKGIf/CnMTto3C4iIiIdh72mEICirlNYnnkTACM3PcbOdYusjCUiYrkmF9v379/PJZdcQlxcHCEhIQwaNIhVq1Y13G+aJn/84x9JSUkhJCSEqVOnsn379kPaKC4u5uKLLyYyMpLo6GiuuuoqKisrW/5sfOTUgSk8f8lwkqOCD7k9OSqY5y8ZzqkDUyxK9h9/+9vfeOedd9iyZQvbtm3jgw8+IDk5mejoaAAyMjKYP38+ubm5lJSUAHDHHXfw2muv8fzzz7N9+3aeeuopPv74Y26//fZj9me325kxYwZ33303vXr1YuzYsa359EREREREOoydq+bS95tLiTBq2BgwkIhr/k14VBwACaPOBqBf3XoqSwp+qRkR+Zk/jNlB43YRERHpWILrigCwhScw7II/siZ0PIGGi9gvrqKsKM/idCIi1mlSsb2kpITx48cTEBDA119/zaZNm3jyySeJiYlp2Obxxx/n2Wef5YUXXmD58uWEhYVxyimnUFtb27DNxRdfzMaNG5k7dy5ffvklCxcuPGxNMqudOjCFxb8/kXeuPo5nLhjKO1cfx+Lfn9huBu3h4eHMmjWLkSNHMmrUKLKzs/nqq6+w/bw+ypNPPsncuXNJS0tj2LBhAEyfPp1nnnmGWbNmMWDAAF588UVeffVVJk+e3Kg+r7rqKurr67niiita62mJiIiIiHQoWcu/ov/cywgzalkfOJSYa78gNCK64f6kjP5k29JwGB72Lv/MuqAifqa9j9lB43YRERHpWEKdP8/OE52MYbPR9YrX2Gckk0IBua9ehud/ZuwREeksHE3Z+LHHHiMtLY1XX3214bbu3bs3fG2aJk8//TT33nsvZ511FgBvvPEGSUlJfPrpp1xwwQVs3ryZ2bNns3LlSkaOHAnAc889x7Rp05g1axapqam+eF4+YbcZjM2Ma7P+vvvuu8Nu+/TTTxu+Nk0TAI/Hw+WXX85NN93UMEj/X2eccQZnnHHGYbdfd911XHfddUfNcLCPI9m/fz8BAQFcdtllR91GRERERES8diz9jEHfX0OIUc+6oBEkXPMJwaHhh223L2EyGXlvErBjNvDbtg8q4qfaeswOGreLiIgA7N24jNrvnibitD+Q3GOg1XGkjUS6SwEIiU4CICImnuyzXqH2k7MYWruCJW//keGX/tnChCIi1mhSsf3zzz/nlFNO4bzzzuP777+nS5cuXH/99Vx99dUA7Nq1i9zcXKZOndrwmKioKMaMGcOyZcu44IILWLZsGdHR0Q2FdoCpU6dis9lYvnw5Z5999mH91tXVUVdX1/B9eXk5AE6nE6fTeci2TqcT0zTxeDx4PJ6mPD2/cXBgffB5tra6ujoKCgq47777OPfcc0lISPBJvx6PB9M0cTqd2O12HyQVaZqD7x//+z4i0lT+si+5PCZulwvDMDDbyTqmcjiXy3XI/9srl9uD2+XB5TKxeZq8MpG0Ab/Zlzwe3C43LsODYXacfWnHkk8YsfQmggwnPwaPJv637+IIDMLlOvxvReCA0yDvTfpWLqeyuhJHYJAFiTsGd8N+78TZzv/WtffPDeJf/nvcft5555GUlGR1JBER6cACZt/JEOdGdny0E+fvFhOgz68dnunxEGOWgQHhcf+5YDJj4Fh+3HEvYzf8ieOyn+enJWPoO/5MC5OKiLS9JhXbd+7cyfPPP89tt93GPffcw8qVK7n55psJDAzk8ssvJzc3F+CwQV1SUlLDfbm5uSQmJh4awuEgNja2YZv/9cgjj3D//fcfdvucOXMIDQ09rK3k5GQqKyupr69vytPzOxUVFW3Sz9tvv81NN93EoEGDeO655xpOdmip+vp6ampqWLhwYbs/CCwd29y5c62OIB2E9iXxpZXfz7c6QqNstTqAHNPCBfOsjtDp1O77ken5zxFkuFhmG8GBXteyZ8nio27v8XgoNiOINSr4+oMXCE7u24ZpO6YF89r/fl9dXW11BOlA3nnnHa666iqGDh3KG2+8YXUcERHpwPZtXslg50YAerqzWPT+nxhwyaMWp5LWVllWTKLhPYYfFX/o7MRDp9/M8n0/MKb0a7p9ezOF3QcRn9r9SM2IiHRITSq2ezweRo4cycMPPwzAsGHD2LBhAy+88AKXX355qwQEuPvuu7ntttsavi8vLyctLY2TTz6ZyMjIQ7atra1l7969hIeHExwc3GqZrGSaJhUVFURERGAYrX+1xrXXXsu1117r83Zra2sJCQlh0qRJHfZ3Je2b0+lk7ty5nHTSSQQEBFgdR/yYv+xLLo9JYa0Lh2Fgb+dX+3VmLpeLld/PZ9TxU3A4mvRRrU053R4qnB4SQuwEHmV6XLGWy+Vi4YJ5TDpxavvelzwe8mvcRATYCLD7/760bcG/GJP/LAGGm5Vhk0i/6i0yG3Glz7adYzmuYg6priz6TPldGyTtmOrrnaxetIATp04lODDQ6ji/yFcnMYsAzJgxgxkzZlgdQ0REOoHKRc8DcIAEUijguL0vs2njWaQNGGtxMmlN5YX7SQQqzBCCQsIOu7/3lS+R9fQkMj27yH/zEqJuXaAZD0Sk02jSUbeUlBT69+9/yG39+vXjo48+AiA5ORmAvLw8UlJSGrbJy8tj6NChDdvk5+cf0obL5aK4uLjh8f8rKCiIoKDD35gDAgIOK2q43W4Mw8Bmsx11XTR/d3AK94PP01/ZbDYMwzji71GkLWkfFF9p7/uS4TGxuwwV2/2Ew+HA4Wi/+5NpeLCbbm/ODlAg7cgcDgeOdvzeZLo92B0GDofd7/elzd+8zHFrfo/D8LAiYgoZM/+FI6BxBV9P79Ng9RwyChe169d+e+f2eJfccjja999koN3nExEREflfVWUlDCmaDQbsPf5J9q/8ByOrFxH+7xtw9lxKQFD7uqBqz/ol2Ob+kbLYwcROmEFKzyFWR/JbVSXeWYlLbTHEH+H+4NBwuOANKv51Mv2cm1j62i0Mm/l824YUEbFIk45mjR8/nq1bD50sdNu2baSnpwPQvXt3kpOTmT//P9OelpeXs3z5csaO9Z7ZNnbsWEpLS1m9enXDNgsWLMDj8TBmzJhmPxERERERERGrbPrqBY5bcycOw8PyyFPofs07jS60A6SNPpN6006amcOBHetaMamIiIiISPNkz/8nYUYtu42uZI6ZRtwFf6eYCDI92Wx7716r4x2irPAAKf+eweD6H5mY+zoDPjyB/Flj2fjJLCpLCqyO53fqSg4AUOmIPuo2qT0Gsvm4xwAYl/8u6+doaRsR6RyaVGy/9dZb+eGHH3j44YfZsWMHb7/9Ni+99BI33HAD4L3S+pZbbuGhhx7i888/Z/369Vx22WWkpqYyffp0wHsl/KmnnsrVV1/NihUrWLJkCTfeeCMXXHABqampv9C7iIiIiIhI+7Pxi+cYt+7/YTdMlkWfTuY1b2Fv4tT9YVExbAn2XmlTtPrTVkgpIiIiItJ8psdD1x3/AmBP5oUYNhtRiV3YPOJ+AMbuf43d6xdbGbGB2+Wi/M3LSKKIvUYKPwYfh8u00de1lYlbHyb5hQHsfO5stn3/Pi5nvdVx/YKrwjtbcXVA3C9uN+ikS1madBEA/Zbfxf4d61s9m4iI1ZpUbB81ahSffPIJ77zzDgMHDuTBBx/k6aef5uKLL27Y5s477+Smm25i5syZjBo1isrKSmbPnn3Imtz/+te/6Nu3L1OmTGHatGlMmDCBl156yXfPSkREREREpA1s/PQpJm78EzbDZGns2fS6+lVsdnuz2irrNhWAuH3zj7GliIiIiEjb2rlqDt09e6g2g0ifenXD7f1OmsHKsMk4DA/RX99IfW2NhSm9trxzD0PqVlNjBlJ61uuk3/IVe65ay8LM28iyZRBouBhZ9T3HLbsW25N92fTKDezbvNLq2O2aWemdDaA+OPaY2w68/Ck2BQwgwqjB9v5l1FRVtHY8ERFLNXlRxNNPP53169dTW1vL5s2bufrqqw+53zAMHnjgAXJzc6mtrWXevHn07t37kG1iY2N5++23qaiooKysjFdeeYXw8PCWPRMREREREZE2tPGjR5m45SEAFiecT5/f/qPZhXaAxFFnA9CnfhPlRbk+ySgiIiIi4hMr/gHAupiTCY8+dNXu+Av/RhFRdPfsYfu791iRrsH2xR8zft/LAKwech9d+o4EIDqxKwPPu5eYO9ew7ox/szjhfIqJJJ5SJuS/w+DPTqH4iVFs+PBhygpzrHwK7ZK92lts94QmHHPbgMAgIi99i0Ki6eHJZvsrMzE9ntaOKCJimSYX20VERERERDq7je8/yMTtjwOwOOkS+l3xdwxby4ZXCd36sNOWjsPwsG/5Z76IKSIiIiLSYiW5exlasRCA0InXHnZ/VHwKW0c9CMC4A2+we+33bZrvoMK9O+i9+FbvrFMxZ9F/2uFZAdIGjKX/VS/gvG0ry8b8nVWhE6k37fR0ZzFpxyy6/mMI2c+czpb5b+Gsq23jZ9E+BdYWAWCEH7vYDhCXmsG+Kc/hNg3GlM1m7WfPtmY8ERFLqdj+Szxu2LUI1n/o/b/HbXUiERERERGx2MZ3/sjEnX8BYFHqFfS7/OkWF9oP2p80GYCgrG980p5Ih6Yxu4iISJvImf88AYabzY5+pA0Ye8Rt+k65hBURU7AbJrHf3ERdTVWbZnTW1eJ571JiqGC7PZPul/31mI8JCAyizwkX0OPmz8iZuZ6Fve9im70XAYab4TVLGbfyZgL/0ofN/7ia3esXd+qrs0Oc3mK7IzK50Y/pM/Z0fuh+PQAjNjzMrvVLWiWbiIjVVGw/mk2fw9MD4fXT4aOrvP9/eqD39lYyefJkbrnlFp+1N2PGDKZPn+6z9kREREREOjPT42HjW3cxcbf3wN2itGsYcNmTPiu0A4QNPhOAvpXLdRWNyC+xYMwOGreLiEjn43LW02vvhwAU9b/sF7dNvOA5Cokm3dxH1jt3tUW8BjveuJm+rq2UEYb7/DcJCglr0uMj45IZeM6dxN+xnA1nz2Nx0iUUEEMMFYwv+ohh/z6T8lnD2fDe/ZTm7mmlZ9F+RbhKAQiKTmrS44ZeeD9rQ44jyHAS9flVVJQUtkI6ERFrqdh+JJs+h/cvg/L/WZul/ID39lYevIuIiIiISPtiejxsevN2Ju57CYBF6Tcy4OJHfN5Pt8GTKCKKCKOG3Wvm+rx9kQ5BY3YREZE2k7X4Q5IppJgIMk+45Be3jYxLZvuYhwEYl/c2u1bPa4uIbP7mZcYXeU8I2HTcLBLT+7aovdQ+w+l/xbOY/7eZH8b/gxXhJ1BrBtDds4dJu54h883ROHct9EV0vxHtKQUgLDa1SY+z2e2kXPkGOUYiXcw89r9yWavOELBv21rWvPw7Cv88gHV/++WTQ0REfKVzFNtNE+qrGvevthy+vhMwj9SQ93+zf+/drjHtmUdq53AzZszg+++/55lnnsEwDAzDIDs7mw0bNnDaaacRHh5OUlISl156KYWF/zn768MPP2TQoEGEhIQQFxfH1KlTqaqq4r777uP111/ns88+a2jvu+++a/GPUkRERESkM9r48aNMPPAaAAszb2PAhQ+0Sj82u53tUeMAcG78slX6EGmXGjtut2jMDhq3i4hI5xS69lUANiWd1airxfuccAHLI0/BZpgkzruF2qqKVs2Xs/1Hhq65F4BFyZfTZ/JvfNa2IyCQ3hN/Tc8bPyL/uo0s6vdHdtgzsRsm3cpX+qyf9q62upJwowaAqISmFdsBImMSKD39ZepNB8NqlvHjO/f7NF9ZUR4/fvgEex4dQ6/3T2D8gTdIM3M4ruQLSgv2+7QvEZEjcVgdoE04q+Hhpv8RODLTe/b8o2mN2/yeHAg89oeQZ555hm3btjFw4EAeeMB74C4gIIDRo0fz29/+lr/85S/U1NTw+9//ngsuuICPP/6YAwcOcOGFF/L4449z9tlnU1FRwaJFizBNk9tvv53NmzdTXl7Oq696PxDFxsY2+1mLiIiI+KMfP3oSw+5g6PTfWR1F/JjH7abXjtcBWJRxIwPPu7d1++t9Gqz8moyihZgej0+nqRdpt3w2bm+dMTto3C4iIp1P7s4NDKlbjcc0iD/hukY/LuXCZ8l/cSxpZg6L372T/lc93yr5aipKCf9kBmFGHesDh9Dn4sdapR+A8Oh4Bpx1CzuWdoeFVxDnKWq1vtqbsoIDxAD1poOwiJhmtdF9yARW7biLcZsfYszOv7LhhzH0OW5aszO5nPVsXfQJxrq3GVS5lGTD5b3dtLE+dAzJNTtIoYC9a+YSfcqMZvcjItIYnaPY7geioqIIDAwkNDSU5ORkAB566CGGDRvGww8/3LDdK6+8QlpaGjt27ADA5XJxzjnnkJ6eDsCgQYMatg0JCaGurq6hPREREZHO5MePZjFu858B+Cm1H71Gn2xxIvFX2T8uYCQFVJohZJ55Z6v3lz76dOpX3EYX8tiwfS2pfYa3ep8icmwat4uISGdT/O3fAfgpZBTdMvo1+nHhMQlsG/coiUtnMi7/fdasnE6PUaf4NJvp8bD/jasZ7dlLATGEXfImjoBAn/ZxJGGJGQAkmkXUtHpv7UNlsffq8GIjmqgWnAg89OxbWbF/BaPL59B13g0UZXxHXHJ6k9rYvXE5xUteo3f+bEZS6r3RgCxbd3J7nE3GCVfQN6kra1+cSUrBB7h3fg/MaHZmEZHG6BzF9oBQ79nqjbF7Kfzr3GNvd/GHkD6ucX0307p16/j2228JDw8/7L5du3Yxffp0pkyZwqBBgzjllFM4+eSTOffcc4mJad7ZZSIiIiIdxbYV3zBq06NgeL8PXPAnzJFTdYWwNEv96rcB2BA9md6hh38297WQiGg2BQ9laN0qSn78VMV26RwaO25vR2N20LhdREQ6rtqqCgYVfOH9etiVTX5870nn8sPGTzmu7CuSF9xKbf9lBIdF+Szfps+eYmLFfFymjd1T/06PxK4+a/uXxKT0ACDCqKGwrJiouKQ26ddKtSV5AFTYo2nJb9Cw2ci88iV2PXs83T272fj6JUTdNv+YJ0mUFuxn54LXSd75EX3dOxtuLyaSLYmnETtuBukDj+O/50hy9JwMBR+QWrKqBYlFRBqncxxtNAzvtHCN+Zd5IkSm0nBk9vDGILKLd7vGtGccrZ1jq6ys5IwzzmDt2rWH/Nu6dSvjxo3Dbrczd+5cvv76a/r3789zzz1Hnz592LVrV7P7FBEREfF3+Xt30HXONQQYbtaGHEe1GURf1xY2zH3D6mjih5x1tQwomQeAbegFbdZvRfpJAMTtW9BmfYpYqrHj9nY0ZgeN20VEpOPK+vZ1oqgix0gkc/w5zWoj9aJnyCOOrmYuu96+w2fZdq9byJgtjwOwNPNmn181/0uCwyIoIQKAstzO8ffcWZ4LQFVAy5e7CQ2Pwn3e61SaIQxwbuCn128/4nb1dbWsn/MGW56cRvwLQxi//Qky3TupNx2sDpvIqnF/x3HnNobNfIH0gccd9vhuw0/CYxqke/ZRlJPd4twiIr+kcxTbm8Jmh1MPru3yv4Pun78/9VHvdj4WGBiI2+1u+H748OFs3LiRjIwMevbseci/sDDvmnKGYTB+/Hjuv/9+fvzxRwIDA/nkk0+O2J6IiIhIR1dbXUn9WxcQRxlZtu6kXfMuP6ZdCkDqqseor6u1OKH4m51LPyaKKvKJpfuo09qs36RRZwPQx7mZssIDbdavSLtn4ZgdNG4XEZHOI3HzWwBkpZ+P3dG8CXLDo+LInvAEAOOLPiRr+VctzlVelEvy178l0HCxOnQCA869t8VtNlWhPQGA6vzsNu/bCp7KAgDqglpebAfo0msIG0d7l3wbn/smG+a/A3iXBti5bhFrX/gtnid6M3rF7xhWs4wAw802e2+W9LmLouvX0//Wzxlw4oUEBAYdtY/ImASyHJkA7Ptxjk9yi4gcjYrtR9L/TDj/DYhMOfT2yFTv7f3PbJVuMzIyWL58OdnZ2RQWFnLDDTdQXFzMhRdeyMqVK8nKyuKbb77hyiuvxO12s3z5ch5++GFWrVrFnj17+PjjjykoKKBfv34N7f30009s3bqVwsJCnE5nq+QWERERaQ9Mj4cd/7iCXu4sSojAfvE7hIZH0efX/49Coulq5rLxs79YHVP8TMCGDwDYlnhKsw8yNkd8Wk+ybN2xGyb7l3/aZv2K+AWLxuygcbuIiHQOu9ctpI97G/Wmg65Tr21RW70mTGdpzFkAdPnuNmoqSpvdlsftpvTNy0mhkL1GCgmXv2rJUmHlgd6p450le9q8bysYVfkAuEISfNbm4FOuYGnCeQD0WXY7a964i/xHhzLgizMZW/gRMVSQTyxLki9l23nzSLt7OcPP+z3RccmN7qMgfrQ3/66FPsstInIkKrYfTf8z4ZYNcPmX8OuXvf+/ZX2rDtpvv/127HY7/fv3JyEhgfr6epYsWYLb7ebkk09m0KBB3HLLLURHR2Oz2YiMjGThwoVMmzaN3r17c++99/Lkk09y2mneK26uvvpq+vTpw8iRI0lISGDJkiWtll1ERETEaj++9xCjKuZ51+yb8jxJ6X0ACIuIZlu/GwHot+15KsuKrIwpfqSyrIhBlUsBiBh9cZv3n5N8AgDBWbPbvG+Rds+CMTto3C4iIp1D3dIXAfgxcjJR8anH2PrYul30Fw6QQKqZz+53bmt2O5vf/QNDa1dSawZQcsbLhEfFtThbc9SEen8mtrL9lvTf1gJqfx5Dh/uu2A4wYMazbHH0I5Jqxu95kQzPXmrNAFZGnMiaSS8TetdWhv/2WdL6jGhW+0G9veOptDKt2y4iravtLs3wRzY7dJ/YZt317t2bZcuWHXb7xx9/fMj3Ho+H8vJy+vXrx+zZRz/wlpCQwJw5miJFREREOr7Niz7huB1PgwEr+tzOsLG/OuT+QWfexO6tr5Hu2ceSDx9k+FVPW5JT/MvuRe/QzXCSbUuja//D1wFsbeFDzoScV+hXtZKK2hoCg0PaPINIu9bGY3bQuF1ERDq+iuI8hpbOAwMcx830SZuhEdHsOP5JUr6/jHHFn7Ji6Vn0HHdWk9rYsfQzxu95EQxYOegPDLDg8/lB7oguUASBVZ1juaeQumIA7OGJPm03MCiY0EvfZPsbv8FpC6a097n0OvFSBvroJIqM4VNxLbSRSh7Zu7c2nJAvIuJrurJdRERERPzagZ0byfz+JuyGyfLo0xh67u8P28YREEj+mHsAGJHzNgX7s9o6pvih6G3e4tmermdYMj1l2sDxFBJNmFHL7lXftHn/IiIiItL57Jn3EsGGkyxbdzKGneizdnuOPZ0lsecAkLbwDqrKShr92OKcXfRc+DtshsmyqF8x4PQbfZarOWwxaQCE13WOYnuYy/u7Coxu/BTujZXQJZOud6+i++8XM+zsW3w6W0FoRDQ7ArwF9gNrdXKjiLQeFdtFRERExG9VV5RivHsRUVSx1dGHvr/951GLogNO+A0bAwYSbDg58PG9bZxU/E1xzi4G1K0DIGnCpZZksNntbI+eAIBr878tySAiIiIinYfH7SZj17sA5PS+xOcnnGZcOIv9RhIpFLLvnVsa9RhnfR3Oty8hlnJ22HuQfvnzPs3UHMFx6QDEOvMtTtI2ojzeYntojO+L7a2tKHEMAPbdiy1OIiIdmYrtIiIiIuKXPG43u/9xKd09eygghrDL3iUwOPSo2xs2G+bJDwIwqvQbdm9c3lZRxQ/lLH4Tm2GyKWAACd0snG6wzzQAehQtxPR4rMshIiIiIh1e1rIvSDMPUGGG0GPKFT5vPyQimpwT/gLA2NIv2L7442M8Ara/eQv9XJspN0NxnvcGwaHhPs/VVJHJGQAkmEW4XS5rw7Qyl7OeaLMCgIj4LhanabrQPt512zPKV2k8JSKtRsV2EREREfFLa9+6h+HVi6k3HeRO+ydxqRnHfEzmsMmsCp+MzTCp/1pXt8vRpe7+HICizLMtzZE++lfUmgGkUMD+rastzSIiIiIiHVvA6n8C8FP8rwiJiG6VPjJHn8qS+PMAyFh8J5WlhUfddsvc15lQ8B4AG497nKSM/q2SqamiErtSb9pxGB5K8/ZYHadVlRfnYzNMPKZBZKxv12xvCxnDTqTedJBIMTk7N1odR0Q6KBXbRURERMTvbJj/NuP3vgTA6kF/oOfwxq8lGHvmQ9SbdgbXrmLz4k9bKaH4s/1bV9PTvZN60063SRdbmiU4LILNIcMBKP3xM0symB4P+zb9gLOu1pL+RURERKT1Fe7fwZDqZQBETb6uVfvqfuEs9hopJFFMzju/O+I2uVnrGbzqHgAWJ15MnxMuatVMTWGz2cknFoDy3J0Wp2ldFYX7ASg1InAEBFqcpumCQ8PZHtgPgPx1WrddRFqHiu0iIiIi4lf2bl1N/6X/B8Cy+F8zdPrNTXp8So8BrEo8B4CoRQ/icbt9nlH8W+mytwDYEDqGiNgki9NAZcZJACTmLLCk/03v3Mvgz6ex7YP7LOlfRERERFpf3vznsRsmGwIHk9prWKv2FRwWQf7Up/GYBseVfc22798/5P7aqgqCP7qMcKOGjQED6X3pk62apzmKbPEA1BbutjhJ66ouyQWgzBZjcZLmK00eC0Dg3iUWJxGRjkrFdhERERHxG+UlBYR+eClhRi0bAgcz4Mq/Naud7uc+QDmhZLp3sv6rl3ycUvyZx+2mZ+5XANT0P9fiNF4po71T2fd2bqUsf3+b9p2fvZnRe14GIDZvaZv2LSIiIiJtw1lXS7+cTwAoGzSjTfrsPuIkliZdAEDmsrupLCkAvLMq7X19Jj08uykkmqCL32yXV1SX2uMAcJd07Gnk60u9xfYqh/8W28P7eWfC6165Ruu2i0irULFdRERERPyC2+Ui9+WL6Goe4AAJxF3xNgGBQc1qKzoumfXdrwQgY91T1NVU+TKq+LHsNfNIoYBKM4Tu49tHsT02tTvb7ZnYDJN9Kz5p076rP7uDIMMJQEb9Ds0EISIiItIB7fj+beIppZBoeh5/YZv12+OCx9hjdCGBEg68fRMAm754ljHl3+A2DXad8Fdik9PbLE9TVAZ4p5G3l7ftybBtzV2ZD0BNUKzFSZovY8jx1JiBxFHG3q1rrI4jIh2Qiu0iIiIi4hfWvXYbQ2pXUWMGUjr9daITurSovf5n/55c4kmmkI0fP+6jlOLv6te8C8CG6MkEh4ZbnOY/clO8V2OE7my7dQa3L/6Y4TVLcZk26k0HYUYt+dmb2qx/EREREWkb0etfA2Bzl183+4Tm5ggODafw5GdxmwZjKuaw8V93M3rTIwAs7X4DmWOmtVmWpqoN9F7ZHlKTY3GSVlbpnXHAGRxncZDmCwwKZnvwQACK1s+1OI2IdEQqtv8Ct8fNytyVfLXzK1bmrsTtad2rOEzTZObMmcTGxmIYBmvXrm3V/kRERET8xbqv/8n43DcB+GnUI2QMHNviNoNDw9k15FYABu36J6VFuS1uU/ybs66WASXzALANvcDiNIeKGHImAP2qVrbJTAzOulpSlvwRgB8Sz2NnQE8ASnasaPW+RRqrrcfsoHG7iIh0PPu3rGKAcwMu00byide1ef8Zw05gWfIlAEzc+yJBhpM1IcfR77w/tXmWpnAFeYvPUXV5FidpXY6an6f3D0u0OEnLVKSMAyB4n5bGEhHfU7H9KObtnscpH53Cld9cye8X/Z4rv7mSUz46hXm757Van7Nnz+a1117jyy+/5MCBAwwcOLDV+mpNGRkZPP3001bHEBERkQ5i1/olDFn1/wBYknwpg0+90mdtDzptJlm27kRSza6P7vNZu+Kfdi79mCiqyCeW7qNOszrOIdIGjCWPWEKNOvas+rrV+9v66WN0M3MoJJpu5z5EcWQ/AMz9a1u9b5HGsGLMDhq3i4hIx1Ox8HkA1oaNJ65LD0syZF7wMNm2NAD2G0nEX/Y6NrvdkiyNFuqdVj3ek29xkNYVVFcMgC08weIkLRPV3ztTWGb1j7hdLovTiEhHo2L7EczbPY/bvruNvOpDz0rLr87ntu9ua7XBe1ZWFikpKYwbN47k5GQcDkeTHm+aJi79oRAREWkTHrebrd+9y8bPn2XLvDfZsexL9m5YSsGerVSWFmpdYx8pLdhPzGczCDHqWRc8iiEznvJp+3aHg7JJ3qt3R+Z9SO6uzT5tX/xLwIYPANiWeAr2Jn4Wb22GzUZWzEQA3Ju/atW+ig9kM2LniwBsGfh/hEfF4U4aDEBkqaaRF+tZNWYHjdtFRKRjqa4oZXDRbAA8o35rWY6gkDAqz36dH6JOpWT6vwiPaf+FXUfoz1e2U0VNRam1YVpRmNNbbA+ITLY4ScukDxpPpRlCFFXs2bTc6jgi0sF0imK7aZpUO6sb9a+iroJHVjyCiXl4Oz//9+iKR6moq2hUe6Z5eDtHMmPGDG666Sb27NmDYRhkZGRQV1fHzTffTGJiIsHBwUyYMIGVK1c2POa7777DMAy+/vprRowYQVBQEIsXL8bj8fDII4/QvXt3QkJCGDJkCB9++OEh/W3cuJHTTz+dyMhIIiIimDhxIllZWQCsXLmSk046ifj4eKKiojj++ONZs2bNIT/P++67j27duhEUFERqaio333wzAJMnT2b37t3ceuutGIaBYRhN/n2JiIj4gy2v3cjYH65n4qb7GLfqd4z+/jKGfHk6fd4eS7cXehPzeCL2R9OoeawfRU+MYt9TJ7Lz2bPY+sJlbHrlJja8fS8bP5nF5m9eZtuij8he+x25WespLzxg9VNrN5z1dRS/ciEpFLLXSCXlqrdbpQDab8J0fgoaQaDhpuiz/+fz9sU/VJYVMajSO6VgxJhLLE5zZLa+3qvtexQvxvR4Wq2foo/vJMyoZYujL31PuxaAiB4jAehWv71V+5bOq7HjdqvG7KBxu4iIdDy75r1MuFHDHqMLmWN+ZWmW1F5D6X3d26T2GW5pjsZyBIVQThgAJbm7LE7TeiLcpQAExyRZG6SFHAGB7Aj1nkBcsnG+xWlEpKNpX5drtJIaVw1j3h7js/byqvMY9+64Rm27/KLlhAaEHnO7Z555hszMTF566SVWrlyJ3W7nzjvv5KOPPuL1118nPT2dxx9/nFNOOYVt27Ydcvb8XXfdxaxZs+jRowcxMTE88sgjvPXWW7zwwgv06tWLhQsXcskll5CQkMDxxx/P/v37mTRpEpMnT2bBggVERkayZMmShrPrKyoquPzyy3nuuecwTZMnn3ySadOmsX37diIiIvjoo4/4y1/+wrvvvsuAAQPIzc1l3bp1AHz88ccMGTKEmTNncvXVVzfjpysiItL+bfxkFhML3gNgXdAIAt3VhLgrCDOriDArCTac2A2TKKqIMqvAnQduoB6oPnb7uwKnwJRTWvU5+IONr9zAWOd6Ks0Qas97i/iY+FbrK/C0h/B8Mo2Rld+y4cfvyBw2udX6kvZp96J36GY4ybal0bWf78YOvtRt1DRqlgaSbBSybvNy0gaM9XkfO1fNZUzFPDymQc0pjzdM35ncazj1pp1oo5Kt+7NISOvl876lc/PluL01xuygcbuIiHQspsdDl+1vAZDd4wIG2jrFdXk+VWBLINJTRVXeLug1zOo4Pmd6PMSapWBAeGwXq+O0WFXqeMhaTtj+JVZHET+Su3MDxZsX0ffUme1/eQuxTKcotvuDqKgoIiIisNvtJCcnU1VVxfPPP89rr73Gaad5r2D5xz/+wdy5c3nllVeYOXNmw2MfeOABTjrpJADq6up4+OGHmTdvHmPHeg++9ejRg8WLF/Piiy9y/PHH87e//Y2oqCjeffddAgICAOjdu3dDeyeeeOIh2V566SWio6P5/vvvOf3009mzZw/JyclMnTqVgIAAunXrxujRowGIjY3FbrcTERFBcrJ/Ty0jIiJyJNsWfcTYLY+CAQu7Xc/Aix465P5qoKSmiuqyYmoqCqkrL8JZVYqrqhhPdQlGbRlGbSmO+jICnBUEucoJcVUQ6qkkwqwk3KhhSN1qa55cO7L202cZW/gRAJvHPcnAPq174CJ94HGs+vYURpfNxpjzR8wh32HoYFOnEr3tYwD2pJ3Rbg80BoeGszl0BMNrllG+9nPwcbHd7XIRs+AuAJbHnE6fQRMa7gsMDmGPI4Oe7iyKti1XsV06JY3bRUSkI9m1Zj4jPbupMQPJmDrz2A+Qw5QFJkFtNvVFe6yO0iqqKkpIMLwn+kUlpFicpuViBp4IWU/Rq+YnnPV1BAQGWR1J2rmsFbPpO/8q+hs1LA2OoO+U9jkLnlivUxTbQxwhLL+ocetwrM5bzfXzrz/mdn+f8ndGJI1oVN/NkZWVhdPpZPz48Q23BQQEMHr0aDZvPnQt0ZEjRzZ8vWPHDqqrqxsG8QfV19czbJj3IPXatWuZOHFiw4D9f+Xl5XHvvffy3XffkZ+fj9vtprq6mj17vB8azjvvPJ5++ml69OjBqaeeyrRp0zjjjDOavFadiIiIv9m3eSUDF9+Mw/CwPPIUBlzwwBG3CwoJIygkjJjktCa1X1ScR/hL/Ug0StlbXYEjMtYXsf3OjjULGLH+QTBgSbdrGD7lwjbpN2n6g9S+Np8BzvWs+u49BpzYNv2K9YpzdjGgbh0YkDThcqvj/KKqjJNh8zISc771edtbPv8LEz27KCeM5HMfOez+wvA+9CzLwr3/R0AHGcS3Gjtuby9jdtC4XURE/JvnhxcBWBt9En38YI309qgmJAVqgbK9VkdpFWUFOSQAlWYIwaHhVsdpsfT+x1H2WRhRRhXrNyyh5/ATj/0g6bS2ff8+Q5feRLDh9N6Q9S2o2C5H0SlGWYZhNHpauHGp40gKTSK/Ov+Ia8AZGCSFJjEudRx2W/uYMiIsLKzh68rKSgD+/e9/06XLoVO7BAV5z9QKCfnlgwmXX345RUVFPPPMM6SnpxMUFMTYsWOpr68HIC0tja1btzJv3jzmzp3L9ddfzxNPPMH3339/1AMBIiIi/q4kdy8Jn11MuFHDhoBBZFz1qs+vfA6PTqDcDCXSqKZ4/w7CIkf7tH1/UJSTTfJXvyXQcLE6dCJDL/5zm/WdmNaT1akXMv7AGyT88DCuib/GERDYZv2LdXIWvUFPw2RTwACS2/kV2yljpsPm++nj3saO3N3EJqf7pN2ywgMM3vYsAGt738TA+NTDtqlPGgxlXxFevMknfYr8t8aO2/1xzA4at4uISPtSmr+PoRXfgwEhE661Oo7fckV0gRIIrMyxOkqrqC72Pq9SWzRxFmfxBZvdzo7Q4YyoXkT5pgWgYrscxeav/8HotfcQYLjZbyTRxcwjpXSN1bGkHWuf8yNayG6zc9do79SJBsYh9x38/vejf9/qg/bMzEwCAwNZsuQ/64c4nU5WrlxJ//79j/q4/v37ExQUxJ49e+jZs+ch/9LSvFfXDR48mEWLFuF0Oo/YxpIlS7j55puZNm0aAwYMICgoiMLCwkO2CQkJ4YwzzuDZZ5/lu+++Y9myZaxfvx6AwMBA3G53S38EIiIi7UZtVQWuN88jhUL2GqlEXPE+AUHBPu/HsNnIc3inc606sMPn7bd3dTVVVL1xAQmUsMuWTvrVb7T5eli9z/0jJUSQ7tnH+i/+2qZ9i3VS93wBQFHm2RYnObbY5HS22r1TSR9Y/qnP2j3w0T1EUUWWLYO+Z9xyxG3CMrxXCXet3eazfkWaqr2M2UHjdhER8V/75r1AoOFmi6MP3QaNP/YD5Ihs0d6/22G1ByxO0jpqS/MAqHBEWxvEh+rSvPt75IGlFieR9mrjx08wdu1dBBhulkdMpeayrwHo7tlNWWHHfK1Ly6nYfgRT06fy1OSnSAxNPOT2pNAknpr8FFPTp7Z6hrCwMK677jruuOMOZs+ezaZNm7j66quprq7myiuvPOrjIiIiuP3227n11lt5/fXXycrKYs2aNTz33HO8/vrrANx4442Ul5dzwQUXsGrVKrZv386bb77J1q1bAejVqxdvvvkmmzdvZvny5Vx88cWHnFX/2muv8fLLL7NhwwZ27tzJW2+9RUhICOnp3qtqMjIyWLhwIfv37z9ssC8iIuJvPG43OS9fQh/3NkoJp+K8d4mITWq1/sqCvFe4OYt2tlof7dXWl6+hj2srZYRhXvAvwiKi2zxDeFQcm3p7r+zovek5qipK2zyDtK39W1fT072TetNOt0kXWx2nUfJTTwAgLHuOT9rbs34JxxV/DkDx5IePOqNDSp+RuE2DBEoozt3tk75FmqM9jNlB43YREfFPbpeLXnveB6Cw32UWp/FvQfHdAIhx5lmcpHW4ynMBqAnoCNe1e8UP9n5O7Fm7kfraaovTSHtiejxs/Nc9TNz2CDbDZEncr8m89h1iUzLINroCkPvTAotTSnvVKaaRb46p6VM5Ie0E1uSvoaC6gITQBIYnDm/TaegeffRRPB4Pl156KRUVFYwcOZJvvvmGmJgYysvLj/q4Bx98kISEBB555BF27txJdHQ0w4cP55577gEgLi6OBQsWcMcdd3D88cdjt9sZOnRowzpzL7/8MjNnzmT48OGkpaXx8MMPc/vttze0Hx0dzaOPPsptt92G2+1m0KBBfPHFF8TFef/oPvDAA1xzzTVkZmZSV1eHaR4+tZ+IiIi/2PLGbUyoXkS9aWfH1H/Qo8fAVu2vJjwNqsFe2rkKWUW5uxlT+m88pkHWCX+lX48BlmUZeNZt7Jv1Jl3NXJZ8/DDDL3/csizS+kqXvQXAhtAxZLTiiTS+FDXsLNj7Iv2qV1NSXdmi9RM9bjdB39yJzTBZEX4iPUefetRtg8Oi2GvvSoZnL4XbVvpsCnuR5mgPY3bQuF1ERPzPjsUfMpZCSgkn80QV21siIikDgARPIeVud5vPzNbazMoCAOqDO06xvWuvYRQSTbxRyra1C+l93NHHP9J5eNxutrx2IxML3gNgUZer6H/xYw3LR+ZEjyCjZB/uXYsA/zhJX9qWiu2/wG6zMyp5VJv1d8stt3DLLbc0fB8cHMyzzz7Ls88+e8h2Ho8HgMmTJx9xQGwYBr/73e/43e9+d9S+Bg8ezDfffHPE+4YNG8bKlSsPue3cc89t+Hr69OlMnz79qG0fd9xxrFu37qj3i4iI+IuNnz/LxLw3AVgx5CH6jzql1fv0RGdAPoRW7Wv1vtqT4j1b6QocsCXSb8J0S7MEBgWzf+SddF15G8P2vEFR7k3EJadZmklah8ftpmfuVwDU9D/3GFu3H136jib383iSjULWrvg3fSb/ptltbZn9EhNcm6kyg4g954ljbp8X1oeMir3U7/sR8J+fmXRMbT1mB43bRUTE/4X8+AoAGxLPpH9ImMVp/FtUUhpu0yDQcFNasK/DnYxqq/YW292hCRYn8R3DZmNX+HDiKxdQuXUBqNje6bmc9ez85wwmlM0GYGHm/zHwvP93yDZm+ngo+Yyk4tVWRBQ/oGnkRURERI5gx7IvOW7jg8DPZ7ROu6ZN+g1M6AFAbH1Om/TXXlTne6fNLwlItjiJ16CTLmerozehRh17P/6D1XGklWSvmUcKBVSYIXQf7z+FY8NmY2fsRO83W79qdjtVZSX0Xe8tsK/pfjWxqd2P+Zj6hEEAhBZuaHa/IiIiImKNvOxNDK1bBUDciddbnMb/ORyBFBjeq77Lc3dZnMb3AmuLvV+EdZxiO4Czm3emoOjcZRYnEavV1VSx9/lzOa5sNi7TxuJBDx1WaAdIGjwFgB6unVSWFbV1TPEDKraLiIiI/I+c7Wvp+/11BBhuVoSfSP+LH2uzviNSegKQ7M7F43a3Wb9Wc5fsAaAqJMXiJF6GzUbtiQ8AMKroC/ZtW2ttIGkV9WveBWBj9OQWTcVuBVu/aQBklizB/PkK2qba/dG9xFPKXiOVXtPvbtRjgtNHAJBas7VZfYqIiIiIdYoW/B2AtUEjScrob3GajqHYkQhATUG2tUFaQajTW1QMiEy0OIlvJQ09GYBe9VuoqaqwOI1YpbqilILnz2BE9WLqTQcrxzxD/18d+SSk2NTu7DOSsRsmOeu+beOk4g9UbBcRERH5L2WFOcR8fCGRVLHZ0Y+0q15vWKOpLcSm9sBtGgQbTkrz97ZZv1azl3mfqyuy/UzX3nv0KfwYOg6H4aHyy8PPbBb/5qyrZUDJPABsQy+wOE3TpY88lSoziESK2bNxaZMfn7P9R8bkve/9etx9BAaHNOpxSX1GA5Bq5lNRnNfkfkVERETEGrXVlQzM/xyAmmFXWpym46gM9s7OdvAE8o4k3FUKQFBM+zgp3ldSMvqTRxyBhovsHxdYHUcsUF6US9WLpzK4fi1VZjBrJ79CnxN/eS32fZHDAHBlLWyLiOJnVGwXERER+VldTRW1r51HFzOP/UYSwTM+IKiN17BzBAaRSzwApfu3t2nfVgqt8U6bb4vpZnGSQ4Wf/mdcpo1h1UvZtuLI6+aKf9q59GOiqCKfWLqPOs3qOE0WFBLGljDvWtWVaz9v0mNNjwfPF7cTYLhZEzKWXhMbP4V+eHQ8+40kAPK2rmhSvyIiIiJinZ3fvkE0lRwgnp4T/GcJpfauPqwLAPby/RYn8b1oTwkAYTHtY7k3XzFsNnZHjgSgZquuUu5sinN2wcun0Me1jVLC2XbaO/Qce/oxH+f6efmB+KKVrR1R/FCHLbabpml1BDkG/Y5ERKQ9MT0e9r58Of1cmyk3Qyk5522i4lMtyZJn807RVpu3w5L+rRBTnwtASMKx14xuS117D2Vl3BkABC/4Y7On65b2J2CD96rubYmnYHc4LE7TPNU9vNMfJuc27QDR1gX/YnD9j9SZAYSeNavJ/R4I7QNA7Z41TX6syH/TmLB90+9HRKRjSdj8BgDb08/328+/7ZEZ1RWA4OoDFifxrbqaKiKMGgAi47tYnMb33BkTAIgrWG5xks5ry7w32PrC5Wz97j2c9XVt0mfuzg2EvnkaGZ695BHLvrM/JX3o8Y16bMIg77rtmc4d1FSUtmJK8UcdrtgeEBAAQHV1tcVJ5FgO/o4O/s5ERESstOlfv2d05QKcpp0tk58ntdcwy7KU/Lzmm1m8y7IMbcnjdpPoKQAgKiXT4jSHSzvnQarNIPq4trF+zmtWxxEfqCwrYlDlMgAixlxicZrm6zr6bDymQS93lvfs/Eaoraqg+6qHAFjR5RISM/o1ud/q+IEABBesb/JjpfU98sgjjBo1ioiICBITE5k+fTpbt249bLtly5Zx4oknEhYWRmRkJJMmTaKmpqbh/uLiYi6++GIiIyOJjo7mqquuorKy0icZNW73D/X19QDY7XaLk4iISEvtXr+YPq5t1Jt20qZcZ3WcDsUR652dLaIu1+IkvlVW6J19rt50EB4Va3Ea30sZcgoAPZ3bqFbh1BLdVz3E2NIvGPvDdTie6suml69j36YfWq2/fZtWkPj+maSa+ew1Uii96N+k9hne6MfHd+1FLvEEGG72r/++1XKKf+pwp7DZ7Xaio6PJz88HIDQ0FMMwLE7lWx6Ph/r6empra7G14RqyvmKaJtXV1eTn5xMdHa2Bu4iIWG7TVy8ycf/LAPww4A8MGHuGpXkqAxPACYHluy3N0VZKCnLoajhxmwZxqe3rynaAuOQ01nS7nPF7X6Lr6sepP+EiAoOCrY4lLbB70Tt0M5xk29Lo2m+M1XGaLSqxC9sC+tDXtYUDKz4hdvptx3xM1scPMJECcokn89f3NavfoLThsBuSqw4v4Ir1vv/+e2644QZGjRqFy+Xinnvu4eSTT2bTpk2EhXmXRlm2bBmnnnoqd999N8899xwOh4N169YdMr68+OKLOXDgAHPnzsXpdHLFFVcwc+ZM3n777RZn1Li9/fN4PBQUFBAaGopDVz+KiPi92sUvArA24nh6Jna8q5StFJboHcPGu/MtTuJblUXeYnuJEUWkH36WOZak9F7sM5LpSi67Vs9lwOTzrI7UqZgeD7FmGRhQThhxlDGh4D34/D12/LsHORlnk3b8DKJ89H61a/U8es29gkiqyLJlwGWfkZCc1qQ2DJuN3RHDSK6YS92OhTDuLJ9kk46hQ46YkpO9a4gcHLh3NKZpUlNTQ0hIiF8fkIiOjm74XYmIiFhl58pvGL3uD2DA4qRLGXDmzVZHoj44Eaogsmaf1VHaREnOdroCBUYcUYFBVsc5oj7n3E3hM+/TxcxjyWdPMfz8e6yOJC0Qve1jAPakncFAPz9wlJ96In33bCE8ey7wy8X2/N1bGL3vDTBg54j/R9+wiGb1mdh7DCyGrp4ccipKCY2IblY70jpmz559yPevvfYaiYmJrF69mkmTJgFw6623cvPNN3PXXXc1bNenT5+Grzdv3szs2bNZuXIlI0d617N87rnnmDZtGrNmzSI1teXLrGjc3v7ZbDa6devmt/lFRMSrsqSAoaVzwQDbcddYHafDiU7tAUAs5eRUVxIcGm5xIt+oKc0DoNweTaTFWVrLvqiRdC39kvrt34KK7W2qtqqcOMMJQOm1P7Jx7XwC1r/D4Mql9HTvpGfWkzh3PM360FHUDriQHhPOJTA4pFl9bV/8MYMW3UCoUccmR3/Cf/sp4dHxzWqrvutY2DyX2AKt2y6H6pDFdsMwSElJITExEafTaXUcn3M6nSxcuJBJkyb57RTsAQEBuqJdREQsl7tzAz3nX02g4WJV6ET6XvaU1ZEA8ITGQxEkuDrWmm9HU52fDUBxQDJR1kY5qrCIaH7sfxPxmx6k/7YXqCiZSURM8wZnYq3inF0MqFsHBiRNuNzqOC0WM3w67Pk7/WrWUFxVRnDY0V9FVZ/dQZDhZH3gUPpMubTZfUYldiGPWJKMYnK3rqTHyJOa3Za0vrKyMgBiY73Tf+bn57N8+XIuvvhixo0bR1ZWFn379uXPf/4zEyZ4165ctmwZ0dHRDYV2gKlTp2Kz2Vi+fDlnn332Yf3U1dVRV/eftRbLy8sB7/j1aOPy+Ph4YmJicLlcHW59cJfLxdKlSxk3bpxfXhluGAYBAQEYhtEhj6uI/zi4/2k/lJbyl33J5TFxu1wYhoFp883JTrvmvkA3o56dtnTSBk/C5WrfPwN/4HK5Gv4fFBpBpRlCuFFD4b7tJPcYaHG6/3C5PbhdHlwuE5unaScZ15d4r2yvCojF1c5fN81lZkyAtV+SULjCsuf43/tSe+byeHC73LgMD4bZ8hPWywpz6ALUmQEEhUaQOeEcmHAOe0vy2bfwLZJ3fkIf9zaG1/wAq36gdNX/Y2PsSQSPuoSuA8ZhNPKk+a3z32DMmrsINNysDRpJ3FXvEhQa0ez3wah+x8Nm6FW/hbzKUoKCw5rVTmfnbtjvnTh99LeutTT2c4P/jfiawG63d8iCrt1ux+VyERwc7LfFdhEREatVFOcR/sEFRFPJVntvUq96C1s7+dxgj0gCIJ5ScqoqCG7m1af+wlXkXWu6MiTF4iS/bNAZN7J7y6uke/ax5OMHGX7VM1ZHkmbIWfQGPQ2TjQEDSUnrZXWcFkvtPZwcI5FU8tm94t/0OeGiI263ffHHjKlegsu0wa+eaPTBiaPZH9KbpJofqNm9GlRsb7c8Hg+33HIL48ePZ+BA74HfnTt3AnDfffcxa9Yshg4dyhtvvMGUKVPYsGEDvXr1Ijc3l8TExEPacjgcxMbGkpt75PVIH3nkEe6///7Dbp8zZw6hoaE+fmb+Y+HChVZHEOkQ5s6da3UE6SA6476UsHsxAD+FjsX4tvM9/9a08vv5AAw04ghnH5uXzmHXrv0WpzpcsxZ/yt4MQIkrmAVzZh9jY/9UX+39jJrp2snHn31IQIh1sxIsXDDPsr6tUFuYTX+gjHB++N/3pfABlA4ewNqS/UTkLmFkzRISjRLGF38C33zCzm+6sD5sAvVdxhEYFnPUPlw7v+Ps0lexGSaL7MdR0Hsmu5ctbVFu02OSakYRb5Sx9KN/Epzct0XtdXYL5rX//b66urpR23XoYruIiIjIkTjraql47TcMNHM4QDyOSz9oVwXtgKAwygkjkiqK9m2jS58RVkdqVbZy73T5zoiuFif5ZY6AQAqOu4f0pdczKudfrHwnnqHn39NuTtKQxknd8wUAxZnTad+ndzSOYbOxK3YSqUUfwpav4QjFdmddLSlL/gjAD4nn0t8H7ylVsQNh/w8E5P/U4rak9dxwww1s2LCBxYsXN9zm8XgAuOaaa7jiiisAGDZsGPPnz+eVV17hkUceaVZfd999N7fd9p+lDMrLy0lLS+Pkk08mMrKjTj56dE6nk7lz53LSSSfpJHmRFtBrSXzFX/Yll8eksNaFwzCw++hqv4L1jwEQ12skfaac4pM2OzuXy8XK7+cz6vgpOBwOcjY9C3X7SIkJpm87+hk73R4qnB4SQuwENvFk25/2fgFVEBjXjRNPPrWVElov+/HHyWAfaZFO+p/Q9s/T5XKxcME8Jp04tV3PhuT0eMivcRMRYCPA3vIr27OWfg57odIeydhffM1cidvlYtmKr7D99C5DKhbSw9hPj6r3cG99n/XBw6nocx4ZE88j6L9Oltj8wYMcX/YKGLA05kx6Xv48fXz08921YyjxVd+TYi9sV693f1Jf72T1ogWcOHUqwYGBVsf5RQdnbDuW9vvqFREREWkFpsdD9stXMKb+JyrNEAqm/4uuyWlWxzpMnj2ZSHcWlQe2QwcvtodWec/8N6K7WZzk2PpP/g0rNnzC6PK5jM96ip+e+p7YS18mLjnd6mjSCPu3rmaQeyf1pp1uky62Oo7PBAz4FSz8kF5lS/C43YedALL108eYZOZQRBTdzv2zT/p0dB0O+yGhYotP2hPfu/HGG/nyyy9ZuHAhXbv+52SmlBTvaSb9+/c/ZPt+/fqxZ88ewLue+v+upe5yuSguLm5Ya/1/BQUFERQUdNjtAQEB7bqo0do6+/MX8RW9lsRX2vu+ZHhM7C7Dp8X2CHcpAMHRyTgc7fe5+yOHw4HDEUBNaArUgVG+v139jE3Dg910e3M2sUAaVFfk/SI8CUc7fs201IHYUWQU7cOzcxGOky+zLIfD4WjXP2fT7cHuMHA47E3el47EU10CQJUjmuhjvGYcjgD6TPo1TPo1+WVF7P7uLeJ2fEh/50aG1q2Gn1ZTse5+NsRMJXDUJdT89CXH570JwKLky+l/2ZMtntntv9V2GQfbvic6f0W7er37E7fHu4SYw9G+/yYDjc7nuz1MRERExA9sfPePjCn/BrdpsGHCs3TtN8rqSEdUGtQFAGdBlsVJWl9UvXdK4uCEDGuDNIJhszHwxndZ2u9easxABtetJuyfE9m44B2ro0kjlC57C4ANoWOIiE2yOI3vpI84hUozhHhK2bt+8SH3FR/IZsTOFwHYPPB2wqPifNJnXG/vWt7p7j3U1VT5pE3xDdM0ufHGG/nkk09YsGAB3bt3P+T+jIwMUlNT2br10AlFt23bRnq698ShsWPHUlpayurVqxvuX7BgAR6PhzFjxrT+kxARERGfiTTLAAiO7jiff9ubg7O0BVS2vynkmyuorhgAe0SCxUlalz1zMgDJxSutDdLJuKu8J3PUBUQ16XHhUXEMOOt3JP/fIjadv5BFqVdygAQijBrGln7BiLm/YcLPhfaF3X/HgBl/8WmhHSC6/wkA9KrbhLOu1qdti/9SsV1EREQ6jc1zXmXSnr8DsLTPXfSe+GuLEx1dbbj3ant76W6Lk7Qu0+Mh0e29ejIyOdPiNI1j2GwM+/X/se/82WTZexBDBSOXXs/a56+ktrrS6nhyFB63m565/wagpv+5FqfxrYCgYLaEe08cqvzp80PuK/r494QZtWxx9KXvadf6rM+4lB4UE4HD8JC3fY3P2pWWu+GGG3jrrbd4++23iYiIIDc3l9zcXGpqagAwDIM77riDZ599lg8//JAdO3bwhz/8gS1btnDVVVcB3qvcTz31VK6++mpWrFjBkiVLuPHGG7ngggtITU218umJiIhIE7ic9UTjHaOExxx5dhppOVu0d/weWnPA4iS+E+7yXnkcGN2x95tuw08CoLtnNyX5+yxO03kY1d5ie33g0ddcP5bkHgMZcNksAu7YxMoT3mJ55ClUmUG4TYNF/f7EwN/8yVdxD5HSaxglRBBi1LNv45JW6UP8j4rtIiIi0ilk//gtI1ffBcDihPMZcM4dFif6ZWZMBgChVXutDdLKyovzCDXqAIjv0sPiNE3Ttc8w4m9dxNLECwAYW/QJZU+PY/fG5RYnkyPJXjOPFAqpMEPoPr5jFdsBant414pLzf2u4badq+YypmIuHtOg9uTHDpteviUMm429Qb0BqNi5ymftSss9//zzlJWVMXnyZFJSUhr+vffeew3b3HLLLdx9993ceuutDBkyhPnz5zN37lwyM/9z0tO//vUv+vbty5QpU5g2bRoTJkzgpZdesuIpiYiISDNVlRQA4DENwjvQzE7tTXC8d3agGGf+Mbb0H5GeUgBCO3ixPSo+hSybdyaovWvmWJym87DVek/mcAc3v9je0JbdTuaYafS6/h3Kbt7CrivWMOCs37W43V/qb2foYACqt37fav2If9Ga7SIiImIZj9tNaf5eynK2U5OXhVmcTUDFHsJqcrGZLp/21dO5iyDDyZqQ4+hz+V992nZrCEzoAVshpq7jTEN3JEX7d5AMFBBDeEiY1XGaLDA4lGEzn2fNopPp9v1tZHj2UvfxGazacAvDzrvL59OVSfPVr3kXgI3Rk+kdGm5xGt/rMmY67p/uJdOzi217dxCTkkH0t3cDsDzmdPoMnujzPiti+kPuaux5P/m8bWk+0zQbtd1dd93FXXfdddT7Y2Njefvtt30VS0RERCxQWeJdsqvMCMfuUCmgtYQneYu1CZ4Cqjwevx8Hul0uos1yMCA8vovVcVpdXvxoMvN3Ye5cCFxpdZxOIeDnZQrM0FifthscFkVwWNOmpm+OqpTjIGsJEXm62EK89BdWREREWlVlaSEl+7ZRlZuFq2gnjrI9hFbvI7YuhyRPPvGGs82y7LD3IOnKt/3iIENESi8Akj15VLrdPr0itT2pytsFQJEjCX8uf/abeDalfUez9o3fMrTmB8Zvf4J1T31L/KWvEpvU1ep4nZ6zrpYBJfMAsA290OI0rSMqPoWtAf3o79pE3spPyDMMJrp3Uk4Yyec+0ip9GqlDIfdN4so3t0r7IiIiItIytaV5AFQYkX493mrvYpIz8JgGwYaTA8W5RMX797I75cW5hBsmHtMgKq7jz4gQ2PN4yH+PLiVat72tBDvLALCFxVucpHki+06GrCfpWbOBamc9joBAqyOJxdr/kWYRERFp1+prayjat42KAztwFu7CKMkmuHIvUXU5JLlz6UYV3Y72YANcpo18WzxFASlUhnTFGdUNW3Q3bAHBPs1pOIJIH3M6wX5yRWtMSgYu00aw4WRf3h5iU7tbHalVOIu8a9JXBPv3wQiA6IQuRN36b5Z89AQjtjzJkNpVFP1jAhsnPMGAyedZHa9T27n0Y8ZSRT6xdB91qtVxWk1R1xMhexMJOz8h2eVdb3BtrxsZ2EoH+2J6joI1kOHaRWl9HQGBQa3Sj4iIiIg0T325d1rzSke0iu2tKCAomEIjhkSKKT2w0++L7RWF3rXny4xwgjtBETF9xMm4lxikkcOe/VkkdMk89oOkRUJc3mK7I9w/i+1d+o2h/MtQIo1qtm9ZQfqgCVZHEoup2C4iIiLNtmPZFwz67mqSjfpf3K6IKAocyZQHp1IX0Q2iMwhK7EFkSk9iUnsQHBhEx5+YrGkcgUHk2RLoYuZRun9bhy2228r2AFAf3jH2AMNmY/h5v2f35ikEfHI1PTzZxC2eybItc+h3+dME+eFU+R1BwIb3AdiWeCr9/WBmi+aKGTYdsv9KX9cWAHba0ul75q2t1l9iej8qzBAijBrysn6ia79RrdaXiIiIiDSdp8K7ZntNQMvXRZZfVuxIJNFVTE1+NuDfhbfqEm+xvdQWQ8desd0rPCqOLEcveru3kbNmDgldrrM6UocX7vYW2wMj/bPYbnc4yAoZxLDa5VRu/hZUbO/0Ou6RJhEREWl19Zu+JsSop8YM5IA9hdKgVGrCuuKOTicgvgfhyT2J7dKTkIhoEoFEqwP7maKAFLrU51Gbn2V1lFYTXOVdk96IOer8B36pW7+R1GUsZukbtzKu4APGFn7Izr+swnn2P+jWb6TV8TqVyrIiBlUuAwMixlxsdZxWldJrKPuMZLqa3rU5iyc/THQrXolis9vZHdiTgc71lO9cCSq2i4iIiLQv1YUA1Aep2N7aKoKSwbUFV8keq6O0WF2pdzxR5eg8+01Bwhh6527D2L0IULG9tUWaFWBASLT/HimsSB4N2csJO6B120XFdhEREWmB4OocAFb2upmB595DtLVxOpyqsDSoX4tZvMvqKK0mqs57xnxQfIa1QVpBUEgYw655idXfn0zGotvp4cmm7sNprO77fwz99R0YNpvVETuF3QvfppvhJNuWRtd+Y6yO06oMm43sxKl0zXuLFeEn0nP0aa3eZ2l0fyhYj3FgXav3JSIiIiJNY6suAsAVHGdxko6vLiwVqsBWts/qKC3mqcgDoCaw8+w3Ib0nQ+6bdCtdZXWUDq+upopYow6AMD8utof3PQGyn6NHzU+43G5sdrvVkcRCOsInIiIizRZe5x2AOTrYVcnthSsqHYDAcv8/M/5o4j3eNQQjkzvummj9jz+X2qsXsy54FEGGk3FbH2XbX35FSb7/H4TxB9HbPwFgT9oZneIEhx7nP8iSoY/T9crX2qbDlCEAxJRtapv+RERERKTRAutLADDD/HOqZn9iRnUF/nNRgj8zq7wzIrhCOk+xPX34FJymnRQKyM3eYnWcDq2qxHscyGXaCIuMtThN83XpP5YqM4hoKsnZtsbqOGKxjn+0SURERFpNrMu7/ltoQrrFSTomW1wPACJrOmZRtqKkkEiqAYjt0sPiNK0rNqkrvW6bzZLed1BnBjC05gcCX5rI5oUfWx2tQyvO2cWAOu8V10kTLrc4TdsIDoui36m/JTg0vE36i8r0Th2fXp+Fx+1ukz5FREREpHGCfy6228ISLE7S8Tli0gCIqMu1OEnLOWq8x3o8oZ1nvwkNj2JHYB8Actd+Y3Gajq261Lt/lRkRfn1CfEBgEFnBAwAo3bTA4jRitSbtyffddx+GYRzyr2/fvg33T548+bD7r7322kPa2LNnD7/61a8IDQ0lMTGRO+64A5fL5ZtnIyIiIm3GWVdLvOkduEcmd7c4TccUmtwTgATXAYuTtI7i/TsAKCGS0PAoi9O0PsNmY/j597DrnC/ItqURTynDF17Fjy9dS31ttdXxOqScRW9gM0w2BgwkIa2X1XE6pKQeg6gxAwkzasnP1tXtIiIi7ZnbY1Lr1MlxnUmYyztmD4joPEVTq4QkZAAQ58q3NogPBNUVA2BE+O8U381RnHgcAI7diy1O0rHVlnlfIxVGhMVJWq4scTQAoTnLLE4iVmvyaSMDBgzgwIEDDf8WLz70jefqq68+5P7HH3+84T63282vfvUr6uvrWbp0Ka+//jqvvfYaf/zjH1v+TERERKRNlebtxmaY1JkBRMalWB2nQ4rr6j2rOp5SaqvKLE7jexV5OwEosCdZnKRtpQ8YQ9QtS1kWdw4A4/Lfo/CpCezdutriZB1P6p4vACjOnG5tkA7MERDI7gDvzBQlO1ZYnEZERESOxjRNzvrbYiY/8R25ZbVWx5E2EunxjiOD/XhdZH8RleL9TBxPKfW1NRanaZnQem+xPTCyc+03YX1PACCjYjWmx2Nxmo7LWeldpqDKEW1tEB8I6X08AN2r1mmf6eSaXGx3OBwkJyc3/IuPP3S9l9DQ0EPuj4yMbLhvzpw5bNq0ibfeeouhQ4dy2mmn8eCDD/K3v/2N+vr6lj8bERERaTMVedkAFNjisNnt1obpoMJjEigjDICivdstTuN79UXZAFQEJ1sbxALBoeEMve5lVo17gRIiyPTsIvX9MyjM2WV1tA5j/9bV9HTvpN60023SxVbH6dCKI72znZn711obRERERI6qqt7Nhv3l5JbXcvfHP2GaptWRpJWZHg9RZgUAoTGdb8zV1iJjk6gxAwEoyfXvcV2E2zsjQlB057qwImPoCdSZASRQQk7WeqvjdFjuyiIAagP8f4bDroMmUWcGEEcZB7J+sjqOWMjR1Ads376d1NRUgoODGTt2LI888gjdunVruP9f//oXb731FsnJyZxxxhn84Q9/IDQ0FIBly5YxaNAgkpL+c/XSKaecwnXXXcfGjRsZNmzYEfusq6ujrq6u4fvy8nIAnE4nTqezqU/B7x18zp3xuYv4kl5L4iv+si+5PCZulwvDMDBtRovbq8n3Dh5LHYkEutr3c/cnB5fXOfj/QnsKUe4dlOdsJannECujHcLl9uB2eXC5TGyeZq6xVbIHgNqwLrja+euntfSZeA7FvUZS/OZ5ZHp2se7fTxI94y8+aft/96X2yuXx4Ha5cRkeDNN367WVLn0DgPWho0mLjMWl96lW40wcBMWfElm60fKfs7thv3fi9MHfutbU3j83iIhIx1JY8Z9jq99uLeCDVfs4f1SahYmktVWVFRFneJcNiNBsdK3OsNkosCXQzdxPZe4ukjL6Wx2pWUyPh1izDIzOt98EhYSxPag/A+vXkb9uDl16tZ9jMB2JUe0tttcHxlicpOUCg0PYHtiXgc71lGz8ltReQ62OJBZpUrF9zJgxvPbaa/Tp04cDBw5w//33M3HiRDZs2EBERAQXXXQR6enppKam8tNPP/H73/+erVu38vHHHwOQm5t7SKEdaPg+Nzf3qP0+8sgj3H///YfdPmfOnIZCfmc0d+5cqyOIdAh6LYmvdLp9aedaAArNSLLmf2Ntlg5o5ffzAYgnlt5A/qZlFDrb31m/W1vw2IRi7zTy+TUBLJgz2zeB/FRt3HQyC/7CoNxPmPPlJByBIT5re+GCeT5ry194PB6Oy/0KDMgKG8k+vUe1qtqqAAC61e3gu7mzMdpBkXvBvPa/31dXV1sdQUREOpHCyrpDvn/wy02M7xVPl2jffe6U9qWy2Hu8vdIMITBYv+e2UBqYRLe6/dQV7bY6SrNVV5QQb3hPCo2MT7U4TdsrSx4Le9YRtG8JcIfVcToko9a7TIE7yP+L7QAliaNh/3qC9i8FbrU6jlikScX20047reHrwYMHM2bMGNLT03n//fe56qqrmDlzZsP9gwYNIiUlhSlTppCVlUVmZmazQ959993cdtttDd+Xl5eTlpbGySeffMg09Z2F0+lk7ty5nHTSSQQEBFgdR8Rv6bUkvuIv+5LLY1JY68JhGNh9UAjZnv0xVIEtPpOxU07xQUIB71XIK7+fz6jjp+BwONiaMwfyVpAQWEvvdvRzdro9VDg9JITYCbQ172rkAz89AECX/mPoN/lUX8bzOx7PSeyZ9R7dyCGpditDTr+rxW26XC4WLpjHpBOn4nA0eUKrNuP0eMivcRMRYCPA7psr23etnkuKUUSFGcLYC24lKDjMJ+3KkdXX1lD/3P1EG5X07ptJfFov67LUO1m9aAEnTp1KcGCgZTka4+CMbSIiIm3hYLF9SNcobDaDH/eUctdHP/HGlaMxDOtPlBPfqynNA6DMFolK7W2jKjgF6sAs3Wt1lGYrLcghHqgygwkJi7A6TpuL6Hci7HmBHpVr8LjdWjaxFQTUepcp8ITGWpzEN4J6ToL9L5Ne8SOmx4PRzGNk4t9adNQtOjqa3r17s2PHjiPeP2bMGAB27NhBZmYmycnJrFix4pBt8vK8f/STk4++bkxQUBBBQUGH3R4QENCuixqtrbM/fxFf0WtJfKW970uGx8TuMnxWbA+t8Z4lb0Sn4XC03+ftrxwOh/fnGtMd8iC8el+7+jmbhge76fbmbGaBNMHt/RwYmdoTRzt+7bSNAPb1u4pumx4kM+tN4Pc4AnxTKHQ4HO3652u6PdgdBg6Hvdn70v9yr/sQgI3Rk+kdHu2TNuXoHOEB7HFk0NOdRenONSR3t27KTLfHu/6sw9G+/yYD7T6fiIh0LAWV9QAkRgZz12l9mfbMIhZtL+SdFXu5aEy3Yzxa/FF9eT4AlfYoFdvbiCuiC5SBoyLH6ijNVl18AIASWzRxFmexQvrgiVTPDiLGqGDLllWkDxhjdaQOJ8hZCoAR1jH2sK6DJ+P8zk6SUcyWPVtJzOhndSSxQIuOZlVWVpKVlUVKypHX7li7di1Aw/1jx45l/fr15OfnN2wzd+5cIiMj6d/fP9cwERER6awi672F0sA4HZhpTUFJPQGIqfPfwfqRVFWUEkMFAHFde1qcpn3od+pMiokkhQI2zX/L6jh+Labcu8CBu+dJFifpPArD+wDg3v+jxUlERETkSA6u2R4fHkRmQjh3nOL92/3nf29ib7GWNumIXOUFAFQ7OsZUzf7AiE4DILTmgMVJmq+29OflB+ydc78JDApme8ggAIo2zLc4TccU4ioDwBEWb3ES3wgOi2BHQG8ACjcssDiNWKVJxfbbb7+d77//nuzsbJYuXcrZZ5+N3W7nwgsvJCsriwcffJDVq1eTnZ3N559/zmWXXcakSZMYPHgwACeffDL9+/fn0ksvZd26dXzzzTfce++93HDDDUe8cl1ERETarziPd+AempBhbZAOLjLVOx1zsicPj9ttcRrfKdrnnRmpnDDCozrG2cwtFRwazua03wAQ++PzmB6PxYn8V6zLezJQaGIPi5N0HvVJ3jFfRPFGi5OIiIjIkRRVeYvtCeHe2ZOuGN+dURkxVNW7+f1HP+H5eXYY6TjMau+Yva6DrIvsDwLj0gGIqs+1OEnzucq9Y6nqwI4xxXdzVKaMAyB032KLk3RM4W5vsT0wsuMcCyqKHwmAY+8Si5OIVZpUbN+3bx8XXnghffr04fzzzycuLo4ffviBhIQEAgMDmTdvHieffDJ9+/bl//7v//j1r3/NF1980fB4u93Ol19+id1uZ+zYsVxyySVcdtllPPDAAz5/YiIiItJ6aqvKiKYSgKiU7han6dhiU3vgMm0EGU5K8/ZYHcdnKvJ2AVBgT7I4SfvSY9rvqDUD6OXewbYVs62O45ec9XUkmN414KJSVGxvK2EZIwDoUrvd4iQiIiJyJIUV3mnk4yO8FzzZbQZPnDuE4AAbS7OK+Nfy3VbGk1Zgqy4CwBXUcQpa7V14UgYACZ4Cvz152qzynqRRH9QxrjpujuiBUwHIrFmH2+WyOE3HE+HxznIYHJVocRLfcWROAiCtXDO9dVZNWrP93XffPep9aWlpfP/998dsIz09na+++qop3YqIiEg7U5yzi1SgwgzRVcmtzBEQSJ4tgS5mHiX7thKb2jFObqgv9Bbby4OSSbU4S3sSndCFtXHTOK74M8wlf4Xjplkdye+U5maTZJjUmQFExh15uSvxvZQ+I3F/Y5BglLAjdzexyelWRxIREZH/Ulj5n2nkD8qID+OuU/ty3xebePirLRzfO5FucaFWRRQfC6gtBsDTQaZq9gcxP1+MEGbUUVhaQESs/51cbvt5RgR3aOc91pM+YCzlX4QSSTUbNy6jx5CJVkfqMJz1dcQa3qVLQqM7TrG9y+ATcS826EIe2/bvIL6LlkvsbFq0ZruIiIh0TtUF3qseCu0JFifpHIoCvOXouvwsi5P4UOleAGrDulgcpP2JP+lWPKbBsJpl7Nu21uo4fqciLxuAfFs8Nrvd2jCdSHBYFHtt3tdz4baVFqcRERGR/3WkYjvAZWMzGNM9lhqnm9s/XKfp5DuQ4HrvbE82FdvbTFBIGEVEAVB6YKfFaZonsNY7IwLhHacQ2lR2h4OskCEAlG7Uuu2+VFXqPZnDYxqER3ecY4phUTFkObwF9vyftG57Z6Riu4iIiDRZXaG32F4W0HkHX22pMqwbAGbxLouT+E5g5T4APFFpFidpf7r0GsK6sLEAFM19yuI0/qf25/enUr0/tbm88L4AOPeusTiJSNNs2F/Gc/O3Y5oqMIlIx1VY+fM08j+v2X6Q7efp5EMD7azYVczry7ItSCetIcRVCoAjouMUtPxBkd07DqnO98+lGULqvTMiOCI793iquqt33fbwHK3B7UvVJfkAlBth2B1Nmni73cuP9S6tZt+jfaYzUrFdREREmq7MWyitCdUUzW3BFeUttgdWdJw12yNqDwAQEKuppo/ENuFmAIYVz6Ykf5/FafyLp9T7OqkOTrY4SedTnzAIgJCijRYnEWm8smonl7+ygifnbuNPn2/UFZ0i0iHVOt1U1nnXHT64Zvt/6xYXyt3T+gHw2Owt7CqsatN80joi3KUABHagdZH9QXmQdxziLPbPYnuEyzsjQnBU5z7eEzfwJAB61azHWV9ncZqOo6bMW2yvMCItTuJ79h7eddu7lOrk885IxXYRERFpsoDKHABc4ZoCvC044noAEFmz3+IkvhPnygMgPDnT4iTtU6+RJ7HV0Zsgw8mur56xOo5fcVR4Xyf1en9qc8Hp3jP5U2u2WpxEpPGiQgO45aTeGAa8sWw3t76/FqfbY3UsERGfKqjwFooCHTYigo58JeHFo7sxvmcctU4Pd3ywDrdOPvJ70WY5AKHR/rduuD+rDfMWqW1l/nnSdJRZCkBobOc+eTmt70hKiCDUqGP3T4usjtNhOCsKAai0R1mcxPdSh5yAxzToZu6nVBdNdDoqtouIiEiThdZ4r0o2ortanKRzCE32rvuU6MqxOIlv1NZUEU8pADFdVGw/EsNmo3TYtQD03/ceNVUVFifyH6HV3vcntERBm0vqMxqAVDOfiuI8i9OINN6lx6Xz9G+G4rAZfLY2h2veXE2t0211LBERnzm4XntCeBCGYRxxG5vN4LFfDyYs0M6q3SW8uqTjLGHVGdVWlRFieJcOCI/r3FcotzVPpPc4SVC1/43f62qqiKQagMiEzn3yss1uZ2fYMADKN2sNbl9xVxYBUOvoeMX2iNgkdtm9szceWDfP4jTS1lRsFxERkSaLdnqnfQqK0xTgbSE2rQ8AcZRRU1FqbRgfKNqXBUCVGUxUjKY0PJr+J15MjpFIDBVsmf2i1XH8RmS9t8gbqPenNhceHc9+w3vlVN7WFRanEWmas4Z24R+XjSTIYWPBlnwue2UF5bVOq2OJiPjE0dZr/19dY0K59/T+ADzxzVZ25Fe2ejZpHRVFuQDUmQGEhHW86ZrbM0eMdxm48Npci5M0XVmh98TletNORFScxWmsV5c2HoCoA8ssTtKBVHuL7XWB0dbmaCW5Md7Z3sjWuu2djYrtIiIi0iSmx0O8xzvtU1iiilltITw6njLCACjat93iNC1XnusttufbEzFs+jh6NI6AQHb1uhyAtC2v4na5LE7kH+LdBQCEJen9yQoHQr0nB9Xu0Tp14n9O6JvIm1eNISLIwYpdxVz40g8NV4OKiPizg+9l8eGHr9f+vy4YlcbEXvHUuTzcrunk/VZ1ifcE1FIjUmOuNhaSkAFArMv/ZnqqLPYW20uNKO03QMLgkwHoWbeRupoqi9N0DEZNMQCu4BiLk7QOI2MCACklqyxOIm1N75giIiLSJBUl+YQa3oM1MSndLU7TeeTZUwGoyvX/YnttQTYAZUGazvBY+px2PeWEkWbmsPm796yO0+5VlhURaXinPYxJ1vuTFarjBwIQXLDe4iQizTO6eyzvzDyOuLBANuaUc/4Ly9hfWmN1LBGRFin8ec32uGNc2Q5gGN7p5COCHKzdW8o/Fu1s7XjSCurLvbPRVdijrQ3SCUWl9AAgwSzBWe9fJ+3VlHivxi+zd8xCaFN16TmYQqIJNpxkr/3O6jgdgqPOW2z3hHTMfSxlyFQAenh2U17kf7NbSPOp2N7K1u4t5YNVe6mu15VIIiLSMZTletfuKyKKoJAwi9N0HmXB3vXSnIX+f7DLLN0DQE1oqsVJ2r+wiGjWp/za+/Xq5y1O0/6VHfC+P5USTkhEtLVhOqmgtOEAJFdttTiJSPMN7BLFB9eOpUt0CDsLqzjv+aVkFWgqZRHxX025sh0gNTqEP5zhnU7+qTnb2J5X0WrZpHU4y72zPVU5oq0N0glFxqVQZwZgM0xK8/ZYHadJnGXe4mB1QMcshDaVYbOxK8I7LXjVFq3b7guB9aUAGKHx1gZpJVGJXdhtdAXgwE/aZzoTFdtb2T8X7eSOD39i9J/nc88n6/lpXymmqemXRETEf1Xn7wagyJ5gcZLOpS4iDQB7Sba1QXwgsGIfAJ6obhYn8Q/pp91KvWmnv3MjWWu+tTpOu1aVnw1AoT3R2iCdWGLvMQB09eRQXVFqbRiRFuiREM6H140lMyGMnLJaznthGRv2l1kdS0SkWf6zZnvjiu0A543oyol9E6l3e/i/D9bhcntaK16rq6538dm6AyzLMzrNcVlPlbfY3lHXRW7PbHY7+TZvIbEi179OlvdUeGdEqAvqmIXQ5nClTwQgJn+5xUk6hhCn9/O0PSzO4iStZ3+09wQN985FFieRtqRieysb0jWabrGhVNa5eHv5Hs786xKmPbuY15dmU1bttDqeiIhIkzlLvGdmVwQlWZykczFjvFNih1XvtThJy4XX5gDgiFWxvTHiUjP4MfokAOoWPmNxmvbNWex9fyoPVLHdKlGJXcgjFpthkrt1pdVxRFokJSqED64dx6AuURRX1XPBSz/ww84iq2OJiDRZwcEr2yMaX2w3DINHzhlEZLCDn/aV8eJCPysaekx+2FnEHR+sY9RD87j9w/W8u9POqt2lVkdrE7Yq798rZ1CsxUk6p9IA7/GS2sLdFidpGqPae5KGK7jjFkKbKnnIz+u212+hulInXrZUmNv7MwyM7LgndJjdxgGQWLza4iTSllRsb2VXT+rBd7dP5u2rx3DW0FQCHTY2HyjnT59vZNTD87jl3R9ZllXUac6qFBER/2cr2w9AraYAb1NBiZkAxNblWJyk5WKdeQCEJWlN7caKnnIbAEMrFpK7a7PFadqxMu/JKDUhen+y0v6Q3gDUZK+yOIlIy8WGBfL21WMY0z2WyjoXl7+ygvmb86yOJSLSJP+ZRv7Ya7b/t6TIYO4/awAAT8/bxpbccp9n87XdRVU8NXcbk574lgte+oEPVu+jqt6NYXjvzy6qsjZgG3HUeovt7g46VXN7VxWSDICn1L+mkQ+oKQTADNfJywclpffhAAkEGm52/6hpwVsqwvQuSxIU1XH3scTBUwDIdGVRWaYTdTsLFdvbgM1mMC4znmcuGMaKe6Zw3xn96ZscQb3Lw6drc7jwHz9wwqzv+Pt3O8gvr7U6roiIyC8KrPIWe90RKma1pagu3uJVsicPj9ttcZrmq6+rJcEsBiAmtZfFafxHt/6j+Cl4JHbDJPebp6yO024FVv78/hTZxeIknVtV7EAAAgrWW5xExDciggN4/crRTO2XRJ3Lw8w3V/Ppj/utjiUi0miFFd5ie0ITppE/aPrQLpzUPwmn2+T/3l+Hsx1OJ19R6+S9lXs4/4VlHP/Edzw7fzv7SmoID3Jwwag0Prh2LOcN934+PFDWOY69BtZ7x1wddV3k9s4Z5j1e4qjwr88LwT/vN/ZwLRt4kGGzsSfKOy14zVYt69YSbpeLKLMSgNAOXGyP69KD/UYSdsPkwE/aZzoLFdvbWHRoIDPGd+fr303ksxvGc+HoboQF2skuqubx2VsZ++gCrn5jFfM35/n1WkgiItJxhdflAmCPSbM4SecSk9Idp2kn0HBRkutfU9H9t+KcXdgMk1ozgJgEnbDRFK7jbgRgSMEXlBXpqsojCa89AIA9RksUWMnRdSgACRVbrA0i4kPBAXZeuGQ45wzrgttjcst7a3l9abbVsUREjqne5aG81gU0bc32gwzD4M9nDyQ6NICNOeX8/dssX0dsFrfHZNH2An737o+M+vM8fv/RelZkF2MYMLFXPM9cMJSV/28qj/56MKMyYkmJCgYgp5MU20OdpQDYI1Q0tUSU93hJaPUBi4M0TZizBIDA6GSLk7QvZsYkAOILtW57S1SVFWIzvDM8h8d03GI7wN7I4QA4d2jd9s5CxXaLGIbBkLRoHjlnECv+31QeP3cwI9JjcHtM5m7K46rXVzHhsW95cs5W9hZXWx1X2oGSqnouf2UFryzeZXUUEfkvNfVunl2wg6c32NlZ0Dmmo4tx5gMQHJ9ucZLOxREQSJ7Ne6CkbP9Wi9M0X2mO9+Bcvi0Rw6aPok3Rd9wZ7LRlEGrUkfX1c1bHaZdiXHp/ag/ieo8GIN29h7qazvG3UToHh93GrPOGMGNcBgB/+nwjz87frmXhRKRdK6ryXtXusBlEhQQ0q43EiGAeOMs7c81zC7azMce6dYt35Ffy2OwtjH90AZe+vILP1uZQ6/SQmRDGnaf2YeldJ/LmVWM4a2gXQgLtDY9LjfYW2zvLle0N6yJHJVmcpHMKjPOOR6Lq/esk6UhPKQAhMSnWBmlnUof/vG67c7umBW+B6tICACrMEAKCmn7ylz9xdRsPQFyRllbrLHSEsx0IC3Jw/sg0PrpuHHNvncRvJ3QnNiyQ3PJanluwg4mPf8sl/1zOF+tyqHP577Sx0jKvLs3m+20FPPL1Zg6U1VgdR6TTM02Tf/90gClPfsdz3+5kV4XBVxtyrY7V6twuF/E/TwEeqfW221xxoPdK8Jr89nE1SXPUFnpPGisN1JnyTWXYbOQPmglAn+x/UV+rEzL/m9vlIt7jPfARkZxhbZhOLi6lx/9n777D2yqvB45/r7Yly5L3Htl7kQQSQgiBJIQRoEBpaUtb6GS1FNpSWlpWC6WlpdBS6AJKKfBjr0JIyCQkIYvsaSeO97ZkW3vc3x/XNiPLQ9KV5PfzPDxkWPceO/L1ve95zzm0YUUnhWk4uFXtcAQhojQaibuWjOeWBcoolD8uP8h9b+8jHBYJd0EQ4lNLpx+AzFQDGo004OMsmZzPBRPzCIaVdvL+YOw6cjrcfv6z8SiXPvYhC/64hsdXV9DQ4cWWoueaWaW8fuMc3r91HjecM5J8W8pxj9FT2d4wRJLttrCSbE+xJ3f1aLyy5JYBkBVqUjeQfggFg6TLyvvGmiWS7Z+WXTiCaqkArSRzdOv7aoeTsDwOZfNJhyZN5UiiL2viuQCMDBzE61Jvg5oQOyLZHmdG5Vq58+LxbLjjXB77ymnMHZWFJMG68hZufv5jzrh/Bb95Zz/1Ym11SPEGQvx3o9IyOBCS+fvawypHJAhD2/6GDq7+x0ZufG4bdU4v2u4Fi6OtyX9xdjZVo5dCBGUN9lzRpjnWuszdrfvbErfLSbi9CgC3WczUHohxi66liQyycLB32ZNqhxNXnM01GHquTzni+qQmSaOh2jgagK4jItkuJB9JkrhlwWjuWjIegCc/PMJPX9kpRsEJghCXWrqUyvaBtJD/NEmSuO+yiWRYDOxv6OTPKw9FIrwTCobCrNjXyA3/3crpv1nBL1/fzY5qB1qNxHljc/jrV09j0y/O477LJjK12I4knXwjQU+yvd7pTfqOJAGflzRJWZ+wpIvKdjVkFCjFCVbJkzCV0J3tjWi7W3ynZYpk++fV2mcA4C8XM7gHyt/ZAkCXxqZyJNGXXTyaBrLQSyFqdq5VOxwhBnRqByAcn1Gn5aLJ+Vw0OZ/qNjcvba3hpS3V1Du9PL2hCtAh51Vy/fxRaocqxMCb2+todfkxG7S4/SGe31TFjfNHDvpBSRCE/nG4/fxx+UGe3XiUsAxGnYbrzxlBoc3IT17ZzZEhkGzvaKwEoFnKwKgTtxGxFrSXQTsYO6vUDmXA9J01AITSilSOJDEZjCZ2D/saOUceJW/3P5AvvkG04+/W0aBsQmmWMjDqDSpHI3Smj4eGrWgbd6odiiBEzbVzhmFL0fOTl3fy8tYaOjwBHr16Gia99tQvFgRBiJHmCCXbe45x36UTufG5bfx1dQULx+cyucg+6OMCON0B9tZ3KP/VdbDmYHPvRgGAcflpXHFaIZdOLSTb2v/PJS9NSbZ7AmEc7gDpluS9X+xsayAXCMoaUu1iZrsaTBYb7VhJpxNH3WFSbZlqh3RKHS315APtWDGJ56ljSCPmwZY3yW3ZpHYoCSvYpWw88eiSv7Jd0mg4ap1KXuf7+A6tgdlL1A5JiDKxSp4AijPM3LpwND88bxRrDzXz3w2VvL+/mQffO0h2WgpXTheL1clMlmWe/FBZPP7BeaN4d1c9O2qcPLnuCD9dPFbl6ARhaAiFZZ7fVMUflh2g3R0A4MJJefz8wnEUpZvZVa20VT/S4kKW5VPuqE9knuZKANp1OYgm4LGnyxwGRyDNU6t2KANm9tQBoM0QM7UHatSFN+P6y98ZFq5i6wevMX7eFWqHFBd6r0/6XHF9igNSwVRo+A+ZHfvUDkUQoury04qwmvTc+Nw2lu1t5NqnNvOPb8zAKPZBCYIQJyJV2d7josn5vLs7n7d31nPbizt4+wdnYdT1fZNROCxT0+5hb72TvfWd7K3rYF99B7WOY0cmZloMXDq1kCumFzKhYHCVkCa9llSdTFdQos7pSepku7tdGXHnlKxotGIDmFpatTmkhzpxNx2BcTPVDueUPG31ADg1dkwqxxKPik9bRHCzhhHhI2xa9gyTFn1d7ZASjuxSKtt9hnSVI4kNf9GZsO99MprFBo2hQCTbE4hWIzF/TA5nDU/ne39dysp6Dbe/spNMi4H5Y8X8nWS1vqKV/Q2dpOi1XD2zhOFZFr77n638Z8NRvjdvBLYUvdohCkJS23Skjbvf3MPe+g4ARuemcveSCZw5Mqv3Y0ozzAB0eIO0uwNkJPFDe8hRDUCXSbSiU4MlbyQA2cF6lSMZuIyAsvBjzhmmciSJy5qexce5l3Jm0/9h2PQYiGQ78Onrk0i1x4P0kTNhG5QFj+Dw+9AbREcmIXktHJ/L09fO5Dv/3sKGw6189R8b+cc109QOSxAEAfhkZnuWNXLPqfdeOpGNh1s51NTFn94/xO0nKAbxBkIcbPwkob63voN99Z10+YLH/fii9BTG56cxviCNKcV2zhqZhV4bud1LdiN0BaHe4R108j6eeXvnIttI3s8y/nUYcsFTQaAtMTrT+ZzKs3qXLh2x4nOs9JwiPir8BnPqnmLkpl/imHYe9mwxHq8/NB6lWClotKsbSIxkTJgP++5lpP8AbR4XxhSL2iEJUSSS7QlqSWkYa04hb+yo54b/buO575zBtJKhsSNoqHlynVLVfuX0ImxmPQvG5TIm18qBxk7+s6GSm84VowQEIRrqnR4eeGc/b+5QqnDTTDpuWzSGr55Rgu5zD/spBi12g4zDL3GkxZXUyXZth1JR7beIBwo1pBePASATJzWdDsxWu7oB9VMw4Cc73AoSpBeOVDuchFZw/m0En3mJSb6P2bd7A2UTZ6sdkup6r0/mApUjEQBySsfRKadglTw0lu+gaPzpaockCFF15ogsnv/uLL7x5CZ21Dj5yj83c02x2lEJgiB8UtmeHcFRhBkWA7++bBLff3Yrf1tTwaLxuRRnmD+TVN9b18HhFheh8LHz0Q1aDaPzUhmfn8a4/DTG56cxNj8t6gUl6QaZGpdS2Z7MAh3NALh0dpFsV5HHXAAekJzVaofSJ8FOZZOG1xD/Le/VMvErv+bwH1cxPFzJ1v/eiP2W19UOKaFove0AhFMyVI4kNvKGT6IFO1mSg5pdHzDi9MVqhyREkUi2JyiNBA98YQIOT5A1B5u57unNvPT9MxmZk6p2aEIEHWlxsWJ/EwDXzikDQKORuGH+CH74wnb+te4I1501DLNBfCsLQqR4AyH+te4If1lZjicQQpLg6tNLuG3haDJPsjiRk/JJsn16afJufjK5lYrqcJpItqsh1ZaJg1TsdNFWfRBzgiWv2hqOUiqF8MtaMnJL1A4noeWWjuJj6znM7FpJ58qHQSTbMbmVzVGyTYxYigcarZajhpFMDOyi48gWSLDrlSAMxOQiOy99fzbX/GsT5c0uHunQct55XooyRTcyQRDUE+k28j0WT8zjsqkFvL69ji8+sYHgcZLqoCTme6rVx+VbGZ9vY3i2JaIV632V3v0lqHN4Y37uWAp3t2r26pN3bSIRhNIKoRX0rgTpTNelvG/8pqxTfGBkybLMK4depM3bSqYpi6yUbLJSlP9npmSi08TPfZTBZMZ78V8IvHEp07vW8NHSJ5m8+Dq1w0oYBr9D+YV5aGzokDQaDlumkuVajffQWhDJ9qQmMnQJTK/V8NevnsZX/rGRHTVOvvHkJl65/kzybGKqSrJ4qntW+7ljcxie/clGiosm5fPH5Qc52urmuY+q+Pbc4WqFKAhJQ5Zl3t/XxH1v76WqzQ3AjNJ07r5kAhMLT70XPNsEB51wpKUr2qGqyupTdjobMkSiVC2N2gLsoYO4Gg4lXPLKUX+YUqBZk0WGmB04aOb5t8BbK5nmXEl9bQXZhSPUDklVaT6l7aFOXJ/ihsM+Dpp3IdXvUDsUQYiZkTlWXvr+bL72z4+obHXzizf28vS1pyNJktqhCYIwREUr2Q5w9yUT2Hi4jYYOL5IEwzItjCtQKtV7Euw5VmPcXAPtBmVDQH2SV7bTnWz3G4dG9Wi80qaXwBFI9TaoHUqf6DxKRwTZEttk+0cNG/jd5vtP+Pd2YzpZKVlkdifgs0xZZJmzP/l1SjaZKVmYdLHJiQybPIdN265lTs0/Gb3lbtqmLSIjV2z47gtTwAGAxjI0ku0AnsJZcHA1tsaP1A5FiDKRbE9wFqOOJ785kyuf2MCRFhffeHITL35/tpjjnQSc7gAvbakB4Lo5n51rq9NquH7eCH726i7+8cFhrpldilEnkhaCMFDlTV3c+/Ze1h5UHixy04z8/MJxXDKloM+LAtkm5aH9SIsranHGg4yQ8jVKyS5VOZKhqyOlELoOEmw5rHYo/eZpVGJu1+cjln0Gb/iUuexZOokJgV3UvPMw2d/5i9ohqSozpHQDsuQMO8VHCjGTPxWaXyTduVftSAQhporSzfz1K1NZ8pcPWXOwhZe21nDVDNFTXhAEdbR0KTPbM1MjP+7Mbjbw9g/Oorbdw6jc1LjvvNhT2V6f5JXtWm8rAKEh0qo5XqVklwGQEWhUN5A+MvqUedpSak5Mz7us8l0AxqSPJcecS4unhVZPM63eNkJyEIevHYevnXLHoZMeJ1Vv/WxSPiWLBSWLmJA1KeIxT7z6Pir+uJIRocMc+e/1pN/yBpIm9t06Eo0l5ARAb43thg41pY8/Fw7+lpG+vXT6fegNkd/4JsSH+L4DEvokM9XIM9edzhWPr+dAYyff+fcWnvnW6Zj0IvmayP5vSxWeQIgxuVbmjDx2t9flpxXxyIpD1Du9vLy1hq+eIRJfgtBfnd4Aj644xFMfVhIMyxi0Gr49dxg3zh+Jxdi/H5E5Kcr/Dzcnb7Ld7/WQhwOAtDyRzFKLN7UEukDjOKp2KP0Waq8CwCVmakeMZ+aNsP77TGp4FZfzXiy2obmg5nV3UUAnAOn54voUL2wjZsJOKPVX4AmF0IiOFsIQMionlYuKw7xZpeW+t/Zy1sgsCuwpaoclCMIQEwyFaXcryfZoVLb3HDdax460nsr2WkdyV7YbvErSVDYPnYRWPErLLQMgW26lPRhEq4vvVIzZr7xv9Gm5MTunP+RnVfVKAG6dcTvTck7r/buwHMbha+9OvrfQ4mmmpfv/yu9baPEqv/aFfHQFOukKdFLZcaT3GC8deIEnFz/L6PQxEY3bYDQRWPIY/tcu5jT3Oja++0+mXPTdiJ4jGaWGlWd2ky1b5UhiJ3/UNGUcpNTF/j3rKZs2X+2QhCiJ7yu80GfFGWb+fd3pXPXEBjZVtvHDFz7mr1+djlYTH22ahP4JhsL8e72SRLnurLLjVtYadBq+e/Zw7nlrL0+sqeBLM4rRqTDvShASUTgs88q2Gh5ceqC3pd6CcTncedF4yrIsAzpmT2X70VY34bCMJgmvv+0NR8gDvLKetIzYPXwJn5NeBg1gcVWpHUm/6TqqAQhaRYu1SBk370qObvw1peEadr77GKd9+Zdqh6QKR/0RCgCXbMJsGzot6eJd7vBJeGQDFsnL0cq95I2IfFWJIMSz+QUyVbKN7dVObn9lJ89cJ9rJC4IQW20uP7IMGkmZnT7U9VS2N3Z4CYXlpF03TQm0A6C1Dp2EVjyy5RQTkLXopRCOxioyC+N7DGhaSHnfpKTnxeyc6+vW4Qp0kZOSw5TsqZ/5O42kIcOUSYYpE06SLJdlma5A5zGJ+DU1K9nRvJ07193Ovy94jhSdOaKxl06cxeZt32FO1ROM+/heWqefT2aeKIY7ETkcxiZ3ggQptth2T1CTRqulwjyF6e4P6TqwGqKYbN/9yoPkHX4F/2V/p2DU1KidRzg+kZlLIuPy0/j712dg0Gp4b08jv3xjN7Isqx2WMADv7Wmk1uEhw2Lg0qmFJ/y4L88sIdNioLrNw5s76mIYoSAkrvKmTr7w+Hp+8vJOWrp8DM+y8NS1M/nnN2YOONEOkGkEnUbCEwjR2JmcLem6GisBaNJki/ZYKjLmKHO5M/yJd903e5SYtelipnakaLRaasdeB8Dw8mcI+H0qR6SOru4RBc1acX2KJzq9gaN6ZVGxvXyTytEIQuxpJHjwCxMx6jR8cKiFFzZXqx2SIAhDTHP35vIMiyFpE8v9kWZQrs3BsNy78T4ZWYIOAPTWoZPQikdanY5mjbIRuKMhvsfAyeEwdtkBgCUjP2bnXX50KQALSs9HIw3sOU6SJKyGNIbZhjMz7wwWD7uIr43/Br87+2GyUrKp7DjCH7b8LpJh95r05bs5pB2JDRfN/70eORyOynmSgauzHb0UAsCSPrSuTa78MwBIa4jO3HY5HGbPv3/E2YceZHSonPZN/xeV8wgnJ1aikszsEZk88uWpSBI891EVj6w4+SwTIT49+aHS7uZrZ5ScdBxAikHLt+YqrVL/urqCcFhsrhCEk/EGQnzr31vYUe3AYtByxwVjWXrL2cwfM/ibPK0GitOV1qBHkrSVvK9F6bjh0A+tm+J4YyscBUBeuIlQMKhyNP1j9yuz6kxipnZEjb/gu7RiI58W9r3/jNrhqMLXqnR6cOhF141405Y2FgC5dru6gQiCSoZnW/jJ+Uo11q/f3ktNu1vliARBGEp65rUnSpv3aNNKkGNVvhbJ3Eo+TVbmIpvs4t5Ybe06Zf3E2xLfY+DcnQ5MUgCAtOzYjH3zBN18ULMGgEVliyN+/HRTBveeeT8SEm9WvMbyyqURP4feYCR82eP4ZR3TPBvY8b8nIn6OZOFub1L+LxsxmVNVjia20sYq1ewjPLsivo4XCgY58M9vMbf+371/pu9IvE6YyUAk25PQBZPyuffSiQD86f1D/Pej+P5hLnzW9moHW4+2o9dKfG3WqVvPXDOrlDSTjvKmLt7b0xCDCAUhcf3p/UMcbXWTl2Zi5Y/P4XvzRmDQRe5HYWmm0pLqcEtyJtvDzhoA3CmxaykmHCujYAQBWYtBCtLe3W0gEYRDIXLDysOVPX+EytEkF2OKhf0lXwYgY8ffhuZueodSLeoxx64KQ+ibUO4UANIce1SORBDUc+2cYcwoTcflD/HTl3eKTdKCIMRMa3f1tki2f6LArmySr3ckZ0e6UDCITe4CwBLDduDC8XWZlOeTUHt8J7+crUoXOpdswmxJi8k5P6hZgzfkpSi1mHEZE6Jyjhl5p3PtxG8DcP+m+6jtqon4OUrGzWDzsO8DMGHHb2ipO3KKVwxNHoeyHtQhWVWOJPYKx51Bp5yCVfJQuy9y1e0Bn5cjT3yJM9veICxLbDedDkCqpzZi5xD6TiTbk9Q1s0r5wXlK5dsvX9/N0t0iCZsonlyn/EBeMrmAnDTTKT/eatLzzTPLAPjLqnIxOkAQTmB3rZN/fKC07brvsonk9uH7q7+GdbehP5KkyXZdp/LwFUg98XgLIfq0Oh0NGmV3fEdt4nSwaW+uwSAFCcoaMgtEZXukjbjwh3hkA6NCFRz86F21w4k5fZdyfQqK61PcsQ6fAUCp/9DQ3AgiCIBWI/H7L07BpNewvqKV/26K7wV3QRCSR0tvsl3Ma++R370WUO9Mzsr2LkczWklZG0zNEF3p1OZPVarEtR3xnfxytdYD4NDYYnbOZd0t5BeWLkaSojfm4tuTvs+U7Km4Al38ct3PCIYDET/H5C/9kgO60aThpu2574rnnuPwdzYD0KWN3XssXmh1OipSJgHQsX9VRI7pdXVS//ilnN61ioCsZcP03xM6+ycAZCbg2MlkIJLtSexHC0Zx9eklhGX4wQsf89HhVrVDEk6h3unhnV3Kzc11Z/U9EfHNOcNI0WvZU9fBmoPN0QpPEBJWMBTmjld3EQrLXDQ5n4Xjo9NKray7sj1Zk+0987ZJK1I3EIE2g/LA7mksVzmSvmurVWJtljLQ6cViX6TZsvLZnnWh8pv1f1Y3GBWYPcr9k2QvVjkS4fPyRp2GX9Ziw0VLbYXa4QiCaoZlWbh9sTJW4YF39lHVKtrJC4IQfaKN/LHybMrXoi5JK9td7UrBVQcW9Abx7646m/J8kuKJ7+SX16G8bzq1GTE5X4evg/V16wBYVHZ+VM+l0+i498wHsBqs7G7dxRM7Hov8OfQGNF94Ap+sZ4p3CzveHHrP5Kfi72wBwK2NTeeEeNORp8xtt9QPvrK9y9GC44kLmerdjEc2sO2sxxm36DrsBaMByJFbCfiS82dcPBPJ9iQmSRL3XTqBheNz8QfDfPuZLexv6FA7LOEkntlwlGBY5vRhGUws7PsurwyLga+eUQLAY6sSJ/EiCLHy1IeV7Kp1YkvRc/eS6LSmAhiWpSTbK5M02W7zKy2fDJmnHnEhRJfL0r3hoS1x2pO5m5RY2/SilWG0ZC+8lbAsMdXzETUHPlY7nJiyBxoBMGaJ61O8MZhSqNIp/y6tByPXMk8QEtE3Zpdx+rAM3P4QP3l5h2gnLwhC1LV0dle2W0XStUe+Talsr0vSme2eduW+2CkNverReGTIVNZrbb5GlSM5uWCHEp/HkB6T862pWUkwHGSEbSQj7KOifr781ALuPONuAJ7Z+xQf1W+I+DmKxkxjy4gbAJi060GaqhOnE2EsyC6lENRrsKsbiEpSx5wDwAj3DsKh0ICP42iqwf+PxYwP7KFDNrN30X8YNfdKAOw5hXhkA1pJprVW5IhiTSTbk5xOq+HPV09jZlk6nd4g33hyEzXtYgd9PPL4Qzz3kdJO8Lo5/W+v+52zh2PQathc2S66GAjCp1S1uvnD8gMA/OKicWRHcZGhLFNpI1/V5iYQSr6WUZkhpXOGJVcks9QWtJUBYOxMnDa0odajALhSClSOJHkVjpzEdsscAFqX/1HlaGJHDofJCSvXJ2uuGFEQj1pSlWreUO3Q2gQiCJ+n0Ug8dOUUzAYtHx1p45kNlWqHJAhCkmsWM9uPUWDrntmepG3kAx3KJvmh2Ko5HplzlOeTrHCTypGcnNylPE/5jFkxOV9vC/myxTE5H8D8kgVcPuqLANy1/he0eiK/fj7lqjvZrxtHquSh44XviXbynyJ52gAIxGhDR7wpnHAmbtmInS7qDw3subi5+hD6p85nZOgwrdiovPRlhk1f2Pv3kkZDg1YpcOlqEF3lYk0k24cAk17LP78+kzG5Vho7fHz9yU20ufxRPWe7y8+Lm6v51Ru7RVvzPnr14xqcngDFGSkDanGdm2biizOUSse/iOp2QQBAlmV+/touvIEwZ47I5IvTo9v+PNdqxKTXEAzL1LQn14O7y9lOmqRs1krPE8kstekyhwOQ5o3vuW+fpumoBiBoFTO1o0k39wcATGt/j7amGpWjiY2OtgZMUoCwLGHPK1M7HOE4/LmTAbC27VE5EkFQX0mmmTsuHAfAb5fuT9qOSIIgxIdP2siLMU49eivbncnZYjfUPRfZox+aCa14Y89Tnt1tuPB0OtQN5iQ0buV9EzJnRv1cbd5WtjRsAmBhaXRbyH/eLaf9mBG2kbR5W7lnw52E5cgmw7U6Hbor/4ZX1jPJ9zHbX3s4osdPZFqvkmwPpwzNa5PeYKTcOB6A9r0r+/36ukMfY//vBRTL9dSTTeNVb1E0ftYxH+foHjvpaxLJ9lgTyfYhwmbW8/R1MymwmTjc7OK6pzfj9gcjeo7mTh/PbjzK1/75ETN+8z4/fWUnz2w4yjee3MS3/72Fo61iEeFEwmGZJ9cp7XW/eeYwtBppQMf5/rwRaDUSHxxqYUe1I4IRCkJiemVbLevKWzDqNNz/hUlI0sC+t/pKo5F6q9uPtHRF9Vyx5mg4DIATCylWu7rBCFjyRwKQE6xXOZK+M7uVjQFSuuiMEE0jp5/Hft1YjFKA6veGxpw4Z333iALJhsGUonI0wvFYyqYDUOQ9qHIkghAfvnp6CXNGZuINhPnxSzsIiXbygiBESYuobD9GfvfM9uZOH77gwFv5xi23MhfZZ4zN7G3h5Cy2dDpQ1onaG+J3DJzBq1R5S6n9LwDrr5VV7xOSQ4zLmECxtSTq5/s0k87Er896EKPWxMb69Ty37z8RP0fhyElsHa1sgp+69/c0VO6P+DkSkcHnUH4Rgw0d8cqZq8xtT6nd2K/XVe38gMJXLiOXNiqlIlxfX0re8InH/Vh3ajEAUnvloGIV+k8k24eQfFsKz3zrdOxmPdurHdzw322DbnNc7/Tw1IdHuOpvGzj9/ve58/XdrCtvIRSWGZefxhemFaLTSLy/r5GFf1zL79/bj8sX2SR/Mlh7qJmKZhepRh1XzRh45W1xhplLpyq7l8TsdmGoa+70cd/bewH40cLRlGVZYnLe4dnKeQ43J9cGI1dTJQAtmmx1AxEASC8aDUAGHbjjeHf8p9n9DQCYssvUDSTJSRoNHaddD8CEupcJBXwqRxR9nuZKAFp1OeoGIpxQ/pgZhGWJLBy0NRxVOxxBUJ1GI/HgFZOxGLRsOdrOUx/G7+K7IAiJKxyWeztbRnOcWqLJsBgw6JQl8UZn8t0ra7pbNQdNQzehFW+au9dRXI3x+/M+xa+8b7TW6K/5LKtUWsgvimEL+U8bYR/JrdN/AsBj2x9lb+vuiJ9j6pV3sFc/EbPkw/Xi9wc1oztZGANOADRDONluGnU2AMNc2/s8YqDio3cY9b8vkU4nB7Sjkb/1HhkFJ+44GrIpG1hMXdWDD1joF5FsH2JG5lh58pszMek1rD7QzM9e2YUs928XfXWbm7+vreALf/2Q2Q+s5J639rLpSBuyDFOKbNy+eCyrf3wO7/5wLg9/aSpLb5nL3FFZ+ENhHltVwXl/WMMb22v7fd5k9uSHlQBcNaMYq0k/qGPdcM5IJAmW7W3kQENnBKIThMR079t7cXoCTChI49tnxa7t+bDupH5lknXzCLQqs8E7DNHf5SycWqotk3asALRVx/8uaTkcJjuktKVLyx+hcjTJb/y5X6FWyiWdTqhap3Y4URdsU65PncY8lSMRTsRksVGlUUZItBzcrHI0ghAfitLN3Hmx0kry9+8doLwpuboiDWUef0isdwhxod3t7+2ckWERbeR7SJJEQW8r+eQa/wag765QlodwQivedBiU5xR/97pKPEoNKsl2oz26z1SNrga2N28DYEGMW8h/2mUjr+C8kkWE5CC/WHc7XYHI3odptFqMX3wct2xkon8H2199KKLHT0TmoAMArTVL3UBUVDRpLj5ZTxYOGg7vOuXHH1j1ApNXXotF8rLLMAXL95diy8o/6Wv0WcqaWyKNnUwWItk+BJ1Wks5fv3oaWo3EK9tqeHDpgVO+pqK5i8dWlXPxnz9g7u9Wcf87+/m4yoEkwYzSdO68aBzrbp/PGzedxfXnjPhMBenIHCvPXHc6f79mOsUZKTR0ePnhC9u56m8b2FPnjOanmhAONXay9mAzkgTfPLNs0McbmZPKBROVG6O/rhbV7cLQtHJ/I2/tqEPbXTWk08bux92wrFQAjiTb/M0OZfazx3zymzohdpq0yr9FV338X+udrfWYpe4WlgXDVY4m+Wl1Oo6OvhaAGR1LCQWTu6uQ1H198poLVI5EOJnG1LEABKq3qRyJIMSPL88sZu6oLHxB0U4+WayvaGHcr5by+BoxJ1NQX8+89nSzHn0Mn4kTQb5NGT1Un4TJdpO/HQBN6tBNaMUbj7k7ge2M30pTu6ys0ZszovtM9X7VewBMzT6NXLN6xRySJPHzM35JvqWA2q4aHtz0m4hvlCsYPpHtY38EwLT9D1N/eE9Ej59oUsMdABhtQ7djpjHFwiGD8lzctmfVST927/8eZ+bGmzBKAbalnEnW9W9j7sNYT0uekmzPCTUMOl6hf8Sd1hB17thcfnv5JACeWFPBv9Z9to2NLMvsb+jg4eUHWfTwGs77wxp+/94Bdtd2oJFg9vBM7r10AhvvOI+Xrz+Tb88dTlG6+YTnkySJRRPyWP6jefx40WhS9Fo2V7az5M/r+MVru3rbWg1FPVXti8bnUpJ54q9hf9xwjjLL960ddVQmW8JPEE6hyxfkzteUFlDfPmsYEwttMT1/T2X7kSRrI2/oqgMgaBXJrHjhTFGqRIOth1WO5NTaapUF5yYyMJgi87NOOLkxF3yfDiyU0Ejlzg/UDieqjK56AOS0QpUj6R9/yM97lW/zu833cLQjfltKRoo/W3n2MEehTaMgJCpJUjaGWo06tlc7+McH8f8zXTi55XsbAfjPhqOiul1QnZjXfmL59u7KdodX5Ugiz9JdPaqLQTtwoW9CVmVkaM+6Srzxe92koaxhpWVGt8BiWaWSbFerhfynWQ1p3Dfnt2glLe9VvsP/Dr8Z8XNMufzH7DZMwSz58L40dNvJy+EwNlnpwGsewsl2gPbsmQAYataf8GP2vPwAZ+36BTopzEdp51N0w6sYU/o2HjWzaBQAdrrocrYOPmChz0SyfQj74oxifrp4DAD3vb2XN7bXsqvGye+W7ufcP6xh8Z8+4JEVhzjY2IVOI3H26Gx+e/kkNv9iAc9/dxZfn11GbpqpX+c06bXcdO4oVtw2jyVTCgjL8N+Pqpj/0Gqe2VBJcJAz5BNNu8vPq9uUaqzr5kSuzfXEQhvnjMkmLMPf1ood9cLQ8tB7B6hzeinJMHPLgtExP39Psr3O6cXjT56baLNX2RGpsRWrHInQw2dV5jDpHPE//9jVqCQP2nRiDEGsmFNtHDZNAMB1dLu6wUSZ1adcn7TpJSpH0jfN7kb+tesxrnprMfd/dCf/O/waN634JrtbdqgdWlSZSqcDkO85qHIkghBfCuwp/HKJ0k7+j8sOcqhRjAJLZD2j3OqdXnbWiE5+grp6ku2ZqaKF/OcV2pXK9jpH8lW2W8PKtcdoF89e8UJjV9ZRLN56lSM5PmerEldA1mK1Ry8RWt1Zxb62PWglLeeWLIjaefpjcvYUvjv5BgB+t/l+jnZURvT4Gq2W1C/9DZdsYnxgN9tffjCix08UPk8nJikAgCV9aF+bjKPmAVDW+fExc9vlcJg9z97O3PLfA/Bh1hcZ8b1n0en7/nM8xWqnFaXwrL1GPHvHkki2D3HXzxvR27r8hy9sZ8lf1vHX1RUcaXFh0GlYMC6Hh744ha13LuSZ607ny6eXkBmBHbEF9hT+fPU0/u+7sxibZ8XpCfCrN/Zw8Z/XsaFi6Oy4eW5TFb5gmAkFaZw+LCOix75pvlLd/vLWmqRsiyUIx7P1aDv/3lAJwP1fmESKQRvzGNLNemwpeiC55rbbA00AGLNKVY5E6JWubNIyu+K3FV2PQJuyIaAzRYwhiCWXXWlPpmlO7nZ1GUHl+mTOKVM3kJOQZZndLdu5Z/3tfOnti3hm7z9o97WRnZLLcNsoOvxObl39PTbUrVU71KjJHXM6AAVyE51tjSpHIwjx5YvTi5g/Jht/KMxtL+0YcpvQk4Usy+yr7+j9/Xt7RPtOQV3NnaKy/UQ+aSOfXJXtcjjc2w7cEuXZ20LfGbPLAEgPxOc9cFeLkmxvl2xoojhyYlnlUgBm5J1Ohikzaufpr6+Pv5YZuafjDXn5xbqf4g9FtgNvbukYdoz/MQCnHXyE2vJTz+pONl1tzQD4ZR0pljSVo1FX0eSzCchacmmlufqTZHg4FGL/k9czt+YfAHxQ/D3GXvc4Gm3/17abdcr135UAYyeTiUi2D3GSJPGri8ezZIrSFtik13DBxDwevXoa2365kH9+YyZXTi/CZtZH5fxnDM/k7ZvP4r7LJmI369nf0MnV/9jIjc9tozYJd5d+mj8Y5pnupOC3zhqGJEkRPf6MsgzOGJZBICTz97WiHaGQ/PzBMD97ZSeyDFdOL+KsUerMJ5Mkqbe6PVnGOMjhMDnhFgCsuWXqBiP0MuUoc5gy/fHZiu7TNN2z6fypRSpHMrRo8pXK9vTO5N3NHPB5yZKVuZS2vOEqR3MsX8jH0iNv8t3lX+HGFd9kZfV7hOQgk7NP454zf88LF/+Pvy54hjPy5+ALefnFuh/x7pE31A47KlLtWdRKShVD44FNKkcjCPFFkiQeuHwyaSYdO2uc/E08vyWk5k4f7e5A7+9Fsl1QW8/MdpFsP9YnbeSTa+3R3enEICkd9lIzRbI9XqTlKhvls8MtcdlG3ONQku0d2vSonmf5USXZvqhU/Rbyn6bVaLnnzN9gN6ZzsP0Af/744YifY+oXfsQu4zRSJD+BV75HKBiM+DnimduhbDRxSlYkzdBOSZosNsr1SifWlt0rAQj4fVQ88VXmtLwEwNpRtzPhqw8M+GvVYUqcsZPJZGi/swUANBqJR740lTdunMO2Xy7k8a9N55IpBaQadTE5v06r4ZpZpay67RyumVWKRoL/7aznvD+s5tEVh/AG4u8mJBLe3V1PY4ePbKuRiyZHp9LvpnOV6vbnN1X1tg8ThGT1+OoKDjV1kZVq4BcXjlM1luHdyfbDSZJs72ipxygFCMsS6XllaocjdEsrVG7Oc8ONcf+gZnIpGwIke2K0+U4W6cNOA6A4cCQuF3Uiob2hEo0k45P1pGXFT+eEJncj/9z1F7741mIe2PQrDrbvw6A1cuGwy/jnohf487lPck7xQnQaHSm6FO4/60+cX3YxITnEbzfdxXP7nkrKWb/1ZmWElbdqm8qRCEL8ybOZuPsSZZPUn94/yP6GjlO8Qog3+7pbyOfbTOi1EhXNLsqbulSOShjKetaBsq0i2f55ydpGvqtdSZq6ZCMmc6rK0Qg97HklhGQJgxTC0VyjdjjH8DuVRKhbH71ke4XjEIedFeg1es4pPjdq5xmobHMOd82+D4D/O/AcH9SsjujxJY2GtC//jS45hXGBfex46f6IHj/e+TuVAp5OzdCuau/RmjkDAF3Vh/g8Lmofv5wzOpcRlDWsm/JbJl5x+6CO77Mqoyt0zqpBxyr0nUi2C4CScJ9SbMdsiE2C/XjSLQbuu2wib988l9OHZeANhPnj8oMs+OMalu5uSKoFR1mW+de6IwBcM6sUoy46ra7PGpnFlCIb3kCYJ7vPJwjJqLypk8dWKa1x7loygXSLujPpeirbjyRJst3RqFw/WiU7eqNJ5WiEHhn5w/DLWgxSiPb6SrXDOSmbT1n0MWaVqRvIEJM7bBxeWY9F8tFwdJ/a4URFZ2MlAM2aLNV3yMuyzM7mj7lr/U/48tsX8p+9/8TpayfHnMf3Jv+Ql5e8x+2n382o9LHHvFan0XPH6fdx9dhvAvC3nY/wl49/T1hOrlbS7qyJAJiad6ociSDEpy9MK2TBuFwCIZnbXtxBQLSTTyj7u1vIn1aSzpkjlC5borpdUFNPsj1LzGw/Rr5Nea7t8AZx+eJ743J/eNp7qkdtKkcifJpOb6BZUtqmdzTE3/psuFN533gN0WvtvqzyPQBmF5yF1RCfCdc5hXO5euzXALh34100uSPb9j+neBS7JilJ1Bnlf6Hm4PaIHj+eBTqVNvJunbg2AehHzgWg1LmF1scv4jTPBryyns2z/8L4C747+BMk0NjJZCKS7ULcGV+Qxv99dxZ/vnoa+TYTNe0evv/sVq751yYONXaqHV5EbD3azs4aJwadhq+eEb0qP0mSuLF7dvt/NhzF6Qmc4hWCkHjCYZmfvbILfyjMeWNzuDhKnSL6oyzJku2eZmXedpsuW+VIhE/T6nQ0apSWzM66+G0TLofDZIeUh9S0/Phr853MdDoDRyRlR3NreXJWEvtalOtTuz5XvRiCXt45/DrfXvZlbl55LaurlxOSQ0zNns59c/7A8xe9zVfGXYvNaD/pcSRJ4vtTbuHGqbcB8PKh5/j1xp8TCCXP/ZuhaBoAea74vWYJgpokSeL+y5URa3vqOvjrqgq1QxL6YX93ZfvYPCvnT1DaNy8TyXZBRa2ijfwJWU16rN0dPeudyVPd7uuuUO7SioRWvGnT5QDgaa5UN5DjkFxK1XEwJTrjGGVZZtnRdwFYVHp+VM4RKTdO/SFjM8bh9Dn41Yc/JxSObIe4KZfczA7TDKV75KvfIxiI7Hz4eBXqagXAq7OrG0icKJh8HiFZIp9mJvp30iWnsPu8pxlzzpcjcnxjtrL2luGvj8jxhL4RyXYhLkmSxJIpBay4bR43nzsSg07DuvIWFj/yAfe8tSfhk8ZPfqjsYvzC1EIyo/zQs2BcLmNyrXT6gjyzvjKq5xIENfx3UxVbjrZjMWi577KJSJKkdkhJV9kealPaDnUa1EtmCcfXZigAwNsUv4vxnc5WrJKygJVZOFLlaIaeer2SbA/U7lA5kugIO5Sd2q6U2M+kbHI38Pedj/LFtxbz4Oa7KXccwKg1cdHwL/Dk+S/yyLn/4uyi89Bp+tc56qox13DnGb9BK+lYUbWUn31wM+5Acvw8yRlzBgBF4TrcnQ51gxGEOJVjNXFPdzv5P688xJ46p8oRCX21r7uyfWx+GgvH5yJJsKPGmVSJPCGxfFLZLpLtx9Mzt73W4VU5ksgJ9lSP6u3qBiIco8ukPK+E2uOvrbPeoyTbZUt0ku372vZQ21WDSWtibtG8qJwjUgxaA7+e8yBmnZltTVt4es8/I3p8SaMh/eon6MDMmOBBdr54X0SPH68kTxsAfmP0RhUkEostnQrdCADasFJ+8YsMP/2CiB3fVjgKgLxwY9KOFIxHItkuxDWzQcdti8bw/o/msWh8LqGwzFMfVnLuQ6t5YVMVoXDitZavbnOzdLeyu/3as8qifj6NRuKG+crF+8kPjyRVeyxBqHd6ePDd/QD8dPFYCrrnrqmtJ9ne5vLjdCf25iAAqaMWAK+lQOVIhM9zWYqUX7QdVjeQk2irVUY8tJFGisWqcjRDj9OkJNvNbcnZRl7XqVyfAqmFMTmfLMvsaNrKrz78MV9++yL+u+9JnH4HeeZ8vj/lFl5e8h4/nXkXI+yjB3WehWUX8eDZj5KiS2FL40ZuWfUd2r1tEfos1GPPKaKRDDSSTMOBzWqHIwhx65IpBSyekEcwrLST9wdFO/l4FwiFqWhW5rOPzbOSbTUyvURZUF62J7JtaAWhL2RZ/qSyXcxsP66e9YP6ZJrb7lKS7T5DhsqBCJ/ntyjPK9ru9ZV4YvQrzxkaa3QKLJZVLgVgbtE8UnTmqJwjkkrSSvnpzJ8D8I9dT7C9KbJd4rILR7B3snL8mYefoOZAcnah+zRNd7I9ZLKrG0gcaZ/1U7aY51J3xRuUTJoT0WOn5w8jIGsxSEEcjfG3wSdZiWS7kBBKMs38/eszeOa60xmRbaHV5ednr+7issc+ZOvRdrXD65dnNlQSlpV56mPzYjOj5qJJ+ZRmmml3B3h+k7jACtHxx2UHmP/Qal7aUk04BhthZFnml6/vpssX5LQSO1+bVRr1c/aVxagjN01Z0DjSmvjViAa30nYonBabZJbQd0Gb8r43dsbvtb2zeyZdizb2lccC+FOVcTV5nnKVI4kOs6dO+YWtOOrnOtS+n2+99yV+sOpbrKl5n5AcYlrOTH495488d9HbXD32m6QZI9eyc2bemTx8zj+wGdM50L6XG1d8g7qumogdXy21KcpGBE/lFpUjEYT4JUkSv/7CRDIsBvY3dPKXlYfUDkk4hcPNLgIhmVSjjqJ0JYHX00pezG0X1NDhCeIPKRt1Mi1iZvvx5NuU79U6Z/JUtktupVVzwCSS7fFGtikb5U3u+GvrnBpQEqFGW+ST7WE5zPtHlXnti0ojV7kbbRcOX8IFwy4mLIf55Yd34PRFttPQ5IuvZ3vKLAxSEN1bNxEOJXdxnN6n5G/klEyVI4kfo+ZeyfAfvEHBqKkRP7ZOb6BJo3SqcNSKEW6xIpLtQkI5e3Q2S285mzsvGofVqGNXrZMrHl/PrS9up6kj/m+Ou3xBXtistDu9LgZV7T10Wg3Xz1Oq2/++9jC+oGgfIkTeK9tqOdLi4icv7+QLj69ne7Ujqud7Z1cD7+9rQq+V+O0Vk9Fq1G8f/2mftJLvUjmSwbN6lQVCnT36ySyhf3SZyhwmmzf+dsf3CLRWAtBpEsl2NWjTle/bfJrpcraqHE3k2fxNABgzS6J6HlmWeXDT3VQ4D2LUmrhkxJU8df7L/Gn+P5hbdC5ajTYq5x2XOZHHznuaPEsBtV3V3LjiGxxq3x+Vc8WKK2MiAIamnSpHIgjxLSvVyH2XKt8vj62uYFdN4rSTd7oDLN/bOKSeO/c3dLeQz7P2jrXqSbZ/dKSNdtfQmMkqxI/m7hbyVpMOkz469ymJrsCmtJFPpsp2fXcnJNksElrxRpehPK9YffG3ASst7ADAlB75Z/btTR/T5GkiVW9ldkFkq3ej7aczf06xtYRGdwO/+ehuZDlyhUWSRkPW1Y/jxMKoUDna8ncidux4ZAwo97Eai7g2xUqrvmfsZPx2wkw2ItkuJBy9VsO35w5n5Y/P4aoZyq7AV7fVMv+h1fxtTUVct9h7eUs1nd4gw7MsnDM6J6bnvvy0IvJtJpo6fby8NfGrooT4EgrLNHRveDHpNeyodnDZYx/yk5d20Nzpi/j5nO4Ad725B4AbzhnJ6Nz4a009LCsVgCPNiV/ZnhFUklkp2WXqBiIcI7VAmcOUHYy/3fE9JKdSde9LLVI5kqFJb7RQj7Kjue5A8lUSZ4WU65M5pyyq59ndsp1Djv0YtEaeu+hNbptxJ8PtI6N6zh7F1lL+et6/GWEbTZu3lR+s/BbbGhO3BbuuaCoAWV0H1A1EEBLARZPzuWhyPqGwzG0vbU+I5PXWo21c8MhavvPMFp7dGL+ddyJtX30nAGPyPnkuKck0MzbPSigss2J/k1qhCUNUz7z2bDGv/YR62sjXOZMn2W70d3f/tGSrG4hwDEuO0pWu5/klXoRDIeyysmEsLTPyowOXH1VayJ9TPB+DNrG6bFj0Fn4950F0Gh2rq1fyyqGXInr8zIIy9k39JQDnu97A6078Yp0TMQcdAGitWeoGMoS4zMoanNx2ROVIhg6RbBcSVrbVyO+unMLrN85harEdlz/EA+/uZ/Gf1rLqQHzduACEwzJPra8E4No5ZWhiXIVr0Gn47tlKBeQTayoIhuJ3U4KQeJo6vYTCMnqtxOofz+eK05Qf6C9treHch1bzzw8OR3QjzP3v7KOly8fInFRumD8iYseNpGFZyhyqwy2JnWwPBvxkycrueGtembrBCMdILxwDQAaduJzxOVbF1NVddW+PbuWxcGINKUpS2HV0u7qBRFiXsxWrpCyOZhQMi+q5Xj30AgALSy4kKyW2GyYBMlOyefTcfzE1ezruoIufrr2B1dXLYx5HJGSOPh2A0lAVjs5mOv0dKkeUfB544AFmzpyJ1WolJyeHyy67jAMHjr+5QZZlLrjgAiRJ4vXXX//M31VVVXHRRRdhNpvJycnhJz/5CcFgcre4jEf3XTqRrFQDBxu7eOT9+G0nHw7LPL66gqv+trG3JfOmI8nXUeVEeivb8z87Kk60khfU0pNszxLJ9hPKt/dUtsd/p8y+Sgk4ANClimR7vLHnK2tXGXTEVVK1s60RnaSs16Vl5Uf02MFwkBVVyjPLorLEaSH/aeMyx3PT1FsA+NPW31PeHtl7sckXfodOOQWjFKC1tiKix44nqSHlPsmYJq5NsdIzdtLQMXQ2v6pNJNuFhDe12M6r15/JQ1+cQlaqkcMtLq59ajPfenozlXGU5Fq5v4mjrW7STDouP02d6r4vzywh02Kgus3DmzvqVIlBSE513W3XctNM5NlM/OGqKbx6w5lMLrLR6Qvy6//t44JH1rL2YPOgz7W+vIX/26KMY/jt5ZMw6uKzJV5vZXscXYcGwtFQhVaS8cta7NmiMjneWGzptKFUULXVxGdraatPqbo3ZJapG8gQ5rKPBUDTuFvlSCLLUae0Q2vHiskSuVnpn9fsbmRNzfsAXD7qy1E7z6mkGqz8bt5fObvoPALhAHev/ymvHfo/1eIZqPS8Mlaa0rkr285V717Eiwf+o3ZISWfNmjXceOONbNy4keXLlxMIBFi0aBEu17H3JH/60596W15/WigU4qKLLsLv97N+/Xr+/e9/8/TTT/OrX/0qFp+C8CkZFgO/vmwSoGyajvaopoFo7fJx7dObeXDpfkJhmWkldgB2JlDr+8Ha313ZPi7vsx23epLtaw824/aLzSpC7LR0d5jLsiZWJWksFdg+qWyPZHtoNVm724EbbCKhFW8stkxcsrLBw1EfP5WmzhZlfdhBKnpDZDfnbGnchMPXjt2Yzozc0yN67Fi6euzXmFMwF3/Yzy/W/RRvMHLdMCSNhiZtLgAdDeURO268SZOV+yRTmqhsjxVN9xqcNY7HTiYbkWwXkoJGI3Hl9CJW/Xge3z17ODqNxIr9TSx6eC0PLt2Py6f+Q+2/1ik3UlefUYLFqFMlhhSDlm/NVSq//rq6gnA4OR4mBPXVdu8E72nDBnBaSTqv3zCHB6+YRKbFQEWzi68/uYnvPLOFqlb3gM7jDYS447VdAFwzq5QZZRmDDz5Kema2V7a4EvrBvbNJuXY1a7LQaONzY8NQ16xTdp+76uPzwSw71AiANW+4ypEMXdp8ZeZvRudBlSOJLHdTJQCt2uguJr5Z8TIhOcSU7OmMTB8T1XOdilFr5O7Zv+OSEV9ERuZP2x7gX7v+mhA/Z+pdtTy952989d1L+WG+lTetqfhkP3taxez2SFu6dCnf/OY3mTBhAlOmTOHpp5+mqqqKrVu3fubjtm/fzh/+8AeefPLJY46xbNky9u7dy7PPPsvUqVO54IILuO+++3jsscfw+8Xs6VhbPDGPS6cWEJbhthe34/QE1A6p18bDrVz46AesOdiMUafht5dP4tlvnYFGgnqnl6bO5KkYPZF2l793pNbozyXbx+VbKUpPwRcMR2TjsSD0VUuXcq0Wle0nltc9s90bCNPujp/r6mDYwsompxR7rsqRCJ8naTQ0dz+3dDXGzwxld5vSecWpsUf82Msq3wXgvJKF6DTqrIVHgiRJ/Gr2vWSlZHOk4zAPb/19RI/vNCrt+/3NlRE9brzwez1YJOU+KTUjT+Vohg5zrtLhMCsQv2Mnk03iXuUE4TisJj0/v3AcV80o5t6397L2YDOPr67g1W013HHBOC6dWnDcyo1o21vXwYbDrWg1El+fXRbz83/aNbNKeWJ1BeVNXby3p4ELJkW2RZAwNPVUthd+KtkOykaYL80sYfHEfB5dcYin11eyfG8jaw428925w7lh/gjMhr7/KPrT+4c42uomL83ETxerm/A4lZIMMxoJXP4QzZ0+ctJMaoc0IN6WowA4dNmknOJjBXU4TYXQdZBga/w8sPdwdzrIRGmRl1kYnyMfhoKMEdNgGxQHKwkFg2h1yfEIEGhT2qF1GHKJ1tYrX8jHmxUvA+pWtX+aVqPl1uk/JzMli6d2P84ze/9Om7eFH03/edwtYnmDHtbUrGDpkTfZ1rSp989NspaLupyMYBoXXvWEihEODU6nsvCekfHJd4rb7eYrX/kKjz32GHl5xy56bdiwgUmTJpGb+8li/fnnn8/111/Pnj17mDZt2jGv8fl8+Hy+3t93dCjtIgOBAIFAciQx+qPnc47U5/6LC0azvryFimYX5/x+FT84dwRfmlGEXqtODUUoLPP4msP8eVUFYRmGZ1l49EuTu2eWy4zItnCoycW2ylbOGxv78RuxtKdWGeVTZDeRoj3233zhuByeWn+Ud3fVc94YUdHVX5H+XhoqmjqUZ/T0FJ342nX7/HtJC2RaDLS6/FS1dGI1pJ3k1bETDMuEgkEkSULuxwhKn6eLDEn5OZxiyyYYFP/u0dQzWqc/I3Yc+lzwVeNtrozZv08wFCYUDBMMymjCx94zeB1KZXunNoOMCF4r/CE/q6pXAHBu0QKCCX4dsmqt3HXGfdy8+vu8Xv4qXx39dQpSCyNybI+lEDyA42hcf52C4TChYIigFEaS+37/6WypJQ8IyhoMZqu4NsWINU8puMyhjeouB0aTReWIPivUew0NEIjxuOX+6ut9VHytxghChIzMSeXf185kxb4m7n17L1Vtbm75v+38Z+NR7rlkAhMLo9dq9Hie+lCpDF08Me+YZGSsWU16vnlmGY+uLOcvq8pZPDFPlQ0IQnKp7062F9iPn1C2pej55cXj+fLMYu55ay/rylv4y6pyXt5aw88vGseSyfmnfB/urnXyjw+UZOJ9l03EatJH9pOIMINOQ3GGmaOtbg63uBI22R5qV1r2d5nE7tN45bOWQhfonEfVDuUYLTXlZAJOLFhs8duJItnllozDLRsxSz7Kj+yhcNQUtUOKDGcNAB5zQdROsapqGQ5fO9kpuZxVOD9q5+kvSZL45oTvkWHM5OFt9/P24Vdx+Nr41azfYtSp+/NGlmV2t2zn3SNvsqp6Ge7gJ63Lp+eeweKyS8g9UMv8yp9xQFst7kOjLBwOc8sttzBnzhwmTpzY++c/+tGPOPPMM7n00kuP+7qGhobPJNqB3t83NBx/9vQDDzzAPffcc8yfL1u2DLPZPNBPIeEtX748Ysf6Whk8V6Gl0R3gnrf38/j7+7i0NMyEdJlYfit1+OE/5RoOOpWF1tOzw1w5zEnFtg/omTaaLmsADa+t3obvcDh2walgbb0EaLFLbt55551j/t7aAaBj2e463jJVo9L+iIQXye+loWDvYeV7sKHyIO+8c0DtcOLKp99LZrS0IvH2yg85mhH/nYJOxtfVQjHgl7Xs2LQJKc6TF8li85oVff7Y1LDS/aSjcicbVrwXrZCO60RXgXC50j3SEU6hYtnSiJ1vX2AfroCLNCmN1m0NrJQid2w1jdSNpDxYzp9X/JGFKQsjcsywT+lAommrYGUE/w3ihbetijGAk1Q+WiV+lseKHJbJk02kSl7W/+9FTPborZsMxsr331c7hFNyu/vWoVck24WkJUkSC8bnctaoLP617gh/WVnO1qPtLPnLOr48s4QfLxpNZgzaaTV3+nhju7JL8FtnDYv6+fri2jnD+Oe6I+yp62D1wWbmj0nuSgMh+o7XRv54RuVa+c+3TmfZ3kbue3svNe0efvD8xzy74Sh3XTKeCQXH3wgTDIX52as7CYVlLpqcz8LxidESrSzTwtFWN0daXMwanql2OAOi7VSuX35LZHbsClGQMQzqweKqUTuSY3R2t8dr0eYSn7f1Q4NWp6NaX8aY4AFaK7YmTbLd4FJmj4XSiqJyfFmWefXQ8wBcNvKquKsaB7hk5JXYTRnct+FnrKtdzW1rrueBuY+oUpnV5G7kvcq3WHrkTWq6qnr/PN9SyOJhl7C4bAl5FuVK0BDeDR9DWfAIDr8v4vMhhU/ceOON7N69m3Xr1vX+2ZtvvsnKlSv5+OOPI3quO+64g1tvvbX39x0dHRQXF7No0SLS0uKjWjCWAoEAy5cvZ+HChej1kdsk+p1QmBe31PDIygqa3AH+cUDLrGHp/GzxGCYURP/r/GFFK/e9vIuWLj8peg13LxnH5dOOvU9s/6iKTW/vx2PO5sILp0c9LjV9+PoeqKzl7MkjuXDByGP+PhSWefZ3q2lzBcgYdwZzRiTmc4FaovW9lOz+Vb0R2juYd8Z0Fo4Xaz5w/PfS247tVO9ronDUBC48o0TlCBXBsEyLN4hOktD2I2Fes2cDHAKHZOPMhYujGKEASkX75jUrmDnvPHR97By2r+VDqF5Fpt7DiPPOj3KEikAoTGcgTHaKFoPm2N1eO+vfh07Q2Is4d1Hk3jerN6wFF1w4agkLpl4YseOqTarR84v1t7Nb2s19Cx6MyDPibl07bH6WbNqYFMF/g0gLhMM0eUJY9Zp+dVY6vOldOAqdmjRmx+h9Lygad+WTGj5CcZ6dkXPi62vv9wfY+sFKzl2wAJPBoHY4J9XTse1U4m/FSBAizKTXcuP8kVx+WiG/fXc/b2yv4/lNVfxvZx23LhzN12aVoovi1vL/fnQUfyjM1GI7p5WkR+08/ZFuMfCV00v457ojPLaynHNGZ4uqImFQetrIF9hO3blBkiTOn5DHvNHZ/GPtYR5bXc6myjaW/HkdXzmjhNsWjiHd8tkfsk99WMnu2g7STDruWjI+Kp9DNAzLsrDmYDNHWlyn/uA4ZXJ3z/axiWR7vDLljIA9kOGvVTuUY/ialc4uTmO+SLarrN06BtoPEKzbpXYoEZPqVaprtenFUTn+ntadHGjfi0Fj4OIRl0flHJFwdtG5PDTvcX6+7ofsavmYm1dex+/Pfoxsc/Q3pvmCXtbVrebdI2+wpWEjMkpFWIouhXlFC7lg2CVMzj4NjfTZe+2c0nF0yilYJQ+N5TsoGn961GMdim666Sbefvtt1q5dS1HRJ5tSVq5cSUVFBXa7/TMff8UVVzB37lxWr15NXl4emzZt+szfNzY2Ahy37TyA0WjEaDx244Rerx/SCbJIf/56PXzzrBFcPqOEx1dX8K91R9h4pJ0vPLGRL0wr5CfnjyG/D/fk/RUMhXlkxSH+sqocWYYxuVYe++o0RuZYj/vx00qVhPKu2g50Ol1SP28eaFLu9ScU2o/7b60HFo3P44XN1azY38I5Y0XHqIEY6teS/mrtUlqe5trN4uv2OZ9+LxWmK51XGjr9cfN1ksIy2qDU72R7oLMFgE6NjXRdfHwuQ4FOp0PXx6+3Nr0UqsHibejzawZLlsJo5ZAS53HWv3XeVuXjLNnoIvQ94Am6WVe3FoDFwy+M2HHjwfzS88jYlkmrt5UNTeuZX3zeoI+ZVjAKgJxQQ1x/reRQGK1OQqfT9iuXEnIp43bcOhtp4toUUw5TAbiPEGytjNk1p69CYWXtQKeL//u7vsYnmlcJQ0a+LYVHvjyNF783m/H5aXR4g9z91l4uenQd68tbonJOXzDEsxuVtr7XxUlVe4/vnD0cg1bDlqPtbDrSpnY4QoKrc/a0ke/7wp5Jr+Xm80ax4rZzuHhyPmEZnt1YxTkPreaZDZUEQ0q7yapWN39YrjS8uvOi8eRYE6cd+/BsZR7O4ebETbbb/MrCui5KySxh8GwFowHICzf1zjyKF5JDGUPgE50RVBfKUTYqWdr3qRxJ5KQHmwAwZUWnCumV7qr280ovwG6Mjw2TJzIlZzqPnvskmaZsjjjLuXHFN/nr9j/y7N5/8VbFK6ytWcH2pi0ccZbT6mkhGB74nDxZltnbuos/bPkNl7+5gHs3/IzNDRuQkZmSPZ2fnX4Pr16ygjvOuJepOTOOSbQDaLRajhqU6s+Ow5sHHItwfLIsc9NNN/Haa6+xcuVKhg377HPIz372M3bu3Mn27dt7/wN4+OGHeeqppwCYPXs2u3btoqmpqfd1y5cvJy0tjfHjE2fjYzJLM+m5ffFYVt42j0unFiDL8Oq2WuY/tJo/LDtAly9y9wQNTi9f+edH/Hmlkmi/+vRi3rhpzgkT7QBj863otRLt7gA17Z6IxRJvQmGZgw2dAN3z6o/v/AlKgn3Z3gbC4cRuVS3EP1mWaelSZndnx6CjYyLrGYVX392tL5EFOpoBcOns6gYinJApqxSA9EDTKT4ydow+JdkupUauA8YHNWvwhrwUpRYzLmNCxI4bD3QaPUuGK2OYXj/0SkSOmV2kJNttuOhytkbkmPEk3KXkXTzi2hRzHouylqtpr1Q3kCGiX5Xtd9999zEz2MaMGcP+/fsB8Hq93Hbbbbzwwgv4fD7OP/98/vrXv35m1ltVVRXXX389q1atIjU1lW984xs88MADfW63IgiDdfqwDN66+Sxe2FzFQ+8d4EBjJ1/550cMy7IwsdDGxII0JhbamFCQht08uBYWb26vo6XLT77NxAUT42v3em6aiS/OKOK/H1Xxo//bzpXTi7hgUj5j86xJXXUgRJ7bH8ThVhbtTzSz/WQK7Sn85Sun8bVZrdz95h72N3Tyqzf28NxHVdy1ZAKPrSrHGwhz5ohMvjgjOq2Co2VYlpJsr2xN3GR7Rkh5CLTkxNeGIeET6fll+GUtBilEW/0RsotHqR1Sr54232G72KyhNmvpNDgA+Z5ytUOJiFAwSHa4FSRIyx0e8eO3eJpYU63MDrt81NURP340jLCP5rEFT/OTNTdQ3XmU/zvwzEk/3qyzYDPaSTPYsBntvb9OM9qxGWzYjOm9v7cb7ciyzIqqpSytfIujHYd7j5Nrzuf8siUsHraEwtS+f6877OOgeRdSw84Bf87C8d14440899xzvPHGG1it1t4Z6zabjZSUFPLy8o5bnV5SUtKbmF+0aBHjx4/nmmuu4Xe/+x0NDQ3ceeed3HjjjcetXhfUU5Ru5pEvT+PaOcP4zf/2srmynT+vLOf5TdXctmg0X5xeNKhObqsONHHbiztoc/mxGLTcf/kkLp166k10Rp2Wcflp7KxxsqPGQXGGecAxxLOqNjeeQAijTkNZ5ok/xzNHZpJq1NHY4WNHjYNpcdL1TkhOXb4gvqCyeT3LGt+tWdXW0wmk3pn4m4LCLiXZ7jXY1Q1EOKHUXOU+KyfcTFc4jHSctu6xlhJQCrD0tsh1xVp2VJlHv7B0cVKuMV868nL+vfdJNtavp66rloLUwRUXpKTaaJOtZEidtFYfItWWXONmZI/yHvOLa1PMhe2l0AwpcTh2Mhn1O8M9YcIE3v/U0PpPJ8l/9KMf8b///Y+XXnoJm83GTTfdxOWXX86HH34IQCgU4qKLLiIvL4/169dTX1/P17/+dfR6Pffff38EPh1B6ButRuKrZ5Ry0aR8Hl5+kGc/quJIi4sjLS7e2lHX+3FF6SlMLLAxsTCNCYU2JhbYyLb2bXFJlmWe/LASgK/PLuvXLJNYuf6cEby3p5E6p5dHV5bz6MpyyjLNLJ6YzwUT85hcZFP9psjlC7Kpso2PDrcxMieVK6cnVrJ1KKjr3gFuNemwmgbe9mXW8Ezevvksnt9UxUPLDrK/oZOr/7ERAKNOw/1fmKT6+7G/epLtR1tdhMJyv1rAxQOvq5MClEode75ItscrrU5HgyaXErmOjtqDcZVst3qVn6mGjDJ1AxEoGDMDlkEurTS0NmLLjH6L8WhyNlWTLYUIyhrsuZGvbH+j/GVCcpBJWdMYnT424sePlnxLIX897xmWVr5Ji6cZp89Bh99Jh8+B0++gw+ekw+9ERsYddOEOuqh39X8EhVFr4uyi87hg2CVMy5l53Or1Uwc7FZpfJLXzSP9fK5zU448/DsA555zzmT9/6qmn+OY3v9mnY2i1Wt5++22uv/56Zs+ejcVi4Rvf+Ab33ntvhKMVImVqsZ0Xvzeb9/Y08Nt391PZ6uaOV3fx9IeV3HHhWM4Z07+KtUAozEPLDvC3NcrmmgkFafzlK6f13t/2xeQiGztrnOyscXLx5OQcKLO/XpnhODrXetJNDUadlnPGZPP2znre29Moku1CVLV0+QEwG7SYDaK46WR6CgbqkqCyXXIpFbEBY3Il6pJJel4ZYVnCKAWoa6nHlqN+B7i0oNLi25QemSKxTn8HG+rWAbCoLL5mREdKkbWY0/NmsalhI29WvMb3p9w06GM2Stlk0ElnQwVMnBWBKOOHxqNcm0Imce8Ta4bsEXAI7N74GzuZjPp9x6XT6Y67C97pdPKvf/2L5557jnPPPRdQHubHjRvHxo0bmTVrFsuWLWPv3r28//775ObmMnXqVO677z5uv/127r77bgwGsdtSiC272cA9l07klgWj2V3nZHdtB7vrnOypdVLZ6qam3UNNu4elexp6X5ObZmRiga07+a5UwefbTMckATcebmNffQcpei1Xnx6fFX1F6WZW3DaPFfsaeXd3A2sONlPZ6uaJNRU8saaCQnsKiyfmceGkPKYVp6OJQaLQFwzxcZWD9RWtrC9vYXu1g+Cn2uylm/WcNy6xEwTJpj/z2k9Fp9VwzewyLp5cwB+WH+C5j6oIy3DLgtGU9WNhL14U2FIw6DT4g2Fq2z2UnKTaJR45GiopANyyEUuS7axNNm2GAkp8dXibKtQO5TMyu9t8W/LEZg21WWwZ1Em5FMiNNBzcgm32RWqHNCjOBiX50yxlYoxwhyx/yM9bFS8DcMXoxKhq/7Q0o42rxlxzwr8PhUN0BTrp8Dt7k/FOXzsdPidOv+NzCfqej3EQDAeZmDmFxcMuYX7xIlINJ26X3BclZ17J/gnnUFQ8elDHEY4ly/1vUX2815SWlvLOO+9EIiQhRiRJYvHEfM4dm8uzG4/yyIpDHGjs5JtPbWbuqCx+cdE4xualnfI4tQ4PNz+3jW1VDgC+MbuUOy4ch0mv7Vc8kwvtQBU7qh39/lwSxb7uFvJjT9JCvsf5E/J4e2c9y/Y0cPviMQm3kVhIHK3dLeSzRAv5U+oZhdfQ4U3IDfKf1jN7O2wWz+7xSm800SKlk0MbjsYjqifb5XAYu+wECSwZkdkUt7p6JYFwgOG2EYywx08hQKRdNvKK7mT763x70vfRaQb3TNqmzYLQYfwth0/9wQlG73UAEE7JUDeQISg1fwQAOaEG/HHSTSOZ9fsqcOjQIQoKCjCZTMyePZsHHniAkpIStm7dSiAQYMGCBb0fO3bsWEpKStiwYQOzZs1iw4YNTJo06TNt5c8//3yuv/569uzZw7Rp0457Tp/Ph8/n6/19R4eyczgQCBAIDHzeYKLq+ZyH4uceLakGiVlldmaV2Xv/rNMbYG99J3vrO9lT18Geug4Ot7ho7PDR2NHEiv2fzNdJN+uZUJDG+HwrE/LTmFCQxj8/UBIeX5iWj0Uvxe2/l1kHSyblsmRSLl2+IGsOtvDenkZWH2ym1uHhX+uO8K91R8i1Glk4Pofzx+cyo9Q+qFaEnxYKy+yt72B9RRsbj7Sx5Wg73kD4Mx9TZDeRbTXycbWTH7+0gzdvnE1e2uDndovvpciobu0CIM9mjNjXMtUgcddFY/ny9EIOt7g4f3xuXP87ney9VJqRwqEmF4caneSnDbzyPxKCYZlQMIgkSch9WERwNijXsSZNNuZwCMKhaIcoAMHuuevBfsxfd5mLwLcFue0wwWBsvleCoTChYJhgUEYTPvZngtfdRTYOAGy5ZQTj+Hs4WX3+vdSQMpICdyNdlR8TnLFIzdA+IxgOEwqGCEphJLlv9xeeJqUauk2fQ3aE3/Mrjr5Lu6+NrJQcZufOjdn3VCxZtBYsKRbyU/q2qCbLMoFwAIP2k83Rg/26mFJtmFJthCL88yXU+74PEIjzBfN4vrcREptBp+G6s4ZxxWlF/HnlIf69oZIPDrVw4SMfcNWMYm5dNJoc6/Gfp5btaeAnL+/E6QlgNen43RWTuWBS/oDimFxsA2B3rZNwWI7J5u1Y66lsH5t/6k0M54zJxqDVcLjFRXlTF6NyB7dpSRBOpKU32S6Kmk4lx2pCq5EIhWWaO33k2Qa/1qQWo09p1Yw5S91AhJNq02WTE2zD01QJnKVqLB5XB5mS0gnDljWwn/Wft+zoUkBpIZ/M5hXNJ92YTounmQ9rP2Be8fxBHa9DnwMh0DiqIhRh/DAGHABIFrERKNYyCpUNL1bJQ2V7E2mZ8TXmONn0K9l+xhln8PTTTzNmzBjq6+u55557mDt3Lrt376ahoQGDwYDdbv/Ma3Jzc3tnxDU0NHwm0d7z9z1/dyIPPPDAMbPiAZYtW4bZnFhVgpG0fPlytUMYEnKBXDOcOxJ8w6DODTUuieouiRqXRL0H2t0B1pW3sq689ZjXl/kreeedypjHPVASsDgNzp0G+xwSO9ok9rRLNHb6ePajap79qJpUncykDJkpmTKj02T6k3eXZWj0wEGnxEGnRHmHhCf02UWXVL1y3NE25b9MUxfBcBfNbVpqXAGu/dsabhwfIlJrNeJ7aXDWVmkADUFnU9Sqn5YmyL3m8d5LKUHl6/O/tZvpOtT/SjM1BY5sAKCVdHaseE/laIaezWtW9Plj5YBSkSE1H2RDjP+tDpzgz72Oer4EdMkmNn+0FSkJF9gTxdqVyggorZzDaUDg6GZWLluqblCDJJdvA6BVtlEewfe8LMv8p+vvAEyVJ7N5Vd+/D4X4svJTo8/ildvtVjsEIcnZzHruvHg818wu5cGl+3lnVwMvbK7mzR11fH/eCL4zdzgpBqVa3R8M88C7+3iqexTalCIbf/nKaYOatT4yO5UUvRaXP8Thli5G5iRfcvlAo1LZPq4Ple1Wk545IzNZdaCZ9/Y0iGS7EDXN3W3kRWX7qWk1ErlWI3VOL3VOT0In203dCS2tNVvdQIST6jLmQfAAwXb1F7qczbVkAi7ZiDnVNujjtXlb2dKwCYBFZcmdbNdr9Vw84lL+s/dpXi9/ZdDJdrchC7xgGsCIr3iXEnQAoEsVG4FizWROpYkMpZtG7SGRbI+yfiXbL7jggt5fT548mTPOOIPS0lJefPFFUlIG3z74RO644w5uvfXW3t93dHRQXFzMokWLSEs79e7hZBMIBFi+fDkLFy5Er1e3SlIAXyDEoSYXu+s62FPfwd66DvY3duEPhlk8IZdrr5iidogDdln3/33BMOsrWnlvbyMr9jXj8ATY0CSxoQlsKTrOHZvD4gm5zBmRiVF3bOa91uFhw+E2NnRXrzd1+j7z96lGHWcMS2fW8AzOHJ7BqJzU47bUmzTLxWWPb6S8I0SleQw3zR8xqM9PfC9FxppXd0NtHbMmjebCecPVDkcVJ3sv7dEdZOcHlVhyy7jwwnEqRagIhmVavEF0ktSn9nj7n18LDvCnFTP7vOSctRWPgsEgm9esYOa889D1sT32QU0bbH2eHFoZE6N/q0AoTGcgTHaKFsNxWlEdWPcGHIFmbS7nLb7gOEcQoi0YDLJ25fucfe4CdDode7WtsOU1iuRa8hbFz+JHIBymyRPCqteg7+MOvoNVb0AXSJnDI3p92tu6i9rVteg1Bq5f8FPsRjFXLtH4/QG2frCScxcswBTnY8p6OrYJQrSVZlr461ens6WyjV//bx/bqx38cflB/vvRUX68aAwzyzL4wQsfs7PGCcC3zxrGTxePxXCcZ7v+0Gk1TCxMY3NlOzuqnUmXbHf5ghxtVTbNjOlDsh2UVvJKsr2Rm85N3va6grpautdcsqwi2d4XBfYUJdnu8HBaSeLe+6WGHADo03LUDUQ4Ka+lAFygcdaoHQqutnoAnBo7kXjnr6xaQUgOMS5jAsXWkggcMb5dOuJy/rP3adbXraPBVU+eZeDdAYIp2dABdl9dBCOMD5aQ8sxjSBPJdjW06PLICbbhaiiHyXPVDiepDWqYhN1uZ/To0ZSXl7Nw4UL8fj8Oh+Mz1e2NjY29M97z8vLYtGnTZ47R2NjY+3cnYjQaMRqPvUHU6/VDOkE21D//eKHX65lWZmJa2SetUAIhZT5zvt2EXte/uXbxSK+HRRMLWDSxgEAozMbDrby7u4Flexpo6fLz2sd1vPZxHalGJfF+wcQ8gmFZmbte0dK7ANHDqNMwoyydM0dkceaITCYV2vrUln50vp37Lp3IbS/t4M+rKjhrdA4zywY/70V8Lw1OQ4fyIF+cmTrkv47Hey+NzFE2hVW2eVT/+khhGW1Q6nOyXe9Sus4ErUXodEP731YNOp2uz1/3tMKxsFWZwyTH6N9KlsJo5ZAS53Gu4f7unfpOYz55Q/zaoDadTodOryd79EzYAiXBKvzI6PTxkYiUQ2G0OgmdTtvnMTVmt7IwhL0kotenNw6/BMB5JYvJsoiFykQUCitdZHS6+L+/i/f4hOQzoyyD1244k7d31vPg0v3UtHv4ycs7kSSlA5ktRc8fvjiFBeNzT32wPppcZGdzZTs7axxcMb0oYseNBz1V7TlWI5l9rCBeMD4XzWu72FXrpNbhodAevcIVYehqETPb+yXfngJH26l3eNUOZVBssrJhKsUm7mHjmZxWBE1gcqufVPW2K2s+Hdr0iCTbl1W+C8CisqFRrFGSVsqM3NPZ0riJNyte47uTbxj4wbrHP+SGGpCTbLa2NdwJEhjTRNcNNXSmFEHnXsKtR9QOJekN6ru2q6uLiooK8vPzmT59Onq9nhUrPmm1eODAAaqqqpg9ezYAs2fPZteuXTQ1fTLrevny5aSlpTF+/PjBhCIIcUWv1VCWZcGYBIn2z9NrNcwdlc39X5jERz9fwAvfncU3zywjL81Ely/ImzvquP6/27j5+Y95flMVR1vdaDUS00rs3DR/JM995wx23LWI/357FjfOH8m0kvR+zX+/YnoRl08rJCzDD5//GIfbH8XPVuiLOocHgPwEbrcWTcOyLQAcaXGpHEn/mT09yazkWhhNRhnFowFIp5Mu57EjTdQgdyfbPea+zYQWoi+3dCwu2YRRClB/eJfa4QxKml/ZsKvPiFzFRKunmdU1yjiQK0ZdHbHjCoIgxBNJklgypYD3b53HHReMxWrSIcswvTSdd344N6KJdoDJRUpb2h3dVfPJZH+9kmzvy7z2HlmpRmaUKhvGl+058ThFQRiMnmR7tpjZ3icF3WsZdU6PypEMXMDvw4ay5mARbYLjmq77+cXqU/9nQKBDeaby6Aefam90N7K9WRn1taBkaCTbAb4w8goA3ix/jWA4OODj6FOVIj6z5MPZWh+R2OJBMODHJnVfm9Ije48p9I0/rRgAXcdRlSNJfv2qbP/xj3/MkiVLKC0tpa6ujrvuugutVsvVV1+NzWbjW9/6FrfeeisZGRmkpaVx8803M3v2bGbNmgXAokWLGD9+PNdccw2/+93vaGho4M477+TGG288buW6IAjxTauRmDU8k1nDM/nVxeP5uNrB0t31rNjfhEGr4cwRWcwZmcnpwzKwmiJXuXPvZRPZVtVOZaubn768k79dM/24beeF6AuHZeqcyu7vAlGVcVxlmUqyvdbhwRsIYdInziYcW3cyy5iZ/O2/Ep3ZaqeNNDLooL3mIKm22WqHhKFLaYsn24pVjkToodFqqTQMY1xgH+0V2ygeM13tkAYsM6Rs3jXnlEXsmG9WvEwwHGRS1lRGZ6g79kMQBCHaTHot35s3gi/OKGZXrZMzR2T2eZRHf0wpsgOwt74DfzA86Nb08WR/g9IWdWwfW8j3WDQhl02Vbby3p4Fr5wyLRmjCENciZrb3S0/hQCJXtne1NZELhGWJVLuobI9nKdllAGQGm07+gTEgdykx+EyDb+/9/tH3AJiafRq5lqGz4WNe8bnYjek0eZrYULeOuUXnDOg4Wp2hd7Z2W2059uzCyAaqEld7M6Bcmyw20UZeDVLGMKgFi0v90RXJrl9POTU1NVx99dWMGTOGq666iszMTDZu3Eh2ttIC4uGHH+biiy/miiuu4OyzzyYvL49XX3219/VarZa3334brVbL7Nmz+drXvsbXv/517r333sh+VoIgxJxGIzG9NJ1fXDSelbedw9JbzuZXS8Zz3rjciCbaQZnx/uerT0OvlVi2t5FnN4qdWWppdfnxB8NIEuSJyvbjyko1YDUqFUNVbe5TvyBOyOEw2eEWAFJzxCJgImjSKfPBXPWHVI5EkepV2uJpM0tVjkT4NIdV6YIQrEvcynavq5N0lGpCe/7wiBwzEArwZsXLAFwuqtoFQRhCMiwG5o3OjkqiHaA004wtRY8/GOZgd9v1ZNFb2d7PZPv5E5QkxKYjbbS5RKc2IfJ628iLme190lM4kMiV7a7uduAOKRWtblBTY4Uos3U/v2ThwO9V9z2ncStrPqGUwSdBlx9dCsCissWDPlYiMWgNXDz8EgBeK39lUMdq1Sn3B10NFYOOK1642pUink7JjE6M0FKFMVu55mQEkqdjQrzq19PUCy+8QF1dHT6fj5qaGl544QVGjBjR+/cmk4nHHnuMtrY2XC4Xr7766jGz2EtLS3nnnXdwu900Nzfz0EMPoRM3AYIg9NOkIhu3Lx4LwH3/28e++g6VIxqa6rsfRnOtpqgt0CU6SZISspW8y9mKRVJ29tvzytQNRuiTDpOy8zkYJ3OYMgPKQ5XYrBFf5NyJAKQ69qkcycC11x8GoEtOIdWWGZFjrq5eRpu3layUbM4uOjcixxQEQRCUe+FPWsk71A0mgmRZZl9vZXvf28gDFGeYGZ+fRliG9/c1RiM8YYhr6RQz2/ujN9mewJXtPqdyLemQbCpHIpxKWkYuHlkZ8dDeoO6zu8GrJNul1MHN0q7urGJv6x60kpZzSxZEIrSEcunIywFYX7eORtfAxwN0pigj+OJlTScSvB1KZbu4NqnHXqgUXOSGmwkFBz7qQDg1kRkRBCFhfeusYZw7Ngd/MMzNz3+M2y9+YMRaz7z2Aruoaj+ZYVmJl2x31Cs39+1YMVn6V60jqMNnVdr965yV6gYC+H1esuR2ANILR6ocTWLo8HXwYe0HbGvcwr7WvRztqKTJ3UiXv3NQs98+L7VsGgAF3sTdLe9qqgSgWZsNERoj8+qhFwC4dMRV6DRix70gCEIk9STbd1Ynz9z2eqeXTm8QnUZiRI6l36/vqW4Xc9uFSPP4Q7j8IUDpsiacWk8b+ZYuH75gSOVoBsbfndBy6ezqBiKckqTR0KxRkttdKifbTf42ADRpg5ulvby7hfyMvNPJMEVmM3QiKU0r47ScGYTlMG9WvD7g4/hTiwDQOqsjFJn6/J3Khg6Xtn8bE4eCUDhEoyv61ebpeaX4ZR16KURbffJs5IhHoqRcEISEJUkSv79yMhc88gHlTV3c8+ZeHrxystphDSm13Tu/88W89pPqTbY3J06y3d1cCUCrNocMdUMR+ipzONTHxxym1toKbJKMRzZgzypQO5y4V9tZw7XvfQ2Hr/2EH2PUGknRmTHrzZh1ZuXXuhRS9D2/7v6/PgWzzoJZb8YgGWgJfXYRv2D0dMLvSGRL7dQ31ybkLDhfizI+xmnIJRL74/e17mJv2y70Gj1LRlwRgSMKgiAInza5e257MlW298xrH5GdilGn7ffrz5+Yy8PvH2TtoRZcviAWo1ieEyKjp4W8UachVbyv+iTDYsCo0+ALhmlweinN7P8GGrWFupRku0efrnIkQl84DLmU+Grxtao7FtMaVJ4/TbZBJtsru1vIlw6tFvKfdtnIK9jWtIU3Kl7luonfQavp/72BJqMU6sHsro1ChOoIdSfb3WIj0Gf4Qj5+tvZmtjVt4qF5jzMzb3bUzqXRamnQ5FAi19FRe5Ds4lFRO9dQJ+66BEFIaJmpRv705al89Z8f8X9bqjlrVBZLpojETqz0VLYXimT7SSViZXugrQqADoNItieKlBxltE+Gv07lSMDZ3ea7SZtDjkY0UjqZrkAXt635AQ5fO5mmLKwGK+6gG0/QjTvgJiQr1TW+kA9fyHfShPyJpB62c/mYLwJgsdqp0+RRJNfTcHBrQibb6d7p70nJj8jhXumuaj+35HzSTeKKJwiCEGlTupPth5q68PhDpBj6vwAdb/b1zGvPH1gHqDG5VkozzRxtdbPmYDMXTorMzzRBaO76pIW8FKEOQMlOkiQK7CkcaXFR50jMZLvkUhJafqO4l00ELlM++EB2qFvBbJMdAJgzBv4zqMJxiApnOTqNjnOKh+44rvkl55G2xUaTu5EN9R9yVuHZ/T6GKVsZwWf3qb+mEzGeVgACBtFGvkcwHOTeDbezrWkTAP87/FpUk+0AbYYCSnx1eJsSt8NhIhDJdkEQEt6ZI7K48ZyR/GVVOT9/dRdTi+0UZ5jVDmtI6G0jbxNt5E+mJ9l+OIGS7TiVnbRes1j4SxRphcru1LxwE+0BPzq9em0jvc1KayqnIY8c1aKIf6FwiF+u+xmHnRVkp2Tz9OLnyDZ/8hWTZZlAOKAk3wPuT5LwQU/37124A248Qc9nEvQ9H9PqbmZP224e3PIbrKY0FpaeD0CjeSRFrnrcVTtgziVqffoDpu9SFh+C1sFvFGj1tLCqWml7ePmoqwd9PEEQBOFYeTYTOVYjTZ0+9tQ5mVGW+Mmg/Q3dyfZ+zmvvIUkS50/I4+9rD/PengaRbD+BTm+Am57bRppX4kK1g0kQn8xrFy3k+yPfZuJIi4t6p0ftUAZE253QCqUk/vV1KAhaC8EJuk71Kpj9Pi82lDUq6yC60S2rVJ6lziw4C6th6LYKN2qNXDR8Cc/vf5bXy18ZULI9LU8poMgLNxEIhdBoE39zIm6lWCBgFF03QFnj+f3me1lXuxqtpCUkh9hQtxZP0EOKLnqFbG5LEfi2QHtl1M4hiGS7IAhJ4pYFo9h4uJUtR9u56fmPefn7s9FrRTVltNU5lTbyBaKy/aTKupPtLV0+Or0BrKb4nwdscEUumSXERnpuGX5Zh0EK0l5/hOySMarFEm5XOiO4zeL9czKPbX+ED+s+wKg18vt5f/pMoh2UhXiD1oBBa8ButPf7+AG/n1veuIHN/s386sOfY9aZmVM4F2/GOHB9gL55T4Q+k9gye5S5ZpK9eNDHeuvwKwTDQSZkTmZsxoRBH08QBEE4vslFdt7f18iOmiRJttcrbeQHWtkOcP6EXP6+9jAr9zfhD4Yx6MTz6+e9uq2WNQdbMItn+z5r6fIDSmW70Hf5NmVNo757jSPRGHzK7G3MWeoGIvSNvQhqwOxpOPXHRklHSx02ICBrSbNnD+gYsiyz/KhoId/jspFX8Pz+Z1lXu5YmdyM55v61588sHEZQ1mCQgjQ2VpFVMCxKkcaOvvvaFBYbgZBlmcd3PMzSyjfRSlrunfMQj338B+pcNWyoW8u5JedH7dxBWym0gbGzKmrnEEDcrQqCkBR0Wg1/+vJU0kw6dlQ7eGjZAbVDGhJ6K9tFsv2k0kz63sWOyha3ytH0TapXSWZpI5DMEmJDq9PRoFGStc7aQ6rGou9U5saH0opUjSOevV3xBs/u+zcAv5p1L+MzJ0b8HJIksSRlCYtKFhOSg/zsg9vY1rgFQ9EUADK7Dkb8nLGQHmgCwJRVOqjjBEIB3ih/CRBV7YIgCNE2uUhpH7ozCea2ewOh3o5VY/MGnmyfVpxOttVIpzfIhsOtkQovqby4RWmx7A5JdHqDKkeTGFo+1UZe6LtCu9Ktr9aRmJXtpoBSPapJHVjSVIgtY6byHGPzq5ds72xV1nwcUtqAK6j3te2lpqsak9bE3KJ5kQwvIQ2zDWdq9mmE5TBvVbze79frdAaaNMqGmfYaddd0IsXgdwAgmTPVDSQOPLf/Kf7vwDMA/HTmXZxVOJ/5JYsAWFW9LKrn1mUqGzfSvEk0oiAOiWS7IAhJoyjdzO+unAzA39YcZu3BZpUjSm6+YIjm7hZ1Itl+asN7W8l3qRxJ39iDyvfPYJNZQmy1GZVKcp/Kc5gsHuUGXpch3j/Hs6PpYx7YdB8A35r4XRaWRa8KQCNpuPP0u5lbOA9fyMdtq3+AI9cOQHGoioDfF7VzR4McDpMdVq5PqbmD2+m/puZ92rwtZJqymVe0IBLhCYIgCCfwSbLdqXIkg1fe1EUoLGNL0ZOXNvBxWhqNxMLxStXbe3vUS7jEq921TvbUdfT+vi5Bk6Cx1ptst4o28v2R372mUZ+g7zNL0AGAPk0k2xNBz3NMdrgZORxWJQZvu5Js79AOvL13T1X73KJ5pOjEOE+AL4y6AoA3yl8jFA71+/VtemWsjLvpcETjUktKwAGANnVod914q+IV/r7zUQBumHobi4cp4/zmFyvJ9o3163AHojd61JI3EoDsYH3UziGIZLsgCElm8cR8vjarBIBbX9zRmwwWIq+hu72aSa8h3Rz/bdHVVpalPHgcSYC57eFQiOxwCwDWQSazhNhymbs7Eag8hykjoCwYm3PE++fz6rvq+OnaHxEIBzi3eAHfmXx91M+p0+i4f+7vmZ47E1fQxd37fst2vRWDFKK+fGfUzx9JHW0NmKQAYVkiPa9sUMd65dDzAFwy8kr0WvFzTBAEIZomF9kB5V7Y6QmoG8wgfTKv3YokSYM61qLuZPvyvY2Ew/KgY0smL3VXtfeoSdAkaKy1ijbyA5JvUzbOJGobeWtY2ZhisvevbbWgDnv3c4xF8tHlUKdQyO9sBKBLN7D23mE5zPKjyrz2haKFfK/5xQtIM6TR4K7no/oN/X69q3sUX6itMsKRqcMSUq5NhrShm2xfXb2cP279DQBfHXcdXxpzTe/fjbSPodhaij/k48Pa1VGLIb1oNACZOPG6En/ja7wSyXZBEJLOnReNZ2yelZYuH7e+uF0sWkRJ7adayA92kWkoGJaVCiRGst3RXINBChGSJex5JWqHI/RD2K5Ukps6j6oWQzDgJ1tWWqGmF4xULY545A64uW3ND2n3tTM6fQx3nXkfGik2t+NGrZGH5j3CxMxJdPid/CA/g2qdlvbDW2Ny/khx1Cs7/FslO3rjwKsJ97XuZm/rTnQaHZeMuDJS4QmCIAgnkGExUJyhVI7urk3sRb4DDcrC8bj8tEEf68wRWViNOpo7fXxc3T7o4yULbyDE69uVTkmZFqVCu9aRmEnQWGsWbeQHpLC7sj0R28iHQyHssnJdMqfnqRyN0BcmcyqtKB1fep5vYi3UqYzm8hkHlmzf0bydJncjqXorZxacFcnQEppJZ+LCYUsAeK385X6/PpimFFDoOpJjtnZq97XJOES7bmxu2MB9G+8gLIdZMvwKvjPp5s/8vSRJzC9WZrWvjGIr+VR7Fk6Ujqut1ckxoiAeiWS7IAhJx6TX8uerp2HSa/jgUAt//yA5Wu/Em/ruxY5C0UK+T4Z1t5FPhGR7Z0MlAK1SOjq9aD+YSHRZwwGweWtVi6G17ig6KYxf1pGeW6xaHPEmLIf51fqfU+44SIYpkz/MezTmrfYsegsPz3+MkfZRtGtlvpOXS2vDlpjGMFiepkoAWnU5gzrOq4deAGB+8flkmMT8OEEQhFjoqW7fkeBz2z9d2T5YBp2G+WOVn2nv7Wkc9PGSxbK9jTg9AQpsJi6erCQPa9sTLwmqBjGzfWB62sh3eoN0+YIqR9M/LmcLOklpRZ6aLirbE0WrVrn2u5vU2SgvuZWK+mDKwCqOl1cqLeTPKZ6PQSvWjT7t0pGXA7Cudi3N7qZ+vVabUQaAxa3emk6khEMhbLIySjPFPrjn90S0t3UXv/zwVoLhIOcUL+RH039+3GK1c7vntm9q+JBOf8cxfx8pjVplREFXfXnUzjHUiWS7IAhJaVSulbuWTADgofcO8HGVqBKItJ6ZeT3t1oSTG579SbJdluO724K7WXnYa9WJB/VEY8kbBUBOSL05TM56ZV58kyYLjVarWhzx5okdf2FtzSoMGgO/n/cnci3qVJ3YjDYePfcJsiUrtXodj+q24fAmzs/IYLuyw7/LOPCvX5u3lVXVSsvDK0ZdHZG4BEEQhFOb0jO3vTqxK9v31Xcn2yNQ2Q5w/gTlZ9p7exri/jkhVnpayF85o5iSDGVzomgj3zct3aP0ssXM9n5JNeqwmnRA4s1t72pTRnh1yikYTKIYIlF0dD/PBNrUSbbrPMroQNnS/4rjYDjIiiqlCle0kD/WCPtIpmRPJSSHeOvwG/16rTl3BPDJaL5E5nK2oJWU+xpr+tBKtlc6K7h97U14gh5m5M7iF2f8Bq3m+Otjw2wjGZY2gmA4yLraVVGLqcNUAECgVRQlRotItguCkLS+PLOYiybnEwzL/OCFj+nwJvZswHhT5/ykjbxwaiUZZiRJ2Snf6vKrHc5JhRw9ySyRbE80mcXKHCY7XXQ5WlSJwd18BIB2vWhh2GPpkf/x9J5/AfCLWXcxKWuyqvFkpWTxyxE/IjcYpE4f4gerbqDL36lqTH2lcdYA4LUUDPgYb1W8QiAcYHzGJMZlToxUaIIgCMIp9FS270zgyvbmTh8tXT4kCUbnpkbkmOeMycag03C01c2BxsT4eRxNNe1u1pUr97FfnF5EoV3Z3J2I7b1jzRcM0eFVqrJFZXv/FdiUtY26BJvb7nEolbNOjU3lSIT+8FqUKtOe55tYS/Epo980qf1Pgm5p3ES7rx27MZ2ZeadHOrSkcNlIZVTZG+WvEpbDfX5dRmF3AUW4hWAgvtcOT8XVrlybuuSUQY2ASzQNrjp+vOZ6OvxOxmdM4r45fzxl94f5Jd2t5Kui10rem6qMCdU61Bs7mexEsl0QhKQlSRIPXD6JovQUqts8/PzVXaJSIIJ6ZuaJZHvfmPTa3pb78d5KXtOhtKvydT/8CYkjxWrvnf3WXnNQlRjC7cqNu9s88GRoMtndspNfb7wbgG+Mv44Lhl2sbkDdpkxcxBP1zWSEQuxv28utq3+ANxj/i9gmt9K1QU4rHNDrg+EAb5S/BMDlo0VVuyAIQixNLLQhSUoiq7m7+jbRHOhuIV+WacFs0EXkmBajjrkjlTa+7+0WreRf3lqDLMOZIzIpzjBT1DNLuz2xEqBqaO1SEjN6rYQtRa9yNImnoHtjR12CbezwO5XrRpfWrm4gQr+E04oAMLrrVDm/OaB0NzPY+l9k0dNC/rySheg04lpzPOeVLMRqsFLvquOj+g19fl16bjE+WY9OCtNSm9gVyB5nz0agyHQCSgTt3jZuW/19mj1NlKUN57dn/xmz/tTjA8/tTrZvbfwIp88RldhkeykAKa7qqBxfEMl2QRCSXJpJz6NXT0OrkXh7Zz0vbhE/UCKlp7WamNned71z25vjO9lucvUks4pUjkQYiGadsknC1aDOHCZth7IzP5gm5rU3uhr48Zpb8If9nF10DtdPvVntkHqlWKwYQjk80dCEWTKyvXkbP/vgxwRC8d0FJtWntNPTppcM6PVralbQ6m0mw5TFOUULIxmaIAiCcAqpRh0js5Vq8EStbt/foMzSjMS89k/7dCv5oSwclnlpi3IvedUM5V6yZ3O3wxOgU3SrO6meee2ZFuNx58IKJ9cztz3R2siHupROEG69Xd1AhH7RdT/PpHrVue7bwkqyPSWjfx3p/CE/q6pXAqKF/MmYdKbejfavl7/S59dptFoaNUprf0dtYs/W9nco1ybXEEm2uwJd/GTNDdR0VZFnzueheY9jM9r79Npiaykj7WMIyUHW1qyISnyGbGVEQbpPnQ0+Q4FItguCkPROK0nnx4vGAHDXm3sobxKt+QZLluXe3d6isr3vepLth+O8st3q70lmiWRpIupIUSp+gy0Vqpzf4lY6Iww0GZosPEE3P17zQ9q8rYy0j+KeM+9HI8XXrXezZSTj/AFukM/ApDWxvm4dv1r/c0LhkNqhnVBmUNkdn5JTNqDXv3rweQAuHXEleq2owhAEQYi1nlbyO2oSc257z7z2MRFOtp83LgeNBHvrO6huc0f02Ilkw+FWah0erCYdiycqCSCrSYdZp3SoE63kT64n2Z4l5rUPSIGtu7I9wdrIyy4loeU3ZKgcidAfKdllAGQEY9/RJBwKYZeVzWPWzP51DFtZ9T5dgU6yU7KZmjMtGuEljctGXAHA2po1tHia+/w6h1HpEuhtTuzK9t6NQLrkH3HhC3r5+Qc/5JBjP3ZjOg+d8wTZ5v51jeipbl9VHZ1W8taCkQDkhhqRw30fbSD0XXyt+AmCIETJ984eztxRWXgDYW567mO8gfhNJCSCDk8Ql1/5Gubbhs7cncHqrWxv6VI5kpPLCCoPAQNNZgnq8lmVJLfOWaXK+dMDymJBSvZwVc4fD8JymHvW/5ID7ftJN6bz0LxHsOgtaod1DG/meADGtzTwu3kPo9PoWFG1jAc23ReXY1f8Xg/ZKBUY9vz+v78OtO1ld+sOdBodS0ZcGenwBEEQhD6YUqwsuCZ+ZXtkq7QyU43MLFMSZUO5ur2nE92lUwsw6bW9f57RPX68pk0k20+mpVNpIy/mtQ9Mfs/M9gTb1KHxKAmtgClT5UiE/rB1P89ky+0E/LEdrdLZ3oROUpJtaZl9Hx8YlsM8veefAFw+6qq420web0amj2JS1hRCcpC3K97s8+tcZmUDRLi9MkqRxUbY3QqAz2BXN5AoC4aD3LPhZ2xv3opFn8rv5z1OsbW038eZX7wIgI+bNtPmbY10mGQWjiQsS5glH84WUd0eDeKKKAjCkKDRSPzhqilkpRrY39DJ/e/sUzukhNZTUZBpMXxmEUQ4uZ5ke2VL/FarBHxeMmUHAPbcYeoGIwyIlKE8tKe6Yz82IxwKkRNWNmvY8kfE/Pzx4p+7nmBl9fvoNDoePPuPFKQObL54tBkLpwCQ5TrErPwz+fWcB9FIGt6seI0/bXso7hLujoZKALyynrR+tjsEePWQUtU+v3gRmSlZkQxNEARB6KOeyvadNc64+zlzKsFQmENNyqbZcfmRrWyHT1rJL9szNOe2O90B3t2tbDToaSHfI8OovFdq2uP3OSoeNPdUtotk+4D0dO2rT7DKdr23DQDZLCrbE0laZj5+WYdGknufc2Klo1VJtDlIxWDs+/Vibc1qDjsrsOhTuWrMl6MVXlL5wkiluv31ilcIy32rJg7blJ+Bho7EHoUquZVrU9CYrnIk0ROWw/x+8z18WLcag9bI/Wf9idHpYwd0rILUIsZmTCAsh1lT/X6EIwW90USjpGzKaq85EPHjCyLZLgjCEJJjNfGHq6YC8MyGoyzbOzQXMSJBtJAfmOFZyozKI60uwuH4XFxsb6hEI8n4ZD1pWX3f4SzED2OOkuTO8Md+p2pbYzUGKUhQ1pBZ0P+dvMlgeeVS/rnrbwDccfovmZpzmsoRnVj2qOkAFIVq8HvdnFuygDtn3QPA8/uf7f084kVXUyUAzZpsJE3/HmPavW2sqFoKwOWjro50aIIgCEIfjcu3otdKtLn81LQnVvVoZasLfzCM2aClON0c8eMvmqC0G918tK23HfhQ8uaOWvzBMGPzrEwq/GzL2d7K9gR7z8Rai0i2D0qBvbuNvMOTUJuBTH6l85MmNVvlSIT+0Gi1NGmUDcCdjZUxPbe7rR4Ap8be59fIstxb1f7F0V/Cahgac7gHa0HpIlL1Vuq6atnc8FGfXqPLVApfUr210Qwt6nRe5doUMiXnRiBZlvnr9j+ytPIttJKWu2c/yNScGYM65rnF0W0l36pX1nm9jYk9oiBeiWS7IAhDyrzR2XzvbKXq8+ev76Ft6K1hRES9syfZLlrI90eB3YReK+EPhqlzxudCUc9DXpMmq9/JLCE+2AtHA5AbbiYY8Mf03I66cgCapUx0+qE3K3Jv6x7u3fgrAL467ussGXGZugGdQnbhcJxY0Esh6sp3AHDx8Eu4bcbtAPxj1+M8v/9ZNUP8DG/LUQDa9Tn9fu3bh18hEA4wNmMC4zMnRTo0QRAEoY+MOm1vC/adCTa3/dPz2jUaKeLHL0o3M7EwDVmG94fgxvAXt9QASlW7JH3265vZW9ken89Q8aKlq6eN/NC7D4+EvO4Reb5gmHZ3QOVo+s4SdACgs/b/HllQV7te2WTV85wTKz5nEwBd2r5XHG9q2Mje1j0YtSa+PPar0Qot6Zh0KVww7EIAXit/pU+vSc1TCiiyAok9VkbvdwAgJWnXjf/ue5KXDirrJT+deTdzCs8Z9DHPKV4IwM7mbbR4mgZ9vM/rMhcBEG47EvFjCyLZLgjCEHTbojFMKbLh9AT5b7k2oXYsx4tah9JWTVS2949Oq6EkQ6mCOdLiUjma4/O1KHO+HQNIZgnxIT2vFL+sQy+FaKuL7W5Vd5Nyw96m73+L70TX5G7kJ2t+iC/kY07BXG6aeovaIZ2SpNFQo1c2oDkPb+v98y+N+Qrfm3wjAA9v/T1vVrymSnyfF3YobfTcKf3ruhEMB3i9/EUArhj1lYjHJQiCIPTPpKLEnNserXntn3b++O5W8kMs2b63roNdtU70WonLph07fqe3st0h2sifTEunqGwfDKNO2/u1S6S57daQAwCjTTzDJxq3Sbnmhx1VMT1vsENJ4nqNfU+CPrVbqWq/bOTlZJgyoxJXsrq0u5X8mupVtHpOPYs7s0gpoMimHZ8nPtcO+yIloFS2S6nJN8LtzfKX+ceuPwNw49TbWDxsSUSOm2vJZ0LmZGRkVlcvj8gxPy2QVgKAviO215yhQiTbBUEYcgw6DX+++jS0GonyDommTlHe3l+9beRtItneX8N6WsnHabI97FRuuHoe+oTEo9FqadAoO+Q76g7F9NzBNmVHviulIKbnVZs36OUna35Es6eZYbbh3HfWb9FqtGqH1ScddmWeWLhh12f+/LqJ3+Fr474BwP0f3cv7R6PTxqw/9J1KxVsg9dhF+JNZW7OSFk8z6caM3p3igiAIgnqmdCfbdyRasr27sj0a89p7nD9RuQdfd6iFLl8waueJNy9uUTbULRyfS4bl2KrsDFHZ3ieijfzgfbqVfCKQw2FssrIRyJyeq3I0Qn/5u59rdJ0xbhfe1ayc39i3JOiOpo/Z1rQFnUbX+4wo9N3o9DFMzJxESA7y9uE3TvnxaRm5uGTlWtRSUx7t8KLGHFKuTQZrciXbV1Uv449bfwPANeO/zVVjrono8c8tUVrJr6x6L6LHBZAyukcUeGoifmxBJNsFQRiiSjLNFKcrieKK5vhMesYzMbN94IZnW4D4TbbrOpU53/7UoZUsTTZtRuXfz9dUEdPzajuUG/agtSim51WTLMv8euNd7GvbQ5rBxh/mPUqqPlXtsPoudyIAaY4Dn/ljSZK4edqPuGzkFYTlML9afwcb6j5UI8JeKZ7uNnq2/r2/Xj30PACXjLwSg1a0VRUEQVDb5CI7ALtrOwiHE6fL2P4GJdkezcr2UTmpDMuy4A+FWX0g8u1D45EvGOL17Uqi6aoZxcf9mJ7Kdoc7QKc3cdp7x1pvst0q7ncGKr+7lXy906tyJH3jdXVgkpTvCWum2DCfcGzKNc/sro/pabXuFgDClr4lQZ/e8y8ALhy2hFyLeJ8NxGWjlOr2N8pfJSyHT/qxpi1rBwABAABJREFUkkZDk1bZPOOsS9xkuzWsJNuNacmTbN/csJ5fb/w5MjKXjLiSb028MeLnOKd4IRISe1p30uiK7LUhJUfpbJjpj+01Z6gQyXZBEIasEd1JT5Fs779Pku1iZnt/DcuK72S7yd2dzEobOsnSZOSyKK2hpPbYzmFKcSsLpVJ6SUzPq6Ynd/+DZUeXopV0PHj2HyiyHn+ROF7Zhp0GQKG/Ajn82Yd+SZK4feYvWFh6PsFwkJ+uvZWPm7Yd7zAxYfMrLXWNWaV9fs3Btn3satmOVtJxyYgroxWaIAiC0A+jclIx6TV0+YIcbulSO5w+cXoC1HY/A43JjV5luyRJLJqgLLC/t2dotJJfvrcRhztAXpqJuaOyj/sxJh3YU/QAvf8OwmcFQp/MGReV7QOX3929r86ZGO+zzjbl+d0jGzCao7cRSIgOQ6byXNPznBMrRp/SylxKPfXogQNt+/iw7gM0koZvTLgu2qElrYWl52PRWajpqmZL4+ZTfryjp4CiObajASNF6bqhbFJMsSfHiIs9LTu5c92tBMNB5hcv4pbT7kCSpIifJyslh8nZyjrNqurIdhi0F44BIEduIeBLjE1liUQk2wVBGLJEsn1ggqEwjd2t9wtFZXu/lWXGd7Ld5lce1g2ZiZUwFD4rZFce2o2d1TE9r737/ZOSPSym51XLyqr3+dvOxwD46cw7mJ47U+WI+q9g9DSCsoZ0OmlrOHZul1aj5Z4zf8Ocgrn4Ql5uXXUT+1r3xjxOORwmJ6RU+Flyyvr8ule6q9rPKV5AVkpyPOQLgiAkOp1Ww8SCnrntTpWj6ZuDjcqCcYHNhM2sj+q5zp+gVA2u2t+ELxiK6rniwYtblM5IV04vQqs58aJ1Ybqy0bumLTGSoLHW7vIDoJEg3Swq2weqZ42jzpEYSQhPu5KkdUppUUn6CNFlyS0DICsU204m5kAbALq0U1epP9Vd1b6g5HyKrUNnU32kpejMLB52EQCvH3r5lB/vTe0ugHEk5mxtd6cTvaTcw1jsiT/i4oiznJ99cDPekJeZebP5xRm/ierowPnFi4DIt5K35xTikQ1oJZnW2sTtmhCvRLJdEIQh65Nke2JUU8SLpk4fobCMXiuJHfMD0NNGvrrNjT948tZRasgKK7O7zDlDI1marPRZSmsomzd2c5g+nQxNyx8es/Oq5UDbPu5e/wsArhpzNV8YlZhV08YUCzVaZVZg46Etx/0YnUbPA3MfYnruDFxBFz9YdT2NroZYhomrow2LpCx6pvfx/eXwtrGyaikAl4+6OmqxCYIgCP3X00o+UZLt++uVVqhj86NfOTq1yE6O1UiXL8j6itaon09NdQ4PHxxSnj++OOPknbV6kqA17e6ox5WImrtbyGdYjCfdtCCcXH539776BOmg4HMqyfZOrU3lSISByChQ1l2skocuZ+yu99ZQOwCm9JMnQSudR1hV9T4A35zwrajHley+MFJpJb+6ZiVt3pP/e4ftysYGY1dsCygixdX+SdeNFEsCjdk7jhZPEz9ZcyMdfifjMydz35w/otdGd+PlvOIFaCQNB9r3UhvB94Ck0dDYPaKgqyG2YyeHApFsFwRhyBqRrfywP9wiHtb7o6eFfJ7NhEY8xPdbjtWI2aAlLENVW3y99zydDmwoFff2vORPliYzS94oAHJDsZvD5GipI0XyE5YlMgtHxOy8amjxtHDbmh/iDXk5I28Wt5z2Y7VDGpRms/J+8VbvOOHHmHQmHpr3KGMzxuH0Ofjzxw/HKjwAHHVK+7w2rJgsfWvf+9bhV/GH/YxJH8+EzMnRDE8QBEHopynFSmJoR41D3UD6aF/vvPbotZDvodF80kp+2Z7Ybm6LtVe21iDLMGt4BqXdHcBOpKg32Z4YSdBYa+lSKtuzUkVV+2D0tJFPlJntwU5ls4pbl65yJMJAmCw22lF+rvQ878SCPaxsdEvNyD/px/1775PIyJxddA4j00fFIrSkNjpjLOMzJxAMB/nf4bdO+rGGzO6NGJ66WIQWcR6ncm1ySok93sIdcHH72ptp9jRSYi3jt3MfJUUX/S6vGaZMpuUonRNXVUW2lXy7QSm28DWJZHukiWS7IAhD1vDu2dlNnT46vAGVo0kcPTPyCmyihfxASJLUO7e9Ms5aybc3KPO9O+UULDbxsJ7IMouUB2EbLrram2NyzrY65Ua9RUrHYDTF5JxqaPE0c+vqm2lyN1JiLeU3Z/0enUandliD4s8aD4Ch5eTt4S16C3eecTcSEsuOLo3p/HZ3cyUAbdq+tYIPhgO8Uf4SoFS1i7aagiAI8aWnsn1vXQeBUPx1e/q8WFa2wyet5JfvbSQUlmNyzlgLh2Ve3KpUa10149QjrArTRbL9ZFq6R71lW0X3ucHo6aDQ0OFNiO+9sKsFAK9BPL8nqtbu5xt305GYnM/V6cAsKdeLtKyCE35cXVctS4/8D4BrJ3w7JrENBZeNVDrivV7+CrJ84muMNU8pYMgOJeamO1+Hsg7VpU3cZHswHOTuDT+l3HGAdGMGvzv7MWxGe8zO39NKflV1ZFvJuy1KJyGp/WhEjyuIZLsgCEOY1aTDZlBubMqbRCv5vuqZXSbmtQ9cT7I93ua2uxqVG62WPiazhPiVYrXTgh2AtpqDMTmnq1HZid+qT/x5XCeyq2UnX3/3ava37SXNYOMP5zxKmjFxHx57mIqnAJDjPvV7ZXTGWC4beTkAf9zyIKFwbGbJBtqUWXUdhr69vz6oXUWzp5F0YwbnlpwfzdAEQRCEASjLNJNm0uELhjnQXTUer8JhuTfGcTGobAeYNTyTNJOOli4/26raY3LOWNt4pJXqNg9Wo44LJp68uhKgsLu9d40jvrqDxYuW7jbyYtTb4GRbjeg0EqGwTFNn/Fe3a9xKK+qAKUPlSISB6nm+6XneibbOFqVS2i0bMaeeePzAf/Y+TUgOcXreLCZkTYpJbEPBotLFmHVmqjur2Nq4+YQfl1U8GoB0OnF3OmIUXeQEO5WNQO4EHXEhyzKPbPstH9V/iFFr4oG5j5CfWhjTGM4uOg+tpKPccZCqjsqIHTdkLwXA1BWba85QIpLtgiAMabkpItneX/XO7sp2kWwfsJ6uCofjLNnub1OS7U6DSLYng2adsmjpbiiPyfmCrcr7p8t04t3xieyN8lf5/vLraPE0M9w2gqcWP0tpWpnaYUVE7qgZABSFavF5Tn1d+v6Um0jVWznQvp+3Dr8e5egUklOpfPOYT/3+CoQCPLPnHwAsGXEFBq1opyoIghBvJElKmLntNe0eXP4QBq2md9NstOm1Gs4bpyRg3tudmFVtp/LSlhoAlkwtIMWgPeXHizbyJ/dJsv3/2bvv8LbK64Hj36ttech7O3H2IHsASdgjQMKmhR97lZZCKbQUKC17FAoUaIG2lLbMUqCMspMAAQIkZC+yd7y3bNna0v39cSWHNMtD0z6f58lDonHfYyzLuve85xz53NMbep1CQYa2sSNcaJDIDKG5z0FrTpwjET3lsmrn7eHznWhzNGuj5uw62wG7fzW6Gnh/238BuHKMVLVHktVo5ZTyWYBW3X4gqbZs7GjjTxsrtsQktkgKhjYCeUyZ8Q2kh/698QXe2/YmCgp3TXuIUTmx33BiM2cyueAIAOZHsLrdmKuNKMhwJ+eIgkQmyXYhRL9WGMoXb5Nke5eFZ7YXZfbdNtHRVt5Z2Z5gr7tW7YKXK+XQlSUi8bWlaLtuA02xmcOkC10c8KaVxmS9WPEFfDyy5Hc8uPhefEEfx5WdwD9OeZmy9AHxDi1isgsH0EI6ekWlevPKQz4+y5LNNeOuBeAvq57C4W2LdoiYOrQTwUDGoXeTv7bpBba3bsFmzuK84RdFOzQhhBA9NK5Uq3Zak+Bz2zfUar/nhhWkYdDH7jLaKaG57XPX1x601WwyanX5+GitlvDpSgt52LPZ2+704ZAxcPvYM7NdKtt7q8imXesIFxokMrNH63yhWPPiHInoqUCGdv4cPt+JNk+LtoHLoT/w6IFXN7yMN+hlbO54JuVPiUlc/ck5w7RW8p9XfEaLu/mAj2vQa58D2mpiU0ARSYpT+7p8SZhsn797Ls+u+SMAP5t4C0eVHB+3WE4YEGolvztyyfbUQm3sZH6gJmLHFBpJtgsh+jWpbO++qtDubqls77lEbSNvbNdO7nzpsW2NJKLDG0oGG1pjM4cpxam9fpSsvpOEbnI1cd1n1/DmltdRUPjJuOt5+Og/kGqMTVVbrCg6HVUmbSZc646uzWH/4fALKM8YRIunhX+s/Vs0wwMgza1dFNJnHfyC/K62Hby4Tovnhom3kGmW+ZVCCJGowpXtqxO8sn1jjdZCfmRhbEfHHDM8D7NBR0Wziw01id1qv7veX12Nxx9keEEa40u71mI23WIg02oEoMqe+EnQWJM28pETvtZRnQSvsxS/lmw3pOfGORLRU+Hzm1R3XUzW87Vp6ziN+x89YPfYeWvLG4BW1X6g6nfRcyOzRzEyezS+oI+Pdrx/wMe1hboGeht3xCq0iNGHNhEEkmzExZqGlTy0+E4AfjDsIn4Q5837R5Ucj1FnZGfbdrbbI7PpIqdUS7Zn0k57a1NEjik0kmwXQvRrBaF88dYGSbZ3VfiEU2a291w42V7X5qHD449zNHtYXVoyS2frW5XJ/ZWSrbWGSu2ojMl6No+2K9aSWx6T9aJtfdN3XP7x/7G6YSWpxjQeO/aPXD32x+iUvvnxuS1zhPaXuu+69HiDzsgvJt8CwOub/s3O1uheAMjy1QOQcpDXV1AN8ujS+/AFfRxRNIOTBpwW1ZiEEEL0zvgyLcm6uc6ByxuIczQHtqlOq2wfGaN57WFWk4Gjh2nVqnPX9a1W8v9ZpnVEOn9KWbcSOaVZoVbyzYmfBI21Bkco2Z4uyfbeCnfxS4Y28ukBOwAmm4yCS1aWXG1+crYvNsl2tV07r/KY9z964I1Nr+LyuxieNYIZxUfHJKb+6Jyh5wHwzpa3Dti9xpOmbcRQWpNvtrbRY9f+Yk2eZHuFYxe//fomvEEvR5Ucz3UTbo53SKSbMphaOB2AzyvmReSYKemZNKNtIG2p3ByRYwpN37xaKIQQXRSubK9oduL2Je4FnkTR4fHT6tJa9oVbq4nuy7SayE7VZuntbEqc6vbM0MmdOafvVCb3Z5aCoQDk+KLfjk4NBskLaCftGYWDo75etH2w/T1+PO9K6l31DMwo54VT/8XRpcfGO6yo0hVqM8gy7Bu7/JxpxTM4uuRYAqqfJ1c8Fq3QCPj95KnajuuMwkEHfNz7295ibeNKUgwp/HLyb6UKQwghElxhhoW8dDOBoMr6msStbu+sbC+KbbIdvtdKvg8l2zfWtrG6shWDTuGcid3rqFWaaQWgssUZjdCS2p428jKzvbeKbdqmjmRoI28LapuBUjIL4xyJ6Clb6Pw5T20i4I9+MYbO2QhAYD+jBzp8Hby+6VUArjhMqtqjaWb5aaQYUtjt2MWqhgN0l8vSNmKktFfEMLLIsPjsACipydF1w+5u5rYFP6PN28qo7DHceeTv0Ov08Q4LgBPKQq3kK+ZGbKxQvUEbH9qRhCMKEpkk24UQ/Vq6EWwpBoJq4rX0TkThk80Mi4F0izHO0SS3RGslrwaD5AW1k660gySzRPLILBkOQEGwAb/PG9W12uyNpCna+0NO6dCorhVN/qCPPyz7PfctuhNv0MvRJcfy/CmvMDCjPN6hRZ1t8CQASn3bUYPBLj/vxkk3Y9AZWFj9NV9XLYhKbPa63RiUID5Vjy1//23kG5x1/HX1kwD8aOwNFKYWRyUWIYQQkaMoCuNKtOr21RWJmWx3eQPsCG2OjXUbeYCTRhWg1ylsrHWwu6lvJJjfWKp1XTppVAE53Wx53lnZ3pL4SdBYCgRVmju0yvY8aSPfa3vayCd2ZbvX7eo8B0vLlmR7srLll+FT9RiUIPa66Fcwm9zadR/S9k2CvrX5DRxeBwMzyjm+7MSox9KfpRpTOaV8FgDvbn9nv48x5WrX5mzu6BdQRJrVr32uM6bvv4NCIvH43dz+9U1UtVdQlFrC747+IxZD4nRznVFyHCa9mQrHLrbaN0XkmOERBf7m5BtRkMgM8Q5ACCHiSVFgSF4aK3bb2Vrfzqii2F9ASSYyrz1yynNSWb6rhR0NiZFsb2uuI0fRErJZkmzvEzILBuBRjZgVH83V28kfODJqazVXbaEQaMKG1ZrW7ec3OOt5b9s7fLzjQ0x6M+cMPY9Zg8+I6Wz0Fnczv/n6FpbXLQPgR2Ov5Udjf9Jn28b/r+Kh47VkttLBrqrt5Jd1bdPEgIyB/N+IS3hlwws8sfxRjiichlEf2c1YbbXbAWjQ5WAx7Hv6oqoqTyx/CKe/g9E54zhn6AURXV8IIUT0jCvN5LON9ayptMc7lP3aXOdAVbVq4bw4tOfOSjVxeHk2i7Y38dv/rmVofvc/Zx2IVlleyuji2J0De/1B3lmpJdsvmLr/DXQHI8n2/WtxegmGit3CHdREz4W7+CV6ZXt7s9bxwqfqSbUlfkJL7J/eYKBBl0OxWk9b7XZySqLbKc7i0WZp69ML9rrd7Xfz6saXAbh89FUJU9Xbl5099Dz+u/UtPq/8jClpk/a531aknZPnB+pQg0EUXfJcm0gLdd0wZ+zbQSGRBNUgDy6+g/VNa0g3ZfD7Y54m25JY76dWYypHFh3FgsrP+LxiHsOyen9tz5M+ANrBYN8VgQhFmCTbhRD93pC81M5kuzi48Lx2Sbb33uC8xKpsb6vVdjM2YcNkke9vX6DT66nVFTBQraStalNUk+3tddrrp9FQQFeHEASCARbXLOLtrW/yTdUCAuqeUR6PLnuIP69+itMHn8kPhl8Q9cryjc0buPXLX1DrrMFqsHLP9Ac5ruyEqK6ZaEwWK5X6UgYFd9GwZXmXk+0AV429ho92vE+FYzevb3qVS0ZfHtHY3I3aCWCLIZ+i/dz/ReUnfFP9BQadgVun3iUXhoQQIomMC81tX1OZmJXtG2vD89rjtyl71thCFm1v4qstjXy1pTGix3518W5e/8k0xoQ6DETbpxvqaHH6KMgwc/Sw7reWLc0KtZG3940q/0hpbNeq2rOsRgz65EnGJKrw9Y7Gdi8efwCzITE/W3a0aMn2ViUdXRIl4cS+Wgz5FPvqO897oikt0AKAJXPvZPv72/5Ls7uJotRiTh00K+pxCBiVPZoRWSPZ1LKRld6VnM65e92fWzYMgDTFRU1LPZk5ydPBwqa2gQKWzPx4h3JQf139JF9WfopRZ+TBGU8wMCMxi4+OL5vJgsrPmL97LteMvaH3Ix4yy6EGrM7KiMQnNJJsF0L0e0NCSc+tDZJsP5Q9yXaZ195b4Tby2xMk2e5s0E7qmvT5JMdEJdEVLeZiBror8dRvj+o6vqadALRb9pcK3Vujq4H3tv2Xd7e+TU3HnnZoE/Imcc6w82jztvGfTa+x27GL1ze9yuubXmVa0QzOH3Eh04pnRLzSfM6OD3lw8b14Ah7K0gfw6LFPMtg2JKJrJIvG1GEMcuzCU7Ua6Hp1eJoxjesn/Jz7v72bf6x9ltMGnU5OSuR2gwfs2glgh2Xfiwttnlb+uPxhAC4edRWDbMk7xkAIIfqj8aWZgPaZuNXlw5aSWKOqNoTntRfGfl572AVTB+D2BWlxRnYs0MJtTayqsHPF80t557rplGVbI3r8/XljmTZ39rxJpT1KCpdmS2X7/jQ6wvPapYV8JGRZjZgNOjz+ILWtbgbmxK7bVnd4WusBaNPZyIxvKKKX2i1F4PuOQEv028hnBrVke0rWnnN3f9DHy+tfAODS0Vdg0CXW7+K+SlEUzh56Hr9f+iDLvMv2mcdtsabRSCa52Gmp3Jo0yXZ3h4NsxQdAWlbBIR4dP+9seY3XN70EwG2H38v4/MlxjujAphUfg0Vvoaajio3N6xiVM6ZXxzPnD4ENkO1JvhEFiUyS7UKIfi+cbN8mle2HVC1t5CMmnGzf2ZQYyXZfs3ZS5zAXSLK9D+lIHQDuJSgtO6O6jmLXLpx6Ukv3e39QDbK4ZhHvbH2Tryq/7KxiTzelM3vQmZw97Ly9Etw/HP5/LK5ZxH82v8Y3VV+xqOYbFtV8Q2laGT8YfgFnDDmLdFPvKsz8QT9Pr3yys1XejOKjuW/G73p93GTmzTsMHJ9iaVrf7efOHnwmb25+gw3N6/jL6qe448h7IhaXvk1LtntSS/a57y+rn6DF08zAjMFcMupHEVtTCCFEbGSnmijNSqGyxcV3Va3MGJpYn0Q7K9vjOG7MZNBxzTGRbyvc5vZx/l8XsbHWwWX/XMKb107r9gz17qhpdbFgcwMAP5zS/RbyACWh81C704fD7SPdIgkh2FPZLsn2yFAUhZLMFLY3dlBldyVsst0XSrZ3GDIl2Z7kvGnF4AB9W1VU1/F53djQrkHZcos7b/94x4fUOmvItuRw+uCzohqD2Nspg2bxxPJHaQg2sKNtO8Nz9+5I2GgoItdvp712K4w/Kk5Rdk97cx0AXtVASmpiXl/5pupL/rTyEQB+NPZnnDwwsbs5pBhSmF58LPMr5vJ5xbxeJ9szirUihYJgPY5AAJ0+MTu4JBvpMSOE6PfCyfbtjR0EguohHt2/hSvbSyTZ3mvloRN2u9NHS0dkq1R6Qhc6qXNbD12ZLJJHIHMgAJb26O6Qt3SELgpk7X3htNHVyAvf/YNz3zudGz+/ji8q5hNQA4zPm8A90x7gw3M+5ZdTbt2nklyn6JhWPIPHj3uKt858n4tGXkqaMZ3K9gqeXPEYp78zk4eXPMA2+9YexWv32Lnx8+s6E+1XHnYNjx37x36daAdIKRsPQF5H9/+/6hQdN0+5DdBaEG7oQcL+gHE5Q7utbXtv5lhet5iPdvwXBYVbp96FSS8zSoUQIhmFq9sTrZW8qqpsqo1/ZXu0ZFiMvHjV4ZRkprCjsYOrXlyG0+uP2npvr6giqMLhg7I7Nx53V7rFSKZVS7BX2aW6Pawz2Z4uyfZIKQp186sJFRwkokCHtnnFbcyKcySi12zaeXSKK7pVpm2NNQD4VR3pWVp770AwwAvr/gHAxaMuw2KQTpaxlGZMY2KoovrbmoX73O9I0a7RhbsJJgNXaCNQq5KekHPmNzWv575FtxFUg8wefA6XjLo63iF1yfEDTgHg84p5BNVgr46VXTwYv6rDrPiw10W/o0Z/kXivdiGEiLFiWwpmgw6vP0hFs8x+O5jqVu2CRpFNku29lWLSU2TTTmISoZW8KdTOO5Cxb+WoSF7GXC2JneGO7g75DI920m7KHdRZxf7rBTdzxjun8OfVf6K6vYo0Yzrnj7iQf89+k+dmvsiswWd06US+NL2Mmyb/ig/PncevD7+DwbYhuPwu3t7yHy788Dyu+/QaLYkfDBzyWACbWzZx+ccXsrR2MSmGFB46+jF+OuFnMucbKBg+FYCSYDWuDke3nz8ubzynlc9GReUPy36/Txu8nsrwajvjjTkDO29z+108tvR+AM4eej5jcidEZC0hhBCxN640PLfdHt9A/ke9w0OL04depzA0Py3e4URFQYaFF686nEyrkdUVdq7/1wp8gd5dwN2fYFDtbCF/fg+r2sNKs0Kt5Jsl2R7W2B5uIy8bDyMlfM2jpjVxX2dKRyMAXnN2nCMRvWXKGQCAzVMX1XXamrTrPi2KrbOSdX7Fp1Q4dpNhyuDcYT+M6vpi/44snAbAt7WL9rnPm669NnStu2IaU2+427SNQO26xCtmqO2o5tdf/Rx3wM3Uwmn8cvJvej//PEaOKJqB1ZBKvbOW9U1renUsg9FEnS4PAHvV5kiEJ5BkuxBCoNcpDM7TLp5slVbyBxQMqp27umVme2SEKzp2JECyPc1dC4A+s3cXv0RiSSvSWkMVBmqiuk5eoI5GnY5P1Y384L0zuWH+tcyv+JSA6mds7njumnY/H537Cb+a8muGZA7r0RopBivnDvsh/579Fn8+8TmOLzsRnaJjWd0Sbl3wC855dzYvrvsndo/9gMf4ZOccrp57GTUd1ZSklfLPU17mxAEn9/Cr7nuyC0ppwoZeUanevLxHx7h+4o1Y9BbWNK5i7s6PIxJXTkA7WU/N25Nsf37dX6nuqCQvpYBrxt0QkXWEEELEx7gErWzfUKO1kB+Um4rF2Hc35Q3NT+Mfl0/BbNDx+aYGfvvO2ohtmAtbsrOZXU1O0swGZo3t3czZ0kxttnxli2yUD5M28pEXHp1XlcCV7QZ3MwBBa06cIxG9Zc0rByA3WB/VdVzN2nWfNl0moHVwCVe1XzDiYlKNiTkyoa87snA6AKsbV+L07f27TcnSzoGtHdEtoIgkv0PbCNSht8U5kr05vG3ctuBnNLsbGWIbzr3TH8WgS55xNGa9mRklxwEwf/fcXh+vyah1TXDXb+/1sYRGku1CCAGdlQpbGyTZfiCNHR68gSA6RauAEL23J9ke/9ddll87qUvJHXiIR4pkklOmJbYz6KC9pSHixw+qQb7e9hn35Vk4eUAJ/6p+i8r2ClKNafxw+AW8OutN/nHKS5w++Ewshsh0xFAUhSmFh/P7Yx7nv2d9xOWjr8JmzqTWWcMzq/7IGe/M5P5v72Zz88bO5wSCAZ5e+SS//eY2PAE3RxRN44VTX+1x4r8vqzJr3RDadqzs0fPzrQVcMUabnf70yidw+Xt3Idzd0UoWWpV9ZrEW2+bmDbyxSRsB8MspvyXV2DerDYUQor8YW2pDUbS24OGkYSLY2IdbyP+vyQOzefqiSegUeGNZJY9/Etkqp3BV+xnji7CaDL06Vmdle0viVhzHWvjnJk+S7RFTHOpCl8iV7UZPi/YXa258AxG9llmknefY6MDpsEdtHW+bVjnfYdS6IXxdtYAtLZuwGqycP+LCqK0rDm5A+kCydFn4gj6W1S3Z676U/MEAZHqjW0ARSYGOJgDcxsRJtvsCPu785mZ2tm0nNyWPh495KimvI5wQaiX/RcWnXe7ueCAdVq3YSm3e0eu4hEaS7UIIAQyVyvZDCle1F2RYMOrl10ckJEple8DvJ0/VdsVnFA6KaywisiypNhrJBKCpclPEjmt3t/Czzy7lR3Nn8eulv2JeWip+RWFMzljuOPIePjr3E26Z+huGZkU3mV2YWsT1E2/k/bPncueR9zIiaySegIf3t/2XSz6+gGvmXcGcHR/xiy9+xkvrnwfgstFX8uRxz2AzJ86JXyJpzxwJgFL3XY+PcfGoyyhKLabeVc+L6/7Zq3iaq7UTP4eaQqotG3/Qx++X3kNQDXJC2SlMLz6mV8cXQggRf2lmA0NC52OJ1Ep+Y6iyfVRR4rVBjYaTRxfw4DljAXhq/lZe/jYyLWvb3D4+WqslCX7YyxbyIMn2/dkzs13ayEdKUaiyPZFntqf4tGS7Li0vzpGI3kq1ZdGmal077NXRqzINOrQiC7c5G1VVeX7d3wE4d9j5cn4cR4qiMNwwHICF1V/vdZ8ttBGjIFCHGoz8mJeocGrXF33mzPjGEaKqKo8uu5eV9UtJMVh5+OinyLcWxDusHplaMI00YxpN7gbWNvasQCLMZ9M+k5kcFZEITSDJdiGEAL5X2S7J9gOqtmsXM8Lt1ETvDc4LJ9vj2wLRXrcbgxLEp+qx5Usb+b6mwaC1hnLWbo3YMf+98QU2tqzD7mnCrBi5oM3B4zUG/nnqK5w55BxSDNaIrdUVFoOFM4aczUunvcZzJ7/AzIGnolcMrG5YyV0Lb+fbmoWY9RYemPEwP5t4k8xnPwhdkXaR3dbW880ZZr2ZmybdDMAr61+kur3nLe866nYC0KjPB+CNTa+w1b6JDJONn0+6rcfHFUIIkVjCc9tXVyROK/n+VNkeduHhA7jpJG2z5F3vfsec72p7fcwPVtfg9gUZmp/GxLLMXh+vNCvURt4ubeTDGh3hme1S2R4p4cr26gSubE/z2wEw2vLjG4iIiEa9tmmio2Fn1NbQdWjJdn9KLsvrlvJd4xpMOhMXjbo0amuKrhlm1H73Lqr+Zq9RLrmlQwmoChbFR3N9ciRF9S4t2e43Z8c5Es0L6/7K3J0foFf03Dv9UYZljYx3SD1m1Bs5quQEoPet5PU5WteEdFdlr+MSGkm2CyEEe5Lt2+rbIz6frq+oCiXbi2zSQj5SBuVqr7udjR0Eg/F73bXVaZWjjUoWekPv2jqKxNOWUgpAsCkyO+R3tG7l7S2vATCt+AQe0p/FHU0t5OiKI3L83lAUhfH5E3ngqN/z3tkf86OxPyHbkkNZ+gD+ccpLzCw/Ld4hJryswZMBKPNu79XO+ePKTmRKweF4g17+tPKJHh/H26RV1bWa8ql07OL5dX8F4PoJN5NlSYyTdyGEEL03vnNuuz2ucYR5/cHOjdgj+0lle9iNJw7jwsPLUFX4+WsrWbqzuVfHC7eQv2BKGYqi9Dq+0mypbP8+VVVp6pCZ7ZEWrmx3uP043L44R7N/Gaq2OSlFku19QqupEABv0+6oraF3ae29VWteZ1X7mUPOITdFRhHE22DDYIw6IzUd1exq29l5u9Fkpl7JAaC5KnIFFNG0Z8RF/M/X5+x4jxfWPQvALyb/hiOKZsQ5ot4Lt5L/svJT/EF/j49jzde6JuT4kmdEQaKTZLsQQgDluVZ0Cjg8fuodiTMnMJFUh9qnlUhle8SUZqWg1ym4fAHqHPFrT+dq1E7mWozJ2UZJHJw3YwAABnvvW4F6/G7uXXgb3qCHqQXTuXnKQ1hbtYonT1pJr48fSXnWfH487jo+Pvcz/nPGuwzPGhHvkJJC0dBxeFU96YqL+ootPT6Ooij8cvKt6BQd83d/wrLaJYd+0v60abusnSlFPLrsfrwBD5MLjuCU8jN6HJsQQojEE65sX1PZmhCbn7c1tOMPqqRbDJ0Vrv2Foijcf9YYThpVgNcf5OoXlrK5ztGjY22uc7Cqwo5Bp3D2xMh8Vgyfj9qdvoRNgsZSq8uHL6D9zOSkSRv5SEkzG8iwaBvRa1oTr5V8wO/HpmobglKzC+McjYgEl1XrSEdr9KqXLV4t2b7TCktrF6NXDFw6+oqorSe6zqSYmJA3Edi3lXyzMdytcFvM4+oJs8+u/SU1vps4ltct5pGl9wFw8airOGPIeXGNJ1ImFxyOzZSJ3dPCqvplPT5OZqk2uqCAZjyug483TYTP5slAku1CCAGYDXoG5mgtvaWV/P5JG/nIM+p1DMjW2iDuaIjf3PZgi5ZsbzdLsr0vUrIHAZDq7P1J+9OrHmNH2zayLbncOvU+dIoOc4fWIjxoG9Dr40eDoijoFPnI21VGk5kKvfa9bNi6vFfHGpo1jPOG/RCAx5c/2qNd18ZQC/oFGUFW1S/DrLfwqyl3RqQyTgghROIYVZSBQafQ1OHt7KgVT5tCLeRHFWb0y985Br2Opy6cyKQBmbS5/Vz+zyXU9KCd9htLtc+fJ4zMJy89MlXX6RYjmVYjQEK8VuItPK89w2LAbJBRSZEUvvZRnYCvs/bmOnSKlvxIy5LK9r4gkK51pDM5ej6C61BSfVrF8ZzgegBOGzSLorT4d6gTmiMLpwOwqOabvW7vsGqb1QLNO2MdUo+k+LWuG4a0nLjFsN2+lTu/uZmA6ueEAafyo7E/i1sskWbQGTm6NNRKvqLnreQzsgvoULUNpU2VBy602NKykes+vYy6DqmAPxS58iiEECFD8mRu+8GEL65Isj2yBuVqmzy2N8Yv2a53VAPgTZWTrL4opVDbrTrcs47NC97s8XE+r5jHe9veREHhjiMf7Gzhne7WXj+mnIG9D1YkhKY07TXjrVzd62NdM+46MkwZbLVv5r9b3+7281NdtTTodbyt2wjA1WOuozittNdxCSGESCwWo54RodnoayrjP7d9Q20bQGdM/VGKSc8/Lp/KkLxUalrdXPHPpbQ6u15J7vUHeWelljQ6f0pZRGMrzQq1km9OvCRorDWE57VHaDOD2GNPsj3xKts7WuoAsJOGwSgdDfoCQ9FoAEY5vqG9pSEqa2QEWthkNLLKvRkFhcsPuzoq64ieCSfbV9Ytx+3f8/vNl6H9DjW0Rm/EQCSlBbTPUOaMvLis3+Rq4Ndf3UCHr51xeZO4/fD7+lwBRriV/FeV8/EHe9blR9HpqNVrnVE6avc/omDOjve47rPLWd+8lj+vfrxnwfYjfetVJoQQvRCe2y7J9v2rCp1gysz2yAon23fGMdlucWq7E4M2SWD1RQMnHM9Ky5FYFB9TvrmW9R/9tdvHqGmv4rFQ+61LRl/N5IIjOu/LDdQDkFY4ODIBi7jz5R0GgKVpQ6+PlWnO5Cfjrgfg2TXP0OrpXgIl01fHQznZuPAyIms05w2/qNcxCSGESEzjQnPbVyfA3PaNNVpl+8ii/ptsB8hKNfHiVYeTn25mU52Da15ehtsX6NJz52+so6nDS166meNGRPaCe2mm1h2sssUZ0eMmo3Blu8xrj7zwtY+edHWINnerlmxvU2xxjkREytCjfsAO3UAy6GD3fx+I+PGDgQCZahv/yMwA4IQBJzMwozzi64ieK88YRKG1CG/Qy7K6pZ2367LLAUh1Rq/rQSTZVC3ZbrHFJ9n+u8V3UuesoSx9IA/MeByTvu9tSBqfN5ksczZt3laW1S3u8XHsFq1rgqdh+163ewNe/rDsAR5achfegIcji47i5sl39Crm/kCS7UIIERJOtm9rkGT7/3L7Ap0n8TKzPbLCyfYdcUy2p3u0mdvGrMRsAy56R6fXU3zdOyxJPxmDEuSoNb/huzfu7/Lz/UEf9y36Ne2+dsbkjOeKw67tvM/jdJCDljzNKRka8dhFfFgHjAegwLX/3c3ddc6wHzDYNoRWj52/r+36Zg81GGSdxcEnqVZ06Lh16t0YdIaIxCSEECLxjA/Pba+If2X7xlBl+8jCjDhHEn+lWVZevOpw0s0Gluxo5hevryIQPPTszjeWVQJw3qRSDPrIXn7srGxvSbwkaKyFz9PzJNkecYlc2e5t1TY8t+sz4xuIiBi9wUDt4b8GYErtazRVbT/EM7qn3d5AtVFhbqq2WelKqWpPOIqiMK14BgCLvje33VowBIAsX+K38fa6XaQq2ntmWlbsR1VWtVewrO5bdIqOh47+EzZzZsxjiAWDzsCxZScB8PnunreSd6VqRVc6+67O2+o6arhh/pWdnS2vHPNTHjr6T2SYZXPXoUiyXQghQqSy/cBqW7UPSilGfed8PBEZiZBszwloLcqseZJs76uMJjODr32Vr/P+D4Bjtj/B+ud/jhoMHvK5/1j7Z9Y3ryXNmM6d0x7aK9nZVrMDAIeaQnpmbnSCFzFXOHwyAMXBWjoc9l4fz6Az8MsptwHw5ubX2WbvWhK/umYLj+RqSY4Lhl/K0KwRvY5FCCFE4gpXtn9X1UqwC8ncaGnu8FLXpiUw+3Mb+e8bVZTBs5dNxqTX8fF3tdz7/jpU9cDfo7o2N19s0pKBP5wS+e5ZkmzfY09le9+r3Iu3RK5sD7Rr5/AuU1acIxGRNPyYH7LOOAaL4qPxvbsjemxHUw3/zMwgqCjMKD6a4dkjI3p8ERnTi48CYFH1ws7bskKFDfnBRgJ+f1zi6qr20IgLv6rDmpEd8/Xn7nwfgMkFR1CW3rdHHZ5QprWS/7rqc7wBb4+OEcwsByClvQKApbWLuGbehWxsXkeGycbvj3maKw77SZ9rwx8t8n9JCCFChuRpSc96h4c2d8/mnfRV1Z3z2i0oihLnaPqWcLJ9d7MTX+DQic9I87g6OiuTbUXSBrwv0+n1jLryaRaU3wDAUXWvsOXZS/H7DvyhfGntQl7d+DwAtx1+D4WpxXvdH2411aAvAHlv6DMy80poIAudolK9eXlEjnl44REcV3YCATXAk8sfPegF+rC/f/cnGgwGSnxBrhz704jEIYQQInENL0jDYtTh8PjZHseNqOGq9gHZVtLM0lElbPqQXB6/YDyKAi8t2sWfv9h2wMe+taKSoApTy7MYkpcW8VhKs0Jt5O3SRr4xNLM9RyrbI25PZXviJdvpaATAK8n2PkXR6XAfryXZD7d/RPWWlRE7dmX9Rt5L064/XTnmmogdV0TWlMLDMegMVLZXsLtNqzbOLhiIV9VjVAI0Vu2Ic4QH57RrG4HalDR0en1M1w6qQebu0JLtp5afGdO142Fs3kRyU/Jo97WztHbhoZ+wH6bcQQCke6p4ef1z3PLldbR67YzIGs3fZr7KEUUzIhlynyfJdiGECEm3GCnM0HYuS3X73sJt04qlhXzEFWZYsBh1+INqXCozWkKVyS7VRHpWfszXF7Gl6HSM+b97+WrMffhVHUe2fkzln8/G3eHY57FNrkYe/FabyXT20PM5pvTEfR7jb9JO/lrNRdENXMRctUVrVde+M3IXeG6ceDMmnYnFtd+yoPKLgz52df1y5tu/AeCalhTMBkvE4hBCCJGYDHodhxWHWsnHcW5757x2qWrfx+njirlz9mgAHp27iTeXV+7zGFVV+U+ohfwPp5RFJY7SbKlsD5OZ7dFTbNNeZzWt7i5tFI0lnasJAH9K7CtHRXQNmnQiy60z0Csqno/vithxP2yYi19RGO3WMy5vfMSOKyIr1ZjK+LyJwJ5W8nqDgXqddr3OXr05brF1hbtNS7Y7lNiP4VlVv5xaZw2pxjSOLjk+5uvHmk7RcVzpyQDM72Er+bTiYbTpFJ7IcfL3tc+gojJ78Dk8deLzFKWWRDLcfkGS7UII8T3SSn7/wju5wyebInJ0OoXyHG138c44VPB01GvJ0gZdLopOPhb0F4ed/jOWTnsat2pkkutb7H85jfaWhs77g2qQBxf/lhZPM0Nsw7luws37PY6hdTcA7v+peBfJrz1zFABK3XcRO2ZJeikXjboMgCdXPHbAVmeegIdHl90HwA/aHAxATvKEEKK/GBee214Zv7ntm2pDyfYimde+P1cdNYifHKt1xLrtrTV8HmoXH7Z0Zws7GjuwmvTMHhudDZkloU3gdqcPRz/vSidt5KOnwKZtYPD4gzR39KxFb7SYPM0AqFYZ5dUXmU+7j4CqMNn5DTuWf9rr49ndTXzl0c7rZrnyen08EV2dreRr9lQrN5u036euhsSubPeHku0d+tjP956z811Aa6/eXzbrHz9AayX/TfWXePzubj+/JQ0uKC7k61QzRp2RW6feza1T78aslw18PSFX1YUQ4nvCyfZtkmzfS2eyXSrbo2JwaIRBPNplupu0ZKndWBDztUV8jTju//ju5FdoI5XR/vUEnptJc7V24vbvjS+wvG4xFr2Fu6Y/fMAP2ikd1QCoGdGpWhLxYygeC0BWW2R3zl9x2NXkpeRR1V7Jvze+vN/HvLTub1Q4dmELGvlFix1PqnROEEKI/mJ8aG57XCvbQ23kR0ll+wHddspIzplYQiCoct0rK1hdYe+8741l2tzP08cVkRqlNvzpFiOZViMAVYnY4juGGtu1JHBuulwYjzSzQU9e6P9rTWv3kxjRZPa2AKBLk8RpX1Q8bCJLMmcBYPniPtRg70YOfrD93/gIMNbtYZheNjInummh1t3L65biDiVQndZSAILNu+IWV1cEOrSuG25jbJPtTp+TBZWfAXDqoL7fQj7ssJxxFFiLcPmdfFvzdbeeO2fH+9z0zbVUGo2U+PzcOeAmZg8+J0qR9g+SbBdCiO8ZIpXt+1Vl3zOzXUReeG77jsY4vO7s2sUwZ0ph7NcWcTd4ysnsPOttGshiUHAXqS+dyper3+Ifa58B4MZJv6Y8Y/ABn5/hqQHAkDMwJvGK2MkaMgmAMt8OgoFAxI5rNVr52cSbAPjnd8/R4Ny7Gm5ryyb+vfFFAC5tyyQjqKLaSiO2vhBCiMQWrmxfV92GL9C75EJPBIIqm+qksv1QdDqF3583jqOH5eLyBbjqhaXsaOzA4fbx4Rrt8+EFU6O7GbM0K9RKvrn/JttVVe2sbM+TNvJRUWzTroEk2qaOVL8dAGO6jILrq3LPvBe3auQw33dsXvCfHh/H4W3j4x1vAnBNaxtBq7xmEt2QzKHkp+TjCXhYWb8cgIBN+51qbNsdz9AOSXVqXTe8psyYrvtl5Se4/C5K0wZwWM64mK4dT4qicHxZqJV8RddayXsDXh5f9iAPLbkTb8DDBJee16tryW9NrA4uyUiS7UII8T1D80LJ9gZJtn9feBd3iVS2R0W4jfyOOFS2G9qrAPClSRvw/qp01FSaL/qICqWYVF0jf157DwE1wEkDTuO0QWcd9Lm5/joA0goOnJAXyalo8Fg8qpFUxU3dro0RPfYp5bMYkzsOl9/Fn1c/1Xl7QA3wyNJ7Cah+jik9keMcWrLDkDUgousLIYRIXOU5qaRbDHj8QTaHkt6xtKupA7cviMWoY0C2NebrJxOTQcdfLpnMmJIMmjq8XPbPxby4cCcuX4DBealMGpAV1fVLM7XvT2WLM6rrJLJ2jx+PX9uUIjPbo6MoPLc9wZLtGUFt1IbZJonTviqnZDDLCi8AoHDJwwT8/h4d592tr+Pyd1DqM3Cs0yXdEJKAoihMC7WSXxie255TDkCaqypeYXWJzqVVtvss2TFdd86O9wCtql1RlJiuHW/hVvKLqr/C6Tv4Z6J6Zy0/n38V7277DwoKVxz2E67rGIItGCTYnNgjCpJBr5LtDz/8MIqicNNNN3Xedtxxx6Eoyl5/rr322r2et3v3bmbPno3VaiU/P59bbrkFfw9/YQghRCSF28hXNDtx+yJXyZfMVFWVNvJRFm4jv6Mh9sn2FFet9hebtAHvz/IGjMB3xRxuzhtArVFPqc/PWYEJBz1J8bpd5Kpa+8KskiGxClXEiMFoYrdBS3I3bl0e0WPrFB03T74VgA+3v8e6prUAvLPl32xqWU+aMY2bJv2aHL9W9Z6SVx7R9YUQQiQunU6J69z2jaF57SMK0tHr+tfF2p5IMxt4/orDGZBtpaLZxWPztPEz508pi/rF7s7K9pbESoLGUriFfKpJT4pJH+do+qaiUHe/RGojrwaD2FRt3IU1W5LtfdmAs++kjVQGBXexae7fuv38XW07eWXj3wE4r02HDjDYZIRgMpherLWSX1T9DQBpBdo1lxxfbdxi6gqDxw6AmhLdDXffV9NexaqG5SgonFJ+eszWTRQjskZTnFqKJ+Dm25qvDvi4ZbXf8qN5F7Kh+TvSTRk8fMxTXDnmp/gztE6VhtbEHlGQDHqcbF+6dCnPPvss48bt25bhmmuuoaampvPPI4880nlfIBBg9uzZeL1eFi5cyIsvvsgLL7zAXXfd1dNQhBAiYnLTTNhSjATV+FQZJ6JWlw+nV9t4UGiTNvLRMChX2+RR3erG5Y3tJg+bV6tMNmVL5Wh/t8DxLd9aVfQqPFbfyPSvfsaGuf884OPttTvQKSou1YQtR2Zq90XN6cMB8FWvjfixD8sdy+mDtVlqT654lJr2Cp5f92cAfjr+l6QraeRiB8BWNCji6wshhEhc4+I4t31jjZbAGlkoLeS7Ki/dzItXHU52qgkAvU7h3EnRnwksyXY6W8jLvPboCXf3S6Q28h1tzZgU7bpBerach/VlaVl5rCq/CoCha5/E4+redcqX1j2LP+jDqDMxM9Q1LCVTRggmg6mFR6BXDOx27KLKUUl26TAA8tRmvO7E7ehi8WoFGUpqbszWnLvzfQAmFxxBvrX/vb4VReH4ATMBmL9731byQTXIy+v/zi0LrqPV08LwrFE8d/K/ObJI656gZJUDkOpM7K4JyaBHyfb29nYuvvhinnvuObKy9t2lYrVaKSws7PyTkbHnJGXevHmsX7+eV155hQkTJnDaaadx//3388wzz+D1ylwAIUR8KYrSWd0uc9s14ZPK3DQTFqPslo+GLKsRW4oRgF3Nsd3kkRtoACCtQGZu92fb7Ft4atWjAPxozM9xmmZgUgJMW3EL3731+/0+p712OwB1+nwUnUwm6ov8eWMAsDavj8rxr5vwc6wGK+ub1vLwkl/hCbiZkD+F2YPPwV67EwC3aiQju/+dMAvRGw899BBTp04lPT2d/Px8zj77bDZt2tR5f3NzMzfccAMjRowgJSWFAQMG8POf/5zW1r2riKUjnYiX8aHK9tUVsa9s31AbnteeHvO1k9mg3FSev2IqBRlmLjliAPnp0d+kXZoVaiNvT9ykQ7Q1OkLJdmkhHzWdbeQTqLK9vVmrbO1QLZhTUuMcjYi2oWfeQh3ZFNLI1vcf79ExxuZNJTdoB8AqGzSSQpopnXF54wGtlXxmbjFO1YxOUWmo3Bbn6A7M4tc+u+lTc2KyXlANMieUbD+1/IyYrJmITijTWskvrvmaDt+efIbD28YdX/+Sv699mqAaZPagc3j6xBcoStuzKdKcr3VNyPZWxzboPsjQkyddf/31zJ49m5NOOokHHnhgn/v/9a9/8corr1BYWMgZZ5zBnXfeidWqfQhetGgRY8eOpaBgT8uSU045hZ/+9KesW7eOiRMn7nM8j8eDx+Pp/Hdbm7bT2Ofz4fP5evIlJLXw19wfv3YhIulAP0uDc60s39XC5tpWfKNlllFFo/ZLushmkfedA4jE+3J5jpXVla1sqW1jSE502vX7gyoBvx9FUVB1Ch2tzQxStM0U6XkD8Pvl+5sIwomMWCU0XH4X9yy8FW/AwxGFM/jBiIth+EV8/cLPOKr5bY7Z8nsWvFjPiAt/t1dS3dOgneC1GgvJkfeGhNTb11JK6RjYAvmubfij8D3ONGRyxeir+fOap6hwbMekM/GLCbcTCPhprd4KQL0uD0swAEEZ7SK6JtD5uvfhS/AW0NH6XPXll19y/fXXM3XqVPx+P7/5zW+YOXMm69evJzU1lerqaqqrq3nssccYPXo0u3bt4tprr6W6upo333wT2NORrrCwkIULF1JTU8Nll12G0Wjkd7/7XVTiFiJsbKiyfVOdA7cvENMNvxtrpbK9p8aXZfLt7SfGbFZqabZUtndWtqeZ4hxJ39XZRj6BKttdLVqy3a6zIYP++j6LNY11h91Iwbq7Gbv9Odrs15GW2bVE5obm7wCYWTgLq/JvADLzot95RETG9OIZrKxfzsLqr/nhiP+jTp9PebCCtpqtlAwdG+/w9is1oH2OMmXE5nr6moYV1HRUYTWkcnTpCTFZMxENyRzOgPRydjt28k3Vl8wsn802+2bu/OZmqtorMOlM3Djp15w+5Nx9nmsrGQpAQbABu9+P3tCjlLGgB8n21157jRUrVrB06dL93n/RRRcxcOBAiouLWbNmDbfddhubNm3i7bffBqC2tnavRDvQ+e/a2v3PnHjooYe4995797l93rx5nUn8/uiTTz6JdwhC9An/+7PkbVQAPV+v2cpQ9+b4BJVAvqrV/n8oLjsfffRRvMNJaL15Xza6dYCOuQtXENylRi6og3C3VDIIaFVTWbl4UUzWFF239MvPYrLOO8532O3dQbqSzgnOY1g8X3sdq2Vn8b5b4QznWxxT8zyfPbWTttGXowsl3PW7tNbiDaqNnfPmxCRW0TML5n/ao+f5XB1MAkrUOt56/x0M5shfzssKZqCgoKJSpiujYskGKtiAd+dCjgAayabis31boQlxKPM/7dnrPpaczuhUY86Zs/d78gsvvEB+fj7Lly/nmGOOYcyYMbz11lud9w8ZMoQHH3yQSy65BL/fj8Fg6OxI9+mnn1JQUMCECRO4//77ue2227jnnnswmSSxI6Kn2GYhN81EY7uXddVtTB4Ym7mf7R4/Fc1aQm1koVS290SsEu2wp7233enD4faRbjHGbO1E0RCa2S6V7dETfp3VOTz4A0EM+vh39PK2NQLQrpdke38x4tSfsHP9c5Srlaz97wMcdsUTh3xOg7OOqvYKdOgoU7WW3i7VREqqbCZLFtOKj+KZVX9ied1SPAEPdnMxuCpwN+yId2gHZFO1ZLvFFptk+8c73gPg+AEzsRj67ztiuJX8i+v+xvyKuaio/GHZA3gCbgqtRdw34w+MyB693+dmFZTjVQ2YFD/NNTvIKxsW4+j7jm4l2ysqKrjxxhv55JNPsFj23xLqxz/+ceffx44dS1FRESeeeCLbtm1jyJAhPQry9ttv55e//GXnv9va2igrK2PmzJl7tajvL3w+H5988gknn3wyRmP/O5kQIlIO9LNk3dzAuy+vxGnIYNas6XGMMDF8N3cz7NjJpBHlzJo1Mt7hJKRIvC9v/3wby+Zvw5RTxqxZYyIcocYfVGl0+zEoCnqdwtZv3oGd0KjPY9qJp0RlTdF9fr+fpV9+xtRjT8QQ5R2l8yvmsXzJchQU7j7qESbmT9n7ASefyoL3hnPUpoc50fc5y7b4KLjqJcyWVLZvfRkAc+EIjph5alTjFD3j9/tZMP9TjjnhpB6/luo23kkBTQwuTmfo5JMiHKGmfbOHd7e9y++P/itZKdpn+w2vfQ0t4Mkok/cn0S1er4/lX83nhJNOwpLgCeFwx7ZoC7eHz87OPuhjMjIyOt8rpCNd70lHut4ZU5zBF5sbWbmriXHFaTFZc31oRnxBhpk0kyLfuwRxoJ8lix4yU4zYXT52NTgY0Q83SNS3aZtDsq0Geb12QU/el21mHQadgj+oUt3SQZEt+iMS/rcj3f/ytWnFak5DpnSni6OYdqRTFKqm3Er50p8zpebf7K68nqzCg48CXFG7BNAqXoOtdgBalEzSAwEISNewRHKg19Kg1EHkWnJpdDeyvHoJKdYScIHavDMqnecOGWcwSMAfwK8EUdR9Nx75/V6K0UZjWtKzo/7+5PI7+aJCKxaZWTa7378fHlN8Ii+u+xvfVn/FouoFAEwtOJLbp96PzXzw3xd1ujzK1BpaKjaQVVQek3j7Yke6bl11W758OfX19UyaNKnztkAgwIIFC3j66afxeDzo9Xu39zriiCMA2Lp1K0OGDKGwsJAlS5bs9Zi6ujoACgv3P4/RbDZjNu+7S9NoNPbrZHN///qFiJT//VkaWZQJwI4mJzq9AX2Cv+FHW61D2y1fmp0q7zmH0Jv35aEFWoJpV7Mrav+flaCK3q90Jtv9LZUAtJkKyTLI9zbRGAwGDFH8vlS3V/LECq0V8KWjr2Fq8bT9Pm7Mubfw7acFTFn6K6Y4v+a7Z88m40dvk+auAUCfU45B3hsSmsFg6PH3qCZlKAWuJpwVazAceVqEI9OcP/Jijh14ARlGfWe1kKlde33500qi+nMg+p5AUOsOYzAk/rlSLOILBoPcdNNNzJgxgzFj9r+Zr7Gxkfvvv3+vjfPSkS5ypCNdz1icWnetOUs2kNeyLiZrflOnrZmtc0lHrwS0v5+lNJ0eOwrvfvo1Y7Jj0x0skazbqnVHq925hY8+kq58XdXd9+UMo55mj8Lbc+YzKBH2dOzeCIDdb2a3dICKu1h1pFODNr5ThjGGLVS+fhsbx1x50MfPc74LQL4rh/rKxQDYSWepdKVLWPvrSDcgOIBGGnlj8auc5tE2+wQbtjA/Ab+PXlcbPwSCqsLalSvR6dZEdb2V3pW4Ay5ydDm0raphkbL/c5T+pEBXQF1Qy7Uebz6e493Hs/7rxYd8Xgm5lFFD5ZqvqXPEtoNLX+pI161k+4knnsjatWv3uu3KK69k5MiR3Hbbbfsk2gFWrVoFQFFREQDTpk3jwQcfpL6+nvz8fED7kJORkcHo0ftvZSCEELFUnJmC2aDD4w9S0eykPDc13iHFVXVoNllxZv9txxMLg0Kvs52NHTFbU2nVku0u6/43u4m+yxfwce+i23D6OxibO5HLD/vxQR8/8qTLWJ2Ww6jPf8wY3xq2/G0meQE7ACn5g2IQsYiXjqxR4FqMvj42iY6wFJeWbFcyy2K6rhB9zfXXX893333H119/vd/729ramD17NqNHj+aee+7p1VrSkW5v0pGud6ybG5jz8kqaSWPWrKNisuaS9zfA9gqOGjOYWacMj8ma4tAO9rP0YesqKtfXUzj0MGYdOSBOEcbPC5WLoaWVY4+YxCmHFRz6Cf1cT9+XX65eQvMuO+WjJzFrbPTPnf+3I93/2lT5IXSAIatUOkDFUSw70oXtyDbA5xdzrPdLNgz6LQWDDzy3+69z/wZeOHnCOWQsXw0N4EnJ4wTpSpdwDtqRrsLAikUrqDbXUDTybFj2KvlKMxPi8H30BYPUuwKkG3UY9zNSo2bratgIDsXKjJNnRT2eNxf8F5xw5sgfMn2UvK4BAlUmXtv8EpeMvJoji7r++XnLzregZS35Fh8jY/R7pS92pOvWb4L09PR9dsOnpqaSk5PDmDFj2LZtG6+++iqzZs0iJyeHNWvW8Itf/IJjjjmGcePGATBz5kxGjx7NpZdeyiOPPEJtbS133HEH119//X6r14UQItb0OoXBeWlsqGlja317v0+210iyPSbCyfamDi+tTh82a/Qvyho7tGRWIL006muJxPL3tU+xsXkd6aYM7pr2EAbdoT8SDjlyNtvS/kPpBxczLLAdVQUUyCzq2ZggkRwMxWOhGrIcm2K6bqZP241tyj14e0QhxIH97Gc/44MPPmDBggWUlu77u97hcHDqqaeSnp7OO++8s1fiQTrSRU5///p7atLAHAC2NzpxBSAjBvO4N9e3A3BYSaZ8zxLQ/n6WBmRr51A1rZ5++T1r6tDamhZmWvvl199T3X1fLsmysmyXnTqHNyb/n/+3I93/MrlbAFBTc6UDVAKIdke67xt2xGms+PZIJrm+xTPnXgw/f3e/j2tyNVDZvhsFhQkFU9nl1CpHveYc6UqXwPbXkW5a6Qz0ip6dbTtwj9RGQuX5a+PyfVQDQfQGBYNhT0e67/O2NwPQpmSQGuWfiZqOKlY1LENB4bTBZ8l7YchxA2dy3MCZ3X5eILMcWsDSURmz/5d9sSNdRHsCmEwmPv30U2bOnMnIkSO5+eabOe+883j//fc7H6PX6/nggw/Q6/VMmzaNSy65hMsuu4z77rsvkqEIIUSvDM3X5gJubWiPcyTx5Q8EqW1zA1CcGf3ZZP1ZqtlAfrp2gXpHU2yq21PdWoslJVOS7f3JtzVf89qmlwD49eH3kt+NzgZlY6ZTd/771JKLooCqQra5/7Xs7E9yhkwGoMy3q3OmVrSpwSB5gQYA0qRzghDdpqoqP/vZz3jnnXeYP38+gwbt+3PU1tbGzJkzMZlMvPfee1gse3/OmzZtGmvXrqW+vr7zNulIJ2IpJ81MSWiz73eVrVFfT1VVNtY4ABhZlAh9okVXlGZpr5HKFlecI4mPxnYPALlpUrwUTUU27XVW0+qOcyQas1dLaClpeXGORMSD8ZT7CKoKU5xfsXPVF/t9zKqG5QAMzRxBmikdg6sJAH9KbqzCFBGSbspgTK7WwWCrXvs+ZtOGsz36n426y9+mncN36G1RX2vezg8BmFRwOAWpRVFfr68z5GjnixmuqjhHktx63ePkiy++6Px7WVkZX3755SGfM3DgQJl/JYRIaEPzQsn2+v6dbK9zeAiqYNQr5KbKCXy0DcpNpd7hYUdjOxPKMqO+XlaoctSc0/9aLvZXTa4GHlp8JwDnDruQo0qO7/YxCgePof2sv+J99yL8BjNIm+8+rXDQYbhUE1bFw9adGygZeuBWhZHS0dpEjqJdzMwskmS7EN11/fXX8+qrr/Luu++Snp7eOWPdZrORkpLSmWh3Op288sortLW1dbbGy8vLQ6/XS0c6kRDGl9mosrtYXdnK9KHRTRBU2V04PH6MeoXBuWlRXUtETmmWFYBKe9dmafYlTq8fpzcAQE5aYrdfTXbhwoPwiL14S/XbATBIsr1fKhk5hSWZp3Bk6xxMn92NOu5zFN3e9ZSr6pcBMCF/CgBmd6N2R1p+TGMVkTGt+ChWN6xiResqfkgqGXTQWLGFAaOmxDu0vfjbtc0ALkN0k+2qqjJnx3sAnFJ+RlTX6i+sBVrHyjx/TZwjSW6xnXYvhBBJorOyvZ8n28Mnk0W2FHT7aV8mImtwntYGcUdD9Cvbg4EgeUHtg3BGoSSz+oNAMMAD3/4Wu6eFoZnDuXb8TT0+VtqoE7D/fCPVP10HOn3kghQJR28wUGEoB6Bp27KYrGmv2QZACxlYrJLwEKK7/vKXv9Da2spxxx1HUVFR55/XX38dgBUrVrB48WLWrl3L0KFD93pMRUUFIB3pRGIYV5oJwNoqe9TXCle1D8lLw2SQS2XJojS7/1a2Nzq8AJgNOtLMsZkX3V8VJ1hle1pAq2g1ZxbEORIRL9mn34dHNTLGt5at37y9z/17ku1alzKrT+uGoE+XZHsyml6szd5eWruYar32PXSEzpkTierUrjF6TZlRXWdN40qqOypJMVg5pvTEqK7VX2SXjQAgh1bcHYnXNSFZyKcxIYTYj3CyfVt9O6qqoij9M9Fc3TmvXVrIx0J4bvv2xugn29uaashVfARVhczC8qivJ+Lv1Y3Ps6J+CSmGFO6e9ghmfe8qE1VzBqovEKHoRCJrTh8O9s34q9bGZL2O+l0ANOrzyInJikL0Lap68PEexx133CEfA9KRTsTfuFKtMmp1RfQv+m2q05Lto4oyor6WiJzwqAG704fD7SPdktgzPyOp4Xst5Pvr9YpYKUqwynab2gYKpEiyvd/KLRvK0oIfcFT9v8ld9DuC089Bp9c2wTe5Gtnt2ImCwrjcSQCk+1sAMGd2fYScSBzDs0aQbcmh2d3EsrR8RrbuwNu4Pd5h7UPn1DZ1+MxZUV0nXNV+fNlMUgwpUV2rv0jLzKUt1DWhqWILJSMTq2tCspDtukIIsR/luVZ0Cjg8fuodnniHEzfV9vC8dvnwEguDQi0rd8ZgZntbrfbBvEnJxGiSdrB93dqGlTz/3V8AuGnS7QzIKI9vQCKpBAvGAJDasiEm6/mbdwPQZpaLQUII0Z+NLbGhKFqL96b26J6TbajRRimMLJR57ckk3WIk06ol2KsSJBEaK53z2tPlXC7awpXtTR1e3HHebOzucGBVtO99WrbMKe7PSs+6kzbVypDgTjbO/Xvn7atD89qHZA4jw6xtWstU7QBYs+T8KhnpFB1HFk0HYEVaqHbWvjuOEe2f3qNt6gimZEdtDZffxRcVnwBw6qAzo7ZOf1Sn194f2mu3xjmS5CXJdiGE2A+zQc/AHK3KuD+3kg/v3C6RZHtMhCvbdzR0dKnirDc6GrTK0SaDtBHr61rczdz/7W8IqAFOHjhbZlqJbksdOAGAAldsTrqU1koA3NbimKwnhBAiMaVbjAwOfT5eUxnd6vaNtVpl+0ipbE86pVmhVvLN/SvZ3tSutZHPk3ntUZdpNWIxapfQa+PcSt7RXAuAVzVgTZP3q/4sI6eQVeVXADB4zRN43dp7YGcL+TytMtXv9ZCJdl0zI0/Or5LV9OIZAKwza8U5lvbKeIazX2avlmzHGr1k+1eV83H6OyhOLWVc7sSordMftVpKAPAlYNeEZCHJdiGEOIAheTK3/fsz20X0DcjWOip0eAM0RLmjQqBFm8nabpbWc32Z09fBbQt+Rp2zhpK0Mn45+TfSZlJ0W9EwbdZfEY20tTREfT1TRxUAgYySqK8lhBAisY0PzW1fXWmP2hpuX4DtDdo53yipbE86pZlWACpbnHGOJLYav9dGXkSXoiid3f7i3Ure1aIl21uUDBSdXNbv74aeeRsNZFFMPZs/eAKAVaHK9vH5WrLd0VwDgF/VkZEl13+S1eFF09ApOqrVVmr1emye6niHtA+LT9sYqU/Njdoac3ZqLeRPGXSGXNuKMHdqGQB6+644R5K85LeyEEIcQOfc9ob+m2yvkpntMWUy6CjN0i4WRXtuu65N2wXrsUrrub7KF/Bxxze/ZFPLemzmLH5/zNNYjanxDkskofSsXGrIA6Bm09Kor5fm0S4iGrLKor6WEEKIxBae2x7Nyvat9e0EVciyGsmTltxJp7OyvaV/VbZLsj22wq3kq+Nc2e5prQPAoc+MaxwiMVhS09k46gYAxmx9lsr6bexq06pSx+dp89qdoW4IdiWjc667SD6Z5kxG52jj3b62WsgL1MY5on2lBrSRPKaM6CTb6zpqWFG3BIBTyk+Pyhr9mZpVDkBKR0V8A0likmwXQogDCCfbpbJd2sjHUmcr+Sgn280d2u7mQEZpVNcR8RFUgzy05E6W1y0mxZDC749+irL0gfEOSySx2pShAHTsXhX1tbJ89QBYcsujvpYQQojENjZU2b6m0h61MUt75rVnSJVUEpJku7SRj4Uim1aAUBPnynafQ+sy5TRkxjUOkThGzLqO3UoJ2Tj4fN49AAyxDcdmzgTAbdeu/bTqMuMToIiYcCv5r1NSyMCJo6UxzhHtLV3VNkaabdEZVzlv1weoqEzMn0pRqnTBizRT3iAAshKwa0KykGS7EEIcQH9Ptrd7/LS5/QAUSbI9ZsLJ9p1RTranS+Von6WqKn9e9Qc+2z0HvWLg/hl/YFRoB7QQPeXMHgWAoX5dVNfx+7zkqc0AZBQOiupaQgghEt9hxRkYdAqN7d6oVZTumdcuLeSTUbgzWKW9n7WRd2gz23OlG0NMdLaRj3Nlu9quJdfcpqy4xiESh8FoonLyrQDYnYsBGJ8/ufN+f6gbQocxenO0RWxMLz4KgEUpKfiAxspN8Q3oe4KBADZVu35uzcyL+PFVVeXjHVoL+VPLz4z48QWkFw8HoCBQhxoMxjma5CTJdiGEOIAheVrSs97hoc3ti3M0sRfesW1LMZJmNsQ5mv5jcOh1F+028ll+rXI0JU+qnfuaf298gf9s/hcAtx9+L1MLp8c5ItEXGEvGA5Dl2BLVdez1uzEoQbyqnsx82QwkhBD9ncWoZ3iBlgRfU2GPyhqbQsn2UYUZUTm+iK7S7P5e2S7J9lgIj9aL98x2xakl231mSZyKPUaccDEbDSNYlaJdu5sYmtcOoLZr3RDcJnnNJLuR2aPJNGfh1Cmssphpr9kW75A6dbQ2oVe0DkTpWQURP/53jauoaq8gxZDCMaUnRvz4ArKLhxBUFayKh9ZGqW7vCUm2CyHEAaRbjBRmaCdU/bG6PTyvPdwuTcRGeU7028j7vR5y1RYAMgoGR20dEXtzdrzHs2v+CMB1E27m5PLZcY5I9BXZgycCMMC/E7/PG7V1HLU7AGjU5chMQSGEEACML9Pmtq+O0tz2jbWhNvJS2Z6UwiPP7E4fjn60Sb5Bku0xVRSa2V7TGt9ku96ldYAKpERnJrJITopOR/WMX7LVpI2VKOywdt6nc2rJdq9FXjPJTqfoOLJoGgBfp1jwNe2Mb0Df02HXCnra1RSM5shfR/54p1bVfmzpyViN1kM8WvSEyZJCvZIDgL0qukUWfZUk24UQ4iD6cyv5arvWHk3mtcdWuI38rqYOAsHozKW01+1Gr6h4VT22vOKorCFi79vqr3hk6b0A/N/Iy7lgxKVxjkj0JUWDRuNUzVgUH7Xbo9dK3t24G4AWQ3TmvAkhhEg+4743tz3SGhweGtu96BQYli/J9mSUbjGSaTUCezaM93VuXwBHaORbniTbYyJc2V5jj28bebNXS7YrqTlxjUMkntZSbbTAUK8X/bxHO283urVuCGpq5Ft7i9gLt5L/OiUFnX1XnKPZw9WqJdvbdJH/LOX2u/ii4hMAThskLeSjqclYCICrdmucI0lOkmwXQoiDCCfbt/XLZLt2oaJYku0xVZyZgsmgwxdQqYpSK8T2+p0ANOpypXK0j1jXuIa7F95CQA0wc+Dp/GTcjfEOSfQxOr2e3UZthnrT9uVRWyfQoiXbOyxFUVtDCCFEchlXqlW2r61sJRjhzajhqvby3FRSTPK5OFmVZoVayTf3j2R7U4fWZcik15GRIiPfYiFc2e7w+OM6ZjDFZwdAnyaJU7G3lfXLAJjs8jC14wt2r/kKAIunCQBdmmxm7guOLJqOAmw2m3C7d8c7nE7eVq2DQrvOFvFjf1X1OR2+dopSSxiXNynixxd7OKylAARadsY3kCQlyXYhhDiIIf25sr1Vku3xoNcplOdoLZF2NEWnlby7Udv92tyPKkdVVeW7xlW0eaLTfjSedrXt4Ndf3YA74OaIohncdvjd6BT5iCciz54xAoBA9dqoraFvqwLAkyZdN4QQQmiGF6RjNuhwePwR/3y8sUbmtfcFpZna+VNlizPOkcRGo0NrIZ+TZkJRlDhH0z+kmg3YUrQOCvGsbk8L2AEw2frPubzomtUN2oboLEU7Z9N/ejdqMEiqXxshaLBFfo62iL1MSxaDTCUAbNXVxTmaPQId2qYOpyHyn6fm7NBayJ9Sfrpc64oyX8ZAAEytidM1IZnIq1MIIQ5iaF4o2d7QD5PtnZXtMrM91sKt5HdE+HXnD/pp89hR7RUAdFgKI3r8RPbqxue5/rMruOijM3hv25sE1WC8Q4qIBmcdt3x5HW3eVkZlj+He6Y9h0BnjHZboo4L5hwGQ1rIhamukuKq1v9jKoraGEEKI5GLU6zisWLt4+/KiXayqsOPyBiJy7A2hyvYRhdJCPpl1VrZHqTNYommUee1xUWTTro1Ux3Fuu03VNo9bMiVxKvawe1rY3qrNWJ56wj14VQNjvavYuvA9bKENGilZ8prpK6bkHQ7AdxYPajAxrm0FQ8l2rykzosetd9ayvG4xAKeUnxHRY4t9KVnlAKS6quIbSJKSZLsQQhxEuI18RbMTty8yF3SSRXhmu1S2x155ONneGNnKnbk753DpR7N5x7eYOr0eXz+pHF3XuIZ/rH0GAIe3jT8se4DrP72czS0b4xxZ7zi8bdyy4HrqnDWUpQ/k4WOeIsUgP68ietIGTgCgyL0tamvYPNrufFP2gKitIYQQIvlMGqDNon1h4U7OfuYbDrt7Dif+4Qtu+PdK/vzFVr7YVE+9o/vVpuHK9pGSbE9q/TfZbopzJP1LSejaSLwq231eDxlo3RvSsvvPxnlxaGsaVgJQnjGYoUMOZ0n+uQDkLHyArNAGjdRsGdPVV5wwbBYAS1NMNNZVxDkajeJsBsBnyoroceft/BAVlQl5kylOK43oscW+UgqGAJDrrY5zJMlJBvsIIcRB5KaZsKUYaXX52NHYwaii/tFeMBhUqZE28nEzOJRs3x7hZPvXVV/hDrj41Oziy7JiDtdXcJ1jN6XpfTep1e51cN+3vyagBjhhwKkcljOOf6x9hvXNa/nJJxdx9tALuHrMdaSZkusCq8fv5jdf38SO1q3kWPJ49Ng/k2mO7EmNEP+rZORUmAv5NFPTVEtmTuQv8uUEtVlvqQXlET+2EEKI5PXT44ZgMuhYW9XK+uo2mjq8bGvoYFtDB++v3vO43DQTo4oyGF2cwegi7c+g3FQM+n1rTXyBYOe4sP5yntdXlWaF2sjb+0kb+XZtZnuOVLbHVFGo61+4C2CsOZprKQD8qo60TJnZLvZYVb8UgPF5kwEoOetu2p97n6HB7RCaNJGR0z+KLfqD8UWTyQiotOl1LNn2KbOLro53SOjdWrI9mJIdsWOqqsqcnVoL+VMHnRmx44oDs5UMAyBfbaTR68Foks8Z3SHJdiGEOAhFURian8byXS1srW/vNxdhGjs8+AIqOgUK0uUXa6wNytU6KkS6sv13Rz3MUaWzePXTG1hvUfgmuJVFH5/NcWUzuXjklQzNGhHR9eJNVVX+sOwBajuqKUot4ebJvyXNlM5xZSfxzKrHmb97Dm9v+TdfVHzCdRN+yUkDTkuKmYf+oJ/7vr2dNQ0rSDOm8eixz1CUWhLvsEQ/YE3PpFIppFStZfu7jzDpqscjenxXeysFaEkPW+GQiB5bCCFEcstJM3PrqSMB7TNeg8PD+po21te0saHGwfrqVnY0dtDY7uWrLY18taWx87lmg44RhemMLsroTMSPLEynttWNNxAkzWzorFgVyak0u39Vtjc4pI18PBTZtNdZvNrIO5u1DlCtSjo6vT4uMYjEFJ7XPiF/CgC23CJWDLiCYyr+AkCbasVkkd9zfYVep2esx8g3Vj9L6xYym/gn201eOwCqNSdix1zXtIYKxy4segvHlp4UseOKA8vKL8OtGrEoPpqrt1FQPjreISUVSbYLIcQhDM3bk2zvL8It5AszLPutAhHRFZ7ZXmV34fYFsBgjcyKtKApTC2dwTE0LO80eHh9xMqsca5m/ew7zd89hWtHRXDzqKsbmTYzIevH28Y53mV8xF71i4K5pD3dWr+em5HP3tIeZPehsnlzxEBWOXTzw7W/4aPt/uWny7QzMGBTnyA9MVVWeXP4QX1d9jkln4sGjnmRI5vB4hyX6kYox11G69i5mVD/PwjeLmPiDWyJ2bHvNDkC7GJRqk04NQggh9k9RFPIzLORnWDhuRH7n7S5vgE11DtZXt7GhMxHfhtMbYE1lK2sqW/c6Tnaq1oJ7RGE6Ol3ib7gUBxaubLc7fTjcPtItxjhHFF3SRj4+ikOV7fFqI+9u1ZLtDl0G/aMMRHRFm6eVbXZtXnu4sh1g6Nm3Yn/qZTJpx68Yke0ZfcvIQB7fUMNa1+Z4hwKAxWcHQJ8auWT7nB1aVfuxZSdhNaZG7LjiwBSdjlpdAeVqJY7qLZJs7yZJtgshxCGE57ZvbehPyXZtp3aRVHjERW6aiXSzAYfHT0Wzk2EFkWtx7nE6KMZBlgcenP4EtWoT/9r4PF9UzGNRzVcsqvmKcXmTuGTU1RxeOD0pKr33Z3fbTv644mEArh57HaNzxu7zmCmFR/LPU/7D65te5KX1f2dF/RKumvtD/m/E5Vw6+kdYEnD++Qvr/sr7299Cp+i4c9pDnTvXhYiVCWfdwDctu5lR+XeO3PAQy+YVMHbmZRE5trNBS7Y36vPIjMgRhRBC9CcpJj0TyjKZUJbZeVswqLK72dmZeF9frSXha1rdNHdorbgnfu/xIjmlmQ1kWY20OH1U2V2MLOwfyfY86UIXU8WhyvaaOFW2+9rqAWjXZ0qyXXRa07gCFZUB6YPIScntvN2SaqOm+GQyq98hnQ6cAS/oLXGMVETSCMtwoIYKpY1GVyO53/vex4M10AaAMT0yyXaP383nFXMBOLX8rIgcU3RNi7mEcnclnvrt8Q4l6Ui5ohBCHEI42b6tX1W2y7z2eFIUhUF50ZnbHq4c7VAtpGZkMzRrBHdPe5iXT/svpw8+F6POyJqGFdy64HqumXch83fPJRAMRDSGaPMGvNy76DbcATeTC47gwpFXHPCxJr2JS0dfw0unvs20oqPxB/28suEfXP7xuXxT9UXMYu6Kd7f+hxfWPQvATZNu55jSE+MckeivJl72e77NPgudojJh8c1sWvRhRI7rb94NQJupICLHE0IIIXQ6hfLcVGaNLeLmmSP4xxVTWXT7iay882Re/dERPH7+eG44cVi8wxQR0Dm3vbnvt5JvCs1slzbysRW+PlLd6kZV1ZivH2xvAMBtkg5QYo9V9csA9rsRv/C0W2jMnkTV1FtAL50w+pLM7OGM9mgbr76tWRjnaCAjqHUPMtnyD/HIrvm6+gvafe0UWouYkD/50E8QEeNMLQNAadkZ30CSkCTbhRDiEMLJ9u2NHQSCsT+hioeqzmS77HqNl3Ar+Qc+XM/bKyoj9tpz1e8CoEGfh6Lb8zGgNH0At0y9i3/P/oDzh19KiiGFLfaN3LvoNi77+Bw+3P4OvoAvIjFE29/W/JGt9k3YzFn85oj70SmH/rhTlFbCQ0f/iQePeoICaxG1zhp+8/VN3P7VjdR0VMUg6oP7suJTnlj+OwCuOOwnnDX0h3GOSPRnik7HmB//nRXWozApfoZ8eg27vvu29wdu1X7WXNai3h9LCCGEOIisVBPTh+Zy7qRSbCl9uwq6vyjNCs9td8Y5kujb00Zeku2xVJBhQVHA6w/SFOqMEVPOJgC85uzYry0S1qr68Lz2fROSat5IAlfPwzfjphhHJaItJX8wM1zaSItF1V/HNRY1GCRDdQBgzcyLyDHDLeRnlp/RpWt6InICmQMAMLdXxDmS5COvVCGEOITizBTMBh1ef5CK5r5/4g57ZpCVSGV73Fx8xEBy08xUNLv45RurOfXJBcz5rqbXO+i9ocrRVuP+K0fzrAVcP/FmXj/9Y6487FrSTRlUtu/mkaX3cuGHs/nPpldw+RO3WmRR9QL+s/lfANx++L3kpnR9V62iKBxVcjwvnvY2F4+6Cr1iYGH1l1z+8Xm8vP7veANxuKCCtlP9/m9vR0XljMHnccVh18YlDiG+T28wMPinr7HeOIZ0xUXufy+kbtemXh3T1K4l2/3ppZEIUQghhBD9yJ5ke+Keq0SCLxCkxaltgpaZ7bFlMujIC21wiMfcdr1LS7YHUiI3E1kkN4e3ja127RxsQp5U//YnmUXDONqp/b77tmYR/qA/brE429swKVpHzLTM3nepa3DWsaxO28x/6qAzen080T3G3MEA2NzxLzxKNpJsF0KIQ9DrFAbnhea295NW8tWhGWThmWQi9g4flM2CW4/j1lNHYEsxsqW+nWtfWcGZT3/Dl5sbepx0V1orAXCmFB70cTZzJleMuZY3Tp/DdRNuJjcljwZXPU+veowL3j+NF9f9DYe3rUcxREuTq4GHltwNwA+GXcS04mN6dJwUQwo/Hvdz/nnK60zIn4In4Obva5/m6rnns7xucSRDPqStLZv4zdc34Qv6OLrkBH4x+TcoihLTGIQ4EHNKKrk/foftunJysaN75VzsDT0/IUt11wKgZJZFKkQhhBBC9BOdbeT7eLK9OVRRrdcpZFkl2R5rRaGChHA3wFgyeZoBUK3xnc0sEseahpWoqJSlDyQnJTIVxSI55JYMYqQ7QHogiMPbxvqmdXGLpaNFO493qSYsqem9Pt4nuz4iqAYZlzeJkjS5NhBrqQVDAcgP1MQ5kuQjyXYhhOiCcCv5rQ39JNkeOnEskjbycWU1GbjuuKEsuPV4bjhhKFaTnrVVrVz+zyVc8Oy3LNnR3O1jGturAfCnFXctBqOVC0Zcyr9nf8ivptxJSVoZrV47//zuz/zw/VP5y6rHaXI1dDuOSAuqQR5cfAetnhaGZg7nJ+Nv6vUxy21DePK457jjiAfJtuSw27GTX37xE+5b9OuYfM21HdXcsuB6OnztjMubxJ3THkKv00d9XSG6Iz0rF9MV71BDLgPUahx/P5cOh71Hx8ry1QFgyR0QwQiFEEII0R90Vrbb+3Y3ugaH1kI+O9WETiebcGOt2KZdI6lpjX2y3eJtAUCfJklVoemc156377x20bfpDQaadblMd2nvRfFsJe9q1a6PtSm9T7SrqsrHoRbyp5af2evjie7LLhsOQCbttLc2xTma5CLJdiGE6IKh/aiy3e0L0Niu7ZaXNvKJwZZi5OaZI/jq1uP50VGDMBl0LNnZzPnPLuLyfy5hbWVrl49l7WHlqElv4owh5/HSae9w17SHGWIbjsvv5LVNL3HBB7N4beOLvW5x3xuvbXyR5XWLsegt3DXt95j0kanyUBSFk8tn89Jp73DusAvRKTo+2z2HSz8+hzc3vxq1Vl0dwQ5u+/oGmt2NDLYN43dHPYlZLzMZRWLKKS6n/fz/0EI6wwObqX72h/i8nm4dIxgMkB9sBCC9YHA0whRCCCFEH9ZfKttlXnt8FYW6/9W0xr6NfFrADoAxQ5LtQrOqQUu2j9/PvHbR9zUbizrnti+s/iZucXha6wFw6Gy9PtaG5u/Y7diBWW/huLKTen080X3W9Eya0TZOtFRujnM0yUWS7UII0QWdle39INkePmm0mvTYUoxxjkZ8X06amTtOH82XtxzHRUcMwKBT+HJzA2c8/TU/fWU5W+ochzxGllerHDXl9Kxy1KAzcOKAU/nHKa/z+6OfYmzuBHxBH39Z/QQPL7k7LnPNNzSt5e9rnwHg55NuY2DGoIivkW7K4MZJt/HsSf9iVPYYOnztPLXyEX7yycW8sv4fvLn5VT7c/l/m757LouoFrKpfxsbmdexq20G9sxaHtw1fwNeltVx+Jy91vERl+24KrEU8euwzpJsyIv41CRFJpcMnUDXrRZyqmXHuZWz862UEA4EuP7+jqQaT4ieoKmQWDoxipEIIIYToi0pCle12pw+Hu2ufu5NReGO8zGuPj+JQ97/qOLSRzwhqm+wttt7PRBbJT+a1iw5rKUeFKts3NK+j2R2fKmR/u7au09D761bhqvZjSk8k1ZjW6+OJnmkwFAHQUbstzpEkF0O8AxBCiGQQTrZvq29HVdU+PTO5JnTSWJyZ0qe/zmRWZEvhd+eM5SfHDObJT7fw31VVfPxdLXPX1XL2xBJuOnE4A3Ks+zxPDQbJDTaAAun55b2KQVEUjiw+miOKjuKdra/z1MpHmLPzParaK3hgxh/ItGT36vhd1eFr575FtxNQ/RxfNpNZg86O6nrDs0fx55Ne4oNtb/O3tX9iq31T5wluVxh0BlIMViz6FFIMVlIMKaQYUrAYwv+2sqN1K1WBKjJMNh499s/kpuRH8SsSInKGTDqe9Y6nGb/gJxzeNo+F/7yRidc83aXndtTtBKBBycJokkotIYQQQnRPmtlAltVIi9NHld3FyMK+uXE8XNmeJ5XtcVEc6v4X62R7MBAgS3WAAtZsSbYLWNu4iqAapCStjDyrvCb6o4CtjDx7kDK/hQqDm8U1izht0OkxjyPYoSXbPcbMXh3HE/Awf/ccAE4bJC3k46nVUgLtm/E3bY93KElFku1CCNEF5blWdAo4PH7qHR4KMvruLPOq7yXbRWIbmJPKExdM4KfHDeHxeZuZs66Wt1dU8d6qai6YWsYNJwyj0LbntdpmbyRH0S7O2IoiU/2tKArnDvs/StMGcO+iW1nbuJKffHoJDx31JwZnDo3IGgeiqiqPL3uQ6o5KCq1F3DzljphsENEpOs4c+gOOKT2Bt7a8RqOrHpffidvvwuV34vK7Qn+cuAPaf8Pt5v1BPw5vGw7aDrqGESO/m/FkVKr0hYim0cf+gGWtdRy55g6m1/2Lb/5dwKQL7zzk87yNuwBoNhQgl4qEEEII0ROlWVZanK1UNrsYWdg3O0M1hma256ZLsj0eijpntse2jXy7vYFcRRvblp5dGNO1RWJaHZ7Xni/z2vsrfXY57IJJziAVGVor+Xgk2xWnlmz3mbN6dZxvqr6g3ecg31rIxPypkQhN9JAnbQC0g96+O96hJBVJtgshRBeYDXoG5qSyo7GDbfXtfTrZXm3XThqLbX33a+xrhhek89dLJ7Om0s5j8zazYHMD/1q8mzeXV3LZtIH89LihZKeaaK7eTg7QTDoWa2TbMR1eNJ1nTnqJ33x1I1XtFVz32WXcPe1hphUfE9F1vm/uzg/4dPfH6BU9d057KOat1jMt2Vw99rouPdYX8IUS7669EvNuvwtn57+12zx+N+mVJkZlj4nyVyBEdIw/83q+cdQzY8efmLHtcb79IJ/xp//k4E+yVwDQbpZkuxBCCCF6pjQrhbVVrVS2OOMdStTsmdkubeTjoSRUlFDX5sYfCGLQx2ZCa3tzLQBtpEoXKAHAynCyPU+S7f2VtXAIAEd3tPFuhoVvaxYSCAbQ6/QxjUPvbgEgYOldsn3OTq2F/KnlZ6BTZPp1XGWVQy2kOiviHUlSkWS7EEJ00ZC8NHY0drC1oZ3pQ3PjHU7UVEtle9IaV5rJS1cdzuLtTTw2bxNLd7bw3Fc7eHXxbq4+ejBH+LYxDGjW5xONJu/lGYP5y0kvc9fCX7Gqfhm3f3UjP53wS84ffknEK84rHLt4csXvALhyzLWMyZ0Q0eNHmlFvxKg3dmlDgN/vY1HN3BhEJUT0TLzwbhb+vY7p9a8zeeVvWWPLZ/TR5xzw8QZHFQCe1OJYhSiEEEKIPqY0NLe9siX287RjZc/Mdkm4xkNumhmjXsEXUKlzeDqT79HmttcB0KrYSI3JiiKRdfja2WLfCMCEfJnX3l9llwwH4FhXA6mGkbR67GxsXs9huWNjGofRoyXbVWtOj4/R6Kpnae0iAE4pj311vtibOX8wbIBsT3W8Q0kqskVECCG6KDy3fWt9e5wjia7qVkm2J7sjBufwxk+m8cKVUxlTkkGHN8CfPtvCx99oO59bTdGrG7WZM3nsmL9w+uBzUVH586o/8OjS+/AFfBFbwxfwcd+iX+Pyu5iQP4WLRl4VsWMLISJD0ekYf/UzLE0/AaMSYNQXP2X7qi8P+PgUVw0Aqq00ViEKIYQQoo8pzbICfT3ZHq5sl2R7POh0Smenw5oYzm33ttYD0K63xWxNkbjWNqzsnNeeb5WxAv1Vdn4JbtWIRVEZl3EYoLWSjzWzzw6ArhfJ9k92fURQDTI2dwKl6QMjFJnoqYziYQAUBOsJBgJxjiZ5SLJdCCG6qN8k2zsr26WNfDJTFIXjRuTz/s+O4i8XT2JofhrFijZHyW0tiuraRr2RX025kxsm3oJO0fHhjne4+ctrsYd2u/bWc2ufYnPLBjJMNu444sGYt8gSQnSNTq9n+LX/Yq15IlbFQ/EHl1K1de1+H2vzaK0xDdkDYhmiEEIIIfqQzsp2e99vI58jbeTjptimvc6qYzi3PdDeAIDLmBmzNUXiWtWwHIDxeVLV3p8pOh11eq2YZhTadb5F1V/HPA6rvw0AQ3rPku2qqjJnR7iF/JkRi0v0XHbxYPyqDrPiw14nc9u7SpLtQgjRRf0h2a6qaufM9li1QxPRpSgKp40tYu5Nx3DkhHFsMo+hcET0Z3opisIPhl/MQ0f/iVRjGqsblvPTTy5lZ+u2Xh13cc03vL7pJQB+ffi95FllurMQicxktlB87dts0Q8lCwcpr/+Qptpd+zwuJ6BdQLTmlcc4QiGEEEL0FX29sj0QVGnu0NrI50lle9yECxNiWdlORyMAHlM0BsKJZLMqPK89X+a193d2k5ZkH+7Ufiesa/oOuzsyhS5dlR5sBcBsy+/R8zc2r2Nn23bMegvHlZ0cydBEDxmMJup0eQDYq7fGOZrkIcl2IYTooiF52mSseoeHNnfkWmInErvTh8untYcptElle1+i1ymMO/dXpP/8CzKO+nHM1j2y6Cj+fOKLFKeWUt1RyXWfXc63NT3badvkauShxXcCcM7Q/2NGyXERjFQIES3W9ExSr36HSqWQErUOzz/Pob21qfN+r9tFLnYAbEWD4hSlEEIIIZJdSaiy3e704eiD5+zNHV6CKigKZKdKZXu8FIUKE6pjmGzXubTPzoEUSbb3d05fB5tbNgAwQSrb+z1nqjaGLbO1kaGZw1BRWVz7bUxjyFAdAKTY8nr0/Dk7tar2o0uOJ82UHrG4RO80G7WNHO46SbZ3lSTbhRCii9ItRgpDs7n6anV7VehkMTfNjNkgrblFZJTbhvCXk19mfN5kOnzt3P7Vz3lz879QVbXLxwiqQR5acictnmYG24bx0wm/iGLEQohIy8ovxXvhmzSSyZDgDuqePRePS2vx2lyzAwCXaiI9S7pVCCGEEKJn0swGsqxGYM+5bV/S1KG1kM+ymjDo5ZJuvBSHChNi2Ube6GkGQLXmxmxNkZjWNq4ioAYoSi2hIDW6IwJF4gvatDFsJsduphXPAGBhDFvJuzscpChax5XUrMJuP98b8PLZ7jkAnDpIWsgnknartpFDbdkZ30CSiHwyE0KIbujrreRrWsMt5KWqXURWpjmLPxz7V2YNOpugGuSplY/yh2UP4A92reLkjU0vs7R2EWa9hbunPYxZL20ThUg2RYMPo/6sV2hXUxjjXcO2v15IwO/HUacl2xt0eSg6OT0RQgghRM91tpJv7nvJ9kaHltDIlXntcVUcqmyvaY3da8zi1dpCK2k9qxwVfcdqmdcuvseYUw5AuquaaUVasv3b6m8IqsGYrN9urwPAq+qxpmV0+/kLq7/E4W0jL6WASfmHRzo80Qu+8EaONpnZ3lVyNUsIIbohnGzf1keT7eE2aMUyr11EgVFv5Napd3PdhJtRUHh/+1vc/OVPafXYD/q8DU3f8bc1TwFww8RbKLcNiUG0QohoGDR2BltO+BteVc/kjgWsfe4nuBu0Ge4tJqlqF0IIIUTvlIZayVe2OOMcSeQ1tmuV7bkyrz2uimzhNvKxq2y3+u0AGNIl2d7frQzNa58o89oFkFY4FIBcfy3j8yZiNVhp8bSwqXljTNZ32hsAaFPSe7Rxfs4OrYX8KeWno9dJh9VEos/WRvyluyrjHEnykGS7EEJ0w5A+XtkeTraHTx6FiDRFUbhgxKU8dPQfsRpSWVW/jJ9+eim72nbs9/FOXwf3f3s7AdXPsaUncfrgc2McsRAi0kbOOJ2VUx8hqCpMa3ob0/o3AHBaut92TgghhBDi+/Yk2/tgZbsk2xNCcagTYHOHF7cvEJM10wN2AMw22Zzanzl9TjY1rwNgfL5UtgvILh0GQC52Ah4PUwuPAGLXSt7bWg9Am87W7ee2euwsqV0EwCnlZ0Q0LtF71gJtI0eOrybOkSQPSbYLIUQ3DM0LJdsb+mayvaqzsl3ayIvomlZ8DM+c+CKFqcVUtVdw3aeXsrR24T6Pe2L5Q1S1V5BvLeSWqXehKEocohVCRNq4U6/i2xG3ADA1uBYAX1pJPEMSQgghRB/Q2Ua+DybbGyTZnhBsKUZSjFoFZk0M5rarwSBZahsA1ixJtvdn65q0ee2F1iKKUuXcSUBGVh7tqrbJrLFiC9OLjwJgUfU3MVnf194EgFPf/RbyCyo/I6D6GZo5ggEZ5RGOTPRWZmgjRwHNeFwdcY4mOUiyXQghuiHcRr6i2RmzHcyxFK5sL5E28iIGBmcO5dmTXmFs7kTafe3ctuAG3t7yGqqqAjBv54fM2/UBOkXHnUc+RLqp+x/ehRCJa+L5t/NN0eWd/87R9c2NbEIIIYSInc7KdnsfbCMfntmeLjPb40lRlM4ChRp79Dd1OB2tmBQ/AOnZ0gmqPwu3kJeqdhGm6HTU67VNOK01W5lWrM1t/65pDa2e1qivHwgl293GzG4/9/OKeQCcMOCUSIYkIiQju5AONdTJpWprnKNJDpJsF0KIbshNM2FLMRJUYUdj39vVFd6VLTPbRaxkWrJ5/LhnObX8TAJqgD+ueJgnlv+OXW07eHz5gwBcfthPGJc3Mc6RCiGiYeKVj+MwZKMCWcWD4x2OEEIIIZJcX65slzbyiSN8zaQqBsn2jhatha9TNWNJTY/6eiJxra5fDsCEPJnXLvZotRQD4GnYTmFqEYNsgwmqQZbUfhv1tRWnlmz3mjK79bxmdxMr65cCcHzZzEiHJSJA0emoC23kaK/ZEudokoMk24UQohsURemsbu9rc9t9gSB1bZJsF7Fn0pv49eH3cu34m1BQeHfbf/jR3Atw+Z2Mz5vMpaN+FO8QhRBRouh0qDdvYNclX6I/6oZ4hyOEEEKIJFcSqmy3O3043L44RxNZ4WR7niTb467IFqpsj0Ebeaddm4ncqkint/7M5XexITSvfUK+JNvFHq60MgAU+26A77WSj/7cdp2rGYCAJbtbz/uy4lOCapCR2YdRnFYajdBEBNjN2rgKb8OOOEeSHCTZLoQQ3dQ5t72PJdvr2twEVTDpdeSkSls6EVuKonDhyCt48KgnSTFY8Qa9pJsyuOPIB9Hr9PEOTwgRTToDvtyRoDPEOxIhhBBCJLk0s4EsqxGITdVxLElle+IIFyjUtEb/Neax1wHg0GdGfS2RuNY1riag+sm3Fsq8drEXNXMAAOb2CgCmdSbbFxJUg1Fd2+C1azFYu5ds72whXyYt5BOZs3Mjx874BpIkJNkuhBDd1FnZ3tC3ku3Vdm1HdlGmBZ1OiXM0or+aUXIsz5z4AjMHns7vjvoj+VaZSSeEEEIIIYTous5W8s19J9keDKo0tcvM9kRRbNOS7eHrKNHkb28AwNmDmcii71jVoM1rn5A3BUWRa3ZiD1POIAAy3NUATMibiNVgpcndyJqGVVFd2xJKtivdSLY3uupZ07ACgOMHSAv5RKZmDgQgJbSRQxycJNuFEKKbwsn2bX2ssr06tOs/fNIoRLwMyRzOb498QOa0CyGEEEIIIbqtNNRKvrLFGedIIqfV5cMfVAHISZXK9ngrytTayFfHoHuCGkq2u03dqxwVfcuq8Lz2/MlxjkQkmoyioQDkB2oBbVTjiQNOBuD97e9Gde0UfysAhrTcLj/ni4pPUFEZkzNeCmwSnDF3MAA2T3WcI0kOkmwXQohuCifbtzd2EAid7PYF1aH2ZzKvXQghhBBCCCFEstqTbO87le3hFvK2FCMmg1zOjbciW7iNfPQr23XOJgD85qyoryUSk9vvYkPzWkDmtYt95ZQNA8BGB+2t2vvF6UPOBuCzXfNw+aO38SwtqCXbTba8Lj9n/u65ABw/QFrIJ7q0Qm0jR4G/BjUY3ZEEfYF8OhNCiG4qzkzBbNDh9QepaO47O+XDO7JLQju0hRBCCCGEEEKIZNPZRr4PJdsbOue1Swv5RFAcum7S7vHT5vZFdS2jW0ueqdauV46KvmV901r8QT95KfkUp5bGOxyRYFLTM2khHYCmii2A1kq+NK0Mp9/J/N2fRW3tjKADgJSM/C49vq6jhnVNa1BQOK7spKjFJSIju1TbyJGuuGi3N8Q5msQnyXYhhOgmvU5hcF5obnsfaiW/Z2a7VLYLIYQQQgghhEhOnZXt9r6zOb4xNK89J01ayCcCq8lAptUIRL+VvNnbov0lVZLt/dXK+tC89nyZ1y72r0GvtWN31G4DQFEUZg8+E4APtv83Kmv6PG7SFO39LzWra8n2Lyo+AWB83iRyU7r2HBE/ltR0GskEoKVyc3yDSQKSbBdCiB4It5Lf2tCXku3SRl4IIYQQQgghRHLri5XtjQ6tsj1Pku0Jo7OVvD26reRT/HYADOmSmOoJu6eFl9f/nS0tG+MdSo+tatCS7ePzZF672D9HSjEA3sbtnbfNHnwGCgrL65ZR1V4Z+TVb6gAIqAqptpwuPWd+hbSQTzYNhiIAOuq2xTmSxCfJdiGE6IGhfbKyXdrICyGEEEIIIYRIbiWhyna704cjyi2+Y6VR2sgnnPC1k+rW6G7qSAuEZiJndH0mstD4gz7u+PoX/H3t01wz70L+sOwB7J6WeIfVLR6/mw1N2rz2iTKvXRyAJ60MAF1rRedthalFTC08AoAPt78f8TWdobbirUoaOr3+kI+vbq9kY/M6dIqOY0ulhXyyaEspASDYtP0QjxSSbBdCiB7orGzvI8l2h9tHm9sP7NmdLYQQQgghhBBCJJs0s4GsUIvvqii3+I6VplAb+VypbE8YsapszwxqyfaUrIKortMX/WXVE6xtXIVRZ0RF5b1tb3Lxh2fy5uZX8QeTYyPOuqa1+II+cix5lKQNiHc4IlFlDQTA8j8V7KcPPguAD7e/R1ANRnRJT2s9AA7F1qXHf14xD4CJ+VPJsmRHNBYRPZ68MWwwjIJU2fB1KJJsF0KIHggn27fVt6Oqapyj6b2aVu3kMNNqJNVsiHM0QgghhBBCCCFEz3W2km/uG8n2zsr2dEm2J4qicGV7FDd0eFwdpCra9Zq07MKordMXzd89lze3vArAPdMf4U8n/JOhmSNo9zl4auUjXD33ApbVfhvnKA9tdUN4XvtkmdcuDsicOwiATE/1XrcfV3Y8qcY0ajqqWVG3LKJr+hyNAHToM7r0+Pm7Qy3ky2ZGNA4RXWPOv4uCX33DYWfcEO9QEp4k24UQogfKc63oFHB4/DSEZqcls/Buf6lqF0IIIYQQQgiR7EpDreQrW5xxjiQy9rSRl2R7oigOXT+JZht5R3MNAF5VT2qGVIJ21c7WbTyy9B4ALh51FUeVHM/4vEn87eRXuXnKHdjMWexs287NX17Lb7/+BdVRmGcdKavqQ8n2PGkhLw7MVjwUgIJALWpwTwW7xZDCzIHafPT3t78b0TX97Vqy3WXMPORjKxy72GrfhF4xcEzpiRGNQ4hEIcl2IYToAbNBz8CcVKBvtJKXee1CCCGEEEIIIfqKPcn2vlLZHm4jLzPbE0VxZqiNfGv02sg7m+sAaFUyUHRyGb8rnL4O7vzmV7j8LiblH85VY67rvE+v03PmkB/wr1nv8oNhF6FX9Hxd9TmXf3wuz615CqcvsTbneAIe1ofmtU+Qee3iIHJLtWS7VfHQ2lSz132nDzkbgPm7P6XdF8Fr2M5mALymzEM+NFzVPrngCGzmQz9eiGQkv6WFEKKHhuSF5rY3JH+yPTxjLHyyKIQQQgghhBBCJKvONvJ9INmuqioNUtmecIpsWrFCjd1NMBid8YKe1gYA2nRdm4nc36mqysNL7ma3Ywd5KfncNe1hDLp9RyWmmzK4YdKt/POUN5hccATeoJdXNvyDyz4+m092fpgw4yI3NK3FG/SSbcmhLH1gvMMRCcyckko9WveL5qqte903JmcsAzPK8QTcfLZrXsTW1Lm0ZHvAnHXIx34eSrafMEBayIu+S5LtQgjRQ+G57X2psl2S7UIIIYQQQgghkl1nZbs9sSpVe8Lh8eP1a22B82Rme8IotFlQFPAGgjR1eKOyhs9RD0CHITMqx+9r3tj8Cl9WfopBZ+Ce6Y+SZTl46/1y2xD+cOxfeWDG4xSlltDgqueBxb/lhvlXsrl5Q4yiPrBVDcsBrYW8zGsXh9JkLASgvXbbXrcrisLpg88C4IPt70VsPYOnBYCg9eA/Zztat7KjbRtGnZGjSo6P2PpCJBpJtgshRA/1pWT7npnt0kZeCCGEEEIIIURy60uV7Y0Orao9zWzAYtTHORoRZtTryA9tfqiJ0tz2YLtW2e42HbpytL9b3bCCZ1c/CcD1E37FmNzxXXqeoigcXXoCL572Nj8a+zMsegtrG1fx408u4pGl99Libo5i1AfXOa9dWsiLLmi3FAPgb9qxz32zBp2OTtGxumElu9t2RWQ9s9cOgHKIZPv83Vo1/dTC6aSbMiKythCJSJLtQgjRQ30p2V7dGp7ZLpXtQgghhBBCCCGSW0most3u9OFw++IcTe/IvPbEFd7UsWRHdBKyirMRAJ85p8fHcHjb+LLiU97c/C+aXA2RCi2hNLkauGfhrQTUACcNOI1zhl7Q7WOY9WYuHf0jXpn1LicPnIWKyofb3+GSj87kjU0v4w/G9n3EG/CyrmkNAOPzJ8d0bZGcvBllAOhbK/a5L8+az5FF0wH4cPv7EVkvxd8KgCEt94CPUVWVzytCLeTLpIW86Nt6lWx/+OGHURSFm266qfM2t9vN9ddfT05ODmlpaZx33nnU1dXt9bzdu3cze/ZsrFYr+fn53HLLLfj9/t6EIoQQMTckLxWAeoeHtiQ+eQ8GVWpbZWa7EEIIIYQQQoi+Ic1sIMtqBPZ0cktWjTKvPWGdO6kEgL98sY12T+SvbRtCM5GDKQevHP2+QDDAusY1vPDdX7n+08s567/Hc9fCX/HUyke5+KOzeHXD83gD0Wl7Hw/+oI97Ft1Gs7uRQRlD+NXUu3rVcj3PWsAdR/6Op094nuFZo2j3tfPMqj9w5ZzzWVKzMIKRH9yG5u/wBjxkmbMZmD4oZuuK5KXLKgfA6qza7/2zB58JwIc73iMQDPR6vdRAKNmekXfAx2y1b6LCsQuT3syMkuN6vaYQiazHyfalS5fy7LPPMm7cuL1u/8UvfsH777/Pf/7zH7788kuqq6s599xzO+8PBALMnj0br9fLwoULefHFF3nhhRe46667ev5VCCFEHKRbjBRmaG3Xk7m6vbHdgy+gotcpnS3QhBBCCCGEEEKIZNbZSr5Zku0iOs6fUsag3FSaOrw8t2B7xI9v8oYq5lMPXDkKUNdRwwfb3uaub37Fmf89jus+u4zn1/2V75pWE1ADDEgfxNDMEbj8Tp5d80eumHMei6oXRDzeeHh29Z9Y07ACqyGV+496nBRDZIpIxuZN5K8nvcItU+4i05zFbscObllwHbd/dSOVjt0RWeNgVtdr89rH50+Wee2iS1IKBgOQ6ane7/3HlB5HhimDemcdy+qW9Hq9DLVNW/cgyfbPK7QW8kcWHYXVmNrrNYVIZD1Ktre3t3PxxRfz3HPPkZW1Z2ZMa2sr//jHP3j88cc54YQTmDx5Ms8//zwLFy7k22+/BWDevHmsX7+eV155hQkTJnDaaadx//3388wzz+D19p1ddUKI/qEvtJIP7/IvzLBg0Mt0ESGEEEIIIYQQya801Eq+ssUZ50h6JzyzPTdd2sgnGqNexy2njADgua+20xD6XkVKircFAH3a3sksl9/Ft9Vf8acVv+fSj87h/A9O49Fl9/Fl5ae0+xykGdM5tvQkfjXlTl4//SNenvUOz838N7cffh/Zllyq2iv49Vc/59YF17O7bWdEY46lzyvm8cbmlwG4/Yj7KEsfGNHj63V6Th9yLq/MepcfDr8EvWJgYfWXXDHnPJ5b+xQeNbLf7+9b1RCa154n89pF19iKhgJQGKwnGNi3ct2sNzNz4GkAvL/t3V6t5fd5SVe1363WrPz9PkZVVebv1lrIHy8t5EU/YOjJk66//npmz57NSSedxAMPPNB5+/Lly/H5fJx00kmdt40cOZIBAwawaNEijjzySBYtWsTYsWMpKCjofMwpp5zCT3/6U9atW8fEiRP3Wc/j8eDx7Pnl1dam7Zrx+Xz4fMnburmnwl9zf/zahYikSPwsDcq18vVW2FzblrQ/kxVN2kaBwgxz0n4N8ZYs78v+oErA70dRFFSd7IxOVOHROok+YscfCBLwB/H7VXRB2aiTiJLmtRQMEvAH8CtBFFVeS6J3Ap2vex++BP9dl+ifG4QQItntSbYnd2V7Q+fMdqlsT0SnjSlkfKmN1ZWtPDV/C/edNSZix04LtWk2ZuSxtWUTS2oXsrR2EWsbV+L73gxxnaJjVPYYDi+cztTC6YzIHo1Bt/dlf52i49RBZ3J06Qm8vP7v/GfzKyyu+YZltYv5wfCLuGz0NaSZ0iMWe7TtatvB75fcA8D/jbycY0pPjNpa6aYMfjbxV5w+5FyeXvkoS2sX8drml7ApNqy1uUwvPTai6/kCPr5rXA3ABJnXLroot2QwflWHSfFTV7eb3OJ9xw+cPuQs3tzyOl9WzsfhbSPdlNGjtTpaG8lXVADSMvdf2b6xeR01HVVY9BamFR/To3WESCbdTra/9tprrFixgqVLl+5zX21tLSaTiczMzL1uLygooLa2tvMx30+0h+8P37c/Dz30EPfee+8+t8+bNw+r1drdL6HP+OSTT+IdghB9Qm9+ltx1CqBn0brtfBTYGrmgYmh+tfY1qB3NfPTRR/EOJ6nJ+7KIpKVffhbvELpkU7wDEIe0YP6n8Q5BiJib/2niv+6dzuSutBRCiETX2UY+yZPt0kY+sSmKwm2njeSi5xbz6uLdXH3UIAbm9L5dcou7mZVWF39NyWFB5cO07mzb6/4CaxFTC6dxeOF0JhUc3uWkWaoxjWvH38Tpg8/h6VV/YFH1Al7f9BLzdn7ANeN+zmmDzkSnJPYGWKfPyZ3f3IzL72RC3mSuGXtDTNYtzxjMo8f8mYXVX/KnFY9Q66zm9m9u5OSBs/nZxF+Rac469EG6YGPzd3gCbmzmLMozhkTkmKLvMxhN1OtyKVbraanaut9k+6js0QyxDWVb61Y+2TWXc4f9sEdrdbTUA9BGKgbj/ruuhFvITy8+NmLjHYRIZN1KtldUVHDjjTfyySefYLFYohXTPm6//XZ++ctfdv67ra2NsrIyZs6cSUZGz3bfJDOfz8cnn3zCySefjNFojHc4QiStSPws5exo5j87luFQUpk16+gIRxgbyz/cCLt2M2X0YGbNHB7vcJJSsrwv+4MqjW4/BkVBn+DVfv2Z3+9n6ZefMfXYEzEYetSEKCZ8gSAOX5C8FD0mXWJfjOmv/H4/C+Z/yjEnnJTYr6VgkHpXgHSjDqOMMxG95PX6WP7VfE446SQspsRutxvu2CaEECI6Oivb7cm9uWlPsj2xf6/1Z9OH5HLs8Dy+3NzAY/M289SF+3Zu7aq/rXmWT3Z9xlb7RgiNLsTfhkVvYWL+VKaEEuxl6QN7Ncu7NH0gDx/9J76t+ZqnVz5KhWMXjyy9h3e3vsHPJ93GmNzxPT52NKmqyqNL72VX23ZyLHncNe33+1TxR5OiKMwoOY5xORP53ZzbWeRZxCe7PmRJ7UJumHgLJw04rdcz1ve0kJd57aJ7mo1FFHvrcdZtA07e535FUTh9yJn8ccXjfLDt3R4n292tDQC0Khnsb2tRUA12JtuPH3BKj9YQItl06zfR8uXLqa+vZ9KkSZ23BQIBFixYwNNPP83cuXPxer3Y7fa9qtvr6uooLCwEoLCwkCVLlux13Lq6us779sdsNmM277t702g0JnRSI9r6+9cvRKT05mdpRFEmoO2UD6DDYtRHMLLYqAvNFCvLTpX3lF5K9PdlJaii9yuSbE8SBoMBgyFxX0+qEkSvBrQ4JUGa0AwGA4YEfm9SA0H0BgWDQS+vJdFrgaDWztBgSOzfyUDCxyeEEMlOKttFLN166gi+3NzA+6ur+fHRgxlbauvRcb5rXKsl2oGRHi9HutyMOeNfjC+YjEkf+Q0XRxYdxeT8I3h7y795Yd2zbGpZz/WfXc7Mgafzk/E/Jzdl//OY4+WtLa8yv2IuesXAvdMfISclNy5xpBiszEqZxUXTr+EPKx5kR+tWHvj2N3y66yNunnIH+db95zm6YlX9cgAm5Mu8dtE9HdZi8K4m0LzzgI85tfx0nl75R75rWsuO1u0Msg3u9jo+h5Zs79DvP9m+vmkN9c5arIZUjiia0e3jC5GMunU168QTT2Tt2rWsWrWq88+UKVO4+OKLO/9uNBr57LM9bU83bdrE7t27mTZtGgDTpk1j7dq11NfXdz7mk08+ISMjg9GjR0foyxJCiNjITTNhSzESVGFHY0e8w+mRarsbgOJMaekjhBBCCCGEEKJvKAlVttudPhxu3yEenbgaHTKzPRkcVmzj7AnFADwyd2OPj3PhyIu4Zep9PDXqMf5TXctVLQGmFk+LSqI9zKg3csHIy/jX7PeYNehsAObt+oBLPjqLf234J96AN2prd8fahpX8edUTAFw34ReMzet5B4FIGZU9hudO/jdXjbkOo87ItzVfc9nH5/LOltcIqsFuH88f9PFd4yoAxufJvHbRPf6MAQAY2nYf8DE5KTlMLz4KgA+2v9uzddqbAHAZMvd7//zdcwGYUXIcZr387hL9Q7eS7enp6YwZM2avP6mpqeTk5DBmzBhsNhtXX301v/zlL/n8889Zvnw5V155JdOmTePII48EYObMmYwePZpLL72U1atXM3fuXO644w6uv/76/VavCyFEIlMUhaGhtl5b69vjHE3PVNu1Xf5FNkm2CyGEEEIIIYToG9LMBrKsWheRKntyVrc7vX5cvgAAuely3TTR3TxzBEa9wldbGvl6S2OPjjGteDonDTydlA6tMKJN6VmFfE9kW3K47fB7+OtJrzA6Zxwuv4u/rfkTV8w5j2+qvkBV1ZjF8r+a3U3cs+hWAqqfE8pO4bxhF8Utlv9l1Bu5/LAf8/eZrzEmZzwuv5MnVzzMDZ9dyc627d061sbm9bgDbmymTAbZZF676B59djkAqc7qgz7u9CFnAfDxjg/xB/3dXkft0N7fPKbMfe4LBAN8UfEpACdIC3nRj0S8T+MTTzzB6aefznnnnccxxxxDYWEhb7/9duf9er2eDz74AL1ez7Rp07jkkku47LLLuO+++yIdihBCxMTQvORNtrt9AZo6tB3KJVLZLoQQQgghhBCiD+lsJd+cnMn2cFW7xagj1ZR8Y+v6m7JsKxcfMRCA38/ZSDDY8+R0uE1z+wEqR6NpVM4YnjnxBX5zxAPkWPKoaq/gN1/fxC0Lrut28jgS/EE/9y66jUZXAwMzBnPL1LsTcpZ5uW0IT534PDdO+jUpBivfNa3mR3Mv4MV1f8MX6Fp3jVX12rz2cXmT0CkyYkt0j7VA26CR7as56OOOKj6GTHMWja4GFtcs6vY6iqsFAL85c5/71jaupMndQJoxnakF07p9bCGSVa/fsb/44guefPLJzn9bLBaeeeYZmpub6ejo4O23395nFvvAgQP56KOPcDqdNDQ08Nhjj2EwdGt8vBBCJIzOyvaG5Eu217RqO6VTTXoyUuR9WAghhBBCCCFE31EaaiVf2eKMcyQ90/C9ee2JmFwU+7rhhKGkmQ2srWrlw7UHT3gdTKBdqxx1GbMiFVq36BQdp5Sfziuz/svFo67CqDOytHYRV805n6dXPobD2xazWJ5b+xSr6peRYrBy/4w/YDVaY7Z2d+kUHecO+z9ePPUtjiiagS/o45/f/Zkff3IRG5rWHvL5qxtkXrvoueySYQDkBxvx+w48/sGoN3Jq+SwA3u9BK3mDW0u2B1Ny9rkv3EL+6NITMOqN3T62EMlKtkcJIUQvhZPt25Kwsj3cQr44M0VO3IUQQggh+oCHHnqIqVOnkp6eTn5+PmeffTabNm3a6zFut5vrr7+enJwc0tLSOO+886irq9vrMbt372b27NlYrVby8/O55ZZb8Pu732ZSCCHiaU+yPUkr27+XbBfJISfNzDVHDwbgsXmb8Pq7P7cbQAm1afaasyMWW09Yjan8eNzPeeHUt5hRfBwB1c9/Nr/CJR+dxfvb3sLtj+7P1oLKz3ht44sA/PrwexmYMSiq60VKQWoRvz/6ae448nfYzFlsb93CdZ9dztMrH8N1gP9n/qCPtY0rAZgoyXbRA1kFZXj+n737jo6qzv8//pqSXgkQkkAIVSD0IkWkdxUbFsQCNlYEd/kiyOrPVdBVVsGCDV0LuqvYBdFViiC9V5Hee4f0NuX+/ogZjbSE3GQmmefjHI7OnTv3vgdedzLvfO79XCNAdotbpw5ffBaKgqnkFx9aoJTclGLtJygvf7DdElL488npdmrhod+mkE9kCnn4FwbbAaCECgbb95zKlKsEU4R5w+E/DLYDAACg/Fu4cKGGDx+uFStWaO7cuXI4HOrdu7cyMzM96/zf//2fvvvuO3355ZdauHChjhw5optvvtnzvMvl0rXXXqu8vDwtW7ZMH330kT788EM99dRT3nhLAHDZPNPIM9iOMvRAp9qqEh6o/aez9PnqA5e1DVv2aUmSK9i7g+0FakTU1POdXtXEzm+pZkRtpeSe1aQ1z6r/9C4ateAv+nTbh9qdssPU+7ofTN+vCSvzv3vcdsXd6prYy7RtlwWLxaJeSdfoP32/Vq+ka+Q23Ppyx8e6d9YtWn3s3Km7d5zdpmxntiIDo1Q7qp4XKkZ5Z7XZdNxaVZKUcnjXRde9olIDXVGpgRxuh+bs+7FY+wl2pEqSbOGFr2zfcGKNUnLPKiowWq2qXVmsbQLlHYPtAFBCCdEhCrJbled06+CZ8jU13e9Xtgd7uRIAAACYYdasWRoyZIgaN26s5s2b68MPP9SBAwe0dm3+tKSpqal6//339fLLL6t79+5q3bq1pk6dqmXLlmnFihWSpDlz5mjLli36+OOP1aJFC/Xr10/PPvus3nzzTeXlXXhKSgDwNZ4r21PKV69eoOCe7VUjAr1cCYojLMiuv/XIn8558rydyswt/swwgblnJElGWBVTayuptvFXaWrfLzS8xaOKC41XnjtPa4+v1NsbX9V9s2/TzTN76fmVT2ru/h90NufMZe8n25mtfyx9VFnOTDWt0lJ/af5XE99F2YoOjtGT7Z/XC53fUGxonI5mHtbohcM0YeU/lJab6lmP+7XDDClBCZKknJMXv7JdkvrXyb+6/fs9M4u1jzBXfm7tkVULLZ9/MH8K+c41eshuZQp5+Bdu0AsAJWSzWlSnari2Hk3TrhMZqlUlzNslFZlnsD2KK9sBAAAqotTU/F+GxcTkXxm3du1aORwO9ezZ07NOw4YNVbNmTS1fvlzt27fX8uXL1bRpU1WrVs2zTp8+fTRs2DBt3rxZLVu2PGc/ubm5ys3N9TxOS8u/l6vD4ZDD4SiV9+bLCt6zP753wEwlPZbiIvJ/2X/oTHa5PB5PpOX37JVCAspl/b6krD+XB7SM17uL9+jAmWy9s3CXHulWt0ivc7oNuZxOBeflD1RbQmPkdPrev/3NdQfqpjq361DGfq0+vkJrjq/UxpNrdCbnlGbv+16z930vSaof3VBtqrVXm2rt1bhyMwUUYQDOMAxNXD1Oe1N3KSa4sv7R9nnJnT/Nuq8ouLVOcW6x06ZqO73f8zN9sHmKZuz+QrP2facVR5fqkRaj1aV6T607vkqS1KxyC9P+zZ0ut1xOt5xOQ1Y3A/i+6HKydDGZIQlSjuQ6vVfOS3ze9ajRW5PXv6xtZ7Zo+8mtqht94RkVnG63XE6XnBa3Ioz87/kBYZU8WXW6nVp0aL4kqUv1Hj75uQXf4fLk3iGH1bdvbVvU7w0MtgOACerF/jbYfjJDPVXt0i/wEUdTcyQxjTwAAEBF5Ha7NXLkSHXs2FFNmjSRJB07dkyBgYGKjo4utG61atV07Ngxzzp/HGgveL7gufOZMGGCxo8ff87yOXPmKDQ0tKRvpdyaO3eut0sAKoTLPZZyXJJkV0q2Q9/M/EHB5ew3ob/uskqy6vj+nfrhhx3eLqdCKMvP5W6VLfrojE3vLNilamnbFV6MCz2bOPIH24+cOKsz82aXUoXmiFcl9Vdf9Qvvqf3O/drl3KVdzl066jqqnSnbtDNlmz7d/qECFaja9tqqH1Bf9ez1VNlaWRbLuYMsK3JXaF72bFll1c32m7Rj2VovvKuiWb1wXrFf01pNVTU8StOzputk7kk9u/IJfWn/j/Y690qSLHvytPyAuf/m203dGkrDovk/mbOhvPzf8bpO7tD8ObMuufoVtiu0xb1Fby98Xf1C+l1yfbfbrf5GhmSRdu3YrQOH8295scOxQ+l5qQqzhCnrl1NabvHtzy34hvk/mZT7UpSVVbTZkcrZV0wA8E31qubft33XiQwvV1I83LMdAACg4ho+fLh+/fVXLVmypNT39fjjj2vUqFGex2lpaUpMTFTv3r0VGRlZ6vv3NQ6HQ3PnzlWvXr0UEMA0msDlMuNY+tevP+tslkON23ZSg7gIkyssXf89sko6k6Iu7VqqX5M4b5dTrnnjc7mv29Dad1bq1yNp2m6vo39c0/CSr3G6DZ3KcSpkff606Ve0ulrVk9uVdqmm6fSH/z+Tc0prj6/SmhP5V76n5J7Rdud2bXfmD/3GhSb8dtV7O7WMbavwgHBtPv2LZi3MHyAc2vSvuvWKO73wLi7N6XRq9cJ5urJLD9ntxR9i6SDpJtdgTds+VZ9u+1DbnNskSeEBEbqh992yWWym1OlwuZXucKtqiE2BVq5s90VOp1OL5v+kzt17XlaW/uxXy3Fp3eeK1Vm16t33kusHHgnVY0tGaYu2akLPl2S3nr8Gh9utE9kuWTJPy77RLUnq0OcGBQbl35p00ZrlUqbUo3Y/dWx56UF7+Le8PIfWLp6v7j17KjjQt2+VUzBj26Uw2A4AJqgXW/4G2w3D4J7tAAAAFdSIESP0/fffa9GiRapRo4ZneVxcnPLy8pSSklLo6vbjx48rLi7Os86qVasKbe/48eOe584nKChIQUFB5ywPCAjw68Fmf3//gFlKcizVqBSqs1mpOpbuUJPE8nU8ns7Mn7q0WlQonyUmKevP5b/3a6S73l+pT1cf1IOd6yox5uKzvVjchqx5hqKNNMkiRVSpLru9fP7bx4bHq1/4DepX9wa5Dbd2p+zQ6mPLterYMm06tV7Hso7o+73f6Pu938hmsSm5clMdyTgsp+FUlxo9NbDR4PNe+e5L7Hb7Zf/72O0BeqDZCHWv2Vcvrh6nrWd+Vdu4qxQUYN7v6AyLWzbDlV+njcF2X2a322U34bMpMqG+tE6q7DxepO1dndhFMcGVdSbntFadXKnONbqedz3D5ZbNblF2+llJUqYRrNCw/BPY8lx5WnZkoSSpZ1K/cvuZhbLjchuS8j8Hff37TVHr4xMWAExQMNi++2SGDMPwcjVFczbLoRxH/pmIcVEMtgMAAFQEhmFoxIgRmj59uubPn6/atWsXer5169YKCAjQvHm/T3u6fft2HThwQB06dJAkdejQQZs2bdKJEyc868ydO1eRkZFKTk4umzcCACapUSl/JreDZ4s2DagvOZWeK0mqEnHuyUwoH66uX0Wd6leRw2XopTlFm8w7M/W07Jb839eEx1SMGQ2sFqvqV2qoQY3u1avd3tV3Ny7Svzq9ppvr36HEiCS5DJc2ndqg0zknVTOilv7edrzPD7SbpU50Pb3Z4yO90vXfGtXm/3m7HJRzlWtcIUmK1RllZaRecn271a5ral8nSfpu94xLrp+Tmt8fpFp+n7lq9bFlynBkqEpIVTWt2vIyqgbKP65sBwAT1KoSKqtFSs9x6mR6rmIjfX/wuuCq9qoRQQqymzM9FQAAALxr+PDhmjZtmr799ltFRER47rEeFRWlkJAQRUVF6f7779eoUaMUExOjyMhIPfLII+rQoYPat28vSerdu7eSk5N1991368UXX9SxY8f05JNPavjw4ee9eh0AfFnBYPuhs9lerqR4chwupec6JUlVwvnsLc/G9m2oxTuXaMaGI3qwcx01Toi66PpZZ/N/dqcbIQoMrpi3/QsNCFWHhM7qkNBZknQ087BWH1uuPSm7dGuDOxUaEOblCsuWzWpTq2ptvV0GKoDImGo6qiqK1yltm/6CWt39/CVfc22d6/Xx1o+05PBinck5rZjgyhdc15F+SpKUYYtUwW+/5x/Ivz971xq9ZLVwfS/8E8kHABME2W1KqpzfCJSXqeSPcL92AACACmfKlClKTU1V165dFR8f7/nz+eefe9Z55ZVXdN1112nAgAHq3Lmz4uLi9M0333iet9ls+v7772Wz2dShQwfddddduueee/TMM8944y0BQInUqJQ/bfehcnZl+6mM/KvaA21WRQZzvVR51qR6lPo3T5AkvTjr0le356Tk37ol1XrxQfmKJD6suq6ve4tGtv67qocnerscoNyyWK060OoxSVKrfe/r+P6dl3xN3eh6Sq7cWC7Dqdn7frzouq6M05KkLHv+51OuM0dLf5tCvlvNPiUpHSjXGGwHAJPUrfrbfdtPlq/B9urcrx0AAKDCMAzjvH+GDBniWSc4OFhvvvmmzpw5o8zMTH3zzTfn3Is9KSlJP/zwg7KysnTy5ElNmjRJdjuDPQDKn/J6ZfupjDxJUuXwQL+ZTrsiG937CtmtFi3ccVLLdp266Lp5v03TnGHzn8F2AOZp2vd+bQ5oqhBLnk5//WiRXnNdnRskSd/t/vait0g1MvM/v/ICoiVJK48tVbYzS9VC49W4crOSFQ6UYwy2A4BJCu7bXm6ubE/NkSTFR3FlOwAAAACgYvr9yvZyNthecL92ppCvEJIqh2lQu5qSpBdmbbvoYJY746QkKdteqUxqA1CxWKxW2a9/WU7DqtZZi7V18fRLvqZ3Uj8FWAO0K2WHdpzdduFtZ5+VJDmC8j+fCqaQ75bYixPD4NcYbAcAk5S3wfbDTCMPAAAAAKjgqv92ZXtqtkNpOQ4vV1N0BdPIVwkP9HIlMMsj3esrNNCmjYdS9eOvxy64nuW3K0dzgxhsB3B5ajZqo1XVbpUkVVn0pPJyLn4rlcigSHWp0U2S9N2eby+4ni03f7DdFRKjbGe2lh9ZJIkp5AEG2wHAJOVtsJ1p5AEAAAAAFV14kF2VQgMkSYfL0dXtpzPzp5HnyvaKo2pEkB7sVEeSNHH2djlc7vOuZ80+I0lyBlcus9oAVDxX3P68TilaNY0j+vWrCZdcv3/dGyVJs/b+oDxX3nnXCfxtsF0hMVp+ZJFyXDlKCKuhBpWSzSobKJcYbAcAk9StGiZJOpGeq5O/Tffmy46m5E8jz5XtAAAAAICKrDxOJV/we4UqEQy2VyQPdq6jymGB2nsqU1+sOXjedQJy8wfb3aEMtgO4fGFRMdrVYqwkqeXed3Xi4K6Lrt82rr2qhlRVWl6qlhxedN51gh2pkiRbeOXfp5Cv2Zsp5OH3GGwHAJNEBAeoeWK0JOmbdYe8W8wlOFxuHU9nsB0AAAAAUPHV+G0q+UNnLz6Nri/5fRp5BtsrkvAgux7pXk+S9OpPO5WV5zxnneC8/MF2S1iVMq0NQMXT7Jqh2hLQWKGWXJ36evRF17VZbbqmdn9J0ne7Z5x3nTBX/mC7IyxcK48ukSR1T2QKeYDBdgAw0Z1ta0qSpq06ILfb8HI1F3YsNUeGIQXaraocxv3fAAAAAAAV1++D7eXnynbu2V5xDWqXpMSYEJ1Mz9UHS/ae83yYM0WSZI+MLePKAFQ0FqtV1msnyWVY1DpjobYuufD92CXpuro3SJJWHF2mU9knz3k+wp0mSdpsHFGeO081I2qpbvQV5hcOlDMMtgOAia5rHq+IILv2n87Sst2nvV3OBRXcrz0hKphpfgAAAAAAFdrv08iXpyvb8++XW5Ur2yucQLtVo3s3kCS9s3CPzmQWvjdyxG9XjgYz2A7ABElN2mtV1QGSpMqLnlRebs6F142spaZVmstluPTj3v8Ves5wuxVlpEuSVmf/Kokp5IECDLYDgIlCA+26uVV1SdInK/d7uZoLO5rKFPIAAAAAAP9Qrq9s557tFVL/ZglKjo9Ueq5Tb/78+32UDbdb0Ub+YHtIpWreKg9ABVP39gk6rSgluQ/p16//ddF1+/92dfv3e76VYfw+c2tuZpoCLU6lWi3amLJRElPIAwUYbAcAkw1qlyRJmrvluE6kXfhMQW86XHBlO4PtAAAAAIAK7vcr28vHYHtmrlMpWQ5J3LO9orJaLRrbr6Ek6b/L93tmXcjOSlewJf/fPiImzmv1AahYIipV0Y5m+fdsb7H7HZ06cu4tLAr0rNlbQbZg7U3doy2nf/Usz0o5IUmaHRIhp+FU7ah6qhVVt3QLB8oJBtsBwGQN4iLUJqmSnG5DX6w56O1yzuuP08gDAAAAAFCRVf/tyvbUbIfSchxerubSvl53SJKUVDlUlUIDvFwNSkvn+lV0Vd3KynO59fLcHZKktNPHJEk5RoCCwyK9WR6ACqbZtcO0zd5IYZYcHfty9AXXCw+MULfE7pKk7/fM9CzPSzslSfoxPFwSV7UDf8RgOwCUgkHtakqSPl11UC63cYm1y94RrmwHAAAAAPiJ8CC7Z9D6sI9f3e5yG3p/Sf4Vh/d1rM29cCswi8WisX3zr26fvv6wth5NU8aZ/MH2FEuULFZ+dQ/APFabTe5rJ8plWHRl+nxtX/6/C657XZ38qeTn7P9Rua7825o400/qrNWqdSF2SVL3mr1Lv2ignOAnNgCUgmuaxisqJECHU7K1aMdJb5dzjoNnGWwHAAAAAPiP8jKV/Nwtx7X/dJaiQgJ0a5sa3i4Hpax5YrSubRovw5BenLVN2SnHJUnptigvVwagIqrdtKNWVblRkhT18xNy5OWed702cW0VFxqv9Lx0LTw4X5Lkyjitn8JC5LZI9aMbqkZEUlmVDfg8BtsBoBQEB9h0S+v8pviTlQe8XE1h6w6c1a4TGbJbLWoYH+HtcgAAAAAAKHU1fptKvuDe2L7q/SV7JEl3tqup0EC7l6tBWRjdp4FsVot+3n5S2/fkz2qQaY/2blEAKqw6A1/QWUWotvuANn3z4nnXsVqsurZOf0l/mEo+67Rmh4VJkrrXZAp54I8YbAeAUnJH2/yp5OdvO+6Ztt0XvDl/lyTp5lbVFRvBPdsBAAAAABXf74PtvtOf/9mGgylave+sAmwWDb6qlrfLQRmpXSVMd7RNlCTt3rdfkpQbWMmbJQGowCIrVdW2Jo9KkprvnKLTx/afd71r61wvSVp5dLlOZB1XRtZRrQ4OkiR1S2QKeeCPGGwHgFJSLzZc7evEyG1In68+6O1yJElbjqRp3rYTslqkYV3rebscAAAAAADKxO/TyPvule3vLs6/qr1/8wRVi+TkeH/y1x71FRJgU2VLuiTJERTj5YoAVGTN+o/QdnsDhVuydeSLMeddp0ZEolrGtpYhQ7P2fa9Nxj65LRbVckcqPrx6GVcM+DYG2wGgFA1ql3/vms9WH5DT5fZyNdKbC/Kvar+2WYJqVwnzcjUAAAAAAJQNX7+y/eCZLP246agk6YGr63i5GpS12IhgPdCptiopf7DdHVLFyxUBqMisNpuc/SbKbVjUNm2udqyafd71rvvt6vYf9s7UevtJSVIrW+0yqxMoLxhsB4BS1KdxNVUOC9TxtFzN33bCq7XsPpmhH35r3B/uWtertQAAAAAAUJZ+v7LdNwfbP1y2T25DurpeFSUnRHq7HHjB0M51FGfPH2y3hDPYDqB01WneSati8gfTI376u5yOvHPW6VGzt0LsITqYfkC7AnIkSa1Dm5VpnUB5wGA7AJSiILtNt7SpIUn6ZOUBr9YyZcFuGYbUs1GsGsXTuAMAAAAA/Ef1365sT812KC3H4eVqCkvLcXhuP3d/J64Y9FcRwQGq3bCF9gQ1VN0rGnu7HAB+IGngv5SicNVx79Mv0yed83xoQKi61+wlSTIsUsucHMVG1SrjKgHfx2A7AJSyQW1rSpIW7Typg2e8c2+4Q2ezNGP9YUnS8G7cqx0AAAAA4F/Cg+yqFBogSTrsY1e3f77qoDJynaofG66uV1T1djnwooTbXlLwX5cooEFPb5cCwA9EV47TlkYjJUnNtr+hM8cPnbNO/zo3eP6/T2aWAiOYeQP4MwbbAaCUJVUOU6f6VWQY0qervHN1+78X7ZHTbahjvcpqWbOSV2oAAAAAAMCbfHEqeYfLralL90qSHuhUWxaLxcsVAQD8SbMb/qadtnqKsGTr0Bdjznm+dlQdSZLFMNQrM1sh0dXKukTA5zHYDgBl4M52+Ve3f7HmkPKc7jLd94n0HH3223R0XNUOAAAAAPBXNX6bSv7QWe/MOnc+P2w6qiOpOaoSHqgbWlT3djkAAD9js9uV2+dFSVK71FnauXZeoecrBcdoQtsX9cbxk4p1uRRWKdYbZQI+jcF2ACgDPRpVU9WIIJ3KyNXcLcfLdN/vL96rPKdbrWpGq0OdymW6bwAAAAAAfMXvg+2+cWW7YRh6f0n+Ve13t6+l4ACblysCAPijuq26aWX0tZKk0Dlj5XI6Cz2fHFRHnbNz5DBsCouI9kKFgG9jsB0AykCAzaqBVyZKkqat2l9m+03JytPHK/L3N6J7PaajAwAAAAD4rd+nkfeNK9tX7T2jXw6lKshu1V3ta3q7HACAH6t5+wtKU5jquXbrlxkvF3ouM+WkJCnFEiGLlWFF4M84KgCgjNx+ZaIsFmnprtPaeyqzTPY5dek+Zea51Cg+Ut0aMMUPAAAAAMB/+dqV7e8uzr+q/eZWNVQ5PMjL1QAA/Fl01er6teFfJUlNtr2mlJOHPc/lpuUPtmdYI71SG+DrGGwHgDJSo1KoZ8D701UHSn1/GblOfbhsnyRpeLe6XNUOAAAAAPBrSZXzr2zfeTyjzE6Cv5A9JzM0b1v+bebuv7q2V2sBAECSmt04SrtsdRWpTB34fKxneV76KUlSpi3KW6UBPo3BdgAoQ4Pa5k8L9+Wag8p1ukp1Xx+v2K/UbIfqVA1TvybxpbovAAAAAAB8Xd2q4epYr7LyXG6N+XKjXG7Da7V8sHSvDEPq0TBW9WLDvVYHAAAFbHa7snq/IElql/I/7V73syTJnXFakpQTwGA7cD4MtgNAGerWMFYJUcE6m+XQrF+Pldp+chwuvffbdHTDutSVzcpV7QAAAAAA/2axWPTCgGYKC7Rpzf6zmrp0r1fqOJuZp6/WHpIk3d+Jq9oBAL6jfuseWhnVV5IUNPsxuZxOGVn5g+15gdFerAzwXQy2A0AZslktuv3K/KvbP1lZelPJf776oE5l5Kp6dIhubFm91PYDAAAAAEB5UqNSqJ68LlmSNHH2du06kVHmNXyycr9yHG41TohUhzqVy3z/AABcTI3bJipNoarv2qVfvp0sa/ZZSZIzKMbLlQG+icF2AChjt1+ZKJvVolV7z2jn8XTTt5/ndOudhbslSQ91qaMAGx/1AAAAAAAUGHhlojrVr6Jcp1ujy3g6+VynSx8t3y9JerBTHVkszEQHAPAtMdVqaNMVwyVJyVtflT0jf4ZWdwiD7cD5MAIDAGUsLipYPRrGSpKmrTL/6vYZGw7rSGqOqkYE6dY2iaZvHwAAAACA8qxgOvmIILs2HEzRu4v3lNm+v91wRCfTcxUXGaxrm8WX2X4BACiOZjeN1h5rLUUrQ4lZWyRJ1jAG24HzYbAdALzgzvZJkqSv1x5SjsNl2nZdbkNTFuRf1f5gp9oKDrCZtm0AAAAAACqKhOgQ/aN//nTyL8/ZUSozz/2ZYRh6f3H+feKHdKzFTHQAAJ9lDwhUes9/SZLiLfn3bLeFV/FmSYDP4hsdAHhBp3pVlBgTorQcp77/5ahp2/1h01HtPZWpqJAADWqXZNp2AQAAAACoaG5tXUPdGlRVnsutR7/cKKfLXar7W7zzlLYfT1dYoE13tK1ZqvsCAKCkrmjbR6sie6ngjicB4ZW9WxDgoxhsBwAvsFotGnhlfmP9ycr9pmzTMAy9+fMuSdK9HWspPMhuynYBAAAAAKiILBaL/jWgmSKD7frlUKreWVS608kXTFd/25WJigoJKNV9AQBghoTbJsow8v+/Rs4O7xYD+CgG2wHAS25rkyi71aL1B1K05Uhaibc3b+sJbTuWf4b8kKtqlbxAAAAAAAAquGqRwRp/Q2NJ0qs/7dC2YyXvz89n27E0Ld55SlaLdF/H2qWyDwAAzFa5Wk2duWKADlXvI3vrO71dDuCTGGwHAC+pGhGkPo3jJEnTVpXs6nbDMPTGb1e139UhSdGhgSWuDwAAAAAAf3Bji+rqlVxNDpehR7/YKEcpTCdfcK/2vk3ilBgTavr2AQAoFRaLAm75t7Jv/Y+MoEhvVwP4JAbbAcCL7myXP5X8jPVHlJnrvOztLNt9WhsOpijIbtUDV9cxqzwAAAAAACo8i8Wi525qoujQAG0+kua5RZtZTqTn6NsNRyRJD3SiZwcAAKhIGGwHAC/qULeyalcJU0auUzM3Hrns7bwxP/8XAQOvTFTViCCzygMAAAAAwC/ERgTrmRuaSMrvsX89nGratv+zbL/yXG61qhmtVjUrmbZdAAAAeB+D7QDgRRaLRYPa5l/dPm3lgcvaxtr9Z7V8z2nZrRYN7VLXzPIAAAAAAPAb/ZvFq1+TODndhkZ/uVF5zpJPJ5+d59LHK/NvHfcgV7UDAABUOAy2A4CXDWhdQ4E2qzYdTtUvh1KK/fq3fpve7uZW1VU9OsTk6gAAAAAA8A8Wi0XP3thEMWGB2nYsXa/P31nibX617pBSshxKjAlR78ZxJlQJAAAAX8JgOwB4WUxYoK5pmt9wF/fq9i1H0jRv2wlZLdJDXNUOAAAAAECJVAkP0rO/TSf/1oLdl3VSfAG329AHS/ZKku7rWFs2q8WMEgEAAOBDGGwHAB8wqF2SJOnbDUeUluMo8uveXJB/Vfs1TeNVp2p4qdQGAAAAAIA/ubZZvK5rFi+X29CjX2xUrtN1WduZt+2E9p7KVGSwXbe1STS5SgAAAPgCBtsBwAdcWauS6seGK9vh0rfrDxfpNbtPZuiHTUclScO71SvN8gAAAAAA8CvP3NBEVcIDtfNEhl796fKmk3938R5J+SfYhwXZzSwPAAAAPoLBdgDwARaLRYPa1ZQkfbLygAzDuORrpizYLcOQejaKVaP4yNIuEQAAAAAAvxETFqh/3thUkvTOwt1af+BssV7/y6EUrdp7RnarRUOuqlUKFQIAAMAXMNgOAD7i5pY1FBxg1bZj6Vp3IOWi6x46m6UZv10Bz1XtAAAAAACYr2+TON3YIkFuQxr95UblOIo+nfx7i/Pv1d6/eYLiooJLq0QAAAB4GYPtAOAjokIDdF2zBEnSJyv3X3TddxbukdNtqGO9ympZs1JZlAcAAAAAgN8Zd31jVY0I0u6TmXp57o4iveZwSrb+99tt3x7oVLs0ywMAAICXMdgOAD7kzt+mkv/fL0eVkpV33nVOpOXo8zUHJXFVOwAAAAAApSk6NFATbsqfTv7dxXu0dv+ZS77mw6V75XIbuqpuZTVOiCrtEgEAAOBFDLYDgA9pkRitRvGRynW69fW6w+dd570le5XndKtVzWh1qFO5jCsEAAAAAMC/9EyupgGtasgwpNFf/qLsvAtPJ5+e49Bnq/JPkOeqdgAAgIqvWIPtU6ZMUbNmzRQZGanIyEh16NBBP/74o+f5rl27ymKxFPrz0EMPFdrGgQMHdO211yo0NFSxsbEaM2aMnE6nOe8GAMo5i8Xiubp92sr9Mgyj0PNnM/P08Yr8KeaHd6sni8VS5jUCAAAAAOBvnuqfrGqRQdp7KlMTZ2+/4Hqfrz6o9Fyn6lYNU9crYsuwQgAAAHhDsQbba9SooX/9619au3at1qxZo+7du+uGG27Q5s2bPes8+OCDOnr0qOfPiy++6HnO5XLp2muvVV5enpYtW6aPPvpIH374oZ566inz3hEAlHM3tEhQaKBNu09mauXewtPTfbhsn7LyXGoUH6nuDWnaAQAAAAAoC1EhAfrXgGaSpKnL9mrlntPnrON0uTV16T5J0gOd6shq5QR5AACAis5enJX79+9f6PFzzz2nKVOmaMWKFWrcuLEkKTQ0VHFxced9/Zw5c7Rlyxb99NNPqlatmlq0aKFnn31WY8eO1bhx4xQYGHje1+Xm5io3N9fzOC0tTZLkcDjkcDiK8xYqhIL37I/vHTCTrx5LwTapf7N4fb7mkD5evk+tEyMlSRm5Tn24bK8k6aFOtZgVxIf4apb+zOk25HI6ZbFYZPBLH59VcGz7+jHudLnlcrrldBqyurkzkS8qN1lyu+VyuuS0uGUxyBJKxuXJvUMOH/9Z5+vfGwAA5+rWIFa3t0nU52sOasxXv2jWyE4KDfz916uzNh/T4ZRsVQ4L1E0tq3uxUgAAAJSVYg22/5HL5dKXX36pzMxMdejQwbP8k08+0ccff6y4uDj1799f//jHPxQaGipJWr58uZo2bapq1ap51u/Tp4+GDRumzZs3q2XLlufd14QJEzR+/Phzls+ZM8ezbX80d+5cb5cAVAi+eCwl5kqSXT/+elQdgg4pPECad9ii1GybYoMNuQ+s0w8HvV0l/swXs4Tya/XCed4uoUguPIEmfMWi+T95uwSgzM3/yfdzn5WV5e0SAACX4f9d10iLd57UgTNZeuHHbRp/QxNJkmEYendx/gnyd7VPUnCAzZtlAgAAoIwUe7B906ZN6tChg3JychQeHq7p06crOTlZkjRo0CAlJSUpISFBv/zyi8aOHavt27frm2++kSQdO3as0EC7JM/jY8eOXXCfjz/+uEaNGuV5nJaWpsTERPXu3VuRkZHFfQvlnsPh0Ny5c9WrVy8FBAR4uxyg3PL1Y2n2mRXadDhNqZUb6fp2NfXsy4sl5WlUvya6rhVnyPsSX89SAafb0Kkcp+wWi2w+frWfP3M6nVq9cJ6u7NJDdvtlnxdZ6hwut9IdblUNsSnQytXIvsjpdGrR/J/UuXtP386S260T2S5FBFgVYCNLKJm8PIfWLp6v7j17KvgCM6f5ioIZ2wAA5UtkcIBeuKWZ7n5/lT5avl99msTpqrpVtGb/WW08mKJAu1V3d0jydpkAAAAoI8X+rVuDBg20YcMGpaam6quvvtLgwYO1cOFCJScna+jQoZ71mjZtqvj4ePXo0UO7d+9W3bp1L7vIoKAgBQUFnbM8ICDApwc1Spu/v3/ALL56LN3VPkljv96kz9ccVmhggE5l5Kl6dIgGtKnJYISP8tUsFbC4DdmcFgbbywm73S673XfzZFjcshmu/Dr5TPJpdrtddh/+bDJcbtnsFtntNrKEEnO5DUmS3e7bP5Ml+Xx9AIAL61S/qga1q6lpKw/osa9+0ayRnfXe4j2SpJtbVleV8HN/jwkAAICKqdi/zQoMDFS9evXUunVrTZgwQc2bN9fkyZPPu267du0kSbt27ZIkxcXF6fjx44XWKXh8ofu8A4C/6t88QRFBdu0/naUXZuVP1PxQlzoMtAMAAAAA4GVPXNNI1aNDdOhstkZ+tl5ztuT/jvOBTrW9XBkAAADKUolHbNxut3Jzc8/73IYNGyRJ8fHxkqQOHTpo06ZNOnHihGeduXPnKjIy0jMVPQAgX2igXTf9Nl18tsOlKuFBurVNoperAgAAAAAA4UF2TbylmSTpp60nZBhStwZVVS82wsuVAQAAoCwVa7D98ccf16JFi7Rv3z5t2rRJjz/+uBYsWKA777xTu3fv1rPPPqu1a9dq3759mjlzpu655x517txZzZrlf/Hs3bu3kpOTdffdd2vjxo2aPXu2nnzySQ0fPvy808QDgL8b1K6m5/8f7FRbwQE2L1YDAAAAAAAKXFWviu75w/3ZH+xUx4vVAAAAwBuKdc/2EydO6J577tHRo0cVFRWlZs2aafbs2erVq5cOHjyon376Sa+++qoyMzOVmJioAQMG6Mknn/S83maz6fvvv9ewYcPUoUMHhYWFafDgwXrmmWdMf2MAUBE0jIvUne1qau+pTN3VPunSLwAAAAAAAGVmbN+G2nMyU1XCA9WhbmVvlwMAAIAyVqzB9vfff/+CzyUmJmrhwoWX3EZSUpJ++OGH4uwWAPzaczc19XYJAAAAAADgPMKC7Pr4gXbeLgMAAABeUuJ7tgMAAAAAAAAAAAAA4G8YbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAAAAAAAAAoJgYbAcAAAAAoIJYtGiR+vfvr4SEBFksFs2YMaPQ8xkZGRoxYoRq1KihkJAQJScn6+233y60Tk5OjoYPH67KlSsrPDxcAwYM0PHjx8vwXQAAAAAAUD4w2A4AAAAAQAWRmZmp5s2b68033zzv86NGjdKsWbP08ccfa+vWrRo5cqRGjBihmTNnetb5v//7P3333Xf68ssvtXDhQh05ckQ333xzWb0FAAAAAADKDbu3CwAAAAAAAObo16+f+vXrd8Hnly1bpsGDB6tr166SpKFDh+qdd97RqlWrdP311ys1NVXvv/++pk2bpu7du0uSpk6dqkaNGmnFihVq3759WbwNAAAAAADKBQbbAQAAAADwE1dddZVmzpyp++67TwkJCVqwYIF27NihV155RZK0du1aORwO9ezZ0/Oahg0bqmbNmlq+fPkFB9tzc3OVm5vreZyWliZJcjgccjgcpfiOfFPBe/bH9w6YiWMJZikvWXK6DbmcTlksFhlWi7fLwQU4nc5C//VVTpdbLqdbTqchq5tJjn1RucmS2y2X0yWnxS2LQZZQMi5P7h1y+PjPuqJ+b2CwHQAAAAAAP/H6669r6NChqlGjhux2u6xWq95991117txZknTs2DEFBgYqOjq60OuqVaumY8eOXXC7EyZM0Pjx489ZPmfOHIWGhpr6HsqTuXPnersEoELgWIJZyBLMtHrhPG+XUCTbvV0ALmnR/J+8XQJQ5ub/5Pu5z8rKKtJ65XKw3TAMSb+fKe9vHA6HsrKylJaWpoCAAG+XA5RbHEswS3nJktNtKD3bKasssvn2SYN+zenMz1NKSqrsdt/Nk8NtKMvpUlCeXQEEyic5f/tsSklNld2HP5scLkMZOU657TYF+PgZzfB9uX/4mewICvR2ORdV0M8W9Ldl5fXXX9eKFSs0c+ZMJSUladGiRRo+fLgSEhIKXc1eXI8//rhGjRrleZyamqqaNWuqQ4cOioiIMKP0csXhcOjnn39Wt27dfPr7IeDrOJZglvKSJafb0Okcpyz07T7N5XRqw/JFatGhs2x23x1icboNZbncqhxkk51eyye5nE4tX7xQHTp18fksnc51KdRmJUsosTynU5uWL1Lnrl0VHOjbfXt6erqkS/ftvnv0XkTBm0tMTPRyJQAAAAAAXL709HRFRUWVyb6ys7P1xBNPaPr06br22mslSc2aNdOGDRs0adIk9ezZU3FxccrLy1NKSkqhq9uPHz+uuLi4C247KChIQUFBnscFJxPUrl27dN4MAAAAAABl4FJ9e7kcbE9ISNDBgwcVEREhi8X/zqJJS0tTYmKiDh48qMjISG+XA5RbHEswC1mCmcgTzEKW4I/KU+4Nw1B6eroSEhLKbJ8F90+3WgvfZ9Fms8ntdkuSWrdurYCAAM2bN08DBgyQJG3fvl0HDhxQhw4dirwv+vbyk0XAl3EswSxkCWYiTzALWYI/Kk+5L2rfXi4H261Wq2rUqOHtMrwuMjLS54MIlAccSzALWYKZyBPMQpbgj8pL7kvjivaMjAzt2rXL83jv3r3asGGDYmJiVLNmTXXp0kVjxoxRSEiIkpKStHDhQv3nP//Ryy+/7Knp/vvv16hRoxQTE6PIyEg98sgj6tChg9q3b1/kOujb85WXLAK+jmMJZiFLMBN5glnIEvxRecl9Ufr2cjnYDgAAAAAAzrVmzRp169bN87jgPuqDBw/Whx9+qM8++0yPP/647rzzTp05c0ZJSUl67rnn9NBDD3le88orr8hqtWrAgAHKzc1Vnz599NZbb5X5ewEAAAAAwNcx2A4AAAAAQAXRtWtXGYZxwefj4uI0derUi24jODhYb775pt58802zywMAAAAAoEKxXnoV+JqgoCA9/fTTCgoK8nYpQLnGsQSzkCWYiTzBLGQJ/ojcw1eQRcAcHEswC1mCmcgTzEKW4I8qYu4txsVOeQcAAAAAAAAAAAAAAOfgynYAAAAAAAAAAAAAAIqJwXYAAAAAAAAAAAAAAIqJwXYAAAAAAAAAAAAAAIqJwXYAAAAAAAAAAAAAAIqJwXYAAAAAAAAAAAAAAIqJwXYAAMoJwzC8XQIAAAAAALgA+nYAAPwPg+0AUArcbre3S0AFkZ2drczMTEmSxWLxcjUoz/bs2aNZs2Z5uwwAKLf4fgcAFQuf6zALfTvMQt8OACXjre93dq/sFT7pwIEDWrp0qY4fP67WrVurU6dO3i4JKHeOHDmi0NBQRUdHy+VyyWazebsklGNbtmzRo48+qlOnTsnlcumLL75QvXr1ZBgGDTyKZcOGDWrdurXeffddb5eCCmDv3r36/vvvdeLECTVo0EB33XWXt0sCStXJkycVEhKi8PBwud1uWa2csw7voW8HSo6+HWaib4dZ6NthFnp2+CNv9+38lgCSpE2bNumqq67SBx98oGeffVZjx47Va6+95u2ygHJl27Ztat68ua6//nqdOnVKNptNLpfL22WhnNqyZYs6d+6s2rVra+jQoQoPD9fgwYMl5Z8pz9R0KKqNGzfq6quv1v/93//pvvvuO+d5ruhBcRR8Z5w7d66+/PJLvfLKK3r00Ue9XRZQarZu3aoOHTpoxIgRSk1NldVq5XMTXkPfDpQcfTvMRN8Os9C3wyz07PBHvtC3M9gO7d27VzfccIPuueceff/999q+fbsaNWqk2bNne7s0oNw4cuSIhg4dqjp16kiS7r77bhp3XLacnBz9/e9/1y233KK33npLDz74oEaNGqW6desqOztbbrebM+RRJNu2bVPnzp113333adKkSXK5XPr888/18ssv67XXXpPL5eIKTRTZ/v37NWDAAA0ZMkQzZ87UqlWrdOutt2rVqlU6c+aMt8sDTHfo0CHde++9stvt2r17tx5//HEG3OE19O1AydG3w0z07TALfTvMQs8Of+QrfTuf0n7O6XRq2rRpat26tcaOHauAgABVqVJFf/nLX7R06VLt2rXL2yUC5cKqVasUFBSkSZMmafjw4crIyKBxx2VzuVw6ceKEWrdu7Vm2dOlSzZkzR1deeaUaNmyo999/X1lZWV6sEuXBtGnTlJ6eri5duujMmTPq06ePJk+erLfeekuTJk1SgwYNtGPHDkniqgtclNvt1syZM3XFFVdo9OjRcrvdioyM1C233KKNGzfynREV0oIFCxQSEqIPP/xQ1113ndavX1+ocef7HcoKfTtgDvp2mIm+HWahb4cZ6Nnhr3ylb+ee7VBUVJT69OmjqKgoz7LKlSvLYrEoLy/Pi5UB5ceNN96okJAQzz0TDcPQm2++qbvvvlv/+c9/VLVqVe4FhyILCwtTcHCwpkyZori4OC1cuFBvvfWWXnnlFbVo0UKffPKJnnjiCV155ZVq1qyZt8uFD3vmmWd08uRJjR07Vna7XfXq1dO7776r6OhoZWVladCgQbr11lu1bt06Pp9wURaLRQkJCbr++utVuXJlSfnNfOXKlRUeHi6Hw+HlCgHzDRo0SFFRUWrfvr3at28vwzD07bff6vHHH9fzzz+v6OjoQveC47seShN9O1By9O0wE307zELfDjPQs8Nf+UrfzpXtfs5ut2vQoEF64IEHJP1+/5f4+HhVq1ZNdvvv52PMnTvXKzUC5UWfPn08/3/77bdrxIgRysjI0D333OM5U37ixInav3+/F6tEefHuu+8qODhYH3/8sb744gtNnDhRf/nLX9SuXTu99tprCggI0FdffeXtMuHDnE6nJGnKlCnq1auXIiIiNGnSJNWuXVuVKlVS9erV9cwzz+jQoUNatWqVl6uFr7NYLOrVq5eGDh0qSZ5GpVKlSoqJifHkTZK+/vprb5UJmMpqtap///6ex2PGjNGNN96o9evX64knnvCcKT958mRJ4pefKDX07YB56NthJvp2lBR9O8xCzw5/5St9O1e2+6ETJ05ox44dys3NVaNGjZSQkOCZgqbg7I6cnBylpaUpNzdXkvSPf/xD7733ntasWaPq1at7rXbAV+zbt08LFy5USkqKOnXqpObNm3s+qAvOjrr11lslSW+88YbuueceJSQk6IMPPtD111/vzdLhg/6Yp6uvvlotW7ZU/fr1tWzZMqWnp6tXr15q0aKFpPzPZ4fDoVq1annuNQgUyMjIUHh4uKT8X8wXfB5NmTJFP//8s2rVqiUp/yqegivhqlSpomrVqnmxaviqI0eOaP369UpJSVH79u1Vt25dz70nC74zOhwOZWVleableuqpp/Tcc89p9+7dnrwB5cXBgwe1du1aORwOtWzZUvXq1fM853Q6Zbfb9eijj0qSZsyYoccff1xOp1PvvfeerrnmGtWvX99bpaMCom8HSo6+HWaib4dZ6NthFnp2+CNf7dsZbPczmzZt0qBBg+R2u5WWlqZKlSrpq6++0hVXXFFovaysLKWnpysoKEgTJkzQxIkTtXTpUhp2QPnHUffu3VWzZk1lZmZq9OjRGjlypAYNGqSWLVvKZrN5Pthvu+02uVwuDR06VIGBgVq3bp0aNGjg7bcAH3K+PP3tb3/THXfcodatWysiIkI2m03vvfeeOnbsqLy8PL3xxhs6cOCAunTp4u3y4UM2b96sTp06aeLEibr//vslyXPvSZvNpm7dunnWtVgskvKvfktISFBMTIxXaobv2rRpk2655RaFhobq9OnTSk9P14IFC9S8eXPPOm63W1lZWcrKylJoaKgmTZqkiRMnatWqVTTtKHd++eUX9enTRzExMcrIyNCJEyc0YcIE3XbbbUpISJDdbvd8vxs9erQMw9AzzzyjoKAgrVu3joF2mIq+HSg5+naYib4dZqFvh1no2eGPfLpvN+A3duzYYVSrVs0YO3assXfvXuPnn382rr/+emPYsGGGw+Ew3G63Z92UlBSjVatWxg033GAEBwcba9as8WLlgO9IS0szOnXqZDz66KNGTk6OYRiG8eGHHxpXXHGFMXDgQGP58uWedV0ul2EYhvHwww8bYWFhxq+//uqVmuG7LpWnxYsXG4ZhGB988IFRp04do2rVqkanTp2MxMREY926dd4sHT7m4MGDRvPmzY2aNWsagYGBxvvvv3/R9deuXWuMGTPGiIqKMjZu3FhGVaK82LVrl5GQkGD8/e9/N44fP27s2rXLGDRokNG7d28jMzOz0Lput9to27at0aFDByM4ONhYvXq1l6oGLt+ZM2eMli1bGmPHjjVSUlKMo0ePGhMnTjRCQ0ONv/3tb8bu3bs96/7x+11kZCTf72A6+nag5OjbYSb6dpiFvh1moWeHP/L1vp0r2/1Edna2/vWvf6lPnz6aMGGCLBaLatWqpZ9//lnffvttoXu8SVJubq62bt2qHTt2aPny5Z5pkAB/Z7FYdPr0aSUnJysoKEiSNHjwYFWpUkVPPvmk3n77bSUkJKhmzZqyWq2aO3eu/ve//2nRokVq3Lixl6uHr7lUnt599101aNBAAwcOVPPmzTVz5kzVqlVLXbp0Ue3atb1cPXyFy+XSzJkzVbduXY0ZM0Zz5szx3NP1vvvuO2f9PXv26OOPP9aPP/6ohQsXqlmzZmVdMnxYbm6uXn31VXXr1k3PPvus7Ha7YmNj1b17d02cOPGc74xZWVk6evSoTp48qZUrV5InlEtOp1PZ2dnq3LmzoqKiFBUVpdGjR6tatWoaNWqUgoKCNH78eAUHB8tqterrr7/We++9pxUrVvD9DqaibwfMQd8OM9G3wwz07TALPTv8la/37Qy2+5GaNWsqNjZWFotFbrdbVqtV1113nb744gulpqYqPDzcc++q4OBgDRs2TH/5y1/OmaoO8FeGYSgrK0s2m01paWmS8r/gBAUF6dprr5XD4dB9992nDh066C9/+YskqVevXlq1apViY2O9WTp8UFHz1L59ew0bNkytWrVSq1atvFw1fJHNZlOHDh1UrVo1tW/fXq1atZJhGBds3GvVqqXhw4drzJgxio+P90bJ8GFBQUGqW7eucnNzCzXpXbt21fjx43Xy5ElVq1bN81xAQIBGjx6ta665ptB9soDywjAMpaen6+zZs577Xhf8PL777rvldDp1//33q2vXrurXr58kacCAAdqzZw9TdaNU0LcDJUPfDjPRt8Ms9O0wCz07/FF56NsthmEYZbIneN3evXs9Z1QahiGLxaI1a9Zo4MCBWrdunSIiImSxWHTixAnFxsZ67m0AoLCnnnpKL730kjZs2KD69esrLy9PgYGBkqT/9//+nz7//HNt3LhRQUFBHEO4pEvl6bPPPtPGjRsVFhbmuV8XcClZWVmaNGmSxo0bp/fee0/33XefcnNzNXfuXLVs2ZIBIlxUWlqaIiMjCy3bvXu3unTpotWrVysuLk4Wi0U7d+5U/fr1PYNBQHk2dOhQ/fDDD1q9erXi4+PlcDhkt9tlsVh07733au/evZo1a5ZsNpsCAgK8XS4qMPp2wBz07TATfTtKA307Lhc9O/yVL/ftHGF+5M8Nu2EYyszMVE5OjgIDA2WxWDRmzBg1b95cOTk5fAADf1JwbtKYMWPUpUsXdevWTfv371dgYKDcbrckqW7duoqOjlZAQAANOy6qqHmqVKmS5zMaKKrQ0FA9+uijGjdunB544AG99957Gjt2rAYPHszPd1xSQdNe8DnlcrmUnZ0twzAUEhIii8Wixx57TB07dlRaWhqZQrlWkPORI0eqXr16uv3223XkyBEFBATI5XJJkpKSkmQYhoKDgxloR6mjbwdKhr4dZqJvR2mib8flomeHvykPfTtHmR8p+BJosVjkdDplsVgUHh6ugIAABQUF6cknn9Q777yjGTNmeO5rAOB3Bb/sioiI0IQJE3TFFVeobdu2Wr58uTIzMyVJmzZtUkhIiPLy8rxcLXwdeYKZCn7GS79/AQ0LC9Po0aP19NNPa+jQofroo480a9YspqDDJf3xO6OUP+VhSEiIDMOQ1WrVP/7xD02ZMkXffffdOWfTA+VNQc6Tk5P16KOPyul06rrrrtOePXs8AzCnT59WeHi45xdYQGmibwdKhj4LZiJPMBN9O8xCzw5/Ux76dk7f9BMul0s2m00nT55U1apVPQEMDAxUpUqVNGzYME2dOlXLli1T69atvVwt4JsKjqPTp0+rWrVq+ve//62nn35aXbt2VaNGjRQREaFNmzZpwYIFCg8P93a58HHkCWYpyNLx48clSdWqVfM8FxQUpP379ysqKkrLli1To0aNvFUmyokL5angO+PDDz+sL7/8ku+MqDAKMp+Wlqb+/furUqVKeu6559SkSRNdffXVkqQVK1Zo8eLFCgkJ8XK1qOjo24GSo8+CmcgTzELfDrPQs8MflYe+nVOgKxjDMM45ayMvL082m0379+9X9erV9eabb3qeO336tDZs2KBPPvlEK1as4AMYuAC3213oOPr8889Vr149ffLJJ/r8889177336pZbbtGaNWvUokULb5cLH0eeYJY/Zql27dr65JNPPM8ZhqGvv/5aM2fO1E8//UTDjku6UJ4Mw9CpU6e0detWffvtt1q5ciXfGVEhOJ1OT+YrVaqkd999V1dffbW+/fZbTZ48WS1bttRVV12l1atXq3nz5t4uFxUIfTtQOuizYCbyBLPQt8Ms9OzwR+Wlb7cYzINXYWzdulWvvfaaDh06pFatWql79+7q0qWLJOnAgQNq166dbrrpJr3xxhueqeaOHTumxx57TGPHjlXjxo29WT7gE44ePaqzZ88qOTn5nOeOHTumZs2aacCAAXrjjTdks9m8UCHKE/IEsxQ1S2+++Wah6WS3bdumsLAwJSYmlmW58HGXk6e8vDz9/e9/13333acmTZqUdclAiezevVsff/yx9uzZo7Zt2+ruu+/2TKd45MgRtW7dWjfddJNef/11fh6j1NG3AyVHnwUzkSeYhb4dZqFnhz8q7307g+0VxLZt29S+fXv16NFDVapU0U8//aTY2Fj17dtXTz/9tKZOnaqdO3fqueee89zfoEBWVpZCQ0O9VDngO7Zu3ao2bdroyiuv1Ntvv62GDRtKyj870GKxaPr06dqxY4cee+yxc44j4M/IE8xClmCmkuTJ4XAoICDAG2UDl23Tpk3q27evWrRoIavVqlmzZumRRx7Ryy+/LMMw9NZbb+nYsWN65plnPJkvOB4As9G3AyXHd2OYiTzBLGQJZqFnhz+qCH07g+0VgMvl0qOPPqrTp0/rv//9ryTp8OHDev311/X999/rtttu01NPPeXlKgHfdvLkSd1yyy2KiYnRqlWrdMUVV+itt94qNH2Tr32Aw3eRJ5iFLMFM5An+5tChQ+rdu7euvfZaTZw4UZI0Z84c3XTTTVq6dKlatGght9td6MoioLTQtwMlx3cZmIk8wSxkCWYhS/BHFaVv9+3qUCQ2m00HDhxQWlqaZ1n16tU1atQo3XLLLZo+fbrefvttL1YI+L69e/eqdu3aGjdunNasWaPt27fr4Ycf1tatWz3r/PGLDOcp4WLIE8xClmAm8gR/YhiGvvvuOyUlJWn06NGS8u/11qxZMyUkJCgnJ0eSfL5hR8VB3w6UHN9lYCbyBLOQJZiFLMHfVKS+3fcrxEUVfKC2bt1aWVlZOnDggOe52NhYPfjgg2rYsKFmzJih3Nxcb5UJ+LyGDRvqkUceUdOmTRUfH6/Vq1dr27Zt53yhcblcksQZhLgo8gSzkCWYiTzBn1gsFrVr104tW7ZUtWrVJEl2u11xcXGy2+06evSolyuEP6FvB8zBdxmYiTzBLGQJZiFL8DcVqW9nGvkKYvXq1erevbtGjBihcePGKSgoyDOlyPr169W6dWstW7ZM7du393apgM/Ly8tTYGCgjhw5otatW6thw4Z66623VLduXb366quqXr267rzzTm+XiXKCPMEsZAlmIk+oyApa3D9f9VHwuHHjxvrHP/6hgQMHSpK+/fZb1a1bV02aNCn7YuFX6NsB8/BdBmYiTzALWYJZyBIquorWt9u9XQCKLzU1VVarVREREZ5AXnnllfr3v/+tu+66SyEhIRo5cqQiIyMlSZUqVVLjxo0VEhLizbIBn/Ln4+iPH+qBgYFyOp1KSEjQunXr1KpVK40YMUKVK1fWzJkztWHDBu8VDp9EnmAWsgQzkSf4m/P1SQUsFoucTqesVqtCQkIUHR0tSXriiSc0ceJE7dq1ywsVoyKjbwdKju8yMBN5glnIEsxCluCPKmrfzjTy5cyWLVvUq1cvffDBB0pLS5PFYpFhGDIMQ3fccYfeeecdjRs3TqNHj9aPP/6ogwcP6p133lFqaqpiY2O9XT7gE853HP2Z3W6Xy+VSfHy8VqxYoZ9//lnz5s3T8uXL1bBhQy9UDV9FnmAWsgQzkSf4m6Jk3mazFWren332Wb322mtavny5kpKSvFA1Kir6dqDk+C4DM5EnmIUswSxkCf6oIvftXNlejhw4cEB33HGHDh06pHfffVchISEaOHCgIiMjPWeAPPDAA6pevbqefvppfffdd4qKilJubq6+/fZbxcfHe/kdAN53sePoz2w2m7Kzs/XSSy8pLCxMixcvVnJysheqhq8iTzALWYKZyBP8TVEzX9DIh4aG6q9//av27dunJUuWqE2bNt4oGxUUfTtQcnyXgZnIE8xClmAWsgR/VNH7dq5sLyfcbrfmzp2rGjVqaPny5Wrfvr0mTpyozz77zHMGiNvtltvtVr9+/fTdd9/pp59+0kcffaQVK1aoZcuW3n4LgNdd6jiSdM7UJYcPH9bKlSs1b948vsigEPIEs5AlmIk8wd8UJ/Nut1vp6ek6evSodu3apTVr1vh8w47yhb4dKDm+y8BM5AlmIUswC1mCP/KHvt1i/PnIhc/auXOntm3bpv79+0vKPxt+4cKFGjNmjG6//XZFRUXJ7XbLYrGcd/oFAEU7jv4oNzdXTqdTYWFh3igXPo48wSxkCWYiT/A3Rc18wX0Q58+fr6pVq6pp06beLBsVFH07UHJ8l4GZyBPMQpZgFrIEf1TR+3YG28u5PwayYMqF//73v7rhhhvOO+0IgHNd6Di6/vrrz/lyA1wKeYJZyBLMRJ7gb86X+Y8++kjXX3+9KlWq5O3y4Gfo24GS47sMzESeYBayBLOQJfijitS3M9heTrlcLtlsNkm/B/LRRx/VmjVrNGPGDK1du1ZJSUlerhLwbRxHMBN5glnIEsxEnuBvyDx8CXkESo7jCGYiTzALWYJZyBL8UUXMPYPt5Yjb7ZbVavU8djgcCggIkCQ9+OCDev/99xUWFqaFCxeqVatW3ioT8GkcRzATeYJZyBLMRJ7gb8g8fAl5BEqO4whmIk8wC1mCWcgS/FFFz7310qvAG/58DoTL5ZLVatXJkye1bNkySVJAQIBcLpckKSwsTJUqVdLKlSvLZRCB0sBxBDORJ5iFLMFM5An+hszDl5BHoOQ4jmAm8gSzkCWYhSzBH/lj7hls9zFOp1PS72F0u91yOp2y2Wzav3+/WrRooV9++cWzvs1m06effqrXXntNc+bMUXJyslfqBnwJxxHMRJ5gFrIEM5En+BsyD19CHoGS4ziCmcgTzEKWYBayBH/kz7lnGnkfsnXrVr3++us6efKkEhISNHDgQHXo0EGSdPjwYTVo0EB33XWXpkyZIovF4nldbm6uTpw4ocTERG+VDvgMjiOYiTzBLGQJZiJP8DdkHr6EPAIlx3EEM5EnmIUswSxkCf7I33PPle0+YvPmzerYsaMMw1DVqlV1/Phxde7cWe+9956ysrJ07NgxDR8+XG+99VahIEpSUFBQuQ8iYAaOI5iJPMEsZAlmIk/wN2QevoQ8AiXHcQQzkSeYhSzBLGQJ/ojcc2W7T8jNzdWdd96phIQEvfbaa5Kko0ePqnv37tqzZ4+ef/55PfroozIM45wgAsjHcQQzkSeYhSzBTOQJ/obMw5eQR6DkOI5gJvIEs5AlmIUswR+R+3xc2e4DHA6Hdu7cqcaNG0vKv69BfHy8OnbsqJ49e2rMmDH63//+V6GDCJQUxxHMRJ5gFrIEM5En+BsyD19CHoGS4ziCmcgTzEKWYBayBH9E7vMx2O4DgoKClJSUpNWrVystLU12u1379+/Xt99+q5EjR2rw4MGaMGGCsrKyvF0q4LM4jmAm8gSzkCWYiTzB35B5+BLyCJQcxxHMRJ5gFrIEs5Al+CNyn4/Bdi9yu92SpICAAPXo0UObN2/WddddpyeeeEKNGzfWLbfcol69eqlPnz46fPiwHA6HlysGfA/HEcxEnmAWsgQzkSf4GzIPX0IegZLjOIKZyBPMQpZgFrIEf0TuC7N7uwB/lJKSoujoaFmtVjmdTtntdv3tb39TpUqVNH/+fO3YsUPPPfec/va3v0nKPzMkMjLSy1UDvoXjCGYiTzALWYKZyBP8DZmHLyGPQMlxHMFM5AlmIUswC1mCPyL352cxDMPwdhH+ZOvWrbr22mt111136ZlnnpEk5eXlKTAw0LOOw+FQQECA5/GwYcO0Z88ezZgxQyEhIWVeM+BrOI5gJvIEs5AlmIk8wd+QefgS8giUHMcRzESeYBayBLOQJfgjcn9hXNlehg4ePKhBgwbJbrdr+vTpstvteuqppxQYGOg5A0SS57/Lli3TtGnTNG3aNC1evLhCBxEoKo4jmIk8wSxkCWYiT/A3ZB6+hDwCJcdxBDORJ5iFLMEsZAn+iNxfHIPtZcQwDH366adKSEjQyJEjtXTpUn366aeSpKeeekp2u10ul0s2m00Wi0Vut1unTp3SunXrtGjRIjVr1szL7wDwPo4jmIk8wSxkCWYiT/A3ZB6+hDwCJcdxBDORJ5iFLMEsZAn+iNxfGoPtZcRiseiee+5RtWrV1KtXLzVv3lyS9Omnn8owDD399NOy2Wxyu92yWq2yWq26/vrr1a1bN0VERHi5esA3cBzBTOQJZiFLMBN5gr8h8/Al5BEoOY4jmIk8wSxkCWYhS/BH5P7SuGe7Fx09elTvvPOOPv/8cw0cOFBPP/20JGnGjBnq37+/bDablysEfB/HEcxEnmAWsgQzkSf4GzIPX0IegZLjOIKZyBPMQpZgFrIEf0TuC+PK9lJ09OhRHTx4UGfPnlXPnj094XK73bJYLIqPj9fQoUMlSZ999pkMw1BqaqomT56sQ4cOKSEhwZvlAz6B4whmIk8wC1mCmcgT/A2Zhy8hj0DJcRzBTOQJZiFLMAtZgj8i98VkoFRs3LjRSEpKMq644gojKirKaNiwoTFt2jTj9OnThmEYhsvlMtxut2EYhnHkyBHjqaeeMiwWi1GpUiVjzZo13iwd8BkcRzATeYJZyBLMRJ7gb8g8fAl5BEqO4whmIk8wC1mCWcgS/BG5Lz6rtwf7K6KTJ0/q9ttv15133qkff/xRW7ZsUfPmzfXss8/qtdde08mTJ2W1/v5XHx8fr7179yoiIkJLlixR69atvVg94Bs4jmAm8gSzkCWYiTzB35B5+BLyCJQcxxHMRJ5gFrIEs5Al+CNyf5m8PdpfEW3evNmoVavWOWdwjB071mjatKnx4osvGpmZmZ7l7733nhEdHW2sW7eurEsFfBbHEcxEnmAWsgQzkSf4GzIPX0IegZLjOIKZyBPMQpZgFrIEf0TuLw9XtpcCh8Mhp9OprKwsSVJ2drYk6V//+pe6deumKVOmaNeuXZ71r7vuOq1bt04tW7b0Sr2AL+I4gpnIE8xClmAm8gR/Q+bhS8gjUHIcRzATeYJZyBLMQpbgj8j95bEYhmF4u4iKqG3btgoPD9f8+fMlSbm5uQoKCpIkXXnllapXr54+/fRTuVwu2Ww2b5YK+CyOI5iJPMEsZAlmIk/wN2QevoQ8AiXHcQQzkSeYhSzBLGQJ/ojcFx9XtpsgMzNT6enpSktL8yx75513tHnzZg0aNEiSFBQUJKfTKUnq3LmzMjMzJYkgAr/hOIKZyBPMQpZgJvIEf0Pm4UvII1ByHEcwE3mCWcgSzEKW4I/IvTkYbC+hLVu26Oabb1aXLl3UqFEjffLJJ5KkRo0aafLkyZo7d65uvfVWORwOWa35f90nTpxQWFiYnE6nmFgA4DiCucgTzEKWYCbyBH9D5uFLyCNQchxHMBN5glnIEsxCluCPyL157N4uoDzbsmWLOnfurHvuuUdt2rTR2rVrde+99yo5OVktW7bU9ddfr7CwMD388MNq1qyZGjZsqMDAQP3vf//TihUrZLfz1w9wHMFM5AlmIUswE3mCvyHz8CXkESg5jiOYiTzBLGQJZiFL8Efk3lzcs/0ynTlzRnfccYcaNmyoyZMne5Z369ZNTZs21WuvveZZlp6ern/+8586c+aMgoODNWzYMCUnJ3ujbMCncBzBTOQJZiFLMBN5gr8h8/Al5BEoOY4jmIk8wSxkCWYhS/BH5N58nHpwmRwOh1JSUnTLLbdIktxut6xWq2rXrq0zZ85IkgzDkGEYioiI0AsvvFBoPQAcRzAXeYJZyBLMRJ7gb8g8fAl5BEqO4whmIk8wC1mCWcgS/BG5Nx9/K5epWrVq+vjjj9WpUydJksvlkiRVr17dEzaLxSKr1aq0tDTP6ywWS9kXC/gojiOYiTzBLGQJZiJP8DdkHr6EPAIlx3EEM5EnmIUswSxkCf6I3JuPwfYSqF+/vqT8szkCAgIk5Z/tceLECc86EyZM0HvvvSen0ymJMAJ/xnEEM5EnmIUswUzkCf6GzMOXkEeg5DiOYCbyBLOQJZiFLMEfkXtzMY28CaxWqwzD8ASt4MyPp556Sv/85z+1fv162e38VQMXw3EEM5EnmIUswUzkCf6GzMOXkEeg5DiOYCbyBLOQJZiFLMEfkXtzcGW7SQzDkCTZ7XYlJiZq0qRJevHFF7VmzRo1b97cy9UB5QPHEcxEnmAWsgQzkSf4GzIPX0IegZLjOIKZyBPMQpZgFrIEf0TuS47TEUxScLZHQECA3n33XUVGRmrJkiVq1aqVlysDyg+OI5iJPMEsZAlmIk/wN2QevoQ8AiXHcQQzkSeYhSzBLGQJ/ojclxxXtpusT58+kqRly5apTZs2Xq4GKJ84jmAm8gSzkCWYiTzB35B5+BLyCJQcxxHMRJ5gFrIEs5Al+CNyf/ksRsH8ADBNZmamwsLCvF0GUK5xHMFM5AlmIUswE3mCvyHz8CXkESg5jiOYiTzBLGQJZiFL8Efk/vIw2A4AAAAAAAAAAAAAQDExjTwAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAAAAAAMXEYDsAAAAAAAAAACgV+/btk8Vi0YcffujtUgAAMB2D7QAAoMw9//zzmjFjhrfLAAAAAAAAf0LPDgBA0THYDgAAyhyNOwAAAAAAvomeHQCAomOwHQAAAAAAAAAAAACAYmKwHQCAMpSenq6RI0eqVq1aCgoKUmxsrHr16qV169Z51lm5cqX69u2rqKgohYaGqkuXLlq6dOk521qwYIHatGmj4OBg1a1bV++8847GjRsni8VSaD2LxaIRI0boyy+/VHJyskJCQtShQwdt2rRJkvTOO++oXr16Cg4OVteuXbVv375z9lWUmgr2vWvXLg0ZMkTR0dGKiorSvffeq6ysrEL1ZGZm6qOPPpLFYpHFYtGQIUOK/Hfodrs1efJkNW3aVMHBwapatar69u2rNWvWFHkbAAAAAAD8GT17yXv2lJQUDRkyRFFRUYqOjtbgwYOVkpJS5NcDAFDe2L1dAAAA/uShhx7SV199pREjRig5OVmnT5/WkiVLtHXrVrVq1Urz589Xv3791Lp1az399NOyWq2aOnWqunfvrsWLF6tt27aSpPXr16tv376Kj4/X+PHj5XK59Mwzz6hq1arn3e/ixYs1c+ZMDR8+XJI0YcIEXXfddXrsscf01ltv6eGHH9bZs2f14osv6r777tP8+fM9ry1qTQVuu+021a5dWxMmTNC6dev03nvvKTY2Vi+88IIk6b///a8eeOABtW3bVkOHDpUk1a1bt8h/h/fff78+/PBD9evXTw888ICcTqcWL16sFStWqE2bNkX/xwAAAAAA4A/o2UvWsxuGoRtuuEFLlizRQw89pEaNGmn69OkaPHhw8f4hAAAoTwwAAFBmoqKijOHDh5/3ObfbbdSvX9/o06eP4Xa7PcuzsrKM2rVrG7169fIs69+/vxEaGmocPnzYs2znzp2G3W43/vzjXZIRFBRk7N2717PsnXfeMSQZcXFxRlpammf5448/bkjyrFucmp5++mlDknHfffcV2v9NN91kVK5cudCysLAwY/DgwRf4W7qw+fPnG5KMv/71r+c898f6AAAAAAAoLnr2fJfbs8+YMcOQZLz44oueZU6n0+jUqZMhyZg6dWqxtwkAgK9jGnkAAMpQdHS0Vq5cqSNHjpzz3IYNG7Rz504NGjRIp0+f1qlTp3Tq1CllZmaqR48eWrRokdxut1wul3766SfdeOONSkhI8Ly+Xr166tev33n326NHD9WqVcvzuF27dpKkAQMGKCIi4pzle/bsKVZNf/TQQw8VetypUyedPn1aaWlpxfibOr+vv/5aFotFTz/99DnP/XkqPgAAAAAAioOevWR++OEH2e12DRs2zLPMZrPpkUceKfG2AQDwVUwjDwBAGXrxxRc1ePBgJSYmqnXr1rrmmmt0zz33qE6dOtq5c6ckXXR6tdTUVOXk5Cg7O1v16tU75/nzLZOkmjVrFnocFRUlSUpMTDzv8rNnz0pSkWuqVKnSBfdV8NzZs2cVGRl5we0Uxe7du5WQkKCYmJgSbQcAAAAAgD+jZy9Zz75//37Fx8crPDy80PIGDRqUaLsAAPgyBtsBAChDt912mzp16qTp06drzpw5mjhxol544QV98803nrPNJ06cqBYtWpz39eHh4crJySn2fm02W7GWG4YhSUWuqTjbBAAAAADAF9GzAwCA4mKwHQCAMhYfH6+HH35YDz/8sE6cOKFWrVrpueee0yuvvCJJioyMVM+ePS/4+tjYWAUHB2vXrl3nPHe+ZSVRt27dItVUXJc75XvdunU1e/ZsnTlzhqvbAQAAAACmo2e//J49KSlJ8+bNU0ZGRqFB/u3bt5tVGgAAPod7tgMAUEZcLpdSU1MLLYuNjVVCQoJyc3PVunVr1a1bV5MmTVJGRsY5rz958qSk/LPQe/bsqRkzZhS6j9yuXbv0448/mlpzUWsqrrCwMKWkpBT7dQMGDJBhGBo/fvw5z3EWPgAAAADgctGz/+5ye/ZrrrlGTqdTU6ZM8SxzuVx6/fXXL6sOAADKA65sBwCgjKSnp6tGjRq65ZZb1Lx5c4WHh+unn37S6tWr9dJLL8lqteq9995Tv3791LhxY917772qXr26Dh8+rJ9//lmRkZH67rvvJEnjxo3TnDlz1LFjRw0bNkwul0tvvPGGmjRpog0bNphWc3FqKo7WrVvrp59+0ssvv6yEhATVrl1b7dq1u+TrunXrprvvvluvvfaadu7cqb59+8rtdmvx4sXq1q2bRowYcTlvEwAAAADg5+jZf3e5PXv//v3VsWNH/f3vf9e+ffuUnJysb7755pyTGAAAqEgYbAcAoIyEhobq4Ycf1pw5czz3e6tXr57eeustDRs2TJLUtWtXLV++XM8++6zeeOMNZWRkKC4uTu3atdNf/vIXz7Zat26tH3/8UaNHj9Y//vEPJSYm6plnntHWrVu1bds2U+suak3F8fLLL2vo0KF68sknlZ2drcGDBxepcZekqVOnqlmzZnr//fc1ZswYRUVFqU2bNrrqqqsuqxYAAAAAAOjZf3e5PbvVatXMmTM1cuRIffzxx7JYLLr++uv10ksvqWXLlpdVCwAAvs5iMOcqAAAVxo033qjNmzdr586d3i4FAAAAAAD8AT07AAAVD/dsBwCgnMrOzi70eOfOnfrhhx/UtWtX7xQEAAAAAAAk0bMDAOAvuLIdAIByKj4+XkOGDFGdOnW0f/9+TZkyRbm5uVq/fr3q16/v7fKKxeVy6eTJkxddJzw8XOHh4WVUEQAAAAAAl4+eHQAA/8A92wEAKKf69u2rTz/9VMeOHVNQUJA6dOig559/vtw17ZJ08OBB1a5d+6LrPP300xo3blzZFAQAAAAAQAnQswMA4B+KdWX7hAkT9M0332jbtm0KCQnRVVddpRdeeEENGjTwrPPvf/9b06ZN07p165Senq6zZ88qOjq60HbOnDmjRx55RN99952sVqsGDBigyZMnc+YbAAB+KicnR0uWLLnoOnXq1FGdOnXKqCIAAAAAACDRswMAcDHFGmzv27evBg4cqCuvvFJOp1NPPPGEfv31V23ZskVhYWGSpFdffVU5OTmSpMcff/y8g+39+vXT0aNH9c4778jhcOjee+/VlVdeqWnTppn3zgAAAAAAAAAAAAAAKCUlumf7yZMnFRsbq4ULF6pz586FnluwYIG6det2zmD71q1blZycrNWrV6tNmzaSpFmzZumaa67RoUOHlJCQcLnlAAAAAAAAAAAAAABQJkp0z/bU1FRJUkxMTJFfs3z5ckVHR3sG2iWpZ8+eslqtWrlypW666aZzXpObm6vc3FzPY7fbrTNnzqhy5cqyWCwleAcAAAAAAJQ9wzCUnp6uhIQEWa1Wb5djOrfbrSNHjigiIoK+HQAAAABQ7hS1b7/swXa3262RI0eqY8eOatKkSZFfd+zYMcXGxhYuwm5XTEyMjh07dt7XTJgwQePHj7/cUgEAAAAA8EkHDx5UjRo1vF2G6Y4cOaLExERvlwEAAAAAQIlcqm+/7MH24cOH69dff9WSJUsudxNF9vjjj2vUqFGex6mpqapZs6b27t2riIiIUt+/r3E4HPr555/VrVs3BQQEeLscoNziWIJZykuWnG5Dp3OcssgiGxeY+SyX06kNyxepRYfOstlLNAlRqXK6DWW53KocZJPdSqB8kcvp1PLFC9WhUxefz9LpXJdCbVayhBLLczq1afkide7aVcGBgd4u56LS09NVu3btCtvTFryvgwcPKjIy0svVlD2Hw6E5c+aod+/ePv39EPB1HEswS3nJktNt6GS2U1b6dp/mdDq0dvF8te7UXXa77+bJ4TaU5XSpcrBdAQTKJzkdDi35eZ6u7tZDdh/+bHK48n+nGGq3KYC+HSWU63Bow5L56t6zl0KCfLtvT0tLU2Ji4iX79sv6rduIESP0/fffa9GiRcU+Az8uLk4nTpwotMzpdOrMmTOKi4s772uCgoIUFBR0zvKYmBi/bdpDQ0NVuXJln/5yCPg6jiWYpbxkyek25Mp2KsBikY0vxj7L6fwtT1Uq+3bT7nIrwOFSTIhdgbaKN/1xReD8w2eTbzftbjmznYoMsCmALKGEcvPyFBoaqpiYyj7ftBd8Z6ioU6wXvK/IyEi/7tsjIyN9+vsh4Os4lmCW8pIlp9tQTgB9u68r6Nujo6N8vm+3OlyKom/3WQV9e3RUlM/37bmB9O0wR0HfHhkZ6fN9e4FL9e3FOioMw9CIESM0ffp0zZ8/X7Vr1y52QR06dFBKSorWrl3rWTZ//ny53W61a9eu2NsDAAAAAAAAAAAAAKCsFevK9uHDh2vatGn69ttvFRER4bnHelRUlEJCQiTl35P92LFj2rVrlyRp06ZNioiIUM2aNRUTE6NGjRqpb9++evDBB/X222/L4XBoxIgRGjhwoBISEkx+ewAAAAAAAAAAAAAAmK9Yg+1TpkyRJHXt2rXQ8qlTp2rIkCGSpLffflvjx4/3PNe5c+dz1vnkk080YsQI9ejRQ1arVQMGDNBrr712mW/hwlwulxwOh+nb9TaHwyG73a6cnBy5XC5vl3NZAgICZLPZvF0GAAAAAMCL6Nt9V2BgoKxWpgkFAAAAgIsp1mC7YRiXXGfcuHEaN27cRdeJiYnRtGnTirPrYjEMQ8eOHVNKSkqp7cObDMNQXFycDh48WK7v7xcdHa24uLhy/R4AAAAAAMVH3+77rFarateurcDA8nEfRQAAAADwhmINtpcXBQ17bGysQkNDy21jeyFut1sZGRkKDw8vl2eZG4ahrKwsnThxQpIUHx/v5YoAAAAAAGWJvt23ud1uHTlyREePHlXNmjUr3L8PAAAAAJilwg22u1wuT8NeuXJlb5dTKtxut/Ly8hQcHFwum3ZJCgkJkSSdOHFCsbGxTCkPAAAAAH6Cvr18qFq1qo4cOSKn06mAgABvlwMAAAAAPql8dnwXUXCvt9DQUC9Xgksp+DeqiPfnAwAAAACcH317+VAwfXx5vec8AAAAAJSFCjfYXoApznwf/0YAAAAA4L/oCX0b/z4AAAAAcGkVdrAdAAAAAAAAAAAAAIDSwmA7AAAAAAAAAAAAAADFxGD7RbjchpbvPq1vNxzW8t2n5XIbpbq/rl27auTIkRd83mKxaMaMGaVaAwAAAAAA5UFZ9+wSfTsAAAAAoDC7twvwVbN+Parx323R0dQcz7L4qGA93T9ZfZvEe6Wmo0ePqlKlSkVa12KxaPr06brxxhtLtygAAAAAAMqYL/bsEn07AAAAAPgbrmw/j1m/HtWwj9cVatol6VhqjoZ9vE6zfj3qlbri4uIUFBRUpvt0OBxluj8AAAAAAC7GV3t2ib4dAAAAAPyNXwy2G4ahrDxnkf6k5zj09MzNOt/kcwXLxs3covQcR5G2ZxjFm8bO7XbrscceU0xMjOLi4jRu3DjPc3+cji4vL0+PPPKI4uPjFRwcrKSkJE2YMEGSVKtWLUnSTTfdJIvF4nksSVOmTFHdunUVGBioBg0a6L///W+h/VssFk2ZMkXXX3+9wsLC9M9//lP16tXTpEmTCq23YcMGWSwW7dq1q1jvDwAAAEDpObF/m3ZMuVMn9m31dilAsRS1b/d2zy7RtwMAcCGG262crAylnjqqkwe26/C2Ndq3/mftWv6dtv88TVt+/Lc2z3hZv37xjDZ//Hdt+eARbfv3fdr55kDtee0G7X2tvw5tXe3ttwEAQLH4xTTy2Q6Xkp+abcq2DEnH0nLUdNycIq2/5Zk+Cg0s+l/zRx99pFGjRmnlypVavny5hgwZoo4dO6pXr16F1nvnnXf03Xff6YsvvlDNmjV18OBBHTx4UJK0evVqxcbGaurUqerbt69sNpskafr06frb3/6mV199VT179tT333+ve++9VzVq1FC3bt082x43bpz+9a9/6dVXX5XdbldQUJCmTp2q0aNHe9aZOnWqOnfurHr16hX5vQEAAAAoXekzn1D7zAVaNidIsUM/8HY5QJGZ1beXds8u0bcDALB/4yLZ5o1XqCtNge5sBRs5CjGyFaoc2SzFP5Htj/bNvF+5tZYrKCTMpGoBAChdfjHYXp40a9ZMTz/9tCSpfv36euONNzRv3rxzmvZDhw6pfv36uvrqq2WxWJSUlOR5rmrVqpKk6OhoxcXFeZZPmjRJQ4YM0cMPPyxJGjVqlFasWKFJkyYVatoHDRqke++91/N4yJAheuqpp7Rq1Sq1bdtWDodD06ZNO+eseQAAAADek5OZrsYZyyWLFJ22w9vlABUWfTsAwO/9PEHN8tYXXmYp/DDbCFS2JVjZlhDlWoKVaw2Vwxoshz1UTluoXAGhctvDZASEyggMkyUwTI22v6VaxiEt/uJJNR78Stm9HwAASsAvBttDAmza8kyfIq27au8ZDZl66alqPrz3SrWtHVOkfRdHs2bNCj2Oj4/XiRMnzllv0KBBuvnmm9WgQQP17dtX1113nXr37n3RbW/dulVDhw4ttKxjx46aPHlyoWVt2rQp9DghIUHXXnutPvjgA7Vt21bfffedcnNzdeuttxbnrQEAAAAoRfuWfaOrLLmSpBqOfXK43bJY/eLOYagAitq3e7tnl+jbAQD+LTc7Uw2z10sWaXHj8QqJu0IBIREKCI1UYGiEgsOiFBQSLps9f+gh5Lc/RbFtXpyqrP6rOhz5r37ddItqNu1Yau8DAACz+MVvXiwWi0ID7UX606l+VcVHBf/5RLzftyUpPipYnepXLdL2LJYLben8AgICzqnd7Xafs17z5s21e/duPfvss8rOztZtt92mW265pVj7upCwsHOn6HnggQf02WefKTs7W1OnTtXtt9+u0NBQU/YHAAAAoOQCtn3r+f9IS5ZOH93jxWqA4ilq3+7tnl2ibwcA+LcDa+cqxJKnE4pR8rXDVefKPkpscpXi6jRRTFySQiOiPQPtxdWwx11aHdZVdotbET8+IkdujsnVAwBgPr8YbC8Om9Wip/snSzpn5hvP46f7J8tmLX5DbrbIyEjdfvvtevfdd/X555/r66+/1pkzZyTlN/8ul6vQ+o0aNdLSpUsLLVu6dKmSk5Mvua9rrrlGYWFhmjJlimbNmqX77rvPvDcCAAAAoEQ8U8hLyjSCJElndm/wYkVA6ShPPbtE3w4AqHgc22dJkvZEtS+VWZSq3P66zipCdd37tOPLcaZvHwAAszHYfh59m8Rryl2tFBcVXGh5XFSwptzVSn2bxHupst+9+eab+vTTT7Vt2zbt2LFDX375peLi4hQdHS1JqlWrlubNm6djx47p7NmzkqQxY8boww8/1JQpU7Rz5069/PLL+uabbzR69OhL7s9ms2nIkCF6/PHHVb9+fXXo0KE03x4AAACAYti3fLpCLbk6YonVlvD87+p5RzZ5uSqgdJSHnl2ibwcAVEw1T+WfFOau16tUth8VW11bWvxDktTu4Ps6tPXSt48BAMCb/OKe7Zejb5N49UqO06q9Z3QiPUexEcFqWzvGZ86ODw8P16RJk7Rz507ZbDZdeeWV+uGHH2T97WzCl156SaNGjdK7776r6tWra9++fbrxxhs1efJkTZo0SX/7299Uu3ZtTZ06VV27di3SPu+//349//zzuvfee0vxnQEAAAAoroCtMyRJe6r2kjs4UspcoKDT27xbFFCKfL1nl+jbAQAVz4n929TQOCynYVWNK68ttf007H2f1m2frlbZyxX8/Qg56y2WPSCw1PYHAEBJMNh+ETarRR3qVi6z/S1YsOCcZTNmzPD8v2EYkiS3263BgwfrkUce8TTpf9a/f3/179//nOXDhg3TsGHDLlhDwT7O5/DhwwoICNA999xzwXUAAAAAlC3PFPIWKaz1rco5c0g6IFXO2u3t0oBSVdY9u0TfDgDwbyfXfqeGkrYHJis+ukqp7cditSrytjeV9lEnXeHaqUVfP6cmA8eX2v4AACgJppHHJeXm5urQoUMaN26cbr31VlWrVs3bJQEAAAD4zR+nkK/Z9GpVqt1SkpToPCinI8/L1QEoC/TtAICyEH7gZ0nS6YTOpb6vmPha+qXJ3yVJ7fa+raO7Npb6PgEAuBwMtuOSPv30UyUlJSklJUUvvviit8sBAAAA8AcB276VlD+FvMVqVZXEK5RpBCnI4tCJfZu9XB2AskDfDgAobbnZmWqQvV6SFNWs9KaQ/6NG1wzTxqA2CrI4ZJ3xsFxOZ5nsFwCA4mCwHZc0ZMgQuVwurV27VtWrV/d2OQAAAAB+k5OZrsbpyyTlTyEvSVabTYcCkiRJqfu4AgjwB/TtAIDSdnD9Twq15OqkKqlGo3Zlsk+L1aqQW95SphGsRs6t2jqDE8oAAL6HwXYAAAAAKKf+PIV8gTNh9SVJ7qO/eqs0AAAAVCB5W2dJknZHtZfFWnbDClUS62ldw0clSVfufE3H920ps30DAFAUDLYDAAAAQDn1+xTyPQv90tNRpaEkKTRlu1fqAgAAQMWSePiK74sAAQAASURBVGqpJMlVr1eZ77vR9SO1KbC5Qix5cn4zXG6Xq8xrAADgQhhsBwAAAIByKCcrQ8meKeRvK/RccI1mkqTY7D1lXhcAAAAqlpMHtivJOCSnYVXildeV+f6tNpvsN7+pLCNITfM2aut3k8u8BgAALoTBdgAAAAAoh/Ytm66w80whL0lV67aSJFV3H1NOZqo3ygMAAEAFcWLtd5KkHYGNFB5dxSs1VKuVrDX1H5Ektdz6kk4d3OWVOgAA+DMG2wEAAACgHArYNkPSuVPIS1JUbHWdUaSsFkPHd230QnUAAACoKMIOzJcknYrv4tU6Gt34mLbaGynckq3srx6W4XZ7tR4AACQG2wEAAACg3Ck0hXyrW8+7zuHAOpKkjIO/lFldAAAAqFjycrLVIGu9JCmq2TVercVmt8t1w5vKNQLUPHeNtv4wxav1AAAgMdh+cW6XtHextOmr/P+6Xd6uCAAAAAA8U8gfVVXVbNbpvOukRdaXJFmOby7L0uAD0tPTNXLkSCUlJSkkJERXXXWVVq9e7Xl+yJAhslgshf707du30DbOnDmjO++8U5GRkYqOjtb999+vjIyMsn4rF0fPDgBAqTuwbo7CLLk6pWjVSG7v7XKUUL+FVtZ+SJLU7Nd/6czRfd4tCADg9xhsv5AtM6VXm0gfXSd9fX/+f19tkr+8lHTt2lUjR440bXtDhgzRjTfeaNr2AAAAAPgG+29TyO+O7XXOFPIF3FWTJUmRqTvKqiz4iAceeEBz587Vf//7X23atEm9e/dWz549dfjwYc86ffv21dGjRz1/Pv3000LbuPPOO7V582bNnTtX33//vRYtWqShQ4eW9Vu5MC/07BJ9OwDA/+RtnS1J2hXV/oLfO8tawwH/Tzts9RWpTKV9MZzp5AEAXuUbPx19zZaZ0hf3SGlHCi9PO5q/vJSbdwAAAAC4kJysDDW+xBTykhSW1FySlJC3t0zqgm/Izs7W119/rRdffFGdO3dWvXr1NG7cONWrV09Tpvw+1WpQUJDi4uI8fypVquR5buvWrZo1a5bee+89tWvXTldffbVef/11ffbZZzpy5Mj5dlu26NkBACgzNU4tkSS56vX2ciW/swcEKue6N5Rn2NQqe7m2zfnA2yUBAPyY3dsFlAnDkBxZRVvX7ZJ+fEyScb4NSbJIs8ZKdbpKVtultxcQKlksl1xtyJAhWrhwoRYuXKjJkydLkvbu3auMjAyNGTNGixcvVlhYmHr37q2XXnpJgYGBkqSvvvpK48eP165duxQaGqqWLVvq22+/1cSJE/XRRx9Jkiy/7f/nn39W165dL10zAAAAAJ+1b9l0XXWJKeQlqVrdFpKkKkrR3lNHFVUlvowqhDc5nU65XC4FBwcXWh4SEqIlS5Z4Hi9YsECxsbGqVKmSunfvrn/+85+qXLmyJGn58uWKjo5WmzZtPOv37NlTVqtVK1eu1E033XTOfnNzc5Wbm+t5nJaWJklyOBxyOByF1nU4HDIMQ263W+6CK9GK2re7XbL81rOf22kb+Ut/HCujVmdTe3ZJuvfee8/p23fv3q2MjAw99thjWrJkicLCwtSrVy+99NJLCgoKkmEY+uKLL/Tss88W6tunT5+uSZMmndO3z5s3z2f6drfbLcMw5HA4ZLMV4e8SKAUFnx9//hwBiqu8ZMnpNuRyOmWxWGRYi/bzqTSdOrhDycYhOQ2rElr1kdPpO39/cfVbaEWNe9X58HtK3vCsTjXvpaiqCWWyb6fTWei/vsrpcsvldMvpNGR1c92lLyo3WXK75XK65LS4ZTH8K0vH925W9pmjqtW6p7dLqTBcntw75PCBn3UXU9TvDf4x2O7Ikp436wetkX/2/L8Si7b6E0ekwLBLrjZ58mTt2LFDTZo00TPPPCNJCggIUNu2bfXAAw/olVdeUXZ2tsaOHauBAwfqm2++0dGjR3XHHXfoxRdf1E033aT09HQtXrxYhmFo9OjR2rp1q9LS0jR16lRJUkxMzGW/awAAAAC+4Y9TyCdfZCrPkIhoHbZUU3XjuE7tWqeoKteWUYXwpoiICHXo0EHPPvusGjVqpGrVqunTTz/V8uXLVa9ePUn5U8jffPPNql27tnbv3q0nnnhC/fr10/Lly2Wz2XTs2DHFxsYW2q7dbldMTIyOHTt23v1OmDBB48ePP2f5nDlzFBoaes624uLilJGRoby8vPyFjixFv9moxO/fIkNKPyLLi0lFWj9l+Nb8AfcieOaZZ7R161YlJyfr8ccf9yzv0aOH7r77bj3zzDPKycnRuHHjdOutt2rmzJnauXOn7rzzTo0fP17XXXed0tPTtXz5cqWmpurBBx/Upk2blJaWpjfffFOSVKlSJc+JCt6Wl5en7OxsLVq0yOd/AYyKb+7cud4uARUEWSoe1+55Spa0xVpfe9es9XY553DFXKWdh+eovg5o88cPaUuz4WW6/9UL55Xp/i7Xdm8XgEtaNP8nb5eAP3DkZspyeJUapC5RU+2UJH3x60gF1Wjl5coqlvk/+X7us7KKdiG3fwy2lwNRUVEKDAxUaGio4uLiJEn//Oc/1bJlSz3//POe9T744AMlJiZq165dkvLPeLr55puVlJT/i4SmTZt61g0JCVFubq5newAAAADKN88U8paLTyFf4HhwHVXPPq6cw5skMdjuL/773//qvvvuU/Xq1WWz2dSqVSvdcccdWrs2/5fkAwcO9KzbtGlTNWvWTHXr1tWCBQvUo0ePy9rn448/rlGjRnkep6WlKTExUb1791ZkZGShdXNycnTw4EGFh4f/fgV+nneunI6MiCjSCfKSFBkZqdDQUEVFRal+/fqSpOeee04tW7bUpEmTPOt9+OGHSkpK0q5du2QYhpxOp+644w5P396hQwfPuhEREXK5XJ7t+ZKcnByFhISoc+fO58yUAJQVh8OhuXPnqlevXgoICPB2OSjHykuWnG5Dp3KcslsssvnA1X6Htr4lSTpbo7s69Ojj5WrO71CNGDl/uFlXu1ZqiXWgrug2qNT36XQ6tXrhPF3ZpYfsdt8dYnG43Ep3uFU1xKbAi5ykC+9xOp1aNP8nde7e07ez5HbrRLZLEQFWBdgqZpacebnau/I7Bf76uZplLFeQpfAVzY1Sf1a1wY9f4NUojrw8h9Yunq/uPXsq+LdZvH1VUU+E9t2j10wBoflXmBfF/mXSJ7dcer07v5KSriravi/Txo0b9fPPPys8PPyc5/bu3asbb7xRPXr0UNOmTdWnTx/17t1bt9xyS6F77QEAAACoOIo6hXyBzOgGUvZy2U9uLYPq4Cvq1q2rhQsXKjMzU2lpaYqPj9ftt9+uOnXqnHf9OnXqqEqVKtq1a5d69OihuLg4nThxotA6TqdTZ86cueDJ3EFBQQoKCjpneUBAwDmDGi6XSxaLRVarVdaCX/wGhRetbze5Z7cWYxr5AgW1S9Ivv/yiBQsWnHNCgVS4b2/evPl5+3aLxVJoe77EarXKYrGc998QKGvkEGbx9SxZ3IZsTotPDLbn5WSrQfZ6ySJFN79Wdrtv/r3Vat5ZyzfcrU5HP1LDteOV2bqvImKqlcm+7Xa7z/69SJJhcctmuPLrrKADpBWF3W6X3Yc/mwyXWza7RXa7rUJlyXC7dWjLCqWv/I8anZytjkrNf8Ii7bUm6WDSjQpv0EXNfxygpnkbtXnfFsXXa+7doisAlzv/Nt52u2//TJZU5Pr8Y7DdYinymeqq212KTJDSjur892235D9ft3vR7v9WAhkZGerfv79eeOGFQsvdbrfCwsJks9k0d+5cLVu2THPmzNHrr7+u//f//p9Wrlyp2rVrl2ptAAAAAMre71PI97zoFPIFrHGNpaNSpYydpVwZfFFYWJjCwsJ09uxZzZ49Wy+++OJ51zt06JBOnz6t+Ph4SflXXqekpGjt2rVq3bq1JGn+/Plyu91q165d6RRb1L7dh3p2ib4dAFBxHVg3R20tuTqlaNVIbu/tci6q3m3/1L7X5qmWcUi7P/2bIoZ/5u2SAPiwM8f268jCD1Vj/ww1d+//fbkitaVqX0W0H6wajdqpScEJtgvaqWXOCp1d+Lbi603xVtnwYRXnFBSzWG1S34Im+c9nD/72uO+/SqVpDwwMlMvl8jxu1aqVNm/erFq1aqlevXqF/oSF5f8SwmKxqGPHjho/frzWr1+vwMBATZ8+/bzbAwAAAFB+eaaQlxRahCnkJSmyVgtJUqJjnwy3u7RKg4+ZPXu2Zs2apb1792ru3Lnq1q2bGjZsqHvvvVcZGRkaM2aMVqxYoX379mnevHm64YYbVK9ePfXpkz89bKNGjdS3b189+OCDWrVqlZYuXaoRI0Zo4MCBSkhI8O6b82LPLtG3AwD8R97W2ZKkXVHtZfHBGVj+KCgkTGd6T5bbsKhd+hztWPiFt0sC4GNysjK0dfb7OvBKb9We2kqd905WHfd+5Rl2rQnrouXtp8gxaruS739biY07FPrcy211nySp6cnvlZOV4a23AB/m2z8lvSX5eum2/0iR8YWXRybkL0++vlR2W6tWLa1cuVL79u3TqVOnNHz4cJ05c0Z33HGHVq9erd27d2v27Nm677775HK5tHLlSj3//PNas2aNDhw4oG+++UYnT55Uo0aNPNv75ZdftH37dp06dUoOh+MSFQAAAADwVfuWz1CYJVdHVUVJzToX6TWxtZsoz7ApzJKjU4e4ut1fpKamavjw4WrYsKHuueceXX311Zo9e7YCAgJks9n0yy+/6Prrr9cVV1yh+++/X61bt9bixYsLTQP/ySefqGHDhurRo4euueYaXX311fr3v//txXf1B17q2SX6dgCA/6hxaokkyVW3l5crKZpaLbtpWeztkqTay59QRuppL1cEwNsMt1t7Vs/W9rfvUcTkBuq4foxa5K6RzWJoq72RFjd8Usce2qw6j0xXg663KyDw3NtiSVLdq27UUVVVlDK1Z/5HZfwuUB74xzTylyP5eqnhtfn3g8s4LoVXy7/fWylOQzd69GgNHjxYycnJys7O1t69e7V06VKNHTtWvXv3Vm5urpKSktSnTx9ZrVZFRkZq0aJFevXVV5WWlqakpCS99NJL6tevnyTpwQcf1IIFC9SmTRtlZGTo559/VteuXUutfgAAAAClx741/0rY3bG9ijSFvCQFBAbpkK2G6rj368ye9apas0Fplggfcdttt+m2224773MhISGaPXv2JbcRExOjadOmmV2aebzQs0v07QAA/3Dy4E41MA7JZViUeOV13i6nyOoMfEEH31ioROOoln86Sg0eYlAM8EfH923RqcUfqs6R79TGOJ6/0CIdVVXtSuivylcPUVydJqpWxO3Z7HZtTbpV8fvfUpVtH0vXDS+12lE+Mdh+MVabVLtTme3uiiuu0PLly89Z/s033xR67Ha7lZaWpkaNGmnWrFkX3F7VqlU1Z84c0+sEAAAAULY8U8hbij6FfIFTYfVUJ32/HEd/LaXqAC8p455dom8HAPiHE2tmqoGk7QGNFFepqrfLKbLgsAjt7vaSEucPUoeU77Rq2beqd9UN3i4LQBnZt/5nBc9/SsmOzZ5lmUawNkV3k731XarVurca2y7v5NzEHsOU9/47aujcro2/LlNik6vMKhsVANPIAwAAAICPu5wp5AvkxuRPVx18eltplAYAAIAKJuzAfEnSqYQuXq6k+Oq27aulMTdLkmosHqvs9BTvFgSgTDjycpU4+wElOzbLbVi0Mai1ljT/l1L/ul1XDPtEddr2k/UyB9olKSq2ujZE5PfiWUveMatsVBAMtgMAAACAj7NvnSEpfwp5SxGnkPe8Nr6xJKlq1m6zywIAAEAFk5eTrQZZ6yRJkU2v8XI1lyfpjkk6qqpKME5o32djvF0OgDKwZ8lXqqqzOqNI7Rm8Ron/N1fJ/YYqOCzCtH1Y2z4gSWp2do4yUk+btl2Ufwy2AwAAAIAPy59Cfqmk4k8hL0kxdVtJkmq4DsmRm2NqbQAAAKhYDqz/SWGWXJ1StGokt/d2OZclNCJaBzu/KEnqePpr7V514Vu6AKgYQn75ryRpS2x/xSTULpV91G7TR/usiQqz5GrfvPdLZR8onxhsBwAAAAAfVpIp5CWpSvW6yjBCFGBx6cRe7tsOAACAC8vbmj8wvTuyXYmmXPa2elfdoOVR10qSqv08WrnZmV6uCEBpOXV4l5pmr5YkxXQZWmr7sVitOlj3DklS4q5pMtzuUtsXyhcG2wEAAADAh3mmkK/as9hTyEu//UIgoJYkKW3fBvMKAwAAQIVT49QSSZKzXi8vV1Jy1e94RacUrZrGEe368ilvl4PzyMvN0fp/P6SN33MPbFy+4z+/K5vF0K8BTRVXt2mp7iup54PKMoJU231Ae9fOLdV9ofxgsB3A/2fvrsPjKtP/j7/PSNw9adIkTeruSltqQHGKy6KFZWFZYGF32d/CoossX3ShLEWKFS+wWEuFurunTZsmjbvL2Pn9cZpAqUVmcmYm9+u6uGiTM+d8Zjp2zv089yOEEEIIIdyU1kJ+LQABw69s934qg9MBcBTtcUouIYQQQgjhfUqPZpLiOIpdVUgccb7ecTosKCyKAyMeBWBM3vvk7tukbyBxgr0/vcO44k8ZtO2f1NdW6R1HeCC7zUbP3K8AqOx3ncuPFxQayY6waQA4Nr7l8uMJzyDFdiGEEEIIIYRwU9nrvyFQaWx3C/lm1qh+AARWZjgrmhBCCCGE8DJFW/4HwAFzH4IjYnVO4xy9p1zPVv9xmBU7Pt/fg91m0zuS+JWwvR8CEKA0kbn6S53TCE90aN03xFFKFYGkTXZ9sR3Ab8IdAAypXkFVaX6nHFO4Nym2CyGEEEIIIYSbMu7VRui3t4V8M/9ErZVeXONhp+QSQgghhBDeJzB7GQCl8ZN0TuI8isFAyBWvUqv608eWwf5vntc7kjgmZ99m+lr3tfzdtPdr/cIIj2Xa9j4Au6Nm4usf2CnHTB44gQxjL3wUG7lL3uiUYwr31qarNU8//TQjR44kODiYmJgYLrnkEjIyjp8Z0djYyF133UVkZCRBQUHMmjWLoqKi47bJycnh/PPPJyAggJiYGB588EFsMqJMCCGEEEIIIVoc10J+2BUd2ldU2lAAEtRi6msqOxpNCCGEEEJ4GWtTI73rtwIQNGimzmmcKyIhlW197gNg2IFXKD2aqXMiAVC+QitSZhm6A9C/br2cq4g2qSzOZXCdds4cMmF2px67uO/1APTI/hyH3d6pxxbup03F9hUrVnDXXXexfv16Fi9ejNVqZcaMGdTV1bVsc9999/Htt9/y+eefs2LFCvLz87nssstafm+32zn//POxWCysXbuW9957j3nz5vHII4847145id1hZ1PhJn44/AObCjdhd7j2BaOqKrfffjsREREoisL27dtdejwhhBBCCCGE+zquhfzgjs0uCo2Kp5QwAIoztzkhnRD66+xzdpDzdiGEZ3v6h33c+8k2rHaH3lGEG8reuoRApZEyQknqN1bvOE7X96L72GvqR6DSSN2Xf0R1yOtATw11NfQv/RGAirMe5aiSgJ9i5eDKz3ROJjxJ3rI3MSt29pv60K3PiE49dtrZN1JNIN3UIjLXft2pxxbup03F9oULF3LTTTfRv39/Bg8ezLx588jJyWHLli0AVFVV8fbbb/PCCy8wZcoUhg8fzrvvvsvatWtZv349AD/99BN79+7lww8/ZMiQIZx33nk88cQTvPbaa1gsFuffw3Zakr2Ec748h1sW3cJfV/2VWxbdwjlfnsOS7CUuO+bChQuZN28e3333HQUFBQwYMMBlx3KllJQUXnrpJb1jCCGEEEII4dGM+74GOt5Cvlm+bw8A6nJ2dnhfQuhNj3N2kPN2IYTnstgc/HflYb7ens+3O2R9WXEiy76FAGSGjMFgNOqcxvkMRiOOC1/BohoZ2riB/Uvm6R2pS8tY+h4h1JOnxNJ73EXkJJwDgO/+r/UNJjyG6nCQkv0lACW9r+n04/sFBrMrSusC4rP1nU4/vnAvpo7cuKqqCoCIiAgAtmzZgtVqZdq0aS3b9OnTh+7du7Nu3TrGjBnDunXrGDhwILGxsS3bnHPOOdx5553s2bOHoUOHnnCcpqYmmpqaWv5eXV0NgNVqxWq1Hret1WpFVVUcDgeOdo5OW5KzhAdWPICKetzPi+uLuX/5/Tw/6XmmdZ92ilu3X2ZmJvHx8YwZM6blZye7D6qqtvz/179XVRW73Y7J1KF/Vqf4bbaTcTgcqKqK1WrF6IVf4IT7a37/+O37iBBt5SnPJZtDxW6zoSgKqkHRO444healddx9iR2b3YHd5sBmUzE4Ol4EFM7nMc8lhwO7zY5NcaCo8lxq1tRQS//qNaCA7+DLsNk6/hlTFdITSraiFO92yv7ckb3leW/F6uafde7+vcGdLclewv3L7z/lOfsLk19gWrLzz9kBDh06RHx8POPGjWvX7d3pvF0I0bVU1v8yyemNFYe4ZEg3DG7+WSk6V7fS1QDY0lzzGeoOEnoPY0PizZyV9xZ9tj5BzYjzCY6IPfMNhdOF7/0IgCPJVzDMaCRqzLXw5bv0r99EZUUpweFROicU7u7wxh8ZqRZQp/rRY/INumQInXQnfPk5g+vXc+hoJlFJ6brkEPpr99mdw+Hg3nvvZfz48S0juQsLC/Hx8SEsLOy4bWNjYyksLGzZ5teF9ubfN//uZJ5++mkee+yxE37+008/ERAQcNzPTCYTcXFx1NbWtsyUV1WVRntjq+6XXbXz9IanTzhpB1p+9syGZ+gX2A+jcuYCsZ/RD0U58xfXP/zhD3z88ccAGI1GkpKS2LRpE4888ggLFiygpqaGIUOG8K9//Ythw4YB8OOPP3LhhRfy2Wef8dRTT7F3714WLFjAuHHjeOmll3jvvfcoLi4mLS2NBx98kIsvvrjlePv27ePRRx9l3bp1qKrKgAEDeP3110lNTWXr1q088cQT7Ny5E6vVysCBA/nXv/7F4MGDtcdBVXn22Wf58MMPKSkpISIigosuuohnn32WCy64gOzsbO6//37uv/9+ACoqKk56ny0WCw0NDaxcudLtLwIL77Z48WK9IwgvIc8l4UybVizVO0KrZOgdQJzRymWuneUpXKMpdwtXKo0UqJHklTSQv3RRh/dptYYAEFi+j3VO2J87W7bE/Z/39fX1ekdwK6qq0mBrOON2doedpzee4Zx94zOMjhuN0XDmc3Z/k3+rztkBbrrpJt577z0AFEUhOTmZjIwMHnzwQT755BOqq6sZMWIEL774IsOHDwdg+fLlTJ06lR9++IF//OMf7Nq1i59++omJEyfy7LPP8uabb1JYWEivXr14+OGHufzyy1uOt2fPHv7617+ycuVKVFVlyJAhzJs3j7S0NDZt2sTf//53tm3bhtVqZciQIbz44ost1wtUVeWxxx7jnXfeoaioiMjISC6//HJeeeUVJk+eTHZ2Nvfddx/33Xdfy/ZCCO9W/qti+4GiWpbuL2Z6PykyCk1pXia9HDnYVYXEkRfoHcelel7xGEdeXkiKmsvBT/9M8J0f6h2py8nes4E+tv1YVSMp0+8AIKn3MLINiSQ7cjm0+jOGXPgHnVMKd6dufheAnRHT6R0cpkuGhJ5D2O0ziAGWnRT9/AZRv3telxxCf+0utt91113s3r2b1atXOzPPST300EMthVvQZrYnJSUxY8YMQkJCjtu2sbGRo0ePEhQUhJ+fHwD11nomfjLRaXlKGks474fzWrXtuqvXEWAOOON2r732Gn369GHu3Lls2LABo9HIU089xXfffce8efNITk7m3//+N5dffjkZGRmYzWb8/f0BePLJJ3nuuefo0aMH4eHhvP7663z++ee88cYb9OzZk5UrV3LHHXfQvXt3Jk2aRF5eHhdccAGTJk1iyZIlhISEsGbNGvz8/AgJCcHhcHDzzTczYsQIVFXlhRde4KqrriIjI4Pg4GC++OIL5syZw/z58+nfvz+FhYXs2LGDkJAQvv76a4YOHcrs2bO57bbbAE74N2rW2NiIv78/EydObPm3EqIzWa1WFi9ezPTp0zGbzXrHER7MU55LNodKaaMNk6JglBkMbstms7FpxVJGTprq1rPerHYHNVYH0f5GfJzQ3lo4n81mY+WyJUycMs29n0sOB8UNdoLNBsxGeS41y3pDK+gdip7KuOnnOmWfR3cFwaK5JKu5dJt6jlP26W4sFitbVi1jyrRp+Pn46B3ntJo7tglNg62B0fNHO2VfRfVFjPukdTPPN1y7oVXn7AAvv/wyaWlpvPnmm2zatAmj0chf/vIXvvzyS9577z2Sk5N57rnnOOecczhw4MBx771/+9vfeP7551vO259++mk+/PDD487br7/+eqKjo1vO2ydOnMjkyZNZtmxZy3l780D1mpoabrzxRl599VVUVeX//u//mDlzJgcPHiQ4OJgvv/ySF198kU8++eS483aABQsWMHjwYG6//XZmz57dxkdXCOGpKuqO76jy+vJMpvWNafWAI+HdijZ9Sy/ggLkPsV4+09vHz5+8af9HyuKrGFP1AxvXfUf6WO8eYOBuKlb+F4CdQePpF5sIgGIwkNvtPJKPzsU/4xuQYrs4jeqyQobUrAQF/MfepmuWqgE3wtY/0yf/K6yWpzD7+OqaR+ijXVfd7r77br777jtWrlxJYmJiy8/j4uKwWCxUVlYeN7u9qKiIuLi4lm02btx43P6Kiopafncyvr6++Pqe+AQ1m80nFDXsdjuKomAwGDAcu/Br0PEC8K9znE54eDghISEYjUYSEhKoq6vjjTfeYN68eZx//vkAvPXWW6SkpPDuu+9y++23t3wZfvzxxznnHO1iWVNTE08//TRLlixh7NixAKSnp7N27Vrmzp3L2WefzZw5cwgNDeXTTz9tefz69OnTkuXXywAAzJ07l7CwMFatWsUFF1xAbm4ucXFxzJgxA7PZTEpKSkvr+6ioKIxGIyEhISQkJJzxsVEU5aT/jkJ0JnkOCmdx9+eS4lAx2hQptnsIk8mEyeS+zydVcWBUtTa4JimQujWTyYTJjd+bVLsDo0nBZDLKc+mYxvpaBtRoLeQDhl/ltPeC+F7DcSxUiFCqOVxeRFhM4plv5GHsDm12rsnk3p/JgNvnEycKDQ0lODgYo9FIXFwcdXV1zJkzh3nz5nHeedqA/Llz57J48WLeeecdbr/99pbbPv7440yfPh3Qztv/9a9/HXfe3qNHD1avXs1///tfJk2axGuvvUZoaCiffPJJy3OlV69eLfubMmXKcdnefPNNwsLCWLFiBRdccAE5OTnExcUxbdo0zGYz3bt3Z9SoUYC2FKDRaCQ4OPiU12GEEN6n4tjM9h7RgeRWNLAtp5INWeWM6RGpczLhDgJylgFQGj8R7y61a1KHT2ftlksYV/41CSv/QuPgyfgFBOkdq0uor61iQOlCUEAZectxv4sZcw0cnUv/hi2UlRURGtkVno2iPXKWvU2KYiPT2IOkAeN1zZI+6RpKtz5BNBWsXfEJfabfqGseoY82FdtVVeWPf/wjX331FcuXLyc1NfW43w8fPhyz2czSpUuZNWsWABkZGeTk5LScQI4dO5annnqK4uJiYmJiAK3tbkhICP369XPGfTqBv8mfDdduaNW2W4q28IelZx419frU1xkeO7xVx26PQ4cOYbVaGT/+lzcKs9nMqFGj2Ldv33HbjhgxouXPmZmZ1NfXt5zEN7NYLAwdOhSA7du3c9ZZZ53y4k5RURH/+Mc/WL58OcXFxdjtdurr68nJyQHgiiuu4KWXXqJHjx6ce+65zJw5kwsvvNCtZ0wJIYQQQgjhKbLXf8NYpZFCokgePMlp+/ULDCbPEEeSWkBp5havLLYLz9Xa83Z3OWcHOW8XQniW8jqt2J4eHcS4tEg+XJ/D68sPSbFdYG1qpE/dFlAgeOBMveN0msSr/k3RnJUkqoWs/uz/0e+ml/WO1CUcWPIeY5UGcpU4ev+mo0Bi76EcNqTQw3GErFWfMuSSe3RKKdyZ6nDQPeszAArSriJC526LZl8/9sRfwlkF8wje9R5Isb1LatNZ1l133cX8+fP55ptvCA4OblljPTQ0FH9/f0JDQ7n11lu5//77iYiIICQkhD/+8Y+MHTu2ZebzjBkz6NevHzfccAPPPfcchYWF/OMf/+Cuu+466ex1Z1AUpdVt4cYljCM2IJbi+uKTrgGnoBAbEMu4hHGtWv+tMwQGBrb8uba2FoDvv/+ebt26Hbdd8+Pb3H7+VG688UbKysp4+eWXSU5OxtfXl7Fjx2KxaF/Kk5KSyMjIYMmSJSxevJg//OEP/Pvf/2bFihUyO0MIIYQQQogOMu77GoDM6Kn0c/KFg2L/NJLqC2jM2w1c7NR9C9ERrT1v98RzdpDzdiGE/iqOFdsjAn24Y2IaH288ysoDJezOq2JAt1Cd0wk95WxbykilkTJCSezfumVYvEFQaCQZox8ndsPdjCn4iL17ryGx3xi9Y3m9iP0fAZCdciWRxhO/qxUknUeP7DkEHvwfIMV2caIj25Yx3HGUBtWH5Km3nPkGnSBmyp04PnyPgZbt7MncQXz6YL0jiU7Wpis3c+bMoaqqismTJxMfH9/y36efftqyzYsvvsgFF1zArFmzmDhxInFxcSxYsKDl90ajke+++w6j0cjYsWO5/vrr+d3vfsfjjz/uvHvVAUaDkb+N+hugnaT/WvPf/zrqry4/aU9LS8PHx4c1a9a0/MxqtbJp06bTdgDo168fvr6+5OTkkJ6eftx/SUlJAAwaNIhVq1ZhtVpPuo81a9Zwzz33MHPmTPr374+vry+lpaXHbePv78+FF17IK6+8wvLly1m3bh27du0CwMfHB7vd3tGHQAghhBBCiC6nqaGOftVrAfAfernT918f3hsAn9J9Z9hSCPfkLufsIOftQgjPUn6sjXx4oA9JEQFcOCgegDkrDukZS7iBpr0LAcgMGYPhJMVPb9b77GvZHHAWJsWB3/d/wm6z6R3Jqx3ZvY7etgNYVCOp02efdJu48dcC0K9xG5UleZ0ZT3gI68Z3ANgZejZBoe7RnSU6qSc7/EcDULHiDZ3TCD20qdiuqupJ/7vppptatvHz8+O1116jvLycuro6FixYcMIaYMnJyfzwww/U19dTUlLC888/71atzKYlT+OFyS8QExBz3M9jA2J5YfILTEuedopbOk9gYCB33nknDz74IAsXLmTv3r3Mnj2b+vp6brnl1KN1goODeeCBB7jvvvt47733OHToEFu3buXVV1/lvffeA+Duu++murqaq6++ms2bN3Pw4EE++OADMjIyAOjZsycffPAB+/btY8OGDVx33XXHjaqfN28eb7/9Nrt37+bw4cN8+OGH+Pv7k5ycDEBKSgorV64kLy/vhJN9IYQQQgghxKkdWf8NQUrDsRbyk52+f0NcfwDCazOdvm8hOos7nLODnLcLITxLy8z2AB8Afj85DYAfdxWQVVqnWy6hv26lqwGwpXXO56e7CbvyFarVAHrZD7Lvq2f0juPVKle9CcDO4LMIP8WSVgk9BnDQmIZJcZC18pPOjCc8QG1VGYMqfwbANNo9ZrU3axqm5RlY8h2N9bU6pxGdTd/FDNzYtORpLJq1iHfOeYdnz3qWd855h4WzFnbaSTvAM888w6xZs7jhhhsYNmwYmZmZLFq0iPDw8NPe7oknnuDhhx/m6aefpm/fvpx77rl8//33pKamAhAZGcmyZcuora1l0qRJDB8+nLlz57a0knv77bepqKhg2LBh3HDDDdxzzz3ExPxyESMsLIy5c+cyfvx4Bg0axJIlS/j222+JjNRGET3++OMcOXKEtLQ0oqOjXfToCCGEEEII4X2Me78CtBbyrphZFJoyBIAkWzYOmdUqPJg7nLODnLcLITxHeb3WKSM8UCu294kLYWqfGBwq/Fdmt3dZpXmZpDqysasKiSMvOPMNvFBEXDI7+j0AwIjM1yjJydA5kXeqq6lkYOkiAIwjbz3ttsXdzwMg5NB3Ls8lPEv2snkEKE0cURJJGTpV7zjHSRt3CflKDKHUcXjZe3rHEZ3MfaaTuyGjwcjIuJGddrx7772Xe++9t+Xvfn5+vPLKK7zyyivHbedwOACYPHkyqnqSNeoUhT/96U/86U9/OuWxBg0axKJFi076u6FDh7Jp06bjfnb55b+0sLzkkku45JJLTrnvMWPGsGPHjlP+XgghhBBCCHGilhbyimtayAPEpPSjSTUToDSRfTSD2JRTt7oWwt119jk7yHm7EMJzNc9sDw8wt/zsD2ensXR/MV9uzeXeab2IC/XTK57QSdHm7+gFHDD3ITYiVu84uul7wR/Zk7mA/tbdNHz5R9Q/LUQxyDxFZzqwZB7jlAaOKgn0HjvztNsmjL8Osv5D36YdFBblEhF78lnwouuJy9S6HeT0uJIBbvYaNZpM7Ot+OQnZrxO1/0O44C69I4lO5F7PRiGEEEIIIYTooppbyBcR6ZIW8gAmsw9HTdqa0JWHt7nkGEIIIYRwP+V1v6zZ3mx4cgSjUiKw2lXeXn1Yr2hCRwHZywAojZ+ocxJ9GYxGuPhVmlQzQ5o2s3/R23pH8jpR++cDkJN6xRkHMsSl9CHD1AujonJk5UedEU94gJxda+hpP4RFNZF09um7I+glaeqdWFQjfWwZHN29Vu84ohNJsV0IIYQQQggh3IBh79cAHIye5pIW8s3KAtIBsBXscdkxhBBCCOFeKuqPX7O92Z1na2u3f7Qhh8pj24iuwdrUSO+6LQAEDzz9TOOuID59MBu7awW8vjuepKq0QOdE3iNr5xp62Q9iUU30mD67VbcpTdaWNQg/LK3khaZ+3VsAbA8+i9CoeJ3TnFxoTDe2B2uDl+pX/1fnNKIzSbFdCCGEEEIIIXTW1FBH/+o1gOtayLccK6ovAH7l+116HCGEEEK4h0arnXqLHTh+ZjvA5F7R9I0Pod5i5/112XrEEzrJ2b6MIKWBMkJJ7D9O7zhuodflj5BlSCaCGoo/u1/vOF6jevVcAHYETyQsulurbpM44RoA+lj2UJqf5bJswjM01lUxqOwn7S/Db9I1y5kYRt0GwKCKn6itKtM5jegsUmwXQgghhBBCCJ11Rgv5Zr4J/QGIrs906XGEEEII4R4q660AGA0KIX6m436nKAp3TtZmt7+7Jot6i63T8wl9NO35EYDM4NEu7arkScy+flTMeBGHqjC6ehGZa7/RO5LHq6+pZGDZIgDMo29p9e1iktLZZ+6LQVHJWfWxq+IJD3Ho5w8IUhrIU2LpMcq9O3GkjjiHI4YkApUmjiyVJSm6Cq8ttjscDr0jiDOQfyMhhBBCCCE0v7SQn+ryi50RPYYBkOjIx9LY4NJjCXE6ck7o3lRV1TuCEMJJWtZrD/BBUZQTfj9zQBzJkQFU1Fv5ZOPRzo4ndNKtdDUAtrRpOidxLylDJrMuahYA3Vb9jca6Gp0TebaMxe8QqDSSo3Sj1+jz2nTb8lStlXxklrSS7+qi9msDLg51n+X2g4MUg4GjaVpnhqTM+ahyztMlmM68iWfx8fHBYDCQn59PdHQ0Pj4n/xLpyRwOBxaLhcbGRgwGzxsvoaoqFouFkpISDAYDPj4+Z76REEIIIYQQXqqlhbwC/kOvcPnxIuJTqCaQEKWO4sM7SOw3xuXHFOLX5Lzd/amqSklJCYqiYDab9Y4jhOiglvXaA0/+ejYZDdwxMY2/f7WLuasOc/2YZHxMnvfeJVqvNC+TXo5s7KpCt5EX6B3H7SRf/RyFry2nm1rE6k8fot8t/9E7kseKzpgPwNEeVxHdxu9EyROuxZHxPH1s+8g+epCYpJ6uiCjcXF7GFgba9mFTDSScPVvvOK2SPG029QdeJtWRw+Yti+kx8hy9IwkX87piu8FgIDU1lYKCAvLz8/WO4xKqqtLQ0IC/v79HX5AICAige/fuHnnhQQghhBBCCGc5sv5bxnZSC3nQRtrnmlPoZ91D9ZEdIMV20cnkvN0zKIpCYmIiRjefPSSEOLNfz2w/lcuGdePFJQcoqGrkm+15XDEiqbPiCR0Ubf6OXsBBc29iIuP0juN2AoLDODD2SeLW/Z6xRR+za9c1dB84Xu9YHufwjlX0tx/CoppIm35bm28fmZDCPp/+9LfuJnf1x8Rc84gLUgp3V73qTQB2BI4lNS5Z5zStExQayY6waYyt+h7HxrdAiu1ez+uK7aCNku/evTs2mw273a53HKezWq2sXLmSiRMneuwIc6PRiMlk8tiLDkIIIYQQQjiLYe8CQGsh36+TilqVwT2hfA8U7e2U4wnxW3Le7v7MZrMU2oXwEr/MbD91sd3PbOS2Cak8/eN+3lhxiFnDEjEY5LqdtwrIXgZASdxEYnTO4q56TbqSTbs+ZWTtzwQtvBdbnzWYzNKhtS1qVs8FYEfIJAZExbdrH1VpF8L+3UQf+R6QYntX09RQR//SHwGwDrlR5zRt4zfhDvj+e4ZUryCvNJ/QqAS9IwkX8spiO9DS6sxTT2pPx2g0YrPZ8PPz88r7J4QQQgghRFdxXAv5IZd32nHt0f2g/GuCqjI67ZhC/JactwshROdomdl+mmI7wLWju/Paz5kcKqnjp72FnDugfcUx4d6sTY30rtsCCgQNnKl3HLcWeeXLVL0zlnT7IVYueJoBV/1T70geo66qnEHlP4ECPqPbPqu9WfJZ12Lf9wy97AfIytpHXGpfJ6YU7u7w8vmMp5ZCokgbd4necdokeeAEMhb2orf9ALlL3iD06sf1jiRcSPp3CyGEEEIIIYROjqz/lqDmFvJDzu604/onDgQgrvFwpx1TCNE1VNZb+GB9Ng0W7+tYIISnqmhpI3/6wT/BfmZ+NzYFgDnLD6GqqqujCR3kbF9GkNJAOSEkDZDW6KcTFpPIzgF/BWDk4TkUH9mncyLPcWDJOwQoTWQbEuk5aka79xMRm8g+38EA5K+d76x4wkOE7NP+zQ92uwSjyfPmDhf3vR6AHtmf4/DCbl7iF1JsF0IIIYQQQgidGPZ+BWgt5A2d2K45Jn0YAHGUUltV1mnHFUJ4v4e/2cPDX+9m3tojekcRQhxTXm8FTr9me7Obx6fgZzawI7eKtYfkO4I3atq7EICDwaM79funp+o38w/s8hmCv2LBsuBuVIdD70huT3U4iD3wMQC5aVehGDpWhqpOvxCA2JwfO5xNeI7Cw7sZaNmBQ1WInXy73nHaJe3sG6kmkG5qEZlrv9Y7jnAhKbYLIYQQQgghhA60FvKrgc5tIQ8QFB5NEZEAlGRu7dRjCyG8V1W9lUW7CwHYfrRC5zRCiGaVrVizvVlkkC9XjUgC4PXlmS7NJfSRULIKAFuPaTon8QyKwYDxkldoVM0Msmxj34//1TuS28vauYo0+2GaVDNp02Z3eH89Jl6DTTWQbj9EXuYuJyQUnqB8xVwAdvqPICopXec07eMXGMyuKG25Dp+t7+icRriS5/VdEEIIIYQQQkcZ677Hbmmk36RZekcRnai84AgFK94Bu9Vp+zTV5DNWaaCIiE5tId+swDeV2KYy6nN2wvDpnX58IYT3+d/OfCx2bcbf3oJqndMIIZq1ds32ZrMn9uCjDTmsySxjx9FKBieFuTCd6ExleYfp6cjGoSokjLxA7zgeI67HADal3MFZ2f9hwK6nKRkma92fTu1qrUi6I3QyAyNjO7y/0Kh49voPY1DjZorWfUy39IEd3qdwb1ZLE32KvgWgfuANOqfpmNBJd8KXnzO4fj2HjmZ67MABcXpSbBdCCCGEEKIVHHY72+f9mfEF7wGwydrIgGnX6ZxKdJbyLx/grNplLtn3wehp9NOhhWdtaG8o3oyhRNaeFEI4xxdbclv+fLS8gaoGK6H+p18jWgjhes1rtke0oo08QGJ4ABcNSWDB1jzmLD/EGzcMd2U80YkKN39LT+CAuRcxUfF6x/EovWb9Pw699D1pjiwyvnwAet6odyS3VFtVxsCKJaCA35jbnLbfuvQLYfdm4o/+CPzLafsV7unQys8YRyWlhJF21hV6x+mQhJ5D2OUzmIGWHRT9/AZRv3ve6cewNjWSufwjHEV7SZv1CH6BoU4/hjg9KbYLIYQQQghxBnVV5eS+dR3jG9a3/KzX+r9S3HsUMUk9dUwmOoPqcJBauw2AzYGTsPiEOW3fDnMA3S76f07bX5vE9YdiCKs5oM/xhRBeJbO4hh1HKzEaFEL8TFTUW9lfUM3oHpF6RxOiyytvQxv5Zr+flMaCrXks2ltIZnEt6TFBroonOpF/tjZ4tCRuIjE6Z/E0Zh9fas59Cfv3lzC6dimf5g0DztE7lts5uPhtxilNHDEkkT7CeUsV9Jh0DZZdj9PDcYSDGdtI7D3UafsW7idg1wcA7I+9kH4+vjqn6bjqAb+DrX+mT/5XWC1PYXbSfSo9mknRstfpV/AV46kCYNWPUfS//CGn7F+0nhTbhRBCCCGEOI38w7sxfXINQxy5NKlmtg5+hMg9H9DLfoC8+Tdju38ZJnPrL1wKz1Ny9AB9qMCiGkm49QP8ArzjYnNw90GwExKtWdgcDhSDQe9Iwklqamp4+OGH+eqrryguLmbo0KG8/PLLjBw5EgBVVfnnP//J3LlzqaysZPz48cyZM4eePX8ZPFReXs4f//hHvv32WwwGA7NmzeLll18mKMg7nv/C+b7YkgfA2b2jAYUl+4rYJ8V2IXTXYLHTaNWWd2htG3mAXrHBTO8Xy+K9Rfx3xSH+fcVgV0UUncRqaaJ33WZQIGiAtEFvj+6DzmL9hlmML/uCxLIVwAN6R3IrqsNB3IGPAchLv5pYJ55fhIRHszdgBEMaNlC8br4U271YydGDDGrcAgpETJqtdxynSJ90DaVbnyCaCtau+IQ+09vfGcNht3N4w3cYN7/FkLq19FJU7eeqgkFRMVQecVJq0RZyNUUIIYQQQohT2Lf6G6Lmn0uyI5diIsi88HOGXHQ35qvnUav608+6h50fyohhb1e6dyUAh83pXlNoB4hJG4xdVQiljoqiHL3jCCe67bbbWLx4MR988AG7du1ixowZTJs2jbw8rRj63HPP8corr/DGG2+wYcMGAgMDOeecc2hsbGzZx3XXXceePXtYvHgx3333HStXruT222/X6y4JN2d3qHy1TWshf/nwRPolhACybrsQ7qB5VruP0UCgT9uWrblzchoAX23LI7+ywenZROc6un0ZwUoD5QSTNHCC3nE8lpJ6FgBh9nKdk7ifw9tX0MNxhEbVTPp05xdJG3tdDEBi/kJUh8Pp+xfuoXj5mxgUlV0+g4nrMUDvOE5h9vVjX/wlAATveq9d+6itKGH350/S8PxgRq28meH1azAee5zWjniJ1en3A+BXn++s2KINpNguhBBCCCHEb6gOB1s/+xeDfr6FUOrIMPXCcstSegyZBEBcal92j3gcgLG575Kx7js94woXMxzVlg8oDR+ibxAn8/UPJM+QAEDZoa06pxHO0tDQwJdffslzzz3HxIkTSU9P59FHHyU9PZ05c+agqiovvfQS//jHP7j44osZNGgQ77//Pvn5+Xz99dcA7Nu3j4ULF/LWW28xevRoJkyYwKuvvsonn3xCfr5cvBEnWnWwhKLqJsIDzEzpE0u/eCm2C+EumtdrDw80oyhKm247rHs4Y3pEYHOozF112BXxRCdq3LMQgIPBozEY2zbwQvzCLzIRgAi1Quck7qdu7VwAdoZOISQ82un7T5t4JRbVRLIjl6P7tzh9/0J/dpuNXnlfA1Dd7zp9wzhZzJQ7cagKAy3bKcjc0erb5exaQ8acG4h+YyATD71AkppPjerPmsjL2T1rKd3u/5k+036HOVobIBfSVOiquyBOQ9rICyGEEEII8SuWxnr2v3U74yu/BwU2hpxDr9lv4+sfeNx2g8+7jQ2HfmZ05Q8kLP0TVT2HExoVr1Nq4UqxldqJsCF5rM5JnK84II3udXk05e0CLtM7jnACm82G3W7Hz8/vuJ/7+/uzevVqsrKyKCwsZNq0X9bQDA0NZfTo0axbt46rr76adevWERYWxogRI1q2mTZtGgaDgQ0bNnDppZeecNympiaamppa/l5drRVZrVYrVqvV2XfT7X27I48PDxgYOb6e6NAAveO43OebjwJwwcA4FNVOz2h/ADIKa6hvbMJslLkeon2a3z+64vuIsxRX1wMQ5m9u1+N4+1kprD9czicbc/j9WSltWvfdnXjKc8nmULHbbCiKgmpo2+CIM4kvWQWAJWUKNpt7Pw7uLCBCG6waRSVFlqYzbK0vm92B3ebAZlMxOFz7WVxTVcqgiqWggM/om7G54LXmFxDC7oBRDGtYS8m6j0joOcTpx+hsNpvtuP+7K5vDgd1mx6Y4UFTXPZcyV33JOMqoJIjuEy73qveq8PgUtvuPYljjBiqWzyE65dVTbtvUWEfW8vnE7P+AIbYM7YcKHDKkkJt+LSlTbqJnUChAy2PkF9UdgEh7sds/bvaW570Vq5M/65yttd8bpNguhBBCCCHEMeVFuVTPu5LR1n3YVYX16fcx9Kr/d8q1rNNvep3sVyaQ7Mhl+3s3E3LfD7LutZepq6ogxX4EFIgZMEnvOE7XEN4H6lbiW7Zf7yjCSYKDgxk7dixPPPEEffv2JTY2lo8//ph169aRnp5OYaE20yE2Nva428XGxrb8rrCwkJiYmON+bzKZiIiIaNnmt55++mkee+yxE37+008/ERDg/cXmX6u1wuNbjTQ5DDz00UouS/HuNqf1Nli02wgoxNZn8cMPWThU8DMaabTDewsWkhB4xt0IcVqLFy/WO4LH2lyiAEYcDdX88MMPbb69qkJioJHcOgePfLiMmUme/Z7WVZ9LltpyrnAcwaEqFFlDKV+6SO9IHstht9FLVTArdtYt+gafgFC9I51RRiccw565hMsUC4dI5EhxE9k/LXTJcSz+QxjWsJbuBQtZunAKipsX6lpr5bIlekdwC7E73gZgg+8EGtes1jmN8zWGTGBY4wYGlnzPkoUzMJmPH8DWVF1CcN7PjGlYzkSlFgCLamS9aRQFsVPxje6JYlDYvmH9Cfu2NtUxFIighi8X/g+T2bcz7lKHLFvi/s/7+vr6Vm0nxXYhhBBCCCGArJ1riPzfjfSljGoCODjxFYZNmnXa2wQEhVJy8Vs0LbiQIQ0bWPP5vxh21T86KbHoDPm7VpCkqOQpsUTEJesdx+mMcf0hFyLqMvWOIpzogw8+4JZbbqFbt24YjUaGDRvGNddcw5Ytrmu3+dBDD3H//fe3/L26upqkpCRmzJhBSEiIy47rjv71YwZNjmwA1peY+NcNZxET7P4Xu9rr401Hsan76BUTxO1XjG1pU/1RwUY2Z1cS1XMIM4ck6JxSeCqr1crixYuZPn06ZrNZ7zgeqWRdNmRmkJ4Uz8yZg9u1D0NyIfd8upP1ZT48c9NEgnw975KypzyXbA6V0kYbJkXB6MQi4v7vXwPggLkXEy+43Gn77arKd4YSRSUpyQkkD5qgd5xTstod1FgdRPsb8XHhoHDV4aB0x8MAFKRfzdRzz3PZseprxtD42ly6K0VUJ4aRPMCzu4/ZbDZWLlvCxCnTMJnc973V6nBQ3GAn2GxwWceiysIcemzdBgrEnXsv8T2HuuQ4erLbppL/0gckKMVEq/n0mXoHDoedw2u/wX/7uwxu2IRBUUGBQqLISLqC+LNvo09MIn3OsG/V4aB2z/0EKQ30TE8hLn1Qp9yn9rBYrGxZtYwp06bh5+PeHXOaO7adifu+eoUQQgghhOgkOxe+w6BND+GvWMhRErBcOZ9+PVt3MTK5/2i27HuAcfufZuSBl8jcMZnUwe57wUW0jSVrLQC5QYPoqXMWVwjrMRQ2Q5IthxqbDaMbX+ARrZeWlsaKFSuoq6ujurqa+Ph4rrrqKnr06EFcXBwARUVFxMf/svRFUVERQ4YMASAuLo7i4uLj9mmz2SgvL2+5/W/5+vri63tiQdlsNrt1UcPZ8iob+Gij1lI91EelyuJg7upsHr2ov87JXOfr7QUAXDEiCZ9fXSwb0C2MzdmVZBTVdanngHCNrvZe4kzVTdpM9Mhg33Y/hucPTuSlpYc4XFrHl9sKuO2sHs6M2Knc/bmkOFSMNsXpxfaA7J8BKImbSIzJfe+/pyg1RhFlr8RaWYDJjR9PVXFgVO2YTCZMLlzS5eCWpQxyZNOg+tDrnDswufA1FhIRzZ6gMQyvW0XVli8wDJlAaUMJuTW55NUeJbcml9zaHPJr8xgaM5w/Dr2vZSCgOzOZTC593DpKtTswmhRMJqPLnkuFq96ll+Jgn6kvSX1HueQYejOZzOxOvpyE7NeJ2/8+++vLSDvyCePUIm0DBXb4Dqd+yK2kTbiMgea2FaJLjNEEOXJoKD2Kqc9wF9wD57A7VEB7PNz5MxlodT65kiKEEEIIIbosh93O9vceZHz+u9pJjd8I4m/9mOjwqDbtZ8hlD7D1pVUMq19NyHe3U99jLQHBYa4JLTpVaIk2E9iSMFLnJK4R3b0PDaoP/oqFw9n7iEsbqHck4USBgYEEBgZSUVHBokWLeO6550hNTSUuLo6lS5e2FNerq6vZsGEDd955JwBjx46lsrKSLVu2MHy4dpFm2bJlOBwORo8erdfd8QgvLzmAxeZgdGo4w/1KeX2fkfkbc/j9pDTiQv30jud0h0pq2ZpTidGgcPHQ42ev94vXOhrsK2zdbBAhhGtU1FkAiAho/8wxo0Hhjkk9+OuXu5i76jA3jE3G12R0VkThYlZLE73rNoMCQQNm6h3HK9Sao8CeibUyT+8obqFx7VsA7AybwqA2nku3hs1hpbCukKM1OeTV5rKteyTzyqLIMv5M4adjabI3nvR2e8p20z0khUvSL3N6JuFcDrudtJwvASjrcy2xZ9jekyVNvRPL2/+llz2TXlkvA1BNIDujLyTi7D+Q1GNAu/dd5RMLjTlYyrKdFVe0khTbhRBCCCFEl1RfU0nO3OsYX6/NXF4bey2Dbn65XTN7FYOBhBvfonDOBBLVAja+ezsD7/nM2ZFFJ7PbbKQ17QMFQntP1DuOSxhNJo6autPLnkll1jYptnuJRYsWoaoqvXv3JjMzkwcffJA+ffpw8803oygK9957L08++SQ9e/YkNTWVhx9+mISEBC655BIA+vbty7nnnsvs2bN54403sFqt3H333Vx99dUkJEg78FPJLK7liy25APx5ek/yd5YwIlmb3f368kwev7j9F87c1ZfH7u+kXtHEBB8/mKBfglZs35tfjaqqHjGrTAhvVF6vFdvDAzvWpvWSod14YfEBiqqb+GprHleP6u6MeKIT5Gz/mZFKA+UEkzRQOnA5Q4N/DDSCUlOodxTdVVeUMKhyKSgQMH52u/fTaGsgrzb32Mz0o+TWHG35f2FdAXbVfvwNAgO0/9sbMSpG4gLjSQxKJDG4O4nBiRTUFfBZxse8sPlZhkQPJSU0tQP3Urja4Y0/MEotokb1p8fZ1+sdx6VCY7qxOeICxlV8w0FjGoV9fkfalJvoFxjc4X3XByRAI1B1tONBRZtIsV0IIYQQQnQ5hVn74OOrGerIoUk1s3XIowy98A8d2mdoZCwHZ7xG9KKrGVW9mHXfvs6QDu5T6Cs/YxODlUZqVH/iew3TO47LlAelQ1Um9sI9ekcRTlJVVcVDDz1Ebm4uERERzJo1i6eeeqqlBd5f/vIX6urquP3226msrGTChAksXLgQP79fiqUfffQRd999N1OnTsVgMDBr1ixeeeUVve6SR/i/nzJwqDC9XyxDk8Io2AX3TEnjd+9u4ZONR/n9pDQSwvz1juk0dofKV9u0GX2XD0884ffpMUGYDAoV9VYKqxuJD/We+y6EJ2mZ2d7BYruvycjss3rw5Pf7+O/Kw1wxIsmpbc6F6zTuXQTAweDR9DRKRwJnsAXGQQWY66XYnrl4LuMVK4cNKaQNmdzm2xfWFfCXlfezv3zvabfzNfqSENSNpODudAtKxLhpIRPq9lISei5Tb3kTk+H4Vs8O1cGRqiw2Fq7nH2v+yjvnfIiP0b3Xhu7KlC3zANgVeQ59AkP1DdMJ0m/5L5kljxARl0ykwXlt+W3B3aAcfGql60Znk2K7EEIIIYToUvav+Y7Un+8kjFpKCKfo/LcZMuxsp+y756gZrN9/B+Nz3mDw9sfJ63sW3dJlprCnqspYBcBhv34kefFa5tbIvlC1EP/y/XpHEU5y5ZVXcuWVV57y94qi8Pjjj/P444+fcpuIiAjmz5/vinheaWduJT/uLkRR4IEZvVt+PiY1glGpEWzMKuf15Zk8eYn3fCasPVRKQVUjof5mpvaNOeH3fmYjadFBZBTVsDe/WortQuik/FixPbwDbeSbXTOqO68uyySrtI6Fuws5f1B8h/cpXC+w6gAAlgTvXANZD0qI1unHv7FY5yT6Uh0OEjI/BaCg59XEt7FoWGut5b6f7+ZQVSYAQeZgEoOTjs1QTzr2Z+3/Uf7RGJRf9r+rPI5RG+6hsGE1BvXE4xoUA4+Oe5Jrv7+CAxUZ/Gf7y9w//MEO3FvhKlWlBQyuWQUKBI67Te84ncJk9iEiwfndFgxh3SEbAhsLnL5vcXrOGzIhhBBCCCGEG1MdDrZ+/iwDl91IGLUcMPai8ZalpDmp0N5s8LVPsNtnEAFKE8rnN2FprHfq/kXn8SvYBEB19HCdk7iWT4JW/ItpOKRzEiE8178XZQBw6dBu9I77pQWkoijcN60XAJ9uOkpeZYMu+VyhuWX+RYMTTrl2869byQsh9FFR75yZ7QCBviZuHJcCwOvLM1FVtcP7FK7nb60EwBgSp28QL2IO6wZAiLVU5yT6ytyylFRHDvWqL71mtK1IanNYeWjVAxyqyiTSL4ovLvwfS69Yxfvnfcy/zvo3fxhyDxelXcqw2BHEBMQeV2gH6DXhMmpVf+Io5fC2n096jCj/aB4e8xgAn+z/kDV5q9p3R4VL5S57Cx/FxkFjGkkDxukdx6P5RSUDEG4t0jlJ1yPFdiGEEEII4fUsTY3snHMT4zOewaQ42BQ8jeg/LSXKBSOJjSYTYde/RwXBpNkPs/e9e51+DNE5kmp2AuDbY6zOSVwrMn0oAN0cBTTW1+qcRgjPszazlFUHSzEbfyms/9rYtEjG9IjAald57edMHRI6X3WjlUV7tNa5J2sh36xf/LFie4EU24XQg6qqVNRZAQgLMJ9h69a5eVwK/mYje/KrWXmwaxcaPUWQvRIAn9BYfYN4Ef9Irdge6ejar4HGdW8BsCt8KkGhka2+naqqPLfpaTYUrMPP6McLk1+le0gyitL6pSl8/QPZGzoBgJotn51yu7MSJ3FV72sBeHzdw5Q2lLT6GML1VIeD7lmfA1CYfrXOaTxfcFwPAKIdpTjsdp3TdC1SbBdCCCGEEF6tojiXvJemMabiWxyqwprUe+j/x0/xCwhy2TEjE1I4NOF5AMaWfM7upR+77FjCNcrzs4inBLuqkDBwkt5xXCo8JokKgjEqKsWHdugdRwiPoqoqzx6b1X7d6GSSIgJOul1zEf7zzUfJrfD8jic/7Cyg0eogPSaIQYmnXlezZWa7FNuF0EWdxY7F7gCcM7MdIDzQh2tGdQdgznLvGEDk7UIdVQD4h5245Idon5AY7TUQSl2XHaxaVVbE4CptRnng+Nltuu0He+fxdeaXKCg8OeFZ+kb2a1cGw4BLAUgvWXrawuLdQ++lZ3hvKpoqeGztP3CojnYdTzhf1talJKu51Ku+pEy5Re84Hi8stjt2VcFHsVNZkqt3nC5Fiu1CCCGEEMJrHdm9DuXNs+ln3UON6s/Ws/7LsOseQ2njWnLt0X/ylayNuQqAnuv+QkmetOj2JEV7VgCQZepBQHCYvmFcTDEYyDOnAFCbI8V2Idrip71F7DhaSYCPkbvOTj/ldqN7RDI+PdJrZrc3t5C/fHjiaWeh9T02sz27rJ7aJlunZBPepclqRzqVt1/FsfXafU0G/M0nX+6hPW47KxWzUWH94XK25lQ4bb/C+axNjYQo2iCvoAhpI+8sgaGRNKjaAJaq4hyd0+jj0JK38VWsHDL2oMfgia2+3dKcxfxn+0sA3D/8QSYmTm53hp7jLqaaAGIoJ3PT4lNu52v05cnxz+Br9GND4Xrm7/ug3ccUzmXf+A4AO8OmEBgarnMaz2f28aVE0bpMVBdm6Zyma5FiuxBCCCGE8EqN9bXEfX0V8ZSSq8RTeOX39J98Radm6P+7FzhoTCOMWmo+vAm7TQoNHiN7HQBFoYN1DtI5qkKOtb4u2qtvECE8iN2h8vyxWe23jE8lOtj3tNv/Mrs9l6Plnju7/UhpHZuzKzAo2hr1pxMR6EN8qB8A+2V2u2ijQyW1nPX8SuYdlMuX7VVe98t67W1pz3wmCWH+XDJEe/2//rMMKHVnNeXakh821UBgaJTOabyHYjBQomiFwdouWGxXHQ4SD2nd24p6Xt3qwey7Snfy6Nr/B8CVva/hqj7XdSiHj18A+0K1Qn/9ts9Pu21qaA/uH/4gAK9tf4W9ZXs6dGzRcbWVpQw61h3BPFpmtTtLuUnrYtJQckTfIF2MfFsVQgghhBBe6fCmRYRTQzERmP+wgsTeQzs9g49fAMoV71Kn+tHfupsdH/290zOI9omqODbDu/sYfYN0Eke01roxuOqAzkmE8BxfbcvjYHEtYQFmbp/U44zbj0iJ4KyeUdgcKv9Z5rmz27/cqs1qP6tnNLEhfmfcXtZtF+2hqiqPfbuXinorGZXOKxJ3NRX1WrE9PMA5LeR/7Y5JaSgKLNlXxIGiGqfvXzhHfYVWbK9UQjAYndfdQECFEgGApbzrtWo+uHkxyQ6t9Xev6be26jZ5Nbk8sPwemuxNnNVtEvcNe9ApWUyDZgHQs2zZGQe3X5I+iylJ07CrNh5e8zfqrHVOySDa58iyd/BXLGQZupMy5Gy943iNWj+ti4m9PFvnJF2LFNuFEEIIIYRXatq/CIDD4eMJCY/WLUe39IHsGvpPAMbkvMWB9Qt1yyJap7Guhh42bZZWVH/vXq+9WUDSQADimw7rnEQIz9Bks/PiYm1wyp2T0gjxM7fqdvcem93+xdZccso8b3a7w6GyYGseoLWQb43mVvJ786XYLlpv6b5iVh4oAaDBrlBvke5A7dFcbHfWeu2/lh4TxDn9tAv6byyX2e3uqrGyCIAaQ6jOSbxPlSEMAHtVnr5BdGBZ9xYAO8OnExgaccbtq5uquXf5XVQ0VdA7vA9PjH8Go8E5gz96jr2QSoKIopKDG05/rq0oCn8f/U9iA+I4WpPD85ufcUoG0T6xhxcAcLTHlZ2y1F9XYQnUOs8Yq7vee5Oe5BkshBBCCCG8UmLpWgAMPafpnAQGX/B7Noaei1FRiV9yF5VlhXpHEqeRv2c1ZsVOERFEdUvTO06niEkfrv2fcmrKi3ROI4T7m78hh7zKBmJDfLlxXEqrbzc8OZyJvaKxO1ReXXbQdQFdZP3hMvIqGwj2MzG9X2yrbtMvoWvNbD9aXo/DIYuMd0Sj1c7j3x2/rElxTZNOaTxbeZ0VgHAXFNsB/nC29j3pmx35bD5S7pJjiI6xVmuDVmpNYfoG8UJ1Jq2NvKG2QOcknauyrJBB1SsACD7r9jNub7Vb+euq+8iuPkJMQCwvTH6VAHOA0/KYfXzZHzYZgKbtp28lDxDiG8Lj45/GoBj4/vD/WJj1g9OyiLaJt2nF4PCB5+icxLuoodqAWP/6fJ2TdC1SbBdCCCGEEF6n8Mh+uqt52FQDqaPP1zsOAD1umkOOkkAM5RTOuwXV4dA7kjiF+sw1AOQEDuoyI+wDQ8MpQOsAUZy5Tec0Qri32iZbSxv4P03thZ+5bTOz7pvWE4AF2/I4UupZ7Uu/2KK1yr1wcEKr73dzG/n9hTXY7N792bd0XxFnPfczT3y/98wbi1N6e3UWOeX1xAT7Eh+qLVVQVC3F9vaoaF6zPaB13TfaalBiGOcPisfuUJn9/mayPOw9rStw1GrF9kZzuM5JvE+jj/aY+tYX65ykcx1ePBdfxcpBYxo9Bp912m1VVeWpDY+xpWgzgaZAXpz8H6IDYpyeyWfI5QD0rvgZm9Vyxu2HxgzjlgGzAXh245Pk1XS9pQD0ZrU0EYL2mREUGa9zGu9iiugOQIhFBtF3pq5x5UgIIYQQQnQpBVu+A+CATz+CQiN1TqMJDA6j9qI3sagmhjasY/sXz+odSZxCSPFmABriR+icpHMV+mlrTjfk7tQ5iRDu7Z3VWZTVWUiJDOCKEa1rpf5rQ7uHM7l38+x2z1m7vabRyg+7tdl7rW0hD9A9IoBAHyMWm4PDXl6IW3WwFICPNuRQVivF4fYoqGpoGczy95l9SY7wB6BQiu3tUt68ZruLZrYD/PvyQQxODKWi3srN726kvO7MhS7Rieq09yWL75lbfYu2sfpqxfbApq5TbFcdDpIOfQpASa9rzrj927v/yw9Z32JUjPzrrH/TM7yXS3L1HH0e5YQQTg0H13/fqtvcMuB2BkcPoc5Wx8Nr/obNYXVJNnFyteXa68ahKgSFOX8ARlcWGKud10fau857kzuQYrsQQgghhPA6/tk/A1CRMFHnJMdLHTieTb3vA2BExgsc2b1O50Titxx2O6mNewAI6XX6mRrepi5Mu/hlKt2ncxIh3Fd5nYW5Kw8D8OcZvTEb23dZpXnt9q+25XK4pNZp+Vzpx12FNFod9IgOZGhSWKtvZzAoLeu27/PyVvL7C7X7Z7E5+Hhjjs5pPNMzP+6nwWpneHI4Fw9JIDakeWZ7o87JPFPLzHYXFtsDfEy8deNIEsP9OVJWz+z3N9NotbvseKJtTI1asd0R4B4DkL2JeqzYHmYv1TlJ58natYbuah71qi+9Z9x62m1/zPqON3fOAeAvI//O2ITxLstlMvuQEXE2ANYdX7TuNgYTj497miBzMLvLdvHmzjdclk+cqK5CW1qvUgnCaDLpnMa7hCVoxfZwamisq9I5TdchxXYhhBBCCOFVLE2N9KrbCkD4kJk6pznR0Mv/xjb/sfgoNgK/uY26mkq9I4lfKczcQSh11Ku+xPcZpXecTqXEDgAgrNrz1pEWorPMWZ5JTZONfvEhnD+w/S0vhySFMaVPDA4Vj5nd/sVWrcXq5cMTURSlTbdtWbc933uL7aqqklFY0/L3D9ZnY/XytvnOtulIOd9sz0dR4LGL+qMoCjHBvoCs2d5ezbPMwwJcV2wHiA72Zd7NIwnxM7Elu4I/f74Dh0N16TFF6/g0VWh/CIjSN4gXUvy1YnuUo7zLLBFWW6CdJ2T59CQgOOyU220t2sKT6x8F4Pq+N3Fpz8tdns1/6BUA9K1cgaWpdQO04oMS+PvoRwB4b8/bbC7c6LJ84niNlVqL8xolVOck3icoNJIaVesMVJ5/WOc0XYcU24UQQgghhFfJ2rqEQKWRUsJI7jdG7zgnUAwG4m56h2Ii6K7mc2jenXpHEr9SsX8VAId9e2P28dU5TecKTh4MQKL1SJe5YChEWxRUNfDeumwAHjy3NwZD2wrOv3XvsbXbv9mexyE3n92eXVbHxqxyFAUuHdqtzbdvntm+14tntpfUNlFRb0VRICrIh6LqJn7YVaB3LI9hd6j88xuts8zVI7szoJt28T02RPssljXb26eivnnNdtcW2wHSY4J544bhmI0K3+8s4LlFGS4/pjgzf6tWbDcER+ucxPuY/MMA8FFsVJcX6humk9iqtfvZ6HvqTgnZ1Uf4y8p7sTqsTEmaxt1D/9Qp2dJHnkMpYYRQx8F137b6dtOSZ3BR2qWoqPxz7d+pbKxwYUrRzFqjtTivNYXpG8RLlRq11vx1RVk6J+k6pNguhBBCCCG8Sv2eRQAcDhmNwWjUOc3JhUXGkT/tVeyqwuiqhez4TlrWuQtz/gYAKiKH6Zyk88WmDcKqGglR6ikrkBHwQvzWK0sPYrE5GJUaweReHS9aDEoMY1pfbXb7K0vdu6PEl1vzAJiQHkV8qH+bb98v/peZ7arqnbNdDxRqAyZSIgO5fkwyAO+uOaJjIs/yyaYc9hZUE+Jn4oEZv6zpK23kO6a8TluDODzQ3CnHG5cWxbOzBgHwxopDfLQhu1OOK04tyFYJgE+IrInsbEaTiXK0z7ea4i6ydEhtCQAWv5N/D6poLOe+n++m2lLNgMiBPDruKQxK55SgjCYTB6OmAuDY+WWbbvvnEX8hOSSFkoYSntzwqNd+V3En9hrtudRgDtc5iXeq8okFwFLWRd6b3IAU24UQQgghhFeJK14NgJo+Veckp9d7zEzWJ2nr3A3c9hh5mbt0TiQAulXvBMCcOk7nJJ3P7OtHrlGbsVp+aLu+YYRwM4dLavlss9ZG/a/n9m5zG/VTaV67/X878sksrjnD1vpwOFQW/KqFfHv0jgvGoEBZncVr24FnFGn/fr1jg7ludDI+RgPbj1ayLUdmyJ1JZb2F54/Ngr5/ei8ig37pLNM8s91bnzeupKoqlfWuX7P9ty4blsh9x97bHvlmDz9nFHfascWJQlRtvV6/sFidk3incoM2w7u+NFfnJJ3DVK+9nh2BJxbbm+xNPLjiPnJrjxIfmMDzk1/Gz+TXqfkCh10JQN+qlTQ11LX6dv6mAJ4c/wxmg5mVucv58uBnrooojlHqywCw+EbonMQ71QccW+6q6qi+QboQKbYLIYQQQgivUZZ/hB6OIzhUheRRF+gd54wGXfcUe8wDCFQaUT+/BZvVonekLq2qNJ8kNR+AhIGTdE6jj9KANACs+Tt1TiKEe/m/xQewO1Sm9Y1heLLzLgoO6BbKjH6xqCq8vNQ9127fkFVObkUDwb4mzukf1659+JmNpEUHAd67bntGoXa/esUFEx3sywWDtYucMrv9zF5cfICKeiu9YoNaugI0i/3Vmu2yBnjb1DTZsB17zMI7oY38r90zNZ1ZwxKxO1Tu/mgre/KrOvX4QmOzWghD67oRFN6+929xejU+WtHZWtE1iu2+TVqB1BB8/OANh+rg8XUPs7N0O8E+wbx09mtE+J261byrpA2fSjERBCsNHFz7vzbdtndEX+4eei8AL215nswK9+465OmMDdpzye4vxXZXsAcnAeBTm69zkq5Diu1CCCGEEMJrHN2krc120NyT0Kh4ndOcmcnsQ/D186gmkJ72TDLWfK13pC6tcNdyAI4YkggK75rrWjZE9AHAp0zWWRWi2e68Kr7fWYCiwAPn9Hb6/ptnt3+3M58DRe43u/2LLVoB4YLB8fiZ2788S78E7163PaNIK2j1jg0G4JbxqQD8sKuAwippgX4q+wur+WC91mr80Qv7YzIef6kyOtgXBRWrXaW8XgYltkVFnfZ4BfgYO/TabQ9FUXj6soGMS4ukzmLnlnmbKKhq6NQMAmorjs1CVhWCImRmuys0+B17XKu7RkEr0KIVSM0hxw/eeGPHf1icvQiTwcSzZ71AamgPPeJhMBrJjJmu/WV321rJA1zd+zrGJUzA4rDwjzV/pdEmn9+u4tNUDoAa0PmDMroCQ5hWbA9sLNA5SdchxXYhhBBCCOE1zFnLACiNm6hzktaL7pbG7phjs/C3f6xvmC7OfmQ9AAUhQ/QNoiNz/EAAourcc4atEHp47lh764sHJ9AnLsTp+++XEMK5/eOOzW53r1lUdU02ftytXaRrbwv5Zi3rtnthsd3hUDnY3EY+Tiu2D+gWysiUcGwOlQ/Xy7rVJ6OqKo/+bw8OFWYOjGNcetQJ25iNBoKOLTcu67a3TfmxYntnz2pv5mMyMOf64fSMCaKouomb391ETaNVlyxdVV15IQBVShBGk0nnNN7JFqgV2011hTon6Rwhdm1pFP/IhJaffZO5gHl73gbg76P/yYi4UbpkaxY8Qmsl3696DY31tW26raIoPDL2cSL8IjlcdYiXt/6fKyIKwM+qPZeMJ1mSQHScb3QKAOHWIn2DdCFtLravXLmSCy+8kISEBBRF4euvvz7u90VFRdx0000kJCQQEBDAueeey8GDx58sNjY2ctdddxEZGUlQUBCzZs2iqEj+0YUQQgghRPvZrBZ61m4CIGTQeTqnaZuwMTcAMLBmDTUVpTqn6boiyrYCYE8arXMS/YSnDgYgyX4Uq0XWxxVi3aEyVh4owWRQuH+682e1N/vTtJ6ANgs6o9B9Zrf/uLuQeoud1KhAhnUP79C+mme27/PCNvK5FQ3UW+z4mAykRAa0/PzmY7Pb52/ModFq1yue2/phVyHrD5fjazLw95l9T7ld6LFasRTb26ZCh/XafyvU38y7N48kOtiX/YU13DV/G1a7Q7c8XU1jpXa9vVoJ1TmJ91KDtW5q/o3FOidxPdXhIFytBCAoQrvfGwvW88zGpwC4dcDtXNDjIr3itUgbMpkCoglUGjm4ekGbbx/hF8mj454E4MuDn7H86DJnRxRAoK0SAHNojL5BvFRIrPYdNNpRit1m0zlN19DmYntdXR2DBw/mtddeO+F3qqpyySWXcPjwYb755hu2bdtGcnIy06ZNo66urmW7++67j2+//ZbPP/+cFStWkJ+fz2WXXdaxeyKEEEIIIbq0IztWEkodVQSSOshzZrYDpAwYS5ahO76KlcyfP9A7TpdkaWwgzaoNEo7o61nPH2eKSupFneqLj2KjJHuv3nGE0JWqqjy3aD8A14zqTvdfFVGdrW98CDMHNs9uP+Cy47TVF1uOAjBrWDcURenQvvoem9meVVZHXZN3XfTLODarPT066Lg26DP6xdItzJ/yOgv/2941Wgy3VoPFzlPfa58zd05OIzH81K+vUB9t3fHCKhkE1hblddos8nAdi+0AieEBvH3jCPzNRlYeKOHhr3ejqqqumboKS7VWAK41hekbxIuZw7sBEGwp0TmJ61VXlOCjaAPHwqITOFSZyV9X/Rm7auOclJncPugPOifUKAYDWbEzADDuaXsreYAx8eO4vu+NADy5/lGK6mWiqLMFO7TBl75SbHeJsLju2FUFH8VOVUmu3nG6hDYX28877zyefPJJLr300hN+d/DgQdavX8+cOXMYOXIkvXv3Zs6cOTQ0NPDxx1pLzKqqKt5++21eeOEFpkyZwvDhw3n33XdZu3Yt69ev7/g9EkIIIYQQXVL1rh8BOBg0yuPaJCoGA/nJlwAQdrDto+9Fx+XtXYuvYqWcEGJT+ukdRzcGo5FcczIAVVnb9Q0jhM6W7CtmW04lfmYDf5yS7vLj/WlqLxRFm+27zw1arR8tr2f94XIUBS4d1rEW8gBRQb7EBPuiqrDfjWbvO0NGofbv1dxCvpnJaOCGsdp76jtrsqTA+CtzVhwiv6qRbmH+/H5S2mm3lZnt7VPR0kberHMSGJQYxqvXDMWgwCebjjJnxSG9I3UJ9lqtANxg7lhnEnFq/pHa52O4w/u7k9WUaoPGqgikWq3nvp/vps5ay5DoYTw85rEOD8pzprDR1wAwvG4lWz98GNXR9o4adw7+I30i+lFtqeLRtX/H7pAONc7isNsJU7XvToHhcTqn8U4msw8lSiQA1YVZOqfpGpx6FbKpSRth6ufn1/Izg8GAr68vq1ev5rbbbmPLli1YrVamTZvWsk2fPn3o3r0769atY8yYMSfdb/O+AaqrtRei1WrFau16a/003+eueN+FcCZ5LQln8ZTnks2hYrfZUBQF1eA+J0HieLZj7Z1sbt7myWZ3YLc5sNlUDI42j990iejCVQA0pUzG5uavx5NJmHA9jsOv0s+6m4OZu4hL7tOh/XnMc8nhwG6zY1McKKp+z6XaA9rzJ8u/P0kOO3ThiynlgelQdQB7wS5sNs96LdlbnvdWrG7+Wefu3xu6OrtD5flja7XfMj6VmBC/M9yi43rHBTNzYDzf7yzg5SUHeeOG4S4/5uks2JoHwLi0SLqF+Ttln/0SQijOKGFvQTXDk72n+JNRpK0J2ys2+ITfXT0yiZeWHGB/YQ3rD5czNi2ys+O5naPl9bxxrNj6j/P74mc2nnb7ULM2SEGK7W1TXq/vmu2/Na1fLP+8sD///N8enluYQWJ4ABcNTjjzDUW7KXVaAdjiG6FzEu8VHKMNqIqghsLGBnz8nPN56Y7qyrXvBYXGcB5efg+F9QUkBXfnuUkv4mN0j/eZZqmDxrNmy82Mz3uX8Uf+w9q3yxhy639QDK0/3zQbzTw5/hlu+PEqthRt5r2973DLgNkuTN111FWVEqVoAyCCIqTY7irl5ljirKU0lBzRO0qX4NRie3PR/KGHHuK///0vgYGBvPjii+Tm5lJQUABAYWEhPj4+hIWFHXfb2NhYCgsLT7rfp59+mscee+yEn//0008EBLiujZu7W7x4sd4RhPAK8loSziLPJeFMm1Ys1TtCq2ToHeAYa0M1l9kyQYF8SzilPy3UO1K7lBv6M1zdzf7/vcTe3pc4ZZ8rly1xyn68XczRtQAcNSSTu3SRzmn05XBoF2TNRbtY56GPxbIl7v+8r6+v1zuCOI1vtueRUVRDiJ+JOyaeftatM907tSc/7Cpg4Z5C9uRX0T9Bn3V2VVXly61ay8nLh3d8VnuzfvEhLM8oYa+XrdvePLO9T9yJxfawAB8uG5bI/A05vLsmS4rtwFPf78NiczAuLZJzB5z5InvzzPZCKba3SfPMdj3XbP+tG8elkFNez9urs3jgsx3Eh/oxMkUKwa5ibCgDwO4vj7GrBIdF0aSa8VWsVBZlE9PBAdPurLGyEAfwTLQv+8r3EOobxktnv0aYb5je0U5q2M0vsObjcMYfeoFxRR+z4bUK+v3+PUzm1r8ndg9J5sGRf+fxdQ8zd+ccRsSOYlD0YBem7hpqy7U6YK3q79UDVPRW6xcH1j3YK3L0jtIlOLXYbjabWbBgAbfeeisREREYjUamTZvGeeed16FWWQ899BD3339/y9+rq6tJSkpixowZhISEOCO6R7FarSxevJjp06djNuvfCkoITyWvJeEsnvJcsjlUShttmBQFo5vP9uvKbDYbm1YsZeSkqZjcuBW61e6gxuog2t+ITxtGh7vK7oVvY1BUDhlSOffSq/WO0267bDmw6x8MbVhLyLTX2zTy/rdsNhsrly1h4pRp7v1ccjgobrATbDZgNurzXFIdDkzb/ghAtzEXkzx0ii453MWhIBus+pAkNY+0qefoHadNLBYrW1YtY8q0afj5uE9x4WSaO7YJ92OxOXhhsbZu+p2T0wntxBbMPWODuWBQAt/uyOelJQeZ+7sRnXbsX9t0pIKc8nqCfE2c0995M476JWjXcNyhTb6zWGwODpfUAdDrJMV2gJvHpTB/Qw6L9xVxtLyepIiuO3Fk9cFSFu4pxGhQ+OeF/VvVdjispY28rNneFuXNbeTdqNgO8PeZfcmtqGfRniJmv7+ZBXeOo0d0kN6xvJJPU7n2h4AofYN4McVgoNQQQTe1iNqSo15dbLdXF7LVz5fN/lZ8DD48P/ElkoK76x3rtIZd8zDr/xfBiB2PMLpqIdtevZTUOz/D1z+w1fs4P/VC1uev5afsH3l4zd/4aOZnBPmc/PNetE5jVTEAVYYQpNTuOpbABKgBY7Ws2d4ZnH7Vbfjw4Wzfvp2qqiosFgvR0dGMHj2aESO0E8S4uDgsFguVlZXHzW4vKioiLu7kJ3C+vr74+vqe8HOz2ezWRQ1X6+r3XwhnkdeScBZ3fy4pDhWjTZFiu4cwmUyYTO77fFIVB0bVruXUqUD6a8asnwEojJlAghu/Ds+k15TrqN/5BIkUsnP3anoOn9rhfZpMJkxu/JiodgdGk4LJZNTtuVR4eDf9qMKimkgcMMGtX3udIa7nSFgFCY4iCpvq8QvUZ2Zte9gd2iBvk8m9P5MBt8/XlX28MYfcigZign25aVxKpx//T1PT+W5nPov3FrE7r4oB3Tr/NfjFlqMAnD8wngAf51066hevFdv3F1Zjd6he8Z00q7QOm0Ml2NdEQujJlxvoGRvMWT2jWHWwlPfWHuEfF/Tr5JTuwWp38Ni3ewC4YUzyCWvcn0qIj7SRb4/Kem25kgg3aSPfzGhQeOmqoVw9dz07jlZy87xNLLhzHJFBJ177FR3jZ60AwBAUrXMS71ZliqKbtYimci8vaNWWkHns++vo+LEMjhmqc6DWGXzRXWwLjGDQ2j8xtH4te145j5jff0VQaOs6zSiKwt9G/T92le6goC6fZzf9iyfGP+3i1N7NcqzYXmMMk2K7C6mhSVAI/vX5ekfpElx2NSs0NJTo6GgOHjzI5s2bufjiiwGtGG82m1m69JfWqBkZGeTk5DB27FhXxRFCCCGEEF7KYbeTVr0BgMD+njUL97cCg8PYHToZgLoNH+gbpgsp36et137I3LNNsxy8VWhMN8oIxaCoFGXu0DuOEJ2q3mLj1WWZAPxxak/8fU6/lrQrpMcEt6xj/NKSA51+/HqLje93aksBznJiC3mA5MhA/M1GGq0OskrrnLpvvew/1kK+V1zwaWdp3zw+BYBPNx+lrsnWGdHczgfrsjlYXEtEoA/3TevV6ts1z2wvr7PQZLO7KJ33aVmzPdD9Bnf5+xh563cjSIrwJ7usntnvb6bRKv+2zhZoqwTAHCLFdleq840BwF6Vp3MS1zI1lJBj1gbgufuM9t8aMPUa9k2fR43qT3/rLqpeP4eK4tYPjgjyCebJCc9iUAwsOvIDByrcZUE9z2SrKQGg3hSucxLvZo7QXqchliKdk3QNbS6219bWsn37drZv3w5AVlYW27dvJydH6/v/+eefs3z5cg4fPsw333zD9OnTueSSS5gxYwagFeFvvfVW7r//fn7++We2bNnCzTffzNixYxkzZozz7pkQQgghhOgSsnevI5IqalV/Uod1fCa43szDrwWgf/kSLI2ypnNnMOauB6AswjNmZ3SGfJ9UAGpzpNguupZ31xyhtLaJ5MgArh6ZpFuOe6b2xKDAkn3F7Myt7NRjL9pTSJ3FTveIAEamOPciqNGg0Cdem82810tayR8oqgGgV+zpZ2lP7hVDalQgNY02vtzq5bMfT6K0tokXjw0eefCc3m1aniHABD4m7RJmsbSSbzV3XLP916KDfXn3plGE+JnYmlPJ/Z9tx+Fo/zKk4kQhjioA/MJidU7i3Zr8tcfXUFOgcxLX8mssJefYzPZEDyu2A/QeM5Ojl3xOGaGk2w9hn3sORdmtL5oPjBrE1O7TAfho73uuitklqHWlAFh8w/QN4uUCYrRz+ih7sc5JuoY2F9s3b97M0KFDGTpUuxB1//33M3ToUB555BEACgoKuOGGG+jTpw/33HMPN9xwAx9//PFx+3jxxRe54IILmDVrFhMnTiQuLo4FCxY44e4IIYQQQoiupmLnDwAcCByGj+/J27d6kp6jZ1JMBCHUkbHyC73jdAlxVTsBMKZIp61m1SE9AVCK9+qcRIjOU1lv4Y0VhwC4f3ovzDouk5IWHcTFQ7oB8NKSg5167C+2aIXgy4cntmo97bZqbiW/N987iu0ZhVqxvc8ZWqIbDAo3jk0GYN6aI12uqPj8ogxqGm0M6BbClSPaNpBFUSAmWGsxLq3kW8fhUKk4NrPd3drI/1p6TBBv/m4EZqPCD7sKeXbhfr0jeQ2H3U6oqr0/BYSffOlW4RyOYO3x9akv1DmJawVYy8kxaTPbu3tgsR0gdeB4Kq7+lgKiSVLzCfhgJjn7Nrf69tf3vQmAn7IXUljn3YMrXMnQoBXbbb6ta+Uv2ic8IR2AMGppqKnUN0wX0OYzx8mTJ6Oq6gn/zZs3D4B77rmHo0ePYrFYyM7O5oknnsDH5/gvdX5+frz22muUl5dTV1fHggULTrleuxBCCCGEEKcTnr8SgMbks3VO4hxGk4mDcecDYN71ic5pvF9tZSnJdq1LV9yAyfqGcSOOmP4AhFR1fgtrIfQyZ8Uhahpt9IkL5sJBCXrH4Z6pPTEaFJbtL2b70cpOOWZeZQNrD5UBcOnQbi45Rr+EY8V2L5nZntHKme0Al49IItjXxOHSOlYcLHF1NLexM7eSTzcfBeDRC/tjNLR9EEdciFZsL5Rie6tUN1ppHs8R5sbFdoAxPSL59+WDAfjvysN8sD5b50TeobayBJPiACA4Qq67u5IxVPu8DGzy7vf1IHsFucfayCcG69f9p6O6pQ/EdssijhiSiKGc2C8v5dDWn1t1276R/RgeOxK7aufj/R+6OKn3MjdWAOAIjNI5iXcLDA2nWg0AoKIwS+c03k+/YdpCCCGEEEJ0UE1FKb0s+wBIGHGBzmmcJ2r87wAYUL+RqlIZMe9KBbuWY1BUjirxhMa4prDkiQK7DwIgwSIn5aJrKKxqZN6aIwD85dzeGNpRDHS21KhALmmZ3d45A1++2pqLqsLYHpEkRQS45BjeNLO9rsnG0fIGAHqfYWY7QJCviSuOzep+99jzzds5HCqP/m8PqqoN4BiREtGu/cQGa92LCquk2N4a5cdayAf7mlpa8LuzS4Z248/TewHwz2928/N+aXnbUbXl2izrajUAsxd0/3JnvhGJAITaSnVO4joOux2LsRaromBSTMQGePYAjqiEVPzuWEyGqTdh1NLj+2vYt+qrVt32d/1uBuCbzAXUWDz/u4we/Cxasd3gAcX2emsdXx38lFe3Pkd5Y5necdqs1BgNQG3hYZ2TeD/3/7YlhBBCCCHEKRzZ9AMmxUG2IZHY5N56x3Ga7n1HcNCYjlmxc/jn9/WO49UsWesAyA8epHMS9xKbNgSAKCqpKs3XN4wQneCVZQdpsjkYkRzO2b1j9I7T4p6p6RgNCsszStiaU+HSY6mqelwLeVfpExeCQdHW8C6u8ezCafN67dHBvq1eF/umcSkoCqw8UEJmca0r47mFr7fnsTWnkgAfI387r0+79xNzbGZ7cY2s2d4azS3kwwLNOidpvbunpHPF8EQcKtw1fyu786r0juTRGiuLAKgyhOqcxPsFRWst1aMcZagOh85pXKOmoph8szYQsVtQIkaDUedEHRcaGUvkXQvZ6TucAKWJActns3PhO2e83Zj4caSH9aTeVs+Cg593QlLvE2DTvtMag9y32J5TfYSXtz7LrP/N4KWtT/PFwfnc/tM17C3bpXe0Nqny0QbGWMtydE7i/aTYLoQQQgghPJbjwGIA8qLG65zE+YrTLgUgKnOBzkm8W1jpVgAsCaN0TuJe/IPDyFNiASjN3KZzGiFcK6u0jk83aS2u/3peH5esU95eyZGBXDa0c9Zu35JdwZGyegJ8jJw7wHUz1vx9jKRGBQKwr6DGZcfpDM3F9t6taCHfrHtkAFP7aO+v89Z6d/eQ2iYbT/+orcH9xyk9iQ1p/+za2OY28jKzvVXK66yAe6/X/luKovCvywYyIT2KeoudW+ZtIrusTu9YHstSpXUHqDWG6RukCwiN1YrtfoqV2krvbCVfVZJHjlkbvNM9JFnnNM4TGBxG8j3fsTloMj6KnZGbHmDbl8+f9jaKonBd3xsB+GT/fCx2S2dE9SrBdm0wlW9YrM5Jjmd32FmTt4I/L/89N/x4CQsOfky9rY6k4GQSg7pT0lDMPctu4X+HvkBVVb3jtkpDQLz2h6qj+gbpAqTYLoQQQgghPJLqcJBaqc1K9uszQ+c0zpc6+XfYVAO97AfIPbBd7zheyWa1kNakFQHC+k7UOY37KfLrAUBj7k6dkwjhWi8sPoDdoXJ272hGtrPFtSv9cUpPTAaFlQdK2JLtutntzbPaZw6MJ9DX5LLjAPT1klby+wuPFdtb0UL+124ZnwLAl1vyqKq3OjuW23h12UFKappIiQzglgkpHdpXbLCs2d4WFcfayIe3suOCuzAbDbx+/TB6xwZTXNPENW+u52h5vd6xPJK9Viv6NpjD9A3SBfj6B1KB9jlQVeSds0frywvJ8YL12k/Gx9ePPnd/zvqIizEoKuP2PcXWD/5+2i4FM5LPJSYglrLGUn7M+q4T03o+1eEgTNWK7QFuUmyvaqrk4/3zuPaHC/n76j+xuWg9CgrjEybz/KQ5vH/eV7w5Yz5ndZuC1WHl/zY/yb83PU6T3f277diDtW5VPrXSrc7VpNguhBBCCCE80tGMrcRSRoPqQ4+R5+gdx+nCYxLZHaDNti5e/Z7OabxT3v6NBChNVBNIfPoQveO4nbowbWkGU+l+nZMI4Tr1Fhs7cysBeOAc91yOpHtkALOGaRfKXLV2e4PFzvc7CwDXtpBv1i/hWLG9wLOL7e2Z2Q4wNi2S3rHBNFjtfLrZOwszh0tqeWe1NnP/kQv74WvqWMvh5lnxxVJsb5XmNvKeNLO9WYifmQ9uG0WP6EDyqxq5+s315FZIwb3N6rT1w5t83G8QmTeqMGiPc32pd76nN1Xmk2PSiu1Jwd4zs72Z0WRi0O/fYU03bT328dlz2P7WH3DY7Sfd3mw0c02f6wD4aN/7OFTvXD7AFZoaavBTtIGGQZHxumY5ULGfZzc+yuXfnsMbO16isC6fYJ8Qru5zIx+f/x3/OuslRsaNxaAYCDQH8cT4/+P2QfdgUAx8n/UVf1x6M0V1BbrehzMxhGudNwIb3TunN5BiuxBCCCGE8Eil27QR5Af8B+PrH6hzGtdoGnAlAGn5353yRF+0X23GKgAO+/XDYPT8dQedzRA/AIDwWte2rhZCTwE+JhbfN4n3bhlF/wT3Xdf27inpmAwKqw6Wct1b63lz5SH2FVQ7rYXlT3sLqWmykRjuz6hOmN3fr2Vmu2evyZxRqK253taZ7YqicPOx2e3vrc3GZve+i/RPfLcXq13rGDGlT8dnrjWv2V5Y3egxrVv1VF7vmTPbm8UE+/Hx7DGkRgWSV9nANXPXk1/ZoHcsj2JoKAPA7i/F9s5QbY4GwFrpnbNH7TVFLW3kk7xsZnszxWBg2M0vsKbnnwEYV/wpe167Fqvl5LOXL06fRaA5iCPVWazOW9mZUT1aTVkhAE2qGf/AkE4/vtVuZWnOQu5eehOzf7qaH7K+xmJvIj2sN38Z+ShfXLiIOwffR3xQtxNuqy0hcAvPTfwPIT6hZFTsZfbia9lStKHT70dr+UVrg2PCbcU6J/F+UmwXQgghhBAeKSR3BQC13SfrG8SFek+8kmoCiKOUgxt/1DuO1/Er3AxAdcwInZO4p5DkwQAkWY/IYA/h1XxMBib1itY7xmklRQTwh8lpAKzJLONfP+znvJdXMfpfS/nzZzv4Znse5XXtXzO0uYX8rGGJGAyuX7O+eWZ7VmkdDRbPfH8pq22itLYJRYGesUFtvv0lQ7sRHmAmr7KBJfuKXJBQP8v2F/FzRglmo8LDF/Rzyj6b28g3Wh1UN9icsk9v1txGPsJDi+2gdTP4ePYYkiMDOFquFdwLq6SzQWuZG7ViuxoQpXOSrqHB79igomrvLLartUUcNTfPbO+ucxrXGnbVP1g3+ClsqoFR1T9x6NVLaayvPWG7IHMQl/W8HIAP9s7r5JSeq75C+85TqQSjGDqvPFnaUMy7u+dw5Xfn8fi6v7GrdDtGxcSU7ufynynv8taMTzi/xyX4mfzPuK+RceN4c8Z8eob1oaqpggdW3MnH++e55WDA4LhUAKIdpdht8v3JlaTYLoQQQgghPE5dTSW9m3YDEDvsQp3TuI6vfyB7w6cC0LT5I53TeJ/utdpa5P49xumcxD3FpA7AohoJVBopy8vUO44QXd79M3qz5P5J/PPCfpzdOxp/s5Himia+3JrLnz7ZzvAnF3PRf1bz/KIMNhwuw9rK2dIFVQ2sztTaDTe3q3e1mGA/ooJ8caiQcawVu6dpzt09IoAAn7avce9nNnLNKK1g8c6aI86Mpqsmm53Hv90LwC0TUukR3faBCCfjZzYSFqDNqiyqkYLrmZTXaS16wz2wjfyvxYVqBfekCH+yy+q5Zu56imQpgVbxs1QAoAS592Ayb2ELigPAWFuocxLXqG4qwKooGFWF2IA4veO43JAL/8D28f+hUTUztGEdBa+eR21V2QnbXd37OkwGEztKtrGrdKcOST1PU5U2w7rGGObyY6mqyq6SbTy27m9c+e1M5u35L+WNpUT4RXFz/9/z+YU/8s+xzzAweiiK0rbBpvGB3Xht6jzOSbkAh+rgjR0v8ei6v1BvrXPRvWmfsJju2FQDPoqdquKjesfxalJsF0IIIYQQHufIpkX4KDbylVgSevTXO45LBYy8HoABlctpqPPMgoQ7Ks3LJJYybKqBbgMn6B3HLZl9fDlq1NpElh/epnMaIQRAekwQN49P5d2bR7H9n9P56LbR3DGxB33iglFV2JlbxX9+zuSqN9cz9PHFzH5/Mx+szyan7NTrHS/YmoeqwqjUCLpHBnTafWlZtz3fM9dtP1CofSb3auN67b92w9hkjAaFjVnl7PHwlvrN3ll9hCNl9UQH+/LHKT2duu/YYG3ddpndfGYta7YHmnVO0nEJYf58PHsM3cL8ySqt45q56ymWARdnFGirBMAULMX2ThGcAIB/g3d1KmlWadcG5UUZQzAausbyW/2nXEPG9PepUf3pZ91N9WvTKS/KPW6b6IAYzks5H4APZXZ7q9hqtGJ7vSnMZcdotDXw/eGvuO2nq7l72c0sy1mIXbUxMGoIj4x9hs8u+JGbBvyeSP+OvT/6mvx4aNQT3DvsIYyKieVHF3Pnkhs4WpPtpHvScSazDyWKtpxIVeFhndN4Nym2CyGEEKLdSnIyyPzPLI5sX653FNHFWDN+AiA7Ymynth7TQ/qIaeQrsQQqjRxY/rHecbxGyW5tGYLDph74BbrvOs16KwvU2lZb83frnES0lt1u5+GHHyY1NRV/f3/S0tJ44oknjmtreNNNN6EoynH/nXvuucftp7y8nOuuu46QkBDCwsK49dZbqa09sYWm0I+vycj49CgemtmXhfdOZOPfp/L8FYO5eEgCEYE+1DbZWLy3iIe/3s3Ef//MpH//zMNf72bx3iJqm7Q2kqqq8uWxFvKXD++cWe3NWtZtL/DMInPzzPbeHSi2x4f6c94AbYbgu14wu72oupFXlx0E4KHz+hDk2/YZ/6cTG3qs2C4zm8+ouY28p89sb5YYHsAnt2sF98MldVw7dwOltSdfR1logh3ae6tvmPfPQnYHpjCt2B5sLdE5iWtUKNrAuDifGJ2TdK5eY84l99IvKSOUNEcW6lszKDyy/7htrut3IwDLjy4ju/qIDik9i6NOG7jR6BPukv0vzPqWy789h+c2PUZmZQY+Rl/OT72UuTM+4T9T5zG1+7mYjc4biKYoCpf2vIpXprxFpF80R6oPc8fi61id97PTjtFR5Wbtc6Cx1H0GAXgj774yKYQQQgiXKl7+JqNqfyZ54c1UFEo7ItF5ksrXAmDqNUPnJK6nGAxkddNa5Qfs+1znNF4kZz0AJeFDdQ7i3poi+gLgV77/DFsKd/Hss88yZ84c/vOf/7Bv3z6effZZnnvuOV599dXjtjv33HMpKCho+e/jj48fzHPdddexZ88eFi9ezHfffcfKlSu5/fbbO/OuiDaKCfHj8uGJvHz1UDb/v2l8e/cEHjynN6NSIzAZFLLL6vlgfTaz39/M0Md/4qr/ruOxb/dyuLQOf7ORmQPjOzVv33itSO2pM9szjs1s7x3X/mI7wM3jtbU0/7c93+OLh8/8uJ96i51h3cO4ZEg3p+8/LkRbt71Yiu1nVH5sZnu4B6/Z/ltJEQHMnz2a+FA/MotruXbueso8/DXjKqrDQZiqFdsDI2J1TtM1BERp3aDCj80A9zZlRu19t1tQks5JOl/KgLFUXP0t+UoMiWoBfh9eSGXZL8sF9AhNY3zCWaiozN/3gY5JPYOhTmvHb/WNcPq+i+sL+b/NT1BjqSYuMIHfD76XLy5cxF9G/ZNe4X2cfrxfGxA1hLkzPmZg1FDqrLX8v9X38fau17A77C49bmvU+mnFdnuFXLd1JSm2CyGEEKLdfGrzAYikirqPb8Zh1/9LpPB++Yd3k6gWYlGNpI46T+84nSJ+4k0A9G/YQlmhjEZ2hpjK7dofuo/RNYe7MycMACC6/pDOSURrrV27losvvpjzzz+flJQULr/8cmbMmMHGjRuP287X15e4uLiW/8LDf5ldsm/fPhYuXMhbb73F6NGjmTBhAq+++iqffPIJ+fn5nX2XRDsYDAoDE0O56+x0PrtjLNsemc6bNwznhjHJJEcGYLWrbMgqZ97aIwCcNzDO6bOQz6T/sTby+wtrsDvUM2ztXlRV5UCR1umho8X2Yd3DGJwYisXuYP6GHGfE08XSfUV8tS0PRYFHL+qPwdC2tU9bIzZEZra3hs3uoKrBO9Zs/63kyEDmzx5DbIgvB4pque6tDZQfm8UvflFXU4GPop2bB0d07kCqriokJhnQro1YLd41CMRht1Ns0p5PqRHOXR7EU3RLH4jj5kXkKvHEU0rRvJuOu/51Q7+bAfj+8P8obzxxbXfxC9Oxx8fhH+n0fb+zew4Wh4VB0cOYP/NbrulzE6G+YU4/zqlE+kfx0tlvMqvnNQC8v3cuf1t1D9VN+nZxsgRqAyCN1bln2FJ0ROeeSQkhhBDCqwQ0/jKad1DTVlZ+/jgDrn5Mx0SiKyja/C1pwAHfgaQFh+kdp1PE9+jPPnNf+lr3kf3ze0Re84jekTxaQ00lqbYsUCCm/yS947i18B5DYR0k2nMpb2rE7OundyRxBuPGjePNN9/kwIED9OrVix07drB69WpeeOGF47Zbvnw5MTExhIeHM2XKFJ588kkiI7WLXuvWrSMsLIwRI0a0bD9t2jQMBgMbNmzg0ksvPeG4TU1NNDX9cnG5ulqbrWy1WrFara64q26t+T67y333M8LZvSI5u1ck0Jvs8npWHyxlVWYZ+ZWN3DY+udOzJob64mc2UG+xc6ioitSowE49fkfkVTZQ22TDbFRIDPXp8GN3w5ju7PhiFx+sO8Kt47rjY/KsuTEZhTXc8/E2AK4f3Z2+sYFOez79+rUUdWz98YLKBrd5bbmjsjoLzSuHBJrd533IWRJDfXj/phFc/84m9hfWcN3c9bx/8wjCAk7fFtjd3pdPxeZQsdtsKIqC2s5BK9UlWkGlTvXDaPbBZnPv++yJbDbbcf/3D4vEohrxUeyUF2QR2S1Nz3gtbHYHdpsDm03F4GjfZ0tlaQFHzVoZKTWqNzY3fw25Smh0N3IumEv0/y5lSMMGVn/yOIOv/AcAA8MH0i+iP3vL9/DpvvnMHvD7Vu/3t88ld2VzOLDb7NgUB4ra/u8pPk3lADj8I5z63nSk+hCLsr4FYHb/u1EdDmwOh9P23xZ/GHQ/PcP68OLWf7GxcA23/3QNj439N2lhvXTJ4whJgELwr893m88De8vz3orVBQM0nam13xuk2C6EEEKIdgs7th7ZhuAZjK75ibFZr7Nr22RShp6tczLhzQJylgNQldi1iqQV6bNg35PEZ30FSLG9I/J2r6ab4qCAKCK79dA7jluL6pZGjepPsNJAcdZuuvUZceYbCV397W9/o7q6mj59+mA0GrHb7Tz11FNcd911Lduce+65XHbZZaSmpnLo0CH+/ve/c95557Fu3TqMRiOFhYXExBy/JqfJZCIiIoLCwsLfHhKAp59+msceO3HA3U8//URAQIBz76QHWbx4sd4RTikcuChc+8PBzSs5qEOGWF8j2VaF+T+sZGiU58xu31OhAEaifB0sXrSww/tTHBBiNlJSa+GZjxYxItpzHosaK7ywy0idRaFniIOh6mF++OGw04+zePFicsu1x/3A0WJ++OEHpx/DWxTWA5jwN6pOeX66q9np8OoeI/sKa7j0lWXc1c9OQCuudLvz+7KzNBYfZABQQTBbli7SO45X27RiacufRxJOAqXsXPkjfjHuNQM8owO3rS/Pbim25+/KZdle731faY39Ydczq+pdxhz+D19+GNrybz3IMpC97OGTfR+RlJeAj9K2ziIrly1xRVy3k3ZsZntReS2VTnx/+rD2Qxw46GfuR9X2fNahbzeuIIzc5n8b8+vnU1Cfz11Lb+LigIsZ4jOk07M0VmodYIIb8ljnZp8Jy5a4//O+vr6+VdtJsV0IIYQQ7aI6HEQ7SkCBkPMfYeN3VkbV/kzcT3dSm7qaoLAovSMKL9TUUEfvhu2gQNSQ8/WO06nSpvwOy95n6OE4wv7d60keIO3P26vp8BoAjgYNJF3nLO5OMRjINafQ17aP6iPbpdjuAT777DM++ugj5s+fT//+/dm+fTv33nsvCQkJ3HjjjQBcffXVLdsPHDiQQYMGkZaWxvLly5k6dWq7jvvQQw9x//33t/y9urqapKQkZsyYQUhISMfulAeyWq0sXryY6dOnYzaffrZlV7bWupfszbn4x6czc7p7FSZO5+jKLNh/kOFp8cycOcgp+8wJPMTLyw6xoyGch88bjaK49ywfgCabgxvf3Ux5UyXJEQHMv2P0GWcXt9WvX0vdixuYm7GeJoMfM2d2rUGXbbE5uwJ2bCImNJCZMyfoHcelJkyo5fp3N5FbZ2V+fgTzbhxOiP/Jn4Oe8r5sc6iUNtowKQrGds72O7iyCvKgzhTO2KnnODmhAG0W8qYVSxk5aSomk1ZiKdsVRYKtlG6xofSa4h6Pu9XuoMbqINrfiI+hfbOR16z6AGuBgkmFS865EpOha5eUVMcMNs3JYmTtcibmzcFx/nJCwmOY5JjOqoWryavNpaZHPVf0vKhV+7PZbKxctoSJU6a1PJfckdXhoLjBTrDZgNnY/pntTdv/CiokDxxF6vDpTsm2q3Q7+1fsx4CBByc/RveQFKfs1xmmWS7lXxv/waai9XxR/wX2eCO/H3Rvp76O8jOi4Nv/I4YyQt3kM8FisbJl1TKmTJuGn497L3nT3LHtTNz31SuEEEIIt1ZTUUykorXSCYtNJvCGN8l7YwLd1CI2fzCbwLu+RGnnyZwQp3J4y2KGKRaKiSCpz3C943SqkPBodgWNY3jdSsrXvifF9g4IKd4CQGP8KJ2TeIbK4HSo2IejcI/eUUQrPPjgg/ztb39rKagPHDiQ7Oxsnn766ZZi+2/16NGDqKgoMjMzmTp1KnFxcRQXFx+3jc1mo7y8nLi4uJPuw9fXF19f3xN+bjab3bqo4Wpd/f6fyYDEMD7dnMv+olqPepwyS+oA6JsQ6rTcN4xLZc6KLHbmVbOroI7hyeFO2a+rqKrKQ1/vZEtOJcF+Jt6+aSTRoa7rYmE2m+kWqZ1blNY2oRiMmDpwsd+bVTdpbXMjgnw86nXVHv0Sw5k/ewzXzt3Arrxqbv1gGx/cOopgv1Pfb3d/X1YcKkab0qFiu6NWmzlabw4n2uS+99UbmEwmTMce4zrfGLDtx1Fd2PIzvamKA6Nq13K28z2zoDoLgGibAT9ff2fG81ipN79N7n8mkKgWsO2D2YTf9x0ms5nr+t7Ic5ue4pMD87mizzVtKqiaTCZMbvzepNodGE0KJlPHPn/9HFWgQGBEglNeJ6qq8vae1wCY2eMSekS41+DNCFMUz058jXl73uD9vXP56tCnHKo+yKNjnyPSv3MmKUUm9gYglDpyG+oIcIPlGO0OrYuTyeTen8lAq/PJt1IhhBBCtEt10REAygnB1z+QoNBIis95A6tqZETdCvZ++4q+AYVXatyrtbzKChvTJQdzOAZpxbNexQuxWS06p/FMDrudHo1a0Ti091k6p/EMtpiBAIRU7NY5iWiN+vp6DL95fzQajThOs2Zhbm4uZWVlxMfHAzB27FgqKyvZsmVLyzbLli3D4XAwevRo1wQXXVK/+GAA9ha0bsaIu9hfWANA79hgp+0zKsiXi4YkAPDumiyn7ddV3lx5mC+25GI0KLx27TDSY4JcfsyoQF+MBgWHCiW1TS4/nqeqqNO+I0YEuPdMMWfpExfCh7dqXRW2H63kpnc3Udvk3msfu1xdKQBNvu49aMfbNPnHAmCoOfmSO56qsP4oANGqn85J3EdgaATVF83FopoY2rCObZ8+BcAFPS4izDecgrp8luV4/5IVbWVtaiRE0VpyB4bHOmWfa/NXsKt0Oz5GX27qf4dT9ulsRoORWwfexVMTXiTAFMjOkq3M/ukadpfu6JTjB4aGU00gAJX5zl/qR2i63hVKIYQQQjhFXXE2AOXG6JafJQ+ZxLoedwMwYu8z5GVsOelthWivhFKt/Tc9p+kbRCe9JlxKBcFEUcmBtd/qHccj5R/YSrDSQJ3qS3xvaYneGsHpYwFIbdqPw27XOY04kwsvvJCnnnqK77//niNHjvDVV1/xwgsvcOmllwJQW1vLgw8+yPr16zly5AhLly7l4osvJj09nXPO0doK9u3bl3PPPZfZs2ezceNG1qxZw913383VV19NQkKCnndPeJnecSEoChRVN1HqIcVTq93B4WMz23vHOa/YDnDz+BQAftxdSEFVg1P37UxL9hbxzML9ADxyQT8m9oo+wy2cw2BQiAnWOmgUVXvG80UP5fVasT08sGsU2wH6JWgF9xA/E1uyK7j53Y3UdeGCu1KvFdttvpE6J+la7MHadyRzvXcV20ssWrejaCVU5yTuJXXgeDb3fRCAUZkvc2jrz/iZ/LiilzZA/sN976Gqqp4R3U5NufbasKsKweExHd6f3WHnzZ3aRJ8rel1HdIBzCviuMqHb2fx3+kekhPSgrLGEP/18K3tKd3bKsUsM2ne12mL3H9DpqaTYLoQQQoh2sVXkAlDtc/wX5H6X/4MdviPwVywEfXMrjfW1esQTXqj46EFSHEexqwopoy7QO44ufHz92B+lFcMc2+frnMYzVWWsAuCQb19M5q5zEboj4nuPoFE1E0IdhYd36R1HnMGrr77K5Zdfzh/+8Af69u3LAw88wB133METTzwBaLPcd+7cyUUXXUSvXr249dZbGT58OKtWrTquDfxHH31Enz59mDp1KjNnzmTChAm8+eabet0t4aWCfE2kRGozbfZ5yOz27LI6LHYHgT5GuoU5t51u/4RQRqdGYHeofLAu26n7dpb9hdX86ZNtqCpcN7o7vxub3KnHjw3RZlYWVjV26nE9ScvM9i5UbAcY0C2UD28bTbCfiU1HKrh53ibqLV2z4G5uLAfAEdg5LYqFxhiiFdsDm4rPsKVnKVGrAIg2d87AKk8y5LIH2BI0CbNiJ/KHO6iuKOGKXlfha/Rjf/k+Nhdt1DuiW6mv0F4bVUowBqOxw/tbdORbjlQfJtgnhGv63NTh/XWG7iEpzJn2AaPjx2Nz2Ji3541OOW61j7YUmLUsp1OO1xVJsV0IIYQQ7VOtFdsb/Y9fu9VgNBJ83TuUEkaqI4cjH/xRj3TCC+Vt0mZyH/DpS0h41z3RDxn7OwAGVq+irqpc5zSexydPu+BRFTVM5ySew+zjy2GztvZd5YG1OqcRZxIcHMxLL71EdnY2DQ0NHDp0iCeffBIfH63o4u/vz6JFiyguLsZisXDkyBHefPNNYmOPnwkSERHB/PnzqampoaqqinfeeYegINe3iRZdT7/4EAD25ntGsb25hXzP2GAM7VxP+XRuHp8KwMcbc2i0ulc3kdLaJm6dt5k6i51xaZE8elF/FMX5j8HpxB0rthdVS7H9VMrrrACEBbj3GqiuMCgxjA9uHU2wr4mNWeXcOm8zDRb3eh11Bl+Ldo5gkGJ7p/KNTAQg1FqqcxLnKlG0Tiux/ok6J3E/isFA95vfJk+JJZ4S8t+9iVCfUC5KuxiAD/e+p3NC99JYVQRAtaHjXRKabI28s3sOANf3vZVgn5AO77OzBJgDuXfYQxgUAxsL13KwYr/Lj9kQoC0XRpUU211Fiu1CCCGcot5iI7eiXu8YohP51B1r/xTc7YTfhcUkcnjiizhUhXEV37B/sZxgiI7zO/IzAOXxE3VOoq/UgePJNiTip1g5+POHesfxOIm12rpoPj3G6ZzEs5SHDwLAkLdZ5yRCCG/TL+FYsd1DZrYfOFZs7+PkFvLNpveLJTHcn4p6K19vy3PJMdqjyWbn9x9sIa+ygZTIAF6/bhhmY+dfVowNaW4jL8X2U6mo71prtv/WkKQw3rt1FEG+JtYdLmP2+5vdbuCKqwXYKgEwBXfdAcp6CIhKAiDSUYbqcOicxjkcqoNik/b6SQxL1zmNewoKjaTqgre09dvr17Lt82e4ts/vMCgG1hWs4WDFAb0jug1rtTazvc7Y8WL7gsxPKGkoIiYgjkt7Xt3h/XW2hKBEzk6aAcD8/fNcfjx7iHbt1qc23+XH6qqk2C6EEMIp/vTJds5+fjkbs2SWZVcR2KgV25XQE4vtAOnjLmZt/PUADNj8/yjJyei0bML7WC1N9KrbAkDY4Jk6p9GXYjCQ210bKR984Eud03iWisKjdFOLcKgK8QMn6R3HoyhJIwGIrpI28kII52qe2e4pbeSbZ7b3inVNsd1oULhxbAoA76454hbrvaqqykMLdrE5u4JgPxNv3TiSMJ0KubGhx9rIS7H9lMrrut6a7b81rHs4824eSYCPkdWZpdz+wRaaulDBPdheCYBvqHuvX+xtwmK1ZTUClCbqaip0TuMcxfVFWBUwqSqJ0b31juO2UgdPYHOfBwAYeeAFmg4d4uykaYC2drvQOGpLAGgwh3doPzWWaj7a9w4Atwy4E1+j7xlu4Z6aW98vP/oTebVHXXosQ7j2/hTUWODS43RlUmwXQgjhFNtyKrDaVZ5duN8tLggJ1wu1al+SfSOTTrlNz2ufY7+pDyFKPY7PbsFqaeqseMLLZG39mSClgQqCSRkgM5ITJ92IQ1UYYNlJUfZBveN4jKLdywE4YuxOUGikvmE8TFTfCQCk2I7QWF+rcxohhDdpntl+qKTOI2afHihy7cx2gCtHJhHgYySjqIZ1h8pcdpzW+u/KwyzYmofRoPD6dcNIj9FvSQlpI39mLTPbu3CxHWBESgTv3jQSf7ORlQdKuOuTHdi8Y7LxaakOB+HH1tj2D5die2fyCwymmkAAqguzdU7jHNmVWQAkWm2ERSfrnMa9DZn1IFsCzsJHsRP+/e1clqgNkP/pyEKKjnWG7PLqtCUWLH4RHdrN/H3vUmOpJjUkjRnJFzgjmS56hvdhVNx4HKqDT/e/79Jj+UVpr99wW7FLj9OVSbFdCCFEhzVa7ZTWaif0W7Ir+DlDPri9nepwEOXQviQHxaaccjuzjy/Kle9SrQbQ17aPA/P/1kkJhbep3bMQgMzg0RiMRp3T6C8mqSd7fQcDkLfyXZ3TeA5HznoACsOG6BvEA0V1S6OUMMyKnYJ96/SOI4TwIjHBvkQE+mB3qC2FbHfVYLGTXa4tndXLhcX2UH8zs4Zpa+O+s+aIy47TGov3FvHsQm0t0Ucu6MdZPfVtS/1LsV0G8Z5Ky8z2LtpG/tdG94jknZtG4mc2sOJAKe8eMOBwePfkgMa6avwUK/D/2Tvv8MjKsv9/zvRMpqX3bDbbO9uAZem9iIpYUKSIr1hfC77WH2IXxS52RVABsSGCSltA2i5s732TbHqdZHqf8/vjmWRZ2JJkZ3KmPJ/r8npfkjMz39mcOXOe53vf3xvspdUaqyk8hnSioDc4lNku1alif+8uABpicZxlsnjjRCg6HQ3v+x3dShW1aj+2f3yHZZUrSKhx/rRXjn8D0IdFGmrCMvnC9/5gH3878CAAH1j8cfS63N4fun7e+wB4vPWfuMOZK7B0VDcDUJEcIhGPZ+x1ChlptkskEonklOn1HN1V8N0n9+f9ArbQ8Q33U6SITZzRqLTjUdE4hx0rvgHA6p4/cHDtPzOuT5J/VPW/BEBixkUaK8ke/HPfDkBD+z/zZiZgpil3bwEgWX+GxkpyD0Wno71oPgCBQ9Jsl0gk6UNRlLEo+d3d2R0lf6Dfh6pCWbGJcltmI0tvXt0EwDN7+zg8FMjoax2PPT1ePvHQFlQV3ntmIzeu0r6rsXLUbPfIzvZjEUsk8YXFJnqhd7aPsmpGGffctBKzQcfOYR3r2/Ij3vt4+NyigzasGrEUOzRWU3h4jaIgKeru1FhJemgbEvPGK+M6DEZ5TTkZ9pJyht/0G6KqnmXBlzhryArAIwf/ji+a3fc4U4Epkho9Wlw+6ee4b+cviSYiLCpfylm156ZJmXYsqVjO/NJFRJNR/r7/wYy9jquqkbiqw6gk8PTnRzFQtiHNdolEIpGcMt2eEABVDjN2s4E9PV7+vUPOgMlnvH1tALhxYC4qPunx8y65mXUlV6NTVJpf+BQj/fmx8JRMDUO9HcxMHAKg8fTcjQhLN7MuuJ6QaqJR7aZl2wtay8l6wkE/zTERuV8+X85rnwz+ytMAsPZt0VaIRCLJO0aj5Hdn+dz2fal57XMy2NU+yowKG+fNrkBV4fdrpz6OeMAX4X9+v5FgNMHqmWV8+eoFKIoy5TpeT3VqZrsvEicQkZ1Zr2ckKDqaFUUkJEgEq2eWc9YMEVvcNhTUWE1mCQ33ATCiOFF0cut/qglZhNme9HZrrCQ9dPnF909ZwqKxktyheck5bJh9GwA3H3iIenMNwXiQhw/8TWNl2mOJimIn3STN9jZvC4+3iQaeDy35RFbcl5wqiqLwnlR3+yMH/0wglpmRbXqDgQFFJAp4eg5l5DUKHfmNK5FIJJJTpmdEdBXMqrTzgXNFLM0Pn95PPCE7LfOVQL9YcLn144+RnPben9Kqa6ScEXwP3EIykf0zOSXZQef6RwHYr59FSWW9xmqyB6vdxU6HqOT2vfJHjdVkP92712FSEgzioqJxjtZychJL05kA1AV2aaxEIpHkG7nS2T5qts+uyrzZDvC+VHf7Xzd24J9CYzkST/Ch+zfRNRJienkxP3vPMoz67NhCtJkN2MwGQM5tPxaj89pdRUb0utw3IdJJvasIgM7hkMZKMkvEI8x2n96psZLCJGYV0f0Gf340oPRGxJjIEtWmsZLcYuk7Ps9m62rMSpx3dbYD8Od9DxJNRDVWpi22xAgARsfkRtL8ZvvdJNUkZ9edz8Ly09InTGNW151Po306/pifxw79PWOv4zaKURDhwakv4iwEsuNOWSKRSCQ5TfeIWKzWOC3ccvZ0SotNtAwGeHhzl8bKJJkiPiw6072mynE/xlJsx/+WewirRpZENrL7b9/IlDxJnqFveRaAgeqzNVaSfeiXvQeAeUNPEY3IDecTETr4IgBt1kWyy2eS1MxfTVJVqGGQ4V4ZPSeRSNLHaGf7nh5vVo+j2peaKT93CjrbAc6dVUFzRTG+SJzvP7UPXziW8ddUVZUvPLyDTYeHcVgM/PamFbiybPZ3pUNE+PdKs/0NjM1rlxHyb6C+pDDM9rhvAICgoURjJQWKoxYAS6hfYyGnTlJNMpD0AODSTT72uxBRdDrq3ncv3Uol1/t7KEnoGQwN8ETbv7WWpin2pCiqtLiqJvzYnYNbeanrOXSKjg8s+t90S9MUnaLj3XNvAuAv++7PWFGG31IDQGK4PSPPX+jIXSaJRCKRnDLdqXl5ta4ibGYDHzl/BgA/WrOfSFx2L+clXlFIES6qntDD6uYsZ8O8zwOwquWnHN76fNqlSfKLRDzOLP96AOwLr9BYTfYxe9XVDFCCCz/7X8xcBXQ+UNy3CYBQ9QqNleQuxc4SDusbAOjf86LGaiQSST7RXF6MyaAjEE3QMZy9Ec/7U2b77Cky23U6hf85WySH3ftyG2d86xn+3z92sLc3cwkAv3y+hYc3d6HXKfzs+mXMqMi+bsbq0bnt0mx/A8Mps700ywoksoExs30kv832ZGAQgLBJmu1aYHCJJDZbdEBjJafOQLCfGEkMqorTXKO1nJzDUVKB+8pfoap63ucRn8sHdv+BpFqYKaDJRAKnKu6jrCUT20tUVZVfbf8JAFc0vYUm54y069OaS6ZdRUVRJUPhAZ5q+1dGXiNqE8VAeq9sjssE0myXSCQSySnTk5rZXusSmx7vPXMaNU4L3Z4wD74qq+XyEVNARKLF7RNfcM1/8yfYWHweRiVB5ZMfwu8ZSrc8SR7Rtv1FXPjxYmX6aXLO9uvRGwwcqLoSAN32P2usJntRk0maQjsBKJ4lExJOhT77QgDihzdorEQikeQTBr2OOalo9myNkh8JRunzRoCpi5EHePfpDXzjrQuZUVFMMJrggVfbufxHL/LOX67j0W3dROPp27R/alcvdz25F4AvXz2fc2ZNLuY10xwx2yMaK8k+3KMx8tJsfwN1BRIjr0uZ7TFLqcZKChNLuTDbSxKDGis5ddp9Imq6Lh5HVzzxTmQJzFh6PhtmfYK3e/0UJ5O0elt4uaswi5b9IwMYFHHPYi+dmNm+rudFtg9sxqQ3c/PCD2VCnuYY9UbeMecGAB7a93sSyQw0rzlF4XxRqDv9zy2RZrtEIpFITp0jMfJi8Wox6vn4RbMA+NlzBwlM4XxBydRgDYs5cLrUjdpEUHQ6Km/4DT1UUKf20ffHW1GThVnZKzk5nh2PA3CgeAUGo9w0PBZlq0Xc2KLAWjxDfRqryU56W3ZQio+waqRu/iqt5eQ0sVqRDOByb9VWiEQiyTvG5rb3ZKfZPjqvvb6kaGxm+FSgKArvPXMaa247jwc/cAZXLqpGr1NY3+bm43/awlnffobvPblvbE02WXZ3e/nkn7eiqnDDmdO4cVVTet5ABqhMme29HtnZ/nrGOtuLjRoryT4aUp3tQ4EowWj+7lEYIqKYPWkt01hJYWKvEHskpeoI8Vhuz+fu9ImxUY2xOHq7NNsny9J3/j8OWs7knV4/AL/f8VuNFWmD390LgE8twmi2jPtxiWSCX2/7MQDXzno3ldb8PRevbn4bdpODDt9hXup6Lu3PbyprBMAZkftGmUCa7RKJRCI5ZXpGjsTIj/L25fU0lVkZ9Ee5b22bRsokmcIVE/PHzGUTN9sBbK5yui/9OXFVx0r/c+z+10/TKU+SR5T1iKrv6PQLNVaSvTTOX8khfTMmJUHLc3/QWk5W4t4rzqNDpjkTWthL3ohz1lkANEf2kYjn70a1RCKZekbntmdrZ/vovPY5U9jV/loUReGsGeX8/PrlvPy5C/nERbOotJsZ9Ef56XMHOfs7z3LrHzby4oGBCc+9H/BF+MAfNhKMJlg9s4w7rp6foXeRHqpTM9tljPwbcQdigJzZfiwcRUaK9OKz0ZXH3e3myDAAijU7kynyHWd5HXFVh15R8fR3ai3nlOjwiaTKxlgck0vGyE8WRaej5uZ7ucRrxKCqbHdvZ0f/Nq1lTTnhEWHwenTOCT3u6cP/ptV7CJvRzvXzbsmEtKzBaizmmpnvAuDBvfeiqhO7nzvp81dOB6Ai2Z/W55UIpNkukUgkklPCG47hS3Wuj8bIAxj1Oj51yWwAfvn8ITzBmCb6JOlHTSYpT4pINFtV06SfZ/qyi1jX9BEAVuz6Ft0HtqRDniSPGBnqZVZsHwB1K9+ksZrspnf6WwEoPfiwtkKyFEPHqwAMly7VWEnuUzN7GQHVTLESpvfgVq3lSCSSPGLMbM/yzvY5UzSv/URUOy186pLZvPz5C/n59cs4s7mUpApP7e7jhnvWc/EPnueel1rHtQYLxxJ88I8b6RoJ0VxezM/fsxyjPru3C6udqc52aba/geGgnNl+IkpFnQYdw0FthWQQa1yY7QaHNNu1QG8wMKSUAOAf6NBYzalxxGyPYS2VZvup4Cyrgst+yRV+ce352TO3a6xo6ol6BwDw613jfkwkEeGenT8H4L3z34/d5MiEtKzi2lnvxqy3sNe9iy396R3dVlIrZt07CBDwDKf1uSXSbJdIJBLJKTLa1e4sMmI1HR2nePXiWuZW2/GF4/zqhUNayJNkAP9wP0VKahZg1bRTeq557/wy201LKVKiWP9xC+GgPx0SJXnC4fX/Qq+otOqmUVE3Q2s5Wc20828mruqYG99L18EdWsvJOmq8onNAP11GyJ8qeoOBVpMophvZv1ZjNRKJJJ+YmzKxezzhsSjsbGJ/X/aY7aMY9TquXFTDQ7eu4ulPnctNq6ZhMxtoGQzw9X/t5ow71/C5v21nZ5fnmI9XVZUvPryDze0jOCwGfnvTCpzW7I8fH42R75cz29/AqNkuO9uPTZlFdAl2uPO3s92WEJ93k6NSYyWFy7ChHIDQUG6b7e1eMbO9MR7HXl6nsZrcZ+ayCznN8RYAtiQO88qmf2qsaGpJ+ITZHjS6xv2YRw78mf5gLxVFVbxt5nUZUpZduCylXDldnCcP7PldWp/banfhoRiAkd6WtD63RJrtEolEIjlFuj1ikfraCPlRdDqFT186B4B7X26j3yc7D/IBT18bAG7smIuKT+m5dHo9xe+5jyGcNCcP03b/J9KgUJIv6A4+A0BPxdkaK8l+yqob2FW0HIC+F+/TVkyW4XP30aSKCMfqhedprCY/GCldAoChe5PGSiQSST5htxiZVmYFYE+WdberqsreVGf7bI1i5E/GrCo7X33LQl754kV8460LmVttJxxL8ueNHbzp7pe45ucv8/DmTsKxxNhjfvH8IR7e0oVep/Dz65fTXGHT8B2Mn+qU2d7nDU84Mj/fGZvZLjvbj8loZ3tnHne2u5LCbC8qqdZYSeHiN4lCh/hIl8ZKJk9STdLlF2uo+mgcZ5k8n9LBm677LkvCZlRF4Yn1txPwuLWWNGWoQZGQGTGVjut4X9TL/XvuAeB9Cz+M2VA44+DeNedG9IqejX2vsN+9J63PPagT16dgf2tan1cizXaJRCKRnCJj89qdx77puXheJac1uAjFEvz8Odndng8EB0SUmFufnkr5kuoGDp79fQDOcv+DvWv+mJbnleQ2yUSCZs8rABTNv1xjNblBaME7AZje/S+SicRJji4curf/F4B2pQ5nuYw/TAe6hpUAVHplioJEIkkv82uyM0q+1xvGF45j0CnMyHJD2mY28N4zp/H4J87hrx9axZuX1GLUK2xpH+G2v2zjrG8/y7cf38uDr7Zz1xNiXM9Xrp7P2bPKNVY+firsZhQF4kmVoSxMQdASt+xsPyFl5vzubI+EAhQrYo/GVirNUa2IFIm9Ep2vW2Mlk2cgNEA0GcWgqhQlbOgNhpM/SHJSFJ2O957zdQCescG2+96HmkxqrGpq0KfM9oRlfGb7n/behzfqocnRzGVNhTVWsMZWx4WNlwFidns68ZirAIgOtaf1eSXSbJdIJBLJKdI9IhapNa5jm+2KovDZy0R3+wOvHs7rCvJCIeYWUWheU/pmwM06+228VHk9AAs3fpGBjgNpe25JbtK+Zz3ljBBUzTQvv1BrOTnBnPOuw6cWUav2c3DD01rLyRribaJoo9uxRGMl+UPlgnMAaEocJuQb0VaMRCLJK+aNmu3d2WW2j3a1Ty8vxmTIja00RVFY2VTKT969lJc/fyH/d+lsap0W3IEov3z+EF/8hyiYuuHMadywqklbsRPEqNdRVixalPvk3PajGA7EACiVZvsxKU1tW+TrzHafuweAqKqn2DE+Q0uSfpI2UeBrDPRprGTydKQi5Ovicfy6Eo3V5BfnzrqUZksDEZ2Ovfpt7Hjsbq0lTQnGiOjiT1rLTnrsYKifv+1/EIBbF38cg67wij3ePfdmAJ7vXEOnL33GeKioVvw/ntwec5GN5MYKQSKRSCRZy2iMfI3zjTHyo5w1s5zVM8uIJVR+vEaaqDmPV0ShhYvS2yE66/rvsk8/GwcBkn++mXhMdqkUMu6t/wFgn3UZJotVYzW5gcVqY3eJKEwIb7xfYzXZQ+mQiDqP1Z2usZL8obSmiT7K0Csq3bvl3HaJRJI+srWzfX9v9s1rnwiVdgsfu3AWL3z2An59w3LOSXWxnze7gjuunq+xuslR7ZRm++uJxBP4I3FAxsgfj9HO9s7h/OxsD7qFuetRHCg6ue2vFYpTmFlFkX6NlUyeTr8w4hpicQJGWbiRThRF4X9WfByAhxw2Fuz9LmF3/ncZm6MjAOhsJ2/cuW/nr4gkwiwqP42zagtzFNwM12zOrDmbpJrkz/v+kLbnTTjqADD5c3fMRbYiv3UlEolEckqMxsjXHWNm+2v5v9Ts9r9v7uRgvz/juiSZwxQQ1fJxe3rNdqPZgvqOe/GpRcyL7yHwwzPYfe/HObjuMSKhQFpfS5L9uLqeByA07XxtheQYlhXvBWD+8LOEg/JaG4tGmBEVEbkl887VWE1+0WEV5ky49RWNlUgkknxifq0w2w/2+4+aLa41+/pSZnuWzmsfLwa9jksXVPPH95/B1jsu4d6bV2LU5+bW4Ojc9l5pto8xEhRd7ToF7JbC6wIcD6Mz2z2hGN5wTFsxGSDiEWa7V+fUWElhYyqpB8AZG9RYyeRp9wrzd1osTsicO2NGcoULGi6irrieEb2e/9hNrDz8C5LJ7LnvyQTF8READPYTj6Q87G3lP62PAHDr4k+gKEqGlWUv75n7PgCeaH2UoVB6rif6kkYAbOHetDyf5Ai5eUctkUgkkqyhZ6yz/dgx8qMsbSzhkvlVJFX44dP7p0KaJENYw2IBr3PWp/25K5vmsWPlnURVA9OThzm7735Of/4mXD+aQfsPL2XXX75O196NBTPTqlAJeNzMju4GoGb51RqryS1mrryEHiqwKyEOvvQ3reVoTvfuV7AoMUawUd28SGs5eUWwahkA1v6t2gqRSCR5RY3TgstqJJ5Us6pAd1+Od7YfC5fVhE6XuxvYVSmzvc8b0VhJ9uBOza8vyfG/bSYx66G02AhAhzv/ouRj3gEAAgaXtkIKnOKKBgDKkkMaK5k8nX5htjfEYySKpNmebvQ6Pe+ZdwMAf3A6aKQLd29+x3rbEyMAmB0n7mz/7Y6fklATrK49n8UVS6dAWfayuGIZC8oWE01G+fuBB9PynJaKJgBKY7k75iJbkWa7RCKRSCaNqqp0e0QnQe1JOtsBPn3pbBQF/r2jh51dnkzLk2QIZ0xEoZnLGjPy/HMvvpGu92/h5SXf4VXHZQxQQpES5bTIRs5p+SGLHrmU5F2zOPDzd7Pn8d/g6ZfRR/lG64bHMSoJOpRaqqfP01pOTqHT62mpexMARXuk2e478CIArZaF6PR6jdXkF0XTzwCgIbhbYyUSiSSfUBTlSJR8lsxtTyRVDqSM/3wy23OdMbPdIzvbRxkeNdvlvPYTUp/au8jHKPlkQJjtYZOcsa0lzqppANiUEEHfiLZiJknHazrbVduJO5Elk+PqGW/BaXbRZTSwptiKp+eQ1pIyhppM4lLFfV1RSdVxj9s1uJ0XOp9Bp+j4wOKPTZW8rEVRFN4zT3S3P3LwL/ijvlN+Tmd1MwAV6hCJePyUn09yBGm2SyQSiWTSDAWiRONJFOXIZseJmFvt4C1LxOyq7z21L9PyJBlATSapSIroouKKzJjtAM7KOuZd8QFmfeRP6D57gB1vfYoXmz/FNvMKwqqRCoY5w/skq7d9jum/W4T7uyvZfe8nOLjuX0TD+bdpUmgk9j0FQGf5ao2V5CZV54jF2MLQRqLBwi5ssvZuBMCX6sKWpI+6BauIqzoqcTPU1aK1HIlEkkdk29z2tqEA0XiSIqOehhKr1nIkKWSM/BtxB4XZLue1n5j6EmG252NnuxIQndQxc5nGSgobq92FXxXn2Uhvm7ZiJkFSTdLp7wSgMRZHbz++OSqZPBZDEe+YfR0A9zntBPryd00VCngxK2J0h720+pjHqKrKr7b/GIDLmq5munPmlOnLZs6qPY9pjmYCMT+PHjr1hgpnZQMxVY9BSTLS154GhZJRpNkukUgkkkkzOq+9wmbGZBjfV8onL56NQafw330DrG91Z1KeJAP4RwYoUlIdEzXTp+Q1FZ2OurkrWPDOL9HwqacY/mQL68+9l5eq3stBvajInJk4xNl9f+T052/E+cPptP/oMnb+9Zt07dskI+dzDDWZZNrwWgBMcy/VWE1uUjdzEXsNczEoSQzdhTtPW00mmRbYAUDRjLM1VpN/WIqdHNaLrp2BPS9prEYikeQTo3Pbs8Vs35+KkJ9dZZPR3FlElXM0Rl6a7aMc6Ww3aqwkuxk12/Oxs90QFmZ70irNdq0Z0om/QXAw96LBB0IDRBJh9CrUxuOYXMc2RyWnzjtmvwu9CrvMZgZG8rcpye8W88HDqhFLseOYx7za8xLbBjZh0pm4ZeGHp1JeVqNTdLxn7s0A/HX/A0QSpzY+R28wMJC6Pnl787fAQwsMWguQSCQSSe7SNZKa1z6OCPlRmsqLeefKBh58tZ3vPrmXv3xwFYqS25tWiaRKb1BUYeY7nt5WANzYMRcVa6LBXFTMzLPeAme9BYCW/k66N/0HY+tzzPC+SrkywmnhDXBoAxz6Pv2U0uI8nUTTBRjTvEhUFB21C1ZTZHel9XkLma4D25jFIBHVyPQVl2ktJ2dxz7wG9t7JfN/LWkvRjMHOA8xhmJiqp26hNNszQZ9zMTOGW0m2rwdu1FqORCLJE+alOtv3dHtRVVXztcK+vlGzXUbIZxNVDjMgzfbXMhwUXYOlMkb+hNSNxcjnX2e7OZJqaLDKGdta4zGWQ7ST6HDujb3r9Ilu1+p4AgNQXFqnraA8psRSyjTVSYvioSVyUGs5GSM0LOaDjyhOTLo3Nmslkgl+tf0nALxt9ruptMoCj9dyUeMV/HbHzxgI9fFk22O8ecbbT+n5hg2V1Mb6CQ+0pUegBJBmu0QikUhOgR6PMNvrXCePkH8tH79wFn/b1MmGtmGe3z/A+XNye/7TZ/++k0e3G2hcMMAVi/N7ERIcEIsut76SUo21jOKqrMd1xa3ArajJJNv3bWJkx+M4u15kTng7lYqbSs8TsO2JjLz+9rWnUffJNSjHWDBIJk7/ln8xC9hnWcysYrmpPVmmX3Aj0T13MUdpY9/B7TTOW661pClnYNfzzAFajDOosNq0lpOXJOqWw/A/KRnerrUUiUSSR8yosGHS6/BF4nQOh2go1Ta6fV+qs13Oa88uRmPkh4MxwrEEFqNeY0Xa4x7tbJcx8iekYSxGPv8624tiwwDo7RUaK5GELFUQBdXTrbWUCdORMtubYuKa4qio0VJO3jPLPI2W2HZaGNBaSsaIeITZ7tc7j7mXuKb9cVo8B7AZ7Vw/95apFZcDGPVG3jXnBn669Xs8tPf3XDX9GvS6yd/3+C21ENtJckTGyKcTabZLJBKJZNL0eEQXQY1z/J3tANVOCzetmsZvXmzlu0/u49xZFTkbyfj8/gEe3d4DwIa24bw322PDYm6X11SRNWb7a1F0OurnraR+3koAhkMBOrasIbp3DeXujZiS6e18qU90sji6lVfXPsqss9+a1ucuVOwdzwPgazhPYyW5jausmgOm+SyI7WBw38sFabbrOkSE/kDJUuR2Y2YomXUW7ITp0QP4Y1EMRrm5L5FITh2TQcesKhu7ur3s6vZqb7b3SbM9G3EWGTEbdETiSQZ8Ec3Pk2xgeHRmu+xsPyFjM9uHg1mRnpFObAkPAEZHbjc05ANRazV4Qefv0VrKhBk126fF4sRVHY7jzNiWpIcFJUt4sn87+035m9QS94lCgoDB9Ya9xEgiwj07fgbA9fNuwWF2TrG63OCq5rfx+92/psvfwQtdz3BBw+THLkZtteADvTf3kjeyGWm2SyQSiWTSjMXIOyfW2Q7w4fNn8uCr7ezq9vLErl6uXJR7lbLhWIIv/3Pn2H+3DAY0VDNFeITZHi7KjcXW6yPn0836ez7C2QMPUbLuW6hnvVl2t58ioYCPOeHtoEDl0jdpLSfnGSlZAP07ULq3ai1FE6pGtgGgazxTYyX5S/XMJfjUIuxKiAP7N9GwYJXWkiQSSZ4wv8bBrm4vu3u8XL5Qu/vOcCxBW+oef46Mkc8qFEWhymGh3R2k1xuWZjuys3281Kb2L4LRBMPBWF4VJzhVYbYXlVRprESi2quhFyyhPq2lTJhRs70xHmNYcWLTy+SQTLJi2nno+v5Aj1Gh19dDtT339kdPRjIwCEDYVPKG3/3z4F/oC/ZQUVTJtbPePdXScgar0crbZl3H73f9mj/tuY/z6y+ZfLGYswF6oCiYe8VA2cyEd4RfeOEFrr76ampra1EUhUceeeSo3/v9fj72sY9RX19PUVER8+fP55e//OVRx4TDYT760Y9SVlaGzWbj2muvpa8v9754JBKJpNDpGRmNkZ9YZzuIavv/OacZgO8/tY9EMvfmnf/q+RbahoIYUl35rYP5N/Pt9ZgC4kYsbq/VWEl2UPeW2wmoFmYnDrLv2Qe0lpPztG58ErMSo4dy6mYt0VpOzqOrWwpAmXe3xkqmnoBnmKZEGwCVi87XVEs+o9PraTXPAcB7YJ3GaiQSST4xv1bMbd/d7dVUx8F+P0kVSqxGKuxmTbVI3sholHyvJ3+7ASfCaGd7SbFRYyXZjdmop8ohPs8d7vxZw8eiERyI4qDiktwojs9nDC6RemiL9musZOJ0+joAaIzF8erfaI5K0kt9w3zmRGMAvHTwKY3VZAZdcAiAmOXovnZ/1Mf9u+8B4OYFH8JsmHgzVyHxtlnvxqy3sG94N5v6Xp308xjLGgFwRHvTJU3CJMz2QCDAkiVL+NnPfnbM399222088cQT3H///ezZs4dPfvKTfOxjH+PRRx8dO+ZTn/oUjz32GH/96195/vnn6e7u5m1ve9vk34VEIpFINGEsRn4SZjvA/5wzHZfVyKGBAP/YklvRNW2DAX7234MAfPay2QB0joSIxpNayso41rAojtM56zVWkh04y2vZXPceAGo3fZdEPK6xotwmuudJAA6XrpYpAWmgfNYZADTFWohFIxqrmVq6dzyPXlHpUqoorZ6mtZy8xlMmCmOMPZs0ViKRSPKJ+TXCbN/To63Zvj8VIT+7yp5XUdP5QlWqQ7nPK812gOGAMGtkZ/vJaSgRSQidw/kzt93nFqZJQlWwl8gYea0pKmsAwBUf0ljJxEiqSTpeY7b7jdk4QDC/MBhMzAuJe4xNXflZwGwIi89Bsqj8qJ8/tO/3eKIjNNqnc/n0N2shLadwmUu4qvkaAB7ce++kn8dWOR2AiuRAWnRJBBPexbziiiv4xje+wTXXXHPM369du5abbrqJ888/n6amJm699VaWLFnC+vXrAfB4PNxzzz384Ac/4MILL2T58uXce++9rF27lldeeeXU3o1kUoSiCf67r59fPX+IQX9hbcRKJJLJE08kxzY1aicRIw9gtxj5yPkzAPjh0/uJxBNp05dJVFXljkd3EY0nOWdWOTevasSsU0kkVdrd+R0l74yJqmxzqgpSAtPe8gU8FNOkdrLvqd9qLSenqR9aC4B+9iUaK8kPqqbNxataMSsxuvZv1lrOlBJtFedSp22RxkryH8M0UdRR7d2hsRKJRJJPzE2Z7V0jITzBmGY69vUKs32unNeelVSl0gak2S4YjZHPp1j0TPHaue35QtAtCuNHFAc6GfutOfZKsWdSpg7nVFH+YGiASCKMTlWojceJmMtP/iDJKTMtYgNgl2+vxkoygzkyDIBiLRv7maqqPHro7wB8YPHHMOjkxOvx8K45N6BX9Gzqe5W97l2Teo6SWpE06yBAwDOcTnkFTdrP4LPOOotHH32UW265hdraWv773/+yf/9+fvjDHwKwadMmYrEYF1988dhj5s6dS2NjI+vWrePMM984UzESiRCJHDGBvV5R2RyLxYjFtFt0acXoe57se08mVfb0+nj50BAvHxxiw+FhYgkR3/z3TZ08+D8rcRbJyClJ/nOqn6VCp3skRFIFo17BadZN+t/x3SvquOfFVrpGQjz4ShvvPSP7TdwndvXxwv4BjHqFL105h3g8TmURdARgX4+HaSXZGXsUT6ok4nEURUHVTbwzR00mqUgOggJFZXXE4/KzA2ApdrB12vs47/BPmb7jx4TOvx6jafLnQDy1EI9n+YI8nkiSiCeJx1V0yVPvQh/u66BR7SahKjQsvYS4vDafMolkklbddJapu3DvW0f9nBVaSzom8WSSRDxBXEmiqOlJNLANbQcgXL1MXqsyTPmcVfAKNCa7ODzUR7FT2+6XxNg1NEZsEt91U4m8B5VIjo+zyEh9SRGdwyF293hZNaPs5A/KAPtGO9ul2Z6VVKeKvnu9snEkFE0Qioni9RJptp+UhlLR2Z5PMfJhjzDbvTonTo21SMBRUUdCVTAoSTyDXTmTtjU6r71MNWEEYkUV2goqEKriFUAnvclh3OEhSi3a3PdkiqK4MHT19iPn02FvC57IMGa9hVU152olLeeoLq7lwsbLefrwv3lwz718bfX3JvwcRXYXI9hw4Wek5xDFzuzcK8o10m6233333dx6663U19djMBjQ6XT85je/4dxzxQemt7cXk8mEy+U66nFVVVX09h57RsCdd97JV7/61Tf8/KmnnsJqtab7LeQMTz/99LiP9URh34jCXo/CvhEFf/zojacSk0o0Cfv7/bzj7mf5yLwEJlkEKSkQJvJZkhyhxQtgwGFI8sQTj5/Sc51brvBXn54fPLmH4v6dmLP4+hNOwLe26gGFC2sS7Fn/PHuAyiIdHQGFx1/eTLwt9+bPj4dYyM/bFdEtsX/fIQ4d6tBYUfaQsC9hQHVRRx8P33cH+hkXnfJzbnj+mTQoyzz70vQ84f4DNAJ9lLHhlcnPnpIcjdHcDOFdhA69zLNPzdJazpSxONwJQI9fx8gzT2qsJv+xqhXUKQOsf+w+LDULtJYDwLNr1mgt4aQEg/mzwS+RZIL5NQ7tzfZUZ/ucKmm2ZyNVqZntfXJm+9i8doNOwW6W3YEnIx9j5GNekUIXMLik2Z4FGIwm3IqLCobx97fnkNku9nmq4qmNOZs026cCVV/FrGgLB0wmtvRv5qLG/Er7syU8AJicVWM/2zYg0vcWlC3GqJeNnxPh3XNv5unD/+aFzmfo9B2m3j7x68ugvhJXwk+gvw3mSrM9HWTEbH/llVd49NFHmTZtGi+88AIf/ehHqa2tPaqbfSJ84Qtf4Lbbbhv7b6/XS0NDA5deeikOhyNd0nOGWCzG008/zSWXXILReOwLUSiaYOPhYV46OMRLB4fY3+8/6vfFJj1nTC/l7JllrJ5RxvRyK/v7/Lznng20+uL8e6San7/nNIx6OS9Vkr+M57MkOT7/2t4Du3bQXFPKlVeuPKXnujie5JWfvEzHcIh+5zw+eO70NKlMP99+Yh+e6GEaSor43i1nYTHqicViPNEhNvVNZQ1ceeVCjVUem3hSZTAcx6Ao6CfR7de1dwPsBTd2zr7s6gwozG12Rw5y3oHvcI73UcKrvoTZOrlN2Xg8zobnn2HleRdhMGTvRlkskcQXS1JRpMeUhvnqO5/qhS4YNlVx4aWXp0GhJB6P83THRgjDtEQ71Vn67xpLJukPJbAbdWm591STSZyb3w8KLFx9OZVN89KgUnIi2vb/jrrAf6k2jjDvoss01RKNxtj04rNcePHFWEzZ3dk3mtgmkUiOzfxaB0/t7mN3tzafFU8oRk/KxJWd7dnJmNnuk2b7qNleUmxCUbI72SUbyMcY+aRfzN4NG0s0ViIZZVhfTkVimNBQ7jQqdKY622ujIilDb6860eGSNBE2l7MiFOGAycTmvo15Z7Y7kx6RkumqHPvZ9pTZvqRimVaycpYZrlmsqjmHdT0v8qe9v+czK++Y8HN4TVUQaiE2dDgDCguTtO7ghkIhvvjFL/KPf/yDq666CoDFixezdetWvve973HxxRdTXV1NNBplZGTkqO72vr4+qqurj/m8ZrMZs9n8hp8bjcaCNshe+/5FNLyXlw4M8uKBQda3uYnGk2PHKgosrnNyzqwKzplVztLGEkyGozczFzaUcs/NK3nvb1/lv/sHuf3RPXzv7UvQZXn8okRyqhT6tWSy9PlF9Gmdq+iU//2MRrjt0tl86s/b+M1Lbdxw1vSsHGext9fLfevEwuNrb12I3XokKrxSrNVpGwpm7fmkJFX0cWXSZntkSHSKuvUVlBqy8z1qydw3fYLuH91LrdrPC4/fzcJ3ffmUns9gMGDI4n9nVUmiVxNCZxoM0qSnC4CgpQZDln6GchJXEwzCtHgroUQMkyX7UqHURBK9QcFg0KflXBru7aBKiZFQFSoaZmf15yhfCFcvg0P/xT64TfN/70RSpMsYDNl/f5ft+iQSrZmfmtu+u0cbs/1AKkK+1mnBYZGf12ykOmW293rCqKpa0CbzcECsz0ut2V1oli2Mxsh3DodIJtX82PsMDAIQNWs70kdyBL+pAkIHiA93aS1l3IzGyE+LiiIms6tWSzkFQ6KoghWeMH9y2tnSv1lrOWklGg5RqogUkeJS4f+pqsq2gU0ALK5Yrpm2XOY9825hXc+LPNn2GLcs/DBlExz5ELLWQgjwdGZGYAGS1rbl0Rnqutd1N+n1epJJYfwuX74co9HIM88ciUbdt28f7e3trFq1Kp1y8p5+X4S/b+rkkw9t4fRvreGqn7zEnY/v5aWDg0TjSWqdFt61ooGfvmcpm2+/hH9+7Gz+77I5nNFc9gajfZSVTaX8/Ppl6HUKD2/u4s7H96Cq+RmHLJFITo2eEXGjVOsqSsvzvXlJHbOrbHhCMX77YktanjOdJJMqt/9jJ4mkyuULqrlgTuVRv68sEtfKlsGAFvKmhNiwuAHzmipPcmRhYjRbaFn4CQAWt96D3zOksaLcQucV51fUVqexkvzCVFzGMHZMSoLOvRu0ljMleHoOAjCglGE0W05ytCQdFDefCcC00B7UZPIkR0skEsn4mF8rzPaD/b6jmgmmir2jEfKyqz1rqXSIxpxIPIknFNNYjba4xzrbZWHIeKh2WtApEI0nGfRHtJaTFvRhsf5MFOXXrOdcJlyU6gr39WgrZAKMxsjPioqUXGvpsZsjJelFsZaxLCyuRYdGDuCJeDRWlD78bjE6Oq7qsDnLAegNdDMQ6segMzC/LDvTQbOdxRVLWVR+GrFkjL/uf2DCj0846gEwBXKnGCjbmbDZ7vf72bp1K1u3bgWgtbWVrVu30t7ejsPh4LzzzuMzn/kM//3vf2ltbeW+++7jD3/4A9dccw0ATqeT97///dx2220899xzbNq0ife9732sWrWKM888M61vLl/Z0j7Cd7bpWX3X83z6r9t4ZGs3g/4oVpOeC+dW8uWr57PmtvN4+fMX8p23L+ZNi2spKR5/ZetF86q469rFAPzmxVZ+9UL2mV4SiUR7ulORijVpMtv1OoVPXzoHgHteas26Be/fNney8fAwVpOeO66e/4bfV6T8nJFgDHcgOsXqpohUtWO4SC62jsecyz5Am1KPCz+HH/221nJyCkugGwDF1aCxkvxC0Sm0m8W11XNwvcZqpoZQ3yEAhozyWjVV1Mw7k5iqpwwPg50HtJYjkUjyhDpXEQ6LgVhC5eDrRuNNBftTne0yQj57sRj1uKzCXO7zZtf6caoZTq1BSyew/1fIGPU6apz5FSVvCrsBUIvLNVYiGSVuqwHAGOzVWMn4UFV1LEZ+fkx8Bzoq6rWUVDAYbaW4EjA9GkNFZdvAFq0lpY3AsDj/PYodnV4PMNbVPqdkPhZDevaVC5F3z30fAP88+Fd80YklQelLxN6bLZwb16dcYMJm+8aNG1m6dClLly4F4LbbbmPp0qXccYeYC/DQQw+xcuVKrr/+eubPn8+3v/1tvvnNb/KhD31o7Dl++MMf8qY3vYlrr72Wc889l+rqah5++OE0vaX85xcvtNAdVEQ0fL2Tj14wg4duPZOtd1zK725eyftWT2dmpe2U4rOuXV7P/7tSzLf89uN7+cuG3JktI5FIpobu0c52Z/q6Bi+dX8WSeifBaIKfP3cobc97qgwHotz5nz0AfPLiWcfs5jfroSb1b9EyMPWbgVOBKSCqseN2GSN2PPQGA93LPwPAss4H8Ax2a6wod3BExA2+uXyaxkryD1+pqBTX927VVsgUkRhuA8BfJFMSpgqL1UaroRmAwT0vaaxGIpHkC4qiME/DKPmxzvYqabZnM2NR8t7Cnts+WvBdImPkx01Dacpsd4c0VpIeimLDAOhtE4sSlmQOnUOY7dZwv8ZKxsdgaIBwIowOHbXxODFVj6NEnk9TgU6nZ0ApZXlYfJdt7tuosaL0EfGI89+rc479bNvYvHYZIX8qrKo9h+mOGQTjAR499LcJPbaoYjoApTFptqeLCZvt559/PqqqvuF/9913HwDV1dXce++9dHV1EQqF2Lt3L7fddttRxq/FYuFnP/sZbrebQCDAww8/fNx57ZKjiSeSrG8TN08P/c/pPPqxs/nMZXM58wTR8JPlA+c286HzZgDw+Ye38+Qu+cGTSCRH6El1tqcrRh7EhtpnLpsLwP2vHKZrJDsWvXc9uY/hYIw5VXbet3r6cY9rLi8GoGUgP6Pki8J9AOicsrL5RMy58Hr262dSrITp+uc3tJaTM5QnxQLMVtmkrZA8xNiwDIAK726NlUwNRq8oEo3a5bVqKhlwLgJA7SyMcQUSiWRqGI2S3909tWa7qqpjne0yRj67qUqZ7X2ewjbbh4PSbJ8o9SWjc9vzo7O9OD4CgMkhx75lC6ZSsR5xxAY0VjI+Rue1V5hKMQJuxTnWiSzJPG5jNStSUfKb+zdprCZ9xLzi/A8YXGM/2z5mti/TQlLeoFN0XDf3ZgD+tv8BIonxp/w4qsX+doXqJh7L04TWKSa97qwk42zr9BCIJLDqVZbUO0/+gFPkc5fP4Z0r6kmq8L9/2sKrLXL+rEQigXAsMVY5X+tMb9zP6pllrGouI5pIcvcz2kfRbm4f5k/rxYLjG9csxKg//ldnc7lYrB8azM/OdldMmKHmUhnzfSIUnY7hVV8EYGX/3xnqkuNYTkbQN4ITUaRSXj9TYzX5R+UcMaqpMdFOKODTWE3mKQ6mZo6VyJSEqUStXwFA2fAOjZVIEokEX/rSl5g+fTpFRUXMmDGDr3/966iqOnaMqqrccccd1NTUUFRUxMUXX8yBA0ffd7ndbq6//nocDgcul4v3v//9+P35eY8jyV7mj3W2T+3s0gFfhJFgDL1OYUaFbUpfWzIxRjvb+2RnO8CExkgWOg0psz1fOtsdqrhOWlxVGiuRjGItE3snpYnc2E8fM9sV8d3r1ZdoKafg8BfVsjxltu8f3os/lh/33Um/MNvDRhcAQ6EBOv3tKCgsLD9NO2F5wsXTLqfSWo07PMSTrY+N+3Guygaiqh6DkmSkvz2DCgsHabbnGGsPDgIw06mi100+Jn68KIrCt65ZxCXzq4jGk/zP7zeyq3tqF7kSiST7GI2Qt5r0OIoMaX1uRVH4v8vEfOG/burUNJI9nkhy+z92AvD25fWsbCo94fHT87izXU0mKU+KBWJxpTSwTsbMs97MTuMizEqMwX99VWs5Wc9g50EAPBRjtbu0FZOHlFU3MogLg5Kkc2/+z20viYo0JktFs8ZKCovSOasBaI4dJBYpbMNDa77zne/wi1/8gp/+9Kfs2bOH73znO9x1113cfffdY8fcdddd/OQnP+GXv/wlr776KsXFxVx22WWEw0f+dtdffz27du3i6aef5l//+hcvvPACt956qxZvSVLAvLaz/bUFI5lmNEK+qcyKxSi7+rKZKocZkDHyo53tpcVGjZXkDmMx8nnQ2Z6Ix3GpYu+kuFSmx2YLjmqxd+JQgoQD2b+fPma2J0QRU9B44j0wSXqJ2eqpTiSoSJhIqkm292/VWlJ6CAo/K2oW59NohPxM1xxsJpkedKoYdEbeNecGAP609z7iyfi4HqfT6xnQlQPg623NmL5CIr0OiSTjvHxIXJxmO6dukWnQ67j73Uu58XfrWd/q5qbfbeDvH17FtLLiKdMgkUiyi9EI+Rqn5agxIeli+bQSLp5XyZo9/fxwzQHufvfStL/GePjjK4fZ3ePFWWTkC1fMPenxR8z2/Kg+fS3+kQHKFFFh66pu0lZMDqDodETOvx2efhcr3f9mf8tOqpsXai0ra/H3twEwqKukVlspeYmi09FZNJfy0Cv4D62H5RdpLSljJBMJqpL9oICjZobWcgqKqukL8FCMUwnQs28DjYvP0VpSwbJ27Vre8pa3cNVVVwHQ1NTEn/70J9avF8U2qqryox/9iNtvv523vOUtAPzhD3+gqqqKRx55hOuuu449e/bwxBNPsGHDBlasEKkFd999N1deeSXf+973qK1949U6EokQiRyJLvR6Rex3LBYjFotl9D1nI6PvuRDfezppKrFg1Ct4w3EOD/qoS+MIqxOxp3sEgFmVNvk31JiTfZbKbcJc7hkJFfTfasgvzHaHWV/Q/w4n4vXnUrVdpAB0uINZ9W8WT6ok4nEURUEdZ6OVZ7CHCkXsFVscJcTj2fN+8pV4PH7U/z0W5iIbAdVMsRJhqLuVqukLpkreGPFEkkQ8STyuokueuO+y3XsYgLJUonTYXEY8iz4b+crYOeRqgG6YH1F43gqbejdweuUZ2op7DfFkkkQ8QVxJoqjj7+HVh0TjTtxSSjweY2tqHv3CsiXyWpUmLmu8mvt2/ZruQCfPHX6SCxouHdfjhg2V1MX6CPa1TvnfIjF2DY0Rm4Km4lNhvPcI0mzPIULRBJsPjwBTa7YDWIx6fnvTCt71q1fY0+PlhnvW87cPraIyFdclkUgKi9HO9nTOa389t10yhzV7+nlsWzeXL6jmqsU1GXutY9HnDfP9p/YD8NnL51BmM5/0MaMx8u3uIPFEEsMJIudzDU+vWHS5sWOxyijN8TB9+SVsefEMloZfxf/4V+Gjf9VaUtYSGRTnl9dcLc32DBEoXwwdr2Do3aa1lIwy0tdOuRInruooqZmutZyCQtHpaDPPY0lkI96D60Ca7Zpx1lln8etf/5r9+/cze/Zstm3bxksvvcQPfvADAFpbW+nt7eXiiy8ee4zT6eSMM85g3bp1XHfddaxbtw6XyzVmtANcfPHF6HQ6Xn31Va655po3vO6dd97JV7/6xjSXp556CqvVmoF3mhs8/fTTWkvIeSrNerqCCvf/678sKp2avZBnDuoAHXi6+c9/uqbkNSUn5nifpY5hBdBzoLOf//znP1MrKovocesBhd1b1uPXfhpbVjN6Lo1EAAx0jQT517//Q5bv9Z+Q8HAXs4AR1caG55/TWk5BseH5Z074+9OUUorpYffaNbS0dE6RqjeybxzH7PXuBsDhFgWTQxEjzz71RAZVSV5L17CoclgaCPC81cB/DzzDnN7cH7NX4e0BYNAXZ90zT/KK9wUALD061g09qaW0vGKlbjnP8iz3bPop5n3JcTXHuVQxptp9aAvrntFmN+7ZNWs0ed2JEAyOLwFHmu05xMbDbqKJJFUOM5WW8cVBpBOHxcjvb1nJ23+xjnZ3kJvu3cBDt56Js0hGVEkkhcZoZ3u657W/lvm1Dt65op6/bOzkow9uZn/fLD5x0Sx0U7QC/sa/9+CPxFnS4OLdKxvH9ZhqhwWLUUc4lqRjODTW6Z4PBAdSZru+AhkkNn50l9wBj13FCu+z7Ny9nvr5p2stKStRPWLTIWyd2qKaQsI8bQV0/JpK/26tpWQUT48YSdCvK8dilDNLpxpv+WnQtRFzzyatpRQ0n//85/F6vcydOxe9Xk8ikeCb3/wm119/PQC9vWLUQlXV0TNdq6qqxn7X29tLZWXlUb83GAyUlpaOHfN6vvCFL3DbbbeN/bfX66WhoYFLL70Uh8ORtveXK8RiMZ5++mkuueQSjEa5Zj4V/hveyT+2dGOtm82VF0xNaslvf/kK4OVNZy/jsgVy/rGWnOyzNK3by2/2vkJYMXPlledPvcAsQFVVPrvhGSDJmy65gPqSqUmAyDVefy4lkyrf2LaGWAKWrr5gypIzTkY8qTIYjmNQlHGPEG3d8CS0gUfnZNVFl2VWoAQQ3cgbnn+GleddhMFwfIulf+f3INZDbbmNORr8bWKJJL5YkooiPSbd8RtCVFXlGw9/A4CZqcMcdbNZcunlUyGzoInH47zw7BpOO+cy+MudXBBy8yMq6U52s+rC8ygyZMe1KZZM0h9KYDfqME6guWhg512QgMoZC6k+50z6HrsdgGsvuJkSi9xhTBfzI2ew9vG19CR6MC8qYXnVyVMR9vY+Cz0vUW4KM2uKr0/RaIxNLz7LhRdfjMWU3Xs3o4ltJ0Oa7TnEywdF5MZZzaUoijbzgCvtFv74/tO59hfr2NPj5QN/2MgfbjldzjCTSAqM0c72Gldm0y2+dc0i7BYj97zUyo+fOcC+Xh/ff+cSis2Z/fp66cAgj23rRqfAN9+6cNwGv06nML3cxp4eLy0D/rwy22PDHQD4jJXSbJ8ADQtWseG5C1jpf47401+F+f/WWlJWYvIJsz3pbNBYSf5SM28VvASNiU6GfSNY7S6tJWWEUL+YNeY2ypQELTA1nQ5dv6XWv0trKQXNX/7yFx544AEefPBBFixYwNatW/nkJz9JbW0tN910U8Ze12w2Yza/MQnIaDQWtNlc6O8/HSyodfKPLd3s6/NPyb9lMqlyoF+MhZpf55J/vyzheJ+lulKRujUYiIJOPyEDIF8IRuNE4kkAKp1WjEa53XsiXnsu1bmKaBsK0uuL0VSRHYVhSlJFH1cmZLbH/WLsaMDgwm6Q16ypxGAwYDjBv3nAUgkxUH09JzwuU6hKEr2aEDpPcH0cCPYTToTRKToag8JYMriqMcjvwCmjom4GCVVheiJMubmcwcggezx7OL06O6Lk1UQSvUHBYNBPKMmzOD4CgMlZxZ5hsU5stE+nwiaLGdNJmaGC8xsu4Ym2x9jp3sYZdWef9DGKqxF6wBrqnfLrUyIp0qoMhuxfK41XX+HdgeYwa1Pz2lc1l2mqY1pZMb+/ZSV2s4H1rW4+9uAW4omkppokEsnU0j3a2Z7hym+DXseX3jSfu96+GJNexxO7ern2F2vpcI8vvmUyROIJ7vjnTgBuXNXEwjrnhB7fXCEM9kP5NrfdK+IzQ9ZqjYXkHsVXfIW4qmNZaB1tW2Sk37EoDosuSUPp+FIkJBOntKqeXsrRKSqdu17RWk7GUN1tAPiLpNWuBVXzxYK+Qe3G5+7TWE3h8pnPfIbPf/7zXHfddSxatIgbbriBT33qU9x5550AVFeL7/K+vqP/Rn19fWO/q66upr+//6jfx+Nx3G732DESyVQxv1YYYLt7xtdVcqq0u4OEY0nMBh3TyvKneDZfKSs2YdApqCoM+iNay9EEd0BED5sMOqwm2QwzERpKxZiTTO4xTAVJ3wAAIWOJxkokryeW2kPR+4+dDJQtdPhEg0VNcS2uxAgAFpe855tKjCYz/UoZCjDHLPZGtqTmm+cyDtUDgMVZxfYBkYC2pGKZlpLylmbnLADafW3jOt5UJs4zZzS7r0+5gjTbcwRPMMaOLnFhWjVD+57CBbVOfnvTCkwGHWv29PGFh3egqlM7R14ikWhHz+jM9gzGyL+Wd65o4E+3nkm5zczeXh9v+dnLvNIylJHX+vXzLbQMBqiwm7nt0tkTfvyMVDd7y4A2CSSZwuTvBiBukwbWRKmesYiNLhG9Znzu6xqryU5KYsLwKaqYprGS/KbbOhcAf+sGjZVkDoNXbBLF7LJwQwscZdV0KGIcRM+ulzRWU7gEg0F0r4sJ1ev1JJOiQHr69OlUV1fzzDNHZox6vV5effVVVq1aBcCqVasYGRlh06YjIwGeffZZkskkZ5yRHd01ksJhfo0w2zvcITyhWMZfb1+fD4BZVbZxd5VKtEOnU6i0i1SN3lRReKExHBCfi1KraVwzWiVHqC9Jme3DIY2VnCJB0aAVNUuzPdtQ7eLe2BzK7kLUDp8YHVhvb6AkOQxAcWmdlpIKErdRFDjMiIvGny39m7WUc8ok4nGcqmhGspZWsW1AvB9ptmeGBkcTAB3ew+M6vrhqOgDliYFMSSoopNmeI7zSOoSqio7JakdmY5vHyxnNZfz03UvRKfDXTZ18+4m9WkuSSCRTgKqqUxYj/1qWTyvhsf9dzaI6J+5AlPf+9lXuf2V8Nw/jpX0oyE+fE/N+b79qHg7LxGNsmitEjGG+me1FYbEw1LnqNVaSm5S86ctEVQOLols5uO4xreVkFYl4nApVFM+U1DRrrCa/CVUsBsDUv1VbIRmkOCRSOJQSWbihFd22BQDEDq/XWEnhcvXVV/PNb36Tf//737S1tfGPf/yDH/zgB1xzzTUAKIrCJz/5Sb7xjW/w6KOPsmPHDm688UZqa2t561vfCsC8efO4/PLL+cAHPsD69et5+eWX+djHPsZ1111Hba0svJNMLS6raWyW8t4p6G7f1yvM9tlV9oy/liQ9VDnFurTPW5hmuzsoOttd1uyOYc1GRufbdw7ndme7LijWU3GLtmmokjeidwnDujiS3WZWZ6qzva6oFgdiP8teLu/5pppAKqGtOSAKp3YObieSyN3UFv/IAHolFRfucLB/eA8Ai6XZnhEa7WIfpNPfTlI9eRJ1SbUw2x1KEL8nM01thYQ023OEtQdFheLqGeUaKzmaSxdU8+1rxcbtr55v4dcvHNJYkUQiyTTecJxANAFMXWf7KDXOIv7ywVVcvaSWeFLl9kd2cvsjO4ilYZSFqqp8+dGdROJJzppRxpuXTG5RMRoj3zKYXzHyrpiIkjWXypnak6GiYRYbKoTJ4Xz5m6hJOX5llKGeNgxKkqiqp7RKdiNnkqKmFQBU+/O3QLIs1gOAuWK6xkoKl2i12DixD27VVkgBc/fdd/P2t7+dj3zkI8ybN4//+7//44Mf/CBf//qRdJXPfvaz/O///i+33norK1euxO/388QTT2CxHCmkfOCBB5g7dy4XXXQRV155JWeffTa//vWvtXhLEgnzUt3to4l/mWS0s31utTTbc4XRppTC7WwXZntpsUljJbnHaIx8pzu3O9tNETcAanF27RtLwJzqDnfFs9ts7/C1A1CG+L6NqnocJRVaSipIYnbR4FLrdVNqKSOajLJrcKfGqiZPYFjEk3vUYvZ595JQE1Rba6gqrtFYWX5SXVyHQWcgkgjTHzx5NHyR3cUIomnM09OaaXl5jzTbc4SXD4nKktUzs69C8Z0rGvj8FSKW9Fv/2cvfNnVqrEgikWSSHo9YhJZYjRRpMA+uyKTnJ9edxmcvn4OiwP2vtHPDPa+OzambLE/u6uO5fQMY9Qpfe8vCScfvTU/FyA/6o1MSczkVqMkk5UnxPVRcKbtFJ0vNm79EUDUzJ76f/c8/pLWcrMHTK27oB3Xl6PRyxmQmqZkv4qEb1G58w4Maq0k/iXicyqR4X866mRqrKVxsM8R51hTeIwuLNMJut/OjH/2Iw4cPEwqFOHToEN/4xjcwmY6YMIqi8LWvfY3e3l7C4TBr1qxh9uyjx+eUlpby4IMP4vP58Hg8/O53v8Nms03125FIAFjZJKKR73mpFX8kntHX2i8723OOqpTZ3ufL3e6/U2F0LVwizfYJ05DqbO/I8c52S0zEfuuLpTmabdhTo9LK1WGSiYTGao5Ph190tpfExXVkWHGh6KR1NNXoUgltxcFullYuB2BL/6YTPSSrCQ2LlEyvzsH2VIT84orlWkrKaww6A3U20cTS7m0b12MG9VUABPpaMiWrYJBXzBygzxvmYL8fRYEzm7PPbAf44LnNfOAc0UH0ub9vZ83u7J5DI5FIJs9YhPwUd7W/FkVR+Mj5M/nNDSuwmQ280uLmzT99iT2TjJUMROJ87bFdAHzw3BnMrJz8RrLdYhybGdgykB/d7QHPEFZFbFy5qpu0FZPDuCrr2VR7HQDVG75LIp7ZjeJcITTQBsCwoVJbIQWAq6yabkUspLp2v6KxmvQz3NeGUUkQU/WUVDVpLadgqZ13BhHViAs/fW27tZYjkUjyhBtXNdFYaqXHE+a7GRxhF4knaBkU8blzqx0Zex1Jehkz2wu1sz0VI19qlWb7RBmd2d7rDRON526RoC0+AoDRKddU2YazqoGkqmBUEniHerSWc0xUVaUz1dnuSoU8ePSlGioqXCwVYrSeK9LDsjww22NekZLp17vGzHY5rz2zNKSi5Nt9beM63msSe0Qxd3umJBUM0mzPAdYeEh06C2uduLL0xllRFL5wxTyuXVZPIqny0Qc3s6HNrbUsiUSSAbpHxAZGrUs7s32Ui+dX8Y+PnMW0MiudwyGu/cVanth58pic1/OTZw/Q7QlTX1LERy849W7IsSj5PJnbPpKKEhrGjsUqO9pOhWlv/iJeipmePMz+p+/VWk5WEB8WN/SBIhkjNhX0FIs0omDbBo2VpB9P10EA+nXl6A0GjdUULkazhVbjDADce1/WWI1EIskXikx6vnXNIgD+8MphNh0ezsjrtAwESCRVHBYDVQ5zRl5Dkn6qneJv1VuoM9tlZ/ukKbeZsBh1qOqRxoJcxJ4UIzbM0mzPOowmM27FCYCvPzvNrKHwIKF4CJ2iw+kXn4OgSZrtWuCqFeuoymQ/S1Om9PaBrcSTuZmcmfALX8trdLJ7aAcASyplZ3smabQ3AdAxTrM9ZBVjVBVPR4YUFQ7SbM8BXj4oonvPysII+dei0yl8+9pFXDS3kkg8yS33bZh0l6lEIsleRmPka12Wkxw5NcyqsvPPj65m9cwygtEEH7p/Ez9ec4BkUh3X4/f1+rjnRWEmf/XNC9ISjT+jQhjS+TK3PTgoFoRDehlJd6rYSirYOu0mAKZt/yGxaGFGXb4WnVeMn4nZ6zRWUhiEK5YAYBnYprGS9BMZENfyIaMs3NCaIZcwxJSujRorkUgk+cTZs8q5dlk9qgpfeHh7RrpQ96Ui5OdU2yc9Vkoy9VTZU53tBWq2H+lsN2qsJPdQFGWsu71zODfN9mQigUsV+6/FJdUaq5Eci2G92NMPDmanmdXhE7qqi2vQB4QPETFntw+Rr5TWTiehKliUGM6IGYfJSTgRZo97j9bSJkdAmO37rBaiySgl5lLqUzHnksww2tne4Ts8ruMTDrEXZwp0Z0xToSDN9ixHVVXWHhQXpdUzyjVWc3KMeh0/fc8yVjaV4AvHufF36+lw5/bcI4lEcjSjne1axsi/HpfVxO/fdzo3n9UEwA/X7Odjf9pMMHrimG5VVfnSIzuJJ1UunV/FRfOq0qKnedRsz5PO9tEoIZ9RVsmng5lv/gxDOKlXe9n/n59rLUdzioIiSk9xNmispDAobl4JQE0gcxG8WqEOi8VkoEgWbmhOvTjPykd2aCxEIpHkG7dfNY+yYhP7+/z86vlDaX/+fX1HzHZJ7lDlHDXbC7OQdTggOh5lZ/vkyPW57QHPIAZFFB/ZSqXZno34jaJxIT7SpbGSYzNqyjXYG9EFROx33Cr3f7TAZLYwoIhCB0/PIZZWiu72zX25WcSsC4nijX1F4hq1uGKZLGbMMI2OJmD8M9v1JaL4wRaeeFKs5Gik2Z7ltA0F6faEMel1rGzKjfiWIpOe3964krnVdgZ8EW6451UGfIW54JFI8pHRaLVs6WwfxaDX8ZU3L+A71y7CqFf4z45erv3FOjpPsGB+eHMX69vcFBn13HH1/LRpybcYebxiQRiyyoV7OrAUO9k964MAzN77M8LB/EhAmCyOSB8AlvJpGispDOrmrwKgVu3DM5idMwMnizE1ZzDukIUbWlM2dzUA0+OHiITy5LtQIpFkBSXFprH79rufPcjB/vTeR+0f7WyvkmZ7LjE6s90fieOPnLjgOh8Z62yXZvukaCgVne252izkdwuDxKcWYbJkT1OE5AiholRjhzc7O0c7U53tDbZGTGHR9IdNJhtqhdso9t4CfS0sTUWub+3frKWkSWMMC7P9gFFcX5dUyAj5TNOQipEfCPURjJ38e62oQhxfEuvLoKrCQJrtWc7Lqa72pY2utEQbTxVOq5Hf33I69SVFtA0Fufne9XjDuTlbRCKRHE2PJ3tmth+Ld61s5E8fOJNym4k9PV7e8tOXWd/qfsNxnmCMb/1HxDB9/KJZY9Fx6WBGuehsbx0SMx9zHZNfGHJxW63GSvKHWVd9gh7KqcLNoX/9UGs5mlKeFJXz9qrpGispDGzOMtoV8Vnu3r1OYzXpxRYSm1dKaZO2QiRUNM7BjR2TkqBn73qt5UgkkjzjzUtqOX9OBdFEki8+vGPc46PGw96xGHlH2p5TknlsZgM2swEozCj5sZntVmm2T4b6VGd7rsbIh0bEesqjc2qsRHI8EjZhnhoD2dk52p4qWm5wNGKJCHNU75DNFlrhLxLr9cTQYZZVrQBg68AWEsmElrImhSU6TBxoZRiAJak59JLM4TS7cJpLAOgcR5S8o6YZgArVTTwWzai2fEea7VnO2kOpCPmZ2R8h/3qqHBb++P4zKLeZ2NXt5dY/bCQcy70vBYlEcoRkUqXXMxojn12d7a9lRVMp//zY2SyodTAUiHL9b1/hT+vbjzrmrif3MhSIMqvSxvvPTq/JV1dShMmgIxpPjiUB5DJFqSghnUtGM6cLk6WIgws/DsDClt8S8AxrrEgb/J4hHIhK29K6Zo3VFA59tnkAhA7nZhTd8SiNiWtVUaUs3NAaRafjsGUBAP6DazVWI5FI8g1FUfjGWxdiNelZ3+bmoQ3pmYHrC8foSt27y8723KPKYQagz1NYZruqqmOd7TJGfnI0pArvczVGPuoR3Yh+vUtbIZLj4xDmqSXcr7GQY9OZMtvrbQ3Y46JZxeKSZrtWxOz1AOi9HcxyzabYaCMQ83NgZL/GyiaONeFhn8lImBg2o53pzplaSyoIGlNz29t9bSc91lVRT1TVY1CSjPS2n/R4yfGRZnsWk0yqrDskqslWzyzTWM3kmF5ezH3vOx2b2cArLW4+8dAW4omk1rIkEskkGQxEiCaSKMqRqL5spc5VxN8+dBZXLa4hllD5wsM7uOOfO4klkmztGOHBlPn+9bcuxGRI79ehXqfQVCYW7IcGcj8i3BUbAMBc2qixkvxizmW30q7UUYKPtse+o7UcTXB3tQAwjB2rTXZiTBXRqiUAFA1s11hJ+ojHolQmRZGqs0Yu4LMBf8VpAFj6cjPyUCKRZDf1JVb+79I5ANz5+J60dDPv7xP37dUOC06r8ZSfTzK1VKeKwXsLrLPdH4kTS4h0h1LZ2T4pjsTI52ahfMIn1utBo0tbIZLjYioRjQuO1N5KNqGqKh0ps73RMQ2XOgJAcalMNtQKXWqGdlGwC71Oz2kVS4HcnNtuT4ywySK+nxdVLEWvy53k5lxmNEq+Yxxmu06vZ0AnGn29fa0ZVJX/SLM9i9nd42U4GKPYpGdxvUtrOZNmYZ2TX9+4HJNex5O7+rj9kZ2oau7HKkskhUjPiNi4qLJbMOqz/yukyKTnp+9eyv9dOhuAP6w7zI33rOf//WMHqgpvW1rHmc2ZKWZqTkXJ5/rcdjWZpDxlYBVXypna6cRgNNGx7NMALO34I96h7IyUyyS+fnEjP6Sv1FhJYWFrPh2AuuBejZWkj+GeVgxKkqhqwFUlC4OyAfP0MwCoC+zWWIlEIslXbjqriSUNLnzhOF/+565Tfr79fSJCfna17GrPRUaLwfu8EY2VTC3DATGy0WLU5dT4yWxiNEZ+0B/JyURONSjW61FTqcZKJMfDWi7WJ6XJIY2VvJGh8BCheAidoqNU5xxLnnNW1GusrHCxVIikNldU7BGNzm3f3L9JM02TQU0mKVG9bLKI5JnF5Us1VlQ4NIx1tp88Rh5g2FgFQGSgLVOSCoLsd0oKmNEI+TOay3LC1DoRZ80o5yfvPg2dAg9t6OC7T+7TWpJEIpkEPR5R6V3jyu6u9teiKAofu3AWv75hOcUmPetahtjV7cVhMfCFK+dl7HWbK4qB3O9sD3iGsCpiw8pV3aStmDxkzoU3cFA/A5sSovOf39RazpQTHRQ3/j5zlcZKCou6eWeQVBWqGGKoNz3Ru1rj7TkEQJ+uEp1ebjRnA9XzVwNQp/bhGezWWI1EIslH9DqFb79tEQadwhO7enly16kVLu4bnddeZUuHPMkUc8RsL6zOdncqQl52tU8eZ5ERu9kAQGcORsnrU2Z73JKbqaiFgKOyAQAXfsLB7NojGu1qr7JWExxKFW6oBmxOWbyhFc6aGQBUJfpQk0mWVgmzfWv/ZpJq7iQGB30eDEqczSmzfUnFco0VFQ6NjiYAOrxt4zo+YKkBIDmSH/tDWpHbDm6e8/JBUe121oz8uFm6fGEN37xmEQA//+8hfvtii8aKJBLJROlKdbbXOos0VjJxLl1QzcMfWU1DqdD++SvmUWE3Z+z1mivyo7N9pEd0Hg9jx2KVG4/pRqfXM3Tm5wBY0fcX3D1t2gqaYtTUjXzIWqexksKi2O6iXS86FXr3rtNYTXoID6RGEpjkbMFsweYq57CSOs92vqixGolEkq/Mq3Fw67nNANzxz514w7FJP9eY2V7tSIs2ydRSnTLbewtsZvtwQM5rP1UURaE+h6PkjRExYztZnB/7x/mIzVVBWBXjSTz92TUTeXRee6O9Ed9QFwBDigtFJ20jrSirm0FSVbAoMYYHuplXOg+L3oI36qFl5JDW8saNf7iHFqOREb0ei97C7JLMNTxJjqbRLtIROnxt4yrQiNrE2Ai9rzOjuvIdedXMUqLxJOtbxc3S6pnlGqtJH+8+vZHPXCbmqn3j33t4eLP8AEskuUTPiFh41uZQZ/trmVNt58lPnst/Pn4O7zkjszHDo53tLYPZVbU8UYKDYuHl1uXPd1G2MXP129htXIBFidH/2Ne0ljOlmAJiMa86ZUTdVNNvmw9A5HDuzX07JsMiJSEgCzeyil77AgDi7es1ViKRSPKZj180i+nlxfR5I9z1xORHpIzGyM+pkjHyuchYZ7uvsMx2d8psL5Vm+ykxGiWfi53tlugwALriCo2VSI6HotMxqBPFEIGB7OocHe1sr7c3Eh7uAcCnl13tWmIyWxhQxN9guOsABp2RxRWnAbAlh6LkQyP9Y13tC8qXYNQbNVZUONTa6tArBsKJMIOh/pM/wCn2yK1BmUh3KkizPUvZ2jFCKJagrNiUdwu9j5w/g1tWi+qaz/xtO8/u7dNYkUQiGS89qS6BmhzsbB/FajIwvzbz3SozUjPb+7wR/JF4xl8vU8TcYiHoNcmY70yh6HQEz70dgJVDjzFwuHBGrdjCIu7VUNqgsZLCI169BIDiwR0aK0kPplQFdswhz6VsIlojogKdg1u1FSKRSPIai1HPt1Ipeve/0s6GNveEn2PQH2EoEEVRYJaMkc9JqhxiQ7+v0DrbUzHyJTJG/pRoKEl1tg/nXme7NT4CgNEhzfZsxmMQDQwRd3Y1nnX4xJ5Pg72RmEeszwMmabZrzZBRJLYF+kXaZC7ObY+M9LFxdF57xTKN1RQWBp2RWptoRGgfR5S8qUzMeHdGpU93KkizPUt5+aCYkbJqRhk6naKxmvSiKAq3XzWPa5bWkUiqfOSBzWycxGJYIpFMPV053tk+lTitRspS3QWtuRwl7xULwZBVmu2ZpHnlZWw1r8CoJPA98XWt5UwZJTFRYVtc0aStkALENuN0AOpDe1GTuTP37XjYQiIlQV/SpK0QyVE4Zp0FwPTIXpKJhMZqJBJJPrNqRhnvWiEKrj7/9+1E4hO75oxGyDeVFWMx6tOuT5J5qp1ijdrvi5BMqhqrmTpGzXbZ2X5qjI6b63DnXme7PTECgNkp1+zZTMBcCUDC06WxkqPp8ImEsAZ7A6pfGG0Rs0w21Bp/kYj1jg8Js31Z1QoAtvRvRFVz4zsu5utn09i8dmm2TzUN9iZARMmfjOIqcWx5Yhxd8JLjIs32LGXtIWG251OE/GvR6RTuevtizp9TQTiW5Jb7NowtbiUSSfbS4xFmey53tk8l+RAlbwyIGLG4TUYzZxr14jsAON27hvBwdlW7Z4JYNEKFOgSAs3aGxmoKj4Z5ZxBXdZQzwlDvYa3lnDJlMdGFUVQlz6VsombOCkKqCbsSordlu9ZyJBJJnvPFK+dRbjNzaCDAz5+b2EzT0f2I2bKrPWepsJlRFIgnVQYDEa3lTBnuQAyQne2nSn2qs70zxzrb1WSSEtULQFFJtcZqJCcimmpg0Pl6NFZyBFVV6RzrbJ+GLjAAQMIqUxK0JmYXo/Z0HvH3mV+2AJPOhDvspt2XG+v3wcBh+g0G9CrML12ktZyCo9EuutXHc76U1ooUarsSwu8ZyqiufEaa7VlIIBJnS/sIAKtn5KfZDmDU6/j59ctY1ujCG45z4+9ezckKUomkUIglkvT7xKZFrUua7eOhORUlfyiHO9utIWFg6ZzSbM800xadzUbrOegUlbqOf2otJ+O4e9rRKypR1UBphTy/phqL1cZhvVh89e5eq7GaUyMWCR8p3KiZqbEayWsxGE20mmYBMLIvt88ziUSS/TitRr765gUA/Py/B8dmsI+HUbN9TnXmx01JMoNBr6PcJjro+r2FY7YPj81sl7NwT4WxzvYcm9ke9HkwKWJsnb1Umu3ZTNJeA4A5mD0xzUPhIYLxIDpFR62tDlNYmO2KXaYkaI2uRKzVrUGRhGDWm1lYvhiAzX0bNdM1EQ5G2wGYlrRjNsiE1KlmIp3tlmInw4hR1iPdLRlUld9Isz0LWd/mJp5UqS8porHMqrWcjGI1GfjdzSuZXWWjzxvhxt+tZ9BfOIsiiSSX6PWEUVUw6XVj8eiSEzOjMtXZPpC7ne2umFhsmcsaNVZSGCirPwbA7Ph+jZVkHk+fuIHv15Wj08u4Vi0YdMwHINqeO3PfjoW7pwW9ohJWjbgqZeFGtuEuEZtCuu7c2BSSSCS5zZWLqrl4XiWxhMoXHt4x7jjxfSljfk6VPZPyJBmm2iE283sLaG67OxUj75Kd7afEaGf7SDCGLxzTWM348Q+LLumgasZSLK9f2Yw+1cBQHMmemOZOnzBDq6zVmPQmiqJizKveUamlLAlgqRCdxq5o79jPllaKKPYtOTK3vQVxrs/UyfNJCxod4hzqGMfMdoBBvfg7BftbMyUp75FmexayNjWvPZ+72l+Ly2riD7ecQZ2riNbBADffuz6nbmwlkkKhJ7VhUe20oNMpGqvJDUY721tytLNdTSYpT4rvpOLKaRqrKQwqmk8DoFIZJhzI7/Eqof42AEaMsmpeKxI1pwFgd+/QVsgp4usRUcF9uioUnVzeZBtKw0oAKj07NVYikUgKAUVR+NpbFlJs0rPp8DAPvHry6MxkUuXAqNleLc2qXKZq1Gz3Fo7ZfqSzXZrtp4LNbKDEKtIBcilKPjQsuqQ9ikzlyHYsZSIW3JnInojmIxHyornCHh8GwOyq1UyTROCoaQagMtGPmkwCsDQ1t31z/6acmNt+UC/urWaZmjVWUpiMxsj3BnsIx0/+veY1i3SU2FBujCnIRuRuVBby8kHxpXvWzDKNlUwd1U4Lf3z/6ZQWm9jZ5eWDf9xEOJbQWpZEInkNo/Paa10y+me8jM5sbx0MjLurJpsIeIawKiJtpKRamu1Tga2kghFEkYa7M7+72xPDooo+UFSjsZLCxTnzDAAawvvGFvC5SGRAVF4Pm2R0ZjZSMfdsAJrirXlfRCSRSLKDWlcRn718LgDfeWLf2DrmeHSNhAhEE5j0OpryPF0w36lyjMbIF5DZnupslzPbT52GUvH5z6URlxGPMNt9epe2QiQnxVYhDO3ypDtr1l7tqc72UbO9JCnMdluZNNu1pry2maSqUKREGRnsBmBx+WL0ioH+YB/d/i6NFZ6YwVA/fYYEOlVllmOe1nIKEqe5BLtJFGKNpliciLBVfO4VT2dGdeUz0mzPMtyBKLt7vACcVSCd7aM0V9i4730rKTbpWXtoiE/9eSuJHDSnJJJ8pXtEbFjUOuW89vHSUGrFoFMIxRI52V0x0tsGwDB2zFbZ5TNV9OnFDa6/O7/Ndr1PLA7j9nqNlRQu9XOWE1X1lOCjv+OA1nImz3AbAMFiGSGfjZTVNTNACQYlSfduObddIpFMDe89cxrLGl34I3G+9MiuE3aAjc5rn1Fpw6CX22S5THWBdbYnkyrDQZEMKTvbT536ktG57bnT2R73ibFvQaNLWyGSk+KsFIa2WYnhdWfH3PZRA67e3kAo4MOmiHPfWSHXVVpjslgZVEoAcHcdBMBiKGJ+2QIg+6Pktw9sAWBONIarpEFjNYWJoihjc9vbxzG3PeEQn3tTILsLObIZuYrIMtYdEl3tc6rsVNjNGquZehbXu/j1jSsw6XU8vrOX2x/ZmROxKBJJIdA9Im66a2Rn+7gx6nU0prpjcjFKPjggooPcusIq/tKakSKxEEkMHtJYSWYpCorqbJ1Lmu1aYbJYOWwQc7z6967TWM3kMflF5XXc0aixEsmxUHQ62q3zAQi2vKKxGolEUijodQrfvnYxRr3Cmj19PL6z97jHjs5rnysj5HOeKueo2R7RWMnU4AvHx5pUXKkIdMnkaUjNbe8czp3OdgLCbA+bSjUWIjkZJksRbsT3jK8/O2KaO1Jme6O9Ec+AMNjCqpFiu0tDVZJRhowiuS3Q1zL2s2WVywHY3L9RE03jZduAKAZYHg5T5JIJdFoxGiXf4Tv5NUdfIvZTbOHj3zNLTow027OMlw+J2biFFCH/elbPLOdH152GosCf1rfzg6fzu7NPIskVjsTIy872iTA2t33Qr7GSiRNzi/ldXpOcqT2VRBziZtjoadNWSIZxREU1v7lcjijQkiGnqIyPdWzWWMnksYdE4Ya+tElbIZLjEqxYCoC1f4vGSiQSSSExu8rOh8+bAcCXH92FJ9UB/HpGO9tnV0mzPdcZndleKDHy7lSEfLFJj8Wo11hN7lM/FiOfO53tSlA0bcUthbuPnEsMpxoZgoPaxzSrqjo2s73e3ojfLdZUw4oLRScto2zAbxGph/HXzNBemjLbt/Rn9/p9a58oBlgejmArlWa7VjQ6RHNFxzg624sqmgAojfdnUFF+I6+cWcbag8JsX11gEfKv58pFNXz9LQsBuPvZg9z7cqvGiiQSiYyRnxwzUnPbc7GzXfGKBWDIKs32KaW0GQB78OQzlXIVNZmkMiFu4B1VzRqrKWySNacB4HDv0FbIKVAeF5XX1kp5LmUrlulnAFAf2K2xEolEUmh85IKZNFcUM+CL8O0n9hzzmP2ysz1vKLQY+bF57TJCPi2MxsjnUme7MewGIGmVZnsu4DNVABAb1j6m2R12E4gHUFCos9UTdvcA4DXIlIRsIWoXqYc675G9ocWVp6FTdHT5O+kLZsc4gtfjjXho84lu/MWhGFaHvD5pxViMvLftpMc6q0WBaoU6RDwWzaCq/EWa7VlE10iItqEgOgVOb5ZfbO89cxq3XTIbgK8+tptHtmh/IyKRFDLdHhkjPxmaU2b7oYHc62w3BMRiK2Gr1VhJYVFULb77KqL5+73n8wxRrIhN0LI6aZBqScksYYJOi+5HTSY1VjNxouEQlYhNRlf9LI3VSI5HzYLVJFWFagZx92ZHbKZEIikMLEY9337bYgD+tL6DV1qGjvp9LJEcu0+fLc32nGfUbB8JxgjHEhqryTzDAbEZLue1p4cjMfKhnBlpaY6K+2DFVqGxEsl4CFlSjQy+bm2FcGRee3VxDSa9iZhHFDAHjdKTyBaUVKy39TUztG1GG7NL5gKwpS87o+R3DIo0s+ZoDJ1qQ6eXFqRWjMbIt/vaTvq95qyoJaoa0Csqw3LNPinkmZ5FvJzqal9c78JhkbOWAP73wpncfFYTAP/31208t0/GWEgkWhCKJhhJxS7KGPmJ0VyRipHPwc52a0hUySpOOVN7KilpmANANYOEg7lXpDEehrvEPHo3DixWm8ZqCpu62csIq0YcBOlpy72uY3e3OJeCqhmHjKfLWqx2F4f1YrNoYPdLGquRSCSFxunTS3nPGeIa9MWHdxxlwrYOBoglVOxmA7VOWVSc6ziKDFiMYquzvwDmtrtTZnuJVZrt6WC0s90fiY/tf2Q71tgIAAZptucE8WJhthv82s9EHp3X3mAX34+qX+y5RyzyXMoWLBUiAtwV7Tnq58vGouQ3Tbmm8bBtQETcLw+H8emcGqspbGptDegUHaF4kKHwwAmP1en19KdGXfh6W6ZCXt4hzfYsYixCvoDntb8eRVG4403zefOSWuJJlQ/fv4lNh4e1liWRFByjXe02s0EWA02Q5nLR2d41EiIUza3uCldMLLZMpQ0aKyks7CWVeFXRVeHu2K+xmszg7xfjYYb0lRorkRhNZtqMIi5scO86jdVMHF/3QQD69ZVytmCW02sXI6ISh9drrEQikRQin79iLpV2My2DAX767MGxn+8dnddebUdRFK3kSdKEoihjc9sLIUp+LEbeKtfo6cBi1FNhNwOiuz0XsCdGADC75Oi3nMAhUgOLwtrHf3eMzWtPRZUHxf5PwlrYo22zCWetWKdXJvqPSqFbVrUCgM1Za7YLXcvCEfwGl7ZiChyT3kRNcR0A7d6Td6sPG8V3SXhQdrZPBrkjlSWoqsrLh0ScWaHPa389Op3C996xhHNnVxCOJbnlvg0c7PdpLUsiKSi6R1IR8rLbY8KUFptwFonNj9bB3OluV5NJypKiCMxW1aStmAJD0enoVsQNrq87P832yJCooveaazRWIgEYdi0AING5WWMlEyc6KAo3hk1y3EW2E68Vm0Ku4W0aK5FIJIWIw2Lka28RRT+/fP4Qe3u9AOwfNdurZIR8vlBIZrs7ILqv5cz29NGQ6m7vyJG57U5VXMus0mzPCYwlIjXQHj1xh+lU0OETZlpDymw3hVJjVmyyID5bKK9tJqkqFClRRgaPjB5YUrEUBYXD3jaGQkMneIapJxgLcGB4LwArwhHCxhKNFUkaUlHyHb62kx4btIi0wORIeyYl5S3SbM8SDvb7GfBFMBt0LJsmL0Kvx2TQ8cv3LuO0BheeUIyfPHPw5A+SSCRpo2dEbFTUyAj5CaMoytjc9pbB3IkED3iGKFZE9KKraprGagqPAb3YLIkPHNBYSWZQRkQVfcQmDdJsQKldCoBzeKfGSiZBahEYtNZpLERyMpyzzwJgemQ/iXhcYzUSiaQQuXxhNZctqCKeVPnc33eQSKrs6xNm+1w5rz1vGJ3b3l8AZvvYzHYZI582GkpFwliHO/vN9nDAizW1ZreVySLmXMBaLsz2kqT2BmmnX6zJR404a0w0WxgdcjRXtmCyWBlUhE80nBqfBuA0O5nhmgVkX5T8rqFtJNQEZUkL1YkEUXOp1pIKnka7GEcwHrM9ahP7KgZfVyYl5S3SbM8SRue1r2gqwWLUa6wmO7GaDNx2yWwAdnZ5NFYjkRQWozHydS7Z2T4Zmstzb277SG8bAMPYsRTLzcepxmsSZrt+pFVjJZnBFBBV2apDGqTZQMmsMwBoih7MORPU7Bdme8Ipx11kOzWzlhJQLRQrYXoObNFajkQiKVC+9paF2M0GtnWM8Id1beyTne15R5VDxID3evLfbHePxsjLzva0MTq3PRdi5H1DYu53RDVSVOzQWI1kPNgrhbFdipdoWLtzTFVVOrxiHTUaI2+Pi7GtlhJZuJFNDKVivf19R8/QXlq5DIAt/RunXNOJ2D4g1nmz4+JamiySZrvWNDjEdad9HGY7rkYArMGeDCrKX6TZniWMRsifJSPkT8jcGrEAbh0KEIzm1mawRJLLjHW2O2Vn+2QY62wfyJ3O9tCAiBRz6+T3khaEzCK6zRbIz+gmW1hsDBlLZWpCNlA36zSCqlmYoId2aC1nQjjCYhFoKJuusRLJydAbDLSaReGsZ/9ajdVIJJJCpcph4XNXzAXgu0/uoz3VvTpHdrbnDYUUIz/W2S7N9rTRUJLqbM+BGPngiJj7PaI4UHRyiz8XcJRWEVUNAHj6tVvrD0cfPKmhAAEAAElEQVTcBOIBFBTqbKPd9iMAWMtk+lw24beIv0d86OgZ2qNz27f0Z9couG0DQs/ckAKAWiz3FLWm0d4EQLu37aTHmsvFHp0z2ptBRfmL/CbOAuKJJK+0pOa1z5QXoBNRabdQbjOhqoxVoEskkswz2tkuZ7ZPjhkVqc72HJrZHnWLSDGvSc7r0oK4Vfy7l0XzM7qpJC42hoorm7QVIgGECdpmmgnA0P5XNFYzMcrjYhFYVNWssRLJeBgpWQKAoSe74g4lEklh8Z7TG1nZVEIwmgCgwm6WZmUeUe0cjZGPaKwk84x1tssY+bSRSzHykZTZ7tO7tBUiGTeKTsegTnT6+ge0M9tHu9qrrNWY9WaCfg/FiihQKqms10yX5I1EU8kDOs/R58toZ/vBkQOMREamWtYxiSQi7BkSxfuLQ+I7WG+r0FKSBGhIme29gW4iiRPfG43u0VUm+lGTyQwryz+k2Z4F7Oz24gvHsVsMLKpzai0n65lXI6KR9vRIs10imSq6R0Zj5GVn+2SYMdbZHkBVVY3VjBOvMHlDVjmvSwv0NhEVVp3sJxbJr66caCRMhSoi6kpqpUGaLYyULARA7c6deO9w0E85IwCU1M7UVoxkXOgaVwJQ5c2tBAWJRJJf6HQKd75tMSa92BKbIyPk84pC6mwfCcYA2dmeTl4bI5/ta/eYbwCAgMGlrRDJhBjRi0a78FCnZho6Rue1O0RktHdAjHkLqmY5kiDLUFKx3kWBoxsxSi1lNDlEutu2/uxYw+917yKajFJqKWNmWPg2Rods4NGaUksZxUYbKipdvo4THltSI/boipUwAa97KuTlFQatBUiOzGs/s7kMvU7RWE32M6/GwYsHBtnb69VaypQSiSf44sM70SlwzuwKzp5ZnlULKlVVOdjv54UDg6w9ODhWYZ1Ozphexucun4OiyM/JVKKqKj2peXc10myfFI1lVnQK+CNxBnwRKh3ZnxBgTM3UjttkhJgWGIucBFQzxUqEoc4DVM9YpLWktOHuacOpqERUI65yeX5lC7rapdD/Z1wjO7WWMm7cXQepBfxqEfYSuYjPBSrnnw0boCnRTrdvBKvdpbUkiURSoMystPHJS2Zx1xP7OGtmmdZyJGmk+jVmu6qqebt/kEiqjIzNbDdqrCZ/qHEWoVMgEk8y4I9Qac/etbvqF2Z72FSisRLJRAiYKyG+m4RHuxS7sXntNtE17R8SWkZ0LkrkSIKswlI5HXaDK/rGGdpLK5fT5m1lc/9Gzmu4QAN1R7N9QKSXLa5YhnPPXwCwOOU6XWsURaHBPo297l10+Npodh2/UcFSbMeNnVJ8jHS3YHPJFO6JIM32LGDtIWG2r54hF3jjYV5qbvuensIy21/YP8jfN4uqx79u6kRRYGGtk7NnlXPOrHKWTyvBbNBPqaYhf4SXDw3x4v4BXjwwmPHK8S3tI9SXFPHeM+WM36nEE4qNRSzKGPnJYTboaSi1cngoyKGBQE6Y7daQiKTTOWWEmBYoOoVefS0zkq14u/blldnu6W0BoF9XQblcyGcN5XPOhK3QFD1EPBbFYMyegr7j4e89BEC/vhKXPJdygtKaJnopp1oZpGfXy8w48yqtJUkkkgLmI+fP5KpFNdSnZjRL8oNKhxmAaDzJSDBGSRY1KaQTbyhGMtV4LWPk04fJoKPaYaHbE6bDHcpqs10JipGkMUupxkokEyFirYIA6HzazUTu9AuzvTHV2R4aFkauV1+CLN3ILhzVM4Ajsd7Ka9a9SyuX84+Df2NLf3aM6Bqd176o9DSc6u9AgeISmZaZDTTap7PXvYt2X9tJjx3SV1Ka8BHob4X5p2deXB4hzXaNCccSbGwTUapyXvv4GI2R39vjy+sq5dfTlpr13FRmxWLUs7fXx44uDzu6PPziv4coMuo5s7mUc2ZVcO7scmZU2NL+bxOJJ9h0eJgXDwzy4oEBdnYdXfBgNug4o7mMc2eV01hqTevrb2xz86sXWvjav3azoqmEudUy1miq6B4RRRRlxSYsxqkt6MgnmsuLOTwUpGXQz6ocKK5yxfoBMJU2aKykcBm21EOwlVj/Aa2lpJXQwGEAho1VyDuf7KGmeSF+tQibEmLfgW00zl+ptaSTEhtsBWDEXINLWymSCdBZPJ/qwAuEW18FabZLJBKNmVZWrLUESZoxG/SUWI0MB2P0+cJ5a7aPpgnazQaMell0mE7qS610e8J0DgdZPi17rUdDWJjtySK5qsolkvYaGABTUDuzvSMVJV1vE2Z73CO0BE3Zv1dVaFTUC7PdqkToGerBVVE39rtlVcsB2D+8D3/Uh82k3ViceDLOzsFtAMw0T0OniGowW6nsbM8GGh2icbFjHGa711wDwUPE3e0ZVpV/TNhsf+GFF/jud7/Lpk2b6Onp4R//+Advfetbx35/PHPtrrvu4jOf+QwAbreb//3f/+Wxxx5Dp9Nx7bXX8uMf/xibzTa5d5HDbD48TCSepNJuZmZl4b3/yTCjwoZJr8MXidM5HKKhtDCq0NuGhNn+5iW13HbpHPq9YV46OJgyvgcZ9Ed4bt8Az+0TMVI1TgvnzCrn7FmTj5wfjYYfNddfaXETiiWOOmZejYNzZ5VzzqwKVjSVZMyMvWhuJfv6fPx33wAfe3ALj35sNVaTrBeaCno8Yl57jSt7K7pzgeYKG8/tG6BlIKC1lJOiJpOUJQdBAXulTJLQipB9GgRfRDfcqrWUtJIcFjfsIWuNxkokr0Wn13PIPIuF0e2496/LCbNdGUmdS8WyKCiXCFYuhdYXsA5kx2xBiUQikeQfVQ4Lw8EYvZ5w3hbqDwdGI+Tzs5hASxpKrKxvddM5HNJaygkxR8U8XaVYmu25hN4hRqkVR/o1eX1VVenwiXXU6Mx21S+0RC3yXMo2TBYr/ZRSiRt318GjzPZKaxX1tgY6/R1sG9jK6rpzNNN5cGQfoXgQm9FOeUTsH3soxmgya6ZJcoQGexMA7d62kx4bttZAEBRPZ2ZF5SETdqoCgQBLlizhlltu4W1ve9sbft/Tc/T8iMcff5z3v//9XHvttWM/u/766+np6eHpp58mFovxvve9j1tvvZUHH3xwEm8ht3k5FSF/1oyygunQPlWMeh0zK23s7vGyu8dbMGb74aEgcKTyvtJh4W3L6nnbsnpUVWVvr48XD4g491db3fR4wvxlYyd/2Xgkcv6clCm+fFoJJsOxK5/dgagw8Y8TDV9uMwtzfXY5q2eWT1mklk6n8L13LOHKH7/IwX4/X3tsN9++dvGUvHah0z2SMtudcl77qdBcIT67LQN+jZWcnIDXTZkSAcBZ3aStmAImWTId+qA4cFhrKWlF7xPz4OL2upMcKZlqvCWLoG879OSGCWr2i8VfwinN9lzC2nwmtP6YxuDuN0QhSiQSiUSSDqqdFvb2+ujL8Kg7LXFLsz1j1JeIvY8Od1BjJSfGGhNJqQZ7hcZKJBPBVCpG9Tnjg5q8/khkmEDMj4JCnU1o0QVF41bCKs+lbGTIWEVlzI2/rwU476jfLa1cRqe/gy39mzQ120cj5BdXLCPqFeeTR3EiW0uzg1GzvcPXdtKk6KSjHgbBFJBm+0SZsNl+xRVXcMUVVxz399XVR89h+Oc//8kFF1xAc3MzAHv27OGJJ55gw4YNrFixAoC7776bK6+8ku9973vU1tZOVFJO8/JBEflzloyQnxDzahzs7vGyp8fLZQsKY/bHaGd7U/kbiwsURWFejYN5NQ5uPXcG4ViC9a3uMfP9tZHzP//vIawmPWc2l3H2zHLOnlXOkD86duzObg+qeuS5zQYdp08v5dxZFZwzu5w5VXbNCkPKbWZ+9K7TuP6eV3loQwerZ5Zz9ZLCumZoQbdHbFDUuaTZfio0l4tbzEM50Nk+0tNKIzCCDUuxdjFUhY6lcibshbJIl9ZS0oo1JAozdS5pkGYb+oZl0PcAZSO7tZYyLhzhbgAMpU3aCslzIokIPYEufBEPc0oXYNKf2qZ+7fyziK/RUaEMs7+nhfK6mWlSKhmlqamJw4ffWKj1kY98hJ/97Gecf/75PP/880f97oMf/CC//OUvx/67vb2dD3/4wzz33HPYbDZuuukm7rzzTgwGmSwlkUiyn6pUU0CfN6KxkswxnIqRL7UaNVaSf4w29WR7Z7s9MQKAySljmnMJW6XoJi9PDhHQoPB0tKu9ylqNWS+6js1hYfwrNnkuZSN+Sy3E9hAfeuP9/dKqFTzW8k82azy3ffuAeP3FFUuJdoikhIBemu3ZQr2tAQUFf8zPcMRNqeX4IyP0JeIaZQ9rN+oiV8noSrmvr49///vf/P73vx/72bp163C5XGNGO8DFF1+MTqfj1Vdf5ZprrnnD80QiESKRIzfIXq+YEx2LxYjFYhl8B5nFF46xvXMEgDOmOcf9XkaPy+X3fqrMrhQ3vru6PAXx7xCJJ8e6i+scppO+Zz2warqLVdNdfPbSWfT7Iqw9NMRLB8X/hgJRnt3bz7N7jx1ZNLfKxuqZwoxfMc11VDR8PB5P2/uaDCunOfnQudP5xfOtfOHhHcyvLqZxkukG8rM0PrpS1dyVdqP8tzoO4zmXGkvEIqZzOIg/FMF8nHSJTBJPqiTicRRFQdUdv2jG3y9iy4d0Fdjj8m8+1YxeZ201woCqTvYxEA5gMGRX10o8kSQRTxKPq+iS4z+fHRFxw24sbSQ+BdcUb8QjXtfszPhrZRuj59J4v7tLZ66EjdAUb8Ef8GE0TU16TTyZJBFPEFeSKOr4z6WKhDiXiiqaiMtr1SkRjofpCXTS5e+kO9BBl7+TLn87XYFOBoJ9qIhKzOmOmdxxxp00Opom/VoGs4U2/TRmJlvp2/kCrqr0jitJjJ33MWIn+K7LBjJ1X7VhwwYSiSOjn3bu3Mkll1zCO97xjrGffeADH+BrX/va2H9brUfupxOJBFdddRXV1dWsXbuWnp4ebrzxRoxGI9/61rcyolkikUjSSZVT3MO8Pqkvn3AHxHeI7GxPPw2jne3D2d3Z7kx6QYEiV2E0IeULzpTZblFi9HuGsJVMbTf52Lx2+5Hid2tqJIHBUTWlWiTjI2qrBx/oPB1v+N3SymUA7BnaTSgepMgw9QnASTXJ9tSIsCUVy0nseRKAkLFkyrVIjo3ZYKGquIbeQDcd3rYTmu1FFU0AlMa1GXWRy2TUbP/973+P3W4/Km6+t7eXysqjq6QMBgOlpaX09h67WuLOO+/kq1/96ht+/tRTTx21KZBr7HArJFU95RaVrWufY+sEH//0009nQlZO4PEogJ7NLX385z//0VpOxukLQVI1YNarvPL8M0ymsdwEXGiF8xdBTxD2jijs9Si0eBUsBpjrVJnrUpntVHGaRiA5gnf/IZ7dn+53c+rMUmG6XU+rL84tv3mRTyxIoD8F37KQP0vjYVerHlDoa9nLf7x7tJaT1ZzoXFJVMOv1RBIK9z/yBDVZ/PUVb3kVgCGc7HzmSY3VFC779x5ghmrEosR46bGHMGfpwnffBI5VkyqXJgdAgZaOAbq8T2RMF0AoGeLHvh+TIMEHbB+gUl+YlfovPLtmXMepSZVKtRinEuDpv92Hpbwps8JOgXgswrWIAtxDbV2090zNtSqpJtEpuRl7HlEjuBNuhpJDDCWHcCfdDCXE//Wq3hM+1oQJBYVW70Fuffo9XF10NUtNSyeddlRsaGZmtJXA7mdZR2Y+l8+uGd95ryXBYGY28Ssqjt60/fa3v82MGTM477wjsZNWq/UNqXSjPPXUU+zevZs1a9ZQVVXFaaedxte//nU+97nP8ZWvfAWTSRo7Eokku6l2pDrbPflrth/pbJfX5HRTn2ro6B4JkUiq6LOweC8aDlGqiKYcW6k023MJi9XGCDZc+PH0HdbAbBfd0Q32xrGfORLCbLeUyPTQbEQpaYQeKAq+MfWwtriOKms1fcFedgxs5/SaM6dc32FvC96oB4vewuySuewLilHREXPplGuRHJ9G+3R6A920+9pYUrn8uMc5qkVCebnqZjAawWgyT5XEnCejZvvvfvc7rr/+eiyWU+uK+cIXvsBtt9029t9er5eGhgYuvfRSHA7HqcrUjE3/3gu0c/GiBq68cv64HxeLxXj66ae55JJLMBoLMy7qzECUn+/+L0MRhXMuvBS7Jb/jDJ/dNwBbtzCj0sFVV61K63Mnkio6Bc2i4SfLstUh3vyzdRz2x9ljnMlnL5s94eeQn6Xx8d09LwBhrjjvTJZPk1WJx2K859I9Ha+wo8tL/bzlXLZg6o3TeFJlMBzHoCgn3DDY2/sceCDubGTVRZdNoUIJiC7kDc8/wxkXXEL3jlqak4epr3Iy86zs+lvEEkl8sSQVRXpM44y+8w71Yd0m0oouvPrtmC3FmZTIb3f+Cv9uPwB/S/6dX19wL6WWwlnwxeNxXnh2DedeePG4o59b985hcWQz9cURFl96eYYVCmLJJP2hBHajDuM4q+e692+GneBVrZx75dtO/oA08Mc9v+WBvb/ji6d/g3PrLpyS15wMCTXBuu4XaPO20BXooNvfSZe/g+GI+4SPKzbaqLc1UFvcQJ2tnlpbA3XFDdTa6ikxlzIcGeLO9XeweWADD4cexlsR4hOnfQ6rceKf473RVtj1DA2Jw1Sk+XsmGo2x6cVnufDii7FkuSk8mtiWSaLRKPfffz+33XbbUff7DzzwAPfffz/V1dVcffXVfOlLXxorZF+3bh2LFi2iqurIvcpll13Ghz/8YXbt2sXSpUuP+Vr5mkg3WWSKlkSSHibzWSorFvc9vd5Q3n4GB32ikMBp0efte0w34z2Xyor0GPUKsYRKl9tPjXNq0p5GGU8i3XB/B9VATNVjLnbIlCcNmGiK2Gvx68pwJf34+tuIz1ySbmlH8fpEunaPMNvrrHXEYzHUZBJXciSVklA5JelzkqM52blkKhVJYM5IzzH/PkvKl/JU++Ns7FnPsvLjm6inrPM4iXRbejcAML9sMSRBCYqxBHFzibw2ZRH1tgbWA4c9LSf8uxSXVhBRjZiVGENdhyhvmJURPfmYSJcxh/LFF19k3759/PnPfz7q59XV1fT3Hx1BEI/Hcbvdx62sN5vNmM1vrKAwGo05bZC90io2vM6ZVTmp95Hr7/9UqHIZqXKY6fNGaHWHWD4tvzfOO0fEptX0clva/+a5egY1VRi56+2L+dD9m/nNS22cPbuS82ZPrhq0kD9LJyOZVOnzifOvsdwu/51OwsnOpRkVNnZ0eTk8HNbk31JJqujjyknNdlNQzNSO2+swGOTfXCsMBgPDlnoIHiY+2JJ1fwtVSaJXExgMBgzjNEg9A4epAwZxUWx3ZVSfL+rlLwceAoSJ2B3o4vMvf5qfX/xbLIap3TDTGoPBgGGc1xxf6SLo2Yy+b/u4H3OqqIkkeoOCwaAf97kUHhCbRP2Gakqn4LPR5m3hj3vuIaHG+e7GrzG7dB71r+kGyRZUVeWbr3yJZ9uPnRrhNJdQZ2ugztZAfer/1tkbqbM14DA5T1h8WWms4Xvn/5IH9/6O3+38BWvaH2evexdfOesuZpXMnZDO0rlnwy5ojh3Am0ymtVo+kRSR9wZD9t/fTYW+Rx55hJGREW6++eaxn73nPe9h2rRp1NbWsn37dj73uc+xb98+Hn74YUCk0b3WaAfG/vt4aXSQv4l0p4pM0ZJI0sNEPkudAQAD7QPevE1D3N+mA3R0tuzjP4G9WsvJKcZzLjkNegYTCn99/FlmZmGfV3iojXnACHZeeU5+z2jJhuefmfBj6lQHzUD37vUMhKZmbTqaSLfbtxOA4UODPNv+BPFoiGsVse+3Y+c+du9/41xwydRwvES6iGeIFUBloo+nn3gc5XX7eUURUWD83/3PMLNneqZlvoFnA+J7tsRrZ90zT1I6IjrwBwMJ3DItM2uIRQIAbG/dyLqBE/9dliqlNNLHjhcfx1LVklFd+ZRIlzGz/Z577mH58uUsWXJ0ddaqVasYGRlh06ZNLF8uKm2effZZkskkZ5xxRqbkZB39vjD7+0Sn1aoZx5+RIDk+82oc9HkH2N3jy3uz/fCQuBhOKyvcTapjcfnCGt57ZiP3v9LOp/+ylf984hwq7YVloGSaQX+EWEKkH1TaZWzMqdJcYQOgZSCgsZITYw31AaBz1mmsJLvp9ndy+0u3cU79Bbxv4Ycz8hoh2zQIvoxuOLM3t1OFv08s3N36SjLb0w4P7X0Qf8xHs3MG3z7n+/zPUzeyc2gHX1n7//jWOd/N2SjwTGNsWAY9v6fcu1trKSckOtQGgMdcQ6bvAlVV5Sebv0NCjaNX9ATjAb6y9rP87OLfY9Zn13fjPw7+mWfbn0CvGLh42uU02KdRZxNmeq2tHrvp1HaL9To9N8z/AEsqVvC1dZ+n09/Oh9fcwEdO+zTXzHzXuJOSqpsX41WtOJQg+/dvomHhWaekS3J87rnnHq644gpqa4/Egt56661j//+iRYuoqanhoosu4tChQ8yYMWPSr5WviXSTRaZoSSTpYTKfpSF/hO9ufx5/XOGSyy4fd3JOLnFf56sw7OHcM5Zx6fzsHDeVbUzkXPpz30YGW9zUz1nClUundl08nkS6Q2sfhXbw6Z0yjU4jRhPpVp530bhTxEY51PIn8Oyg0qZjbob/fq9NpDMqCt9+5NuQgCvOfjPNzhn0tu6GXRBQzVzyprdmVIvk2JwskS4SDsCPP0exEmHFyqU4y45uWJ3pm8c/H/8n3Wo3qy+6IGNr1GMl0qmqyg//82OIwVWnv4MlFcvp3fUDSEBZ0/yMn9+S8WPpL+WxFx/Dbw6e9Hujb9f3IdpHbZmVORn6G+ZjIt2EzXa/38/BgwfH/ru1tZWtW7dSWlpKY2Pj2Iv/9a9/5fvf//4bHj9v3jwuv/xyPvCBD/DLX/6SWCzGxz72Ma677rqjNgDynXWHhgCYX+OgtDi7T6ZsZV6Ng//uG2BPT+bjF7WmbUhUzzSVZdqayD1uv2o+G9uG2dvr47Y/b+MPt5yOLsujR3KJrhExA6zKYRl3t6Hk+DRXiM9wy6BfYyUnxhkbAMBUmn1dm9nE3Vu+yyHPfg559lNmqeDNM9+e9tdQS5uhH4p97Wl/bi2IudsA8FkyO1fQH/Xx0L77AXj/wltpck7nrnN/xP8++0Ge7VjDT7f8mI8v+1RGNeQqVfNWwXqYFm8jEApgLsrOew/diCjcCBVnfvPzxa5n2dT3Kiadie+d/0u+9PKnOTCyl59v/T6fWv7FjL/+eNk1uJ2fbf0eAB9a8gneOeeGjL3W4oql3HPZn/n2+i+ztvt5frz522zuW8/nTv/KuAx9nV5Pm3kOi6Nb8B5YB9JszwiHDx9mzZo1Yx3rx2O06P3gwYPMmDGD6upq1q9ff9QxfX2iEO94aXSQv4l0p0qhv3+JJF1M5LNU6TSMxYCPhJPUurKrOC4djIRE/GqFwyqvMRNkPOdSY1kxa1vc9HijU/7vO55EukRA7CsHDCW4siwBrdAwGAwTTqGLF9eABwzBvown2L02kc4fG8Ef86OgMK1kOga9keCIuMcb1pVQJq8lmnK8RDqD0cUAJVQwjKevjbLqhqN+P71kBqWWMtzhIfZ59rKsakVG9B0rka7L38FQeACDzsDCitMwGIwUx0cAMDmrsi6hsZBpcomi6t5gN6oCRv3x/zaBohqIbkP1dGXsb5iPiXQTdk42btzI0qVLx+a03XbbbSxdupQ77rhj7JiHHnoIVVV597vffczneOCBB5g7dy4XXXQRV155JWeffTa//vWvJyolp1l7UNwUrZ4pu9ony7wasZFXCGa77Gw/Phajnp++ZylFRj0vHRzkVy/kR/dnttDjEXPgal1FGivJD2a8prNdVVWN1RwbNZmkPCnMdlvlNI3VZC8be19hbffzY//9o5TRlG7MVWI2UmmkM+3PrQWKR7yPSHFmCyz/vO9BfFEf0x3NXNh4CQDLqpbzpTNFvPH9e+7j4QN/zaiGXKWibgZuHBiVBJ17N2gt57hY/OJcUp2ZvU6F4yF+ukUY2NfNvZklFcu4/YxvAvDIwb/wXMdTGX398TISGeYr6z5LPBnnvPqLecfs92b8NZ1mF986+0f879LPYNAZeLHrWd7/5LvYObhtXI/3lIkENFPPxkzKLGjuvfdeKisrueqqq0543NatWwGoqakBRBrdjh07jhr/9vTTT+NwOJg/f37G9EokEkm60OmUsdS7Xm9YYzWZwR2IAlBize4N6lyloVTsv3W4QxorOTZJv1izh00lGiuRTAqHWA9bUqmCU0WHrwOASmvVWPdzZESMCPIZ5LmUzQwZRMFroPfQG36nKArLKkWC9Jb+TVOqa1vq9eaVLsScGtdnTwqvxuySqSvZRHlRJUUGKwk1QVeg44THxmyiqcHg65oKaXnDhM32888/H1VV3/C/++67b+yYW2+9lWAwiNPpPOZzlJaW8uCDD+Lz+fB4PPzud7/DZrNN+k3kIi8fGgTgrJnlGivJXebX2AHY1+sjmcxO0yodxBJJOofFzX1TeXZ2l2nNzEo7X3mz2Pj73lP72Nw+rLGi/KE71dle45Tx/OlgenkxigKeUGxscyTbCHjdFKfmdbmqm7QVk6Ukkgl+tlWk97xt1ru5uPEKEmqcO9b+H52+9M43c9aLOcg1yV4S8Xhan1sLzIFuAFRnw0mOnDz+mJ8/7U11tS+6Fb1OP/a7y6dfxQcXfwSA7264k3XdL2dMR66i6HR0WOYA4D2U/gKSdOGI9ABgKMvsTLoH995LX7CHKmsN1897HwCn15zF9fNuAeCu9V+ly3/ihWqmSSQTfOOVL9If7KXe1sjnTv/KuOPcTxVFUXj77Ov5+UV/oM7WQF+wh48/ewsP7rmXpJo84WONTWfSodQStWY26aJQSSaT3Hvvvdx0001HxVEeOnSIr3/962zatIm2tjYeffRRbrzxRs4991wWL14MwKWXXsr8+fO54YYb2LZtG08++SS33347H/3oR4/ZuS6RSCTZSJVDXK/6PPlntscTSTyhGAAlMi0zI9SXiIaDjuHxzWmdapSg2FeOmvN7rGa+YnAJs90eHZjS1+1IJebV24+sx+NeYbaHjLIhMJvxFYmi2FhqnNrrWZoy2zdPsdm+fXALAIsrlgGigcelegAodsl1XjahKAqN9iYAOrxtJz44tWdnDXVnVlSeITOBNaB9KEjncAiDTuH0JnlTNFmayooxG3QEowkOu7Pz5jcddA2HSCRVLEadnJl9At65ooGrl9SSSKp8/E9bxhaeklOje0R2tqcTi1FPrVP8W7YMZufcdk9PKwAj2LAU2zVWk538u/UftHgOYDc5eN+CD/HZ07/C/NJF+KJePv/ix/FF05e4UloznahqwKTEcaf+NrmMLSwW8sbSzJntf9n3J7xRL02O6VzUeOkbfn/Lwlu5qvnNJNQEX3jx/9g/vC9jWnIVf9kiAPQ9WzRWcnwqE+JcKq5qzthrdPs7+dOe+wD46GmfxmI48l14y8KPsKh86dj89mhCuwKqP+7+DRt612HWW/ja6u9TbJz6IuY5pfP5zaV/4sLGy0moCX61/cd87oWPMRx2H/cxs897J8Wf28mCm384hUoLhzVr1tDe3s4tt9xy1M9NJhNr1qzh0ksvZe7cuXz605/m2muv5bHHHhs7Rq/X869//Qu9Xs+qVat473vfy4033sjXvva1qX4bEolEMmmqUwXjfXnY2T7ymv0OV5HsbM8E9SWis71rODs72w0hcY+VLJIGaS5SVCbWwyWJoSl93c6U2d5oPzIyUPWJ7vpIkWwIzGaiNnHO6DzHLvReViXM9u0D24glpm5PfPvAZgCWVIjXD/iGMSkJAGylsrM922iwi2TAjpM0CpnLxXHO6NSmb+Q60mzXgNGu9qWNLorNhpMcLTkeBr2O2VXCCMrnKPm2VIR8U1nxlHUp5SKKovDNaxbSUFpE53CILz68I2tjunOJHo9YWNbKzva0MTa3fSA757YHB8UN15BOLrSOhT/q454dPwPg5gUfwmF2Ytab+cbZP6TSWk2H7zBfXvsZ4sn0LG70BgM9OlEN7Oncm5bn1JKy/8/efcdJVV6PH//c6Tt9e1926aAgig2wi4AlxhJjEmOJGn+xf0WNJcYeu9EktsQYNbEkMfYuiogCIqCA0mFZdpftZfpOv78/7uwi0rZM3+f9evky2b1zn7Pu7Mzce55zTlj5oG4uSkyC1BPy8NK6fwJKUv37Ve29JEni5kNvZWrxIfjCPuYuuJJ2X9suxw1n+hHKjLci97oUR7J7Xmc3dpTX0NzyMQlb57FvHiIYDTK1+DCOqjh+p+9pVBpunXYfNp2djd3reGLlHxMWx9581byY59b8FYC5U3/HKHvi/nvsi0lr5tbD7+X6g29FrzbwVctiLvzwp6xoXZqymIazWbNmIcsyY8eO3enrlZWVfPbZZ3R2duL3+9m0aRMPPPAAVqt1p+NGjBjBe++9h8/no729nYceeminCnlBEIR0t6ONfCDFkcRfd6xLmi1H2zc3V4ivylhle7Ozh1Bk7916UkEXjG1oNInr9kxkLVYSWXmyk1Awea9ROyrbdyTb1bEuCVFjYdLiEAZOylV+Zzm+3Vca19hGYdPbCUT8rOtam5SY2n2tbPc0oJJU7F+gjAjzdCod6HyyXhTwpKFKazUA21x7L+Yxx4oaiiJtyNH0ew9MV+ITWQos2hxrIT9KfCAaqgml2Z9s39apVO2Lee37ZjVo+cvPD0Kjknj322b+vSy1bV2zQVOs5V6pqGyPm+/PbU9HwS5lDrJLJ3ag7s4L657BEeimylLNaaPP6vt6fk4B9x7xJ3I0OaxoXdo34zkeuvQVAARaN8XtnKkQ9PsowAFAXnliku2vbPg3rqCLEdZqThgxe4/HadVa7j/yj1Rba2jztTJ3wZX4QtnbJWegSsZPA6AqUo/P40xxNLvqbtoMKB04TLbEzBb8svkLFjUtQC1puOrA3+52w2ORsZibD78bgNc3/5vPGj5OSCx70upt5u4vb0ZG5pSRZzCn5kdJXX93JEnilFFn8NcTXqDaOpIufwfXLvgNz3z7OOFo5o/CEARBEDJHNle2944kyxMt5BOm0KJHr1ERlXeM10snOUFlfKLaLBKkmciaX0pQVqOSZJytybt32TuzvfJ7yXadX8lTSGZxDyidGQqqAbDFxqn9kEpSMaXwQAC+aVuelJh6W8iPto/r667W41QKGZySdY+PE1Knr428u26vx9lLlXF9JsmP15ncDhyZTCTbkywalVmyRXmCzhDz2odsQqnywr2u2Z3iSBLn+5Xtwr5NqbRz/Wxl1uztb61hY2v2PjeSofeisrf1uTB0vZXtW9I02Y5TSbb35IjZSj/U5GnkfxtfBODSKXPRqHZu2Tg6dxy/O+wPSEi8vvk/vL7p33FZ1xu7EJa6auNyvlTpbFJ2zvbIOqwJaCfmDXl5MVbVftEeqtq/z6q38sixj5FnyGND93p+98VvRTIwJr+smjbyUEsy29el39x2b8sWANrVibkhFIwE+cvXDwDwk7G/oNo2ao/HHl56BL8Yr8xyv3/Z7TR5GhMS0w+FIiFuX/xbnEEHY3MncNVBNyRl3f6qsY3mrye8yMkjT0dG5p9rn+aaBZfQ5hNt6ARBEITkKLHGKtuzcGZ7t09JtucaRQv5RJEkqW9ue2MatpI3RxwA6GxFqQ1EGBSVWk2npGwa9nQkJ9kuy3JfZXvl92a2m0JKnkJrE/eA0pm1VLkmLYq07rHS+KBipUPdN21fJyWmVbH58AfE5rUDBGPJdrfanpQYhIHpbxt5g9FMF0rezdG8JeFxZQuRbE+yDa1uOr1BcrRqplTaUx1OxtuRbM/+yvbqApFs769fHzmSo8YWEghHueKlr/GHIqkOKSMFw1E6PEo7q1K7aCMfLyMLYpXtHenZRl7rVXbJhi1lKY4k/Ty16lFC0RAHFx/OtNIjd3vMkRXHccnkqwD4yzcPsqxlyZDXjeYqVeA5nr1/GE53zhYl2d6uKkRSxf8j6P82/htX0EmVZQQnjJjTr8eUmyt46Og/oVfrWdT0OY+seECMIInZnqNsXHPXLktxJLsKdyrPJac+Ma9Tr2x8gUZPPXmGAs7f75J9Hn/RpMuYVDAFb8iTtPntT6z6I2u7vsWstXDn9IfQq/UJX3OgDJocfnvIbdw67T6MGhOr27/mog9/yqLtn6U6NEEQBGEYKLIq742t7mxMtisjq0Rle2L1zm1v6Eq/Dlg2Wek+ZbCJauRM5dAoXQn8nclJtjuDDjwhpSCp3Lwj2W6JKF0S9LmlSYlDGJz8ciXZbpL8OLt3PwbvwCJlbvqqtm+SUkjQO699cmxeO0DY3Q6AT2tP+PrCwPUm211BJ45A916P7VArm7m8bXWJDitriGR7kvW2kD+0Jg+dRvznH6oJJUqyfbujB2dPfObjppveynbRRr7/VCqJh886gAKzno2tHu58JzmzarJNq8uPLINOoyJfXMTHTW9le32nLy1nvxl7WgBQ2cpTHEl6WdW2gs8aP0Ylqbh8ynW7bSnd6+fjL2B29SlE5Ai3L75+n7OQ9kVfNBqAPH9yKmYTxd9RB4BDF/8d876Qjxf6ZrX/ep9V7d+3f8Fk7px+DxISr2z8Dy+vfyHu8WUiX+FkALStK1MbyG5ITqUiw2+uiPu523yt/Gvt0wD85oD/62uHtzcalZZbp92HVWdjQ/danlr1SNzj+r5P6j/gtU0vA3DzYXdTak7v1+vjq+bw9KyXGZc7EVfQyc1fXM1j3zxIKJKdn90FQRCE9NBb2d6ahZXtvW3kc43iOj2RKvPSs7I9FAxgQ7lXaMoX1ciZyqtTOt5GHNuTsl5jrIV8kbEYg0Z5fZSjUfKiSsLNnC8KLtKZwWimAzsA3Y2bd3vMGPtYzFoL3rCXjd0bEhqPM+Bgq0upeJ5cMGXHN7xKsj2gTcy4N2FoDJocio3KxpoGV91ej3XrlfeXUFd9osPKGiLbm2SL+1rI56c4kuxgM2opj82SXp+F1e2RqNy3g1a0kR+YQoueR8+egiTBS0vree/b3c+0EfZse18LecNeE4vCwJRYDeRo1YSjMvXpuEM+pHww1uVV7uPI4SMqR3lspTKD/ZSRZzDSPnqvx0uSxHUH38qkgil4Qh5u+vwqXIHBz722VowHoCTSTDSSuZ06ot3Kxb0vJ/475l/Z+G+cAQeVlipmVZ844McfWzWTqw66BoA/ff0wCxrmxzvEjGMYobSgK/asS3Eku8rxKhtPoraqfRw5cE+ueoSecA+TCqYwa8TJ/X5ckbGEmw+7C4BXN73MwsZP4h4bQJ2rlgeX3QHAORMuZEb50QlZJ94qLFU8dvxznDX2HABe2fgil39yPts9yZtRKQiCIAwvxbFkuzcYwe3Prg1e3WJme1JU9la2d6fXdbunS6lqjcoSZrtoI5+pAkYlkSW5k3O/srGvhfyOayif24FBUl4fbYUi2Z7uOjTKc8bTuvsRg2qVmgMKpwDwTazFe6J8G5vXXm0did2Q1/d1yafkvkLf+5qQXnqr2+v30Uq+x6S8JqicmV34k0wi2Z5EoUiUpbXKC870UWJee7xMKLUA2dlKvsnRQygio9Oo+nZlC/13xJgCLj1aabNzw6ur07L1VzprdirJ9lIxrz2uVCqJmthYiNo0m9suR6MURJVku7moOrXBpJEP695mY/c6TFozF+5/Wb8eo1PruGvGHykxlrLd08Cti68jHB3cTb788tGEZDU5UhBHa+buKNW4lR37EWt8q3B9IV/frPYL978EjUozqPP8Yvx5nDHmLGRkfr/oJtZ2fhfPMDNO6YTDAaiMbMfr7EpxNDuzBZQbUrqCmrie95u2Zcyv/wAJiasOunHAG82mlR3Fz8dfAMD9X91Gsye+VSq+kI/bFl1HT7iHA4sO6ffrUbrQqXVcceD13HPEn/q6AFz84c+YX/9hqkMTBEEQspBJr8GiVz4XtroCKY4mvrpiM9vtorI9odK1jby3W+lG55DMqDWDu/YRUi9iVhKnWl9LUtbr3eT6/WS7o125XvHIORhN1qTEIQye26AkP0OddXs8preVfKKT7avadm0hD6DxK/cOZKPIfaWrSks1APXuvXfhjFqVToI6b3K6b2QDkWxPotWNDrzBCLlGLRNLxRtYvOyY2+5OcSTx19dCPs+ISiUqiwfjmhPGcmCVHbc/zFX//iYt23anqyaH0m6vzC6S7fHW20q+tj295rZ7XV2YJOVGlL2kOrXBpAlfyMfTqx8D4NyJF5M7gN25uYY87jnyz+RojHzTtoxHV9w3qHngGq2OFpVSsdDdkH5Vxv2V06MkSNX2+HZNeHXTf3EEuqm0VDF7EFXtvZSOBDcyvewIAhE/cxdcRVOck6WZJLeogmYKUEkyjeu+THU4OymKtAJgKhkVt3OGo2H+9PX9AJw66ieMzR0/qPNcPOly9s8/AE/Iw+1Lfhu3VumyLPPw8ruoc9WSbyjk1mn3DXpjSarNKD+aZ2b/h0kFB+ILe3lz83+JyuLzmSAIghB/xbZYK3lXdrWS31HZrk1xJNktXdvI+x3KZ2GXZEtxJMJQ9I7uMwbak7Jew24q271dTQA4VPakxCAMTdCiJD9Vzj0XYRxUrCS/V7Z9ndBrrFXtSjJ/cuGBO33dEIzNATeJZHu6qrJWA9Dg2ntluyZXea2w+JOzISgbiGR7Ei3arFS1TxuVLxKncdSXbG/Jvsr2uk5l9+wI0UJ+0LRqFX/+2YFYDBq+qXfwyLyNqQ4pY/RWtpfZRVeFeBtZqMwATrfKdmdLHQAOzBhMltQGkyZeXv8cnf52ykwVnDnmFwN+/Cj7GG6ddh8SEm/XvsqrsTnLA9WpUy7E/S2bBvX4dGAPKh/QDYXVcTtnT9jHC2ufA+BX+1085OSjRqXhD0c8wJjccXT5O7lmwRW4g9n3+aK/mowTAPBuXZ7iSHbwODqwxmZU5pXFL9n+xub/stW5GZvOzsWTrhj0eb4/v31915q4zW9/Y/N/+bj+fdSSmtum30+eIbNHUhUZS3j02Ke5aP/LueXwe1BJ4rJUEARBiL/eDoEtWTa3vcunbOYTM9sTq7eNfJs7gD+UPuO8Qm6ljbxXY09tIMKQ6POUxGnvKL9E661sr7Ds2Pzu71Y2xLs0ouV3JpDsSvIzZy+VxuPzJpCjycEVdLHFsfvZ7kPlC3nZ5FgPwAGFB+30vZyQAwCNpTAhawtD19tGvsFdt9fjcmL37vLCrQmOKHuIuxpJtGhzByBayMfb+BIlIbShxU04y6qWt3UoN5Or840pjiSzVeYZuf/MyQA8+dkWvtjUkeKIMkNvZbtoIx9/o3or2zvSq7Ld114HQKdKvE8BtHqb+feG5wG4dMo16NSDu5k1vewoLj1AmQf++MqHWNq8aMDn8JqVD8NS1+5nc6U7ORqlKDaiwFYyMm7nfXXjK3QHuik3VzCnpv/ztffGpDXxx2P+QmFOIVudtdz4+XVxq07ONP4i5b1T37oytYF8T/d2ZcNJF1ZyLPb4nNPfxbPfPQHAxZOuwKofWpVQsamUm2Lz2/+36SU+b5w/pPOt6/yWx1Y+CMAlk6/a5YZGptKoNJy3368pNBanOhRBEAQhSxVZ9QC0urMr2S5mtieH3ajFpFMD6VXdHnEr11U92twURyIMhalASXrnRzuRo4m9ny3Lcl9le9X3KtsjLiWJ1qMTyfZMYChUxqj1jlXbHY1Ky+SCAwD4ui0xm+bXdq4mKkcpNZVTZCzZ6XuWqAMAnVUk29PVCKvyPNruadzruEtbqXLvrlDuJhTMrnE8iSKS7UnSE4zwTb0DgBmjRRIjnkbkm8jRqgmEo31t17NFX2V7gahsH6qTJpXyi8OqkGW45r8raXeLN4l9aXKIyvZEGVmQnpXtwa5GAFw6kfgA+NvqPxOMBJhSOJUjy48b0rl+Ou5cTqo5jagc5Y4lN1Dn3DKgx0dzlQ+5hn3sPE1Xzs5mDFKIqCyRVzoiLuf0h3t4Yd1zAFy4/6/j2lK72FjMI8c8hlFjZFnLUu5bdvegRgBkupzqgwEo8abP+AJfq7LhpF1dso8j++9vq/+MJ+RhbO4ETh55elzOOb3sKH427jwA7vvqNpoHOefMGXBw2+LfEo6GObL8OM6OnVMQBEEQhH3rrWxvzbLK9t5ke65ItieUJElU5inFL43d6TO3XfIpBSTBAYw4E9KPvURJepukAF53d0LX8oSceELK+NVyc0Xf12WPkmwPGkSuIhNYS5XOboWRtr1u0JjSN7f964TEsbpDOe/uNoHbok4AcnLjd70uxFdBThEGtYGIHKbZ27TH42wFZQRkLSpJxhHrhCrsnUi2J8myui6CkShlNoOoUo4ztUpiXKy6Pdvmtm/rFJXt8XTrKRMZW2ym3R3g2ldWEY0Ov8TJQDQ7xcz2ROmd2d7pDeL0pVHFrEtJtvfkiA/FazpW83H9+0hIXD7lOiRpaONfJEli7tTfcUDhVLwhDzd9fjWOQP8vqLVFYwDI9TcOKY5U6W7aCkCnZEdniM972qubXqHL30WZuZwT41TV/n1j88bzhyMeQCWpeHvLGzy35pm4r5HuyvebAUCF3IKrOzntDfcl1Kk8l9yG0ricb23nt7y39Q0Arj7oRtQqdVzOC/DryVcyMX8ynpCbOxbfMOAOCVE5yh+W/o5WXzPl5kpuPPSOIb8WCYIgCMJwUhKb2d6SRTPbg+Eo7kAYgDzRRj7hKmKt5BvSqLJd3aOMKY1k+Fih4c5gsuGSleeXq2Xvs5OHqinWQr7IWIxBs+Men9qrXONFjEUJXV+Ij/xyJdlulnr2en1+ULGyaf7r1uVsccR/FOG3sWT75MKpO33d7/NgkpTiNnOeuK+YrlSSiopYK/l6V90ej5NUKtpUSocCV8vWZISW8USyPUkWbYm1kB9dIG6SJUDf3Pbm7JmrGo3KbOtSds5Wi5ntcWHQqnnsFwdh0KpYuLGdfyxO7IfZTOYNhHH2KEmBUpuobI83k17TV2WxJY1ayWs9SiuqiDk+SaxMJcsyj618CIA5NacyNm9CXM6rVWu5c8ZDlJrKafI2cuui/rcnt5aPA6Ak0pTwFnOJ4IlVI3dq4tM1wR/u4V9rnwV6Z7Vr43LeH5pRfiTXHXwTAE+u+gsf1r2fkHXSlTW3kEZJuUjevmZxiqNRqJ3KjSK/uXIfR+5bVI7y6Ip7AZhT/SP2j7XbixeNSstt0+7DorOyrus7/rr6TwN6/Atrn2Fp8yJ0aj13Tn8Is84S1/gEQRAEIdsV91a2u7Kns53Dp1S1qySw5iTmM7CwQ0Wukphs7EqfynZdoEv5HyZRjZzputTKhglfZ0NC12nxKuevtOx8DaUPKBs3VBaRbM8EBqOZDuwAdG3f8zz2/fL3x6gx4gh08/N3f8KFH57Lm5tfwxca+utYMBJgfdd3wK6V7Z7uFuUYWY3JKjpvpLMqSzUA9e69J9G7tcprQ6BD5FD6QyTbk2TxZuXNa8ZoseswESaW9la2Z0+yvcXlJxiOolVLItkZR2OLLdx6yn4APDxvE9uyqxlC3DQ7lV3bFoMGi0FcwCdCb3V7OrWSN/qVFmKSvWIfR2a3T+o/YG3nanI0Ofx60hVxPbddn8t9R/4Zk9bMqvYV/HHFH/rVnjy/YgwRWcIkBXC0Da4ddSqFupX5cB5DfHY3v7bpf3T5uyg1lXHyyB/F5Zx78pOxP+UX488F4M4lv2dlglqxpasWk7LZpKcuMfPeBsroVbo7yPaqfRy5b+/VvsGG7rWYtGYumXz1kM+3OyWmMm469E4AXtn4Al9s/7Rfj1ve8iX/iM2Rv+agmxidOy4h8QmCIAhCNtuRbM+eyvbuWGc0u1GHWiWKeRJtRxv59KlsNwSVDmkqs0iQZjqXVqkaDXYn9hq/uS/ZvvNIN1NQyVdobcO74CKT9BYweFr2PJpQp9bx5+Oe5JjK41BLGr7rWM0flt7BSa8dzx++vIPvOlYPekzepu41hKIh8gwFlP9gA7yvS7mn6JSsSCqRdkxnlVbltaDBtfckui9HeW2IOuoTHlM2EM/6JHD4gnzXpMyrmD5K7DpMhB2V7dmTOe2dP1+Za0SjFn+q8fTzQys5eVIp4ajMPzeriYh28rtocsRayNtEC/lE2ZFsT5/KdluwDQBd3tArRjOVP9zTV316zoQLyc8pjPsa1bZR3DrtPlSSive2vsF/N76wz8do9QZaVMrNlO7G9XGPKdEkp5IgDZrKhnwuf9jPv9Y+B8Cv9v91wqrav++qg+ZyTOVxhKIhrvvs/6jfxwVJNgkUTQbA0L4qxZEobAFlppiuoHpI53EFnPxt9Z8B+NV+vyE/J3Gf0WeUH8NPxyobNu5deus+57e3+Vq588ubkJE5ueZ0Thp5WsJiEwRBEIRs1ttNrM0dyJrr/q7eee1GsSk+GXor2xvSaGa7OeIAQGMVyfZM16NX7jdEnXuemxwPvcn2ih8kRy0RpUuCmK+dOdwG5Z5KqHPv9yQmF07hgaMe4e3TP+SKKf9HpaUKX9jHm1te48IPz+Wc987iP+tfxBlwDmj9tZ3fAEpV+w+7NwecSrLdrbIO6JxC8lX2VbbX7fW4kLkcAK07M0daJpvI4CXBl7WdyDKMLjL37aoV4mt8LNne4vLTHbvwyHTbOpUP8iPEvPa4kySJe86YhFmvocMvsaYpezoixEuTQ9m1XWoXr1mJMrLADKRPZbscjVIQVWY+mYuqUxtMCv13wwu0+VooNpb2JccS4fDSI7h8yrUAPLnyjyxuWrjPx3TqlA+5/paNCYsrUfTe2M0D29C7Jryx+VU6/R1KVXtNYqvae6kkFXdOv4f98vfHFXRyzYIrcPi7k7J2qplqDgGgzJv6TR5yNEpRRNkUZCoZPaRz/eO7J3AGHVRbR3L6mLPjEd5eXTL5KibmTcITcnPn4hv3OEIiFAlx++LrcQa6GW0fx9UH3ZDw2ARBEAQhWxWYdagkiERlOr3Z0Uq+29ebbBfz2pOhsndmexq1kbdGleSYwR6fEV1C6gRNSpJbExvplyjNnl3byMvRKHmy8lwy55cndH0hfgJm5Z6Kytm/SuOCnALO2+9X/O9Hb/HUzGc4sfpk9Go9mx2beHjFA5z82kxu+eJGlrUsJSrve2Thus6VwK4t5AFCLuWeoleT28+fRkiVEZYaABr2kWzHrrxm5PgS+xqVLUSyPQkW9baQHyVayCeKWa+hKtbaKVtayfdWto8Q89oTwpaj5fAa5c1/SW1XiqNJP01OpbK9VFS2J0xfZXuazGz3urowScoNKHvJiH0cnZ06etp4af0/ACUxptckdrPJmWN+wY9GnomMzJ1LbqTWseeZWwAek9I2W+7cc7uwdGXxK7O7tPnVQzqPP+zn+TXK7+iC/S5Cq05eRY9Bk8NDR/+ZUlMZDe56rllwBdtcdUlbP1UqJk4DoJR2HO2pHWHg6W7DLCmbwfLKB59s39y9gTe3vALA1QfdmJTuCFq1llun34dZa2Ft17c8/e1fdnvcX1c/yprO1Zi1Zu6c8VDCX4cEQRAEIZtp1CoKzHoAWp3ZkWzvq2w3iWR7MlTkKfdEun0hPIFwiqOBaCSCTVa6eppyRbI941mUKmVDT2tCl2mJjeL6fht5j7MLvaRsALYViWR7ppBylftChn10S9vlcZLEQcUHc8eMe3j39I+5/uCbGJM7jmA0yEfb3ufyTy7hzLd+xLPf/Z12X9tuzxGOhlnfpXS8m1w4dZfvR70dAPh1Itme7ipirwWOQDfu4J5zafpYR0F7KLGvUdlCJNuTYNEW5YVm+mjRQj6RJsTmtq/NkmT7tg5l12y1qGxPmGmxDTCLaztTHEn6aY5VtpeLyvaEGVWoVLbXdfjSoqWhs6VO+TcmDKbh2fLp6dWP0RPuYWL+ZI6vmpPw9SRJ4v+m3siUooPpCfu46Yur6PbvefNPxK7sPDW4M6+FeX6sGtlcXD2k87wZq2ovMZZyysgfxyGygcnPyeeRYx/DorOwpvM7fv7umfzp64fxBLNnjM0PmWx51EvKzZemtV+mNJauJmVDSgd2DEbzoM4hyzKPfn0fUTnKsZWzOKj40HiGuFelpnJuOkyZ3/6fDf9k0fbPdvr+pw0f8crGFwG46bC7dpmBJwiCIAjCwJXYlGvaliyZ297bzTFPVLYnhdWgxZajbMxsTINW8u7uNtSScv/AkieS7ZlOk6tcZ5mD7Qlbwxlw4Akp98orLDs6zbk6lGStW87BkCMKvTKFvkC5L2QLDL7S2Kq3cta4n/HCif/h+Tkvc8aYszBpTGz3NPLkqr9w6htzuHbBVXzeuIBwdMcmo03dG/BHerBordTYRu1yXsmn5MCC+rxBxyYkh1FrpDBHGUVSv5ciEnOx8nwrjLQjR/fd+WC4E8n2BGtx+qlt96KS4PCRorI9kcaXZNfc9t7K9uoC8YEnUaaNVN78V2xz4A9FUhxNemlyxtrIi8r2hCmz56DTqAhGomlx0e5rrwOgQxX/GeWZYEPXWj6sexuAKw+8fpfZU4miUWm5c/pDlJsrafE28ftFcwlGdj8ORVM4BgBbT0NSYosXv89DPkp7utzSkYM+TyAS4J9rnwXggv2TW9X+fSNto3h29ovMKDuScDTMi+v+yU/ePpU3N79GJJqd7yWt5gkA+LctT2kcPa21AHRoBj9T8ONt7/FtxzcY1AYumzI3XqH12xHlx3LW2HMAuPer39PqVW6S1LvquP+r2wH4+fgLOKL82KTHJgiCIAjZqHecY7Yk27t8orI92Spj1e0NXT0pjgS83UrHMCcmtDp9iqMRhionX9lca48krgioKdZCvjCnCINmxz0+T6eSbO9WiSrkTGItVZLcRZHWISc/JUliQv5Ebjz0Ft4782NuPfxODiicQkSO8Pn2z7j2s6s59Y05PLHyLzS6G1jZvgKA/QsORCXtmlbU9CjFI5EckQPLBDvmtm/d4zH2EuUYk+TH6xTFivsiku0JtmizsqNnUrmtbyekkBgTSnuT7Zlf2S7Lct/M9mrRRj5hRheasGplAuEoX9cPj9m7/dXsiLWRF5XtCaNWSdTE/r7TYW57sEtpK+bWFaU4kuSTZZnHVj6EjMzMqhOZmD8pqevb9HbuPfLPmLVmvu1YyR+/vgdZ3rXbgaVsLAAl4aaM2lHa2aR8cPfJeqy5g9/M8ebm12jvaafYWMKPRp4Wp+gGp8o6gkeOfYxHj3mcEdZquvxd/GHpHfzqw3NY1fZNSmNLhGDJAQAY21elNI5Ip/JcchlKB/V4X8jLk6seBeCXEy+myDj4pP1Q/L/J/8f4vP1wB13cvuQGPEE3ty66lp6wjwMKp3LxpCtSEpcgCIIgZKNiq5KQbMuSZHtfZbtJ3GNMlt657emwSb6nW2nl65RsKY5EiAdzkdISPF/uJhza/ab7odruUWZ7/7BrVsChbNzwaEQVciYpqFDGqZmlHlzd8euIkKMxcsqoH/P0rOf5zymvc86E87Drc+noaee5NX/njLdO4V+x4oc93TPTBZVku2QUyfZM0DtWomEv3TMNRjOdKO833U17H30piGR7wokW8skzMZZs39zmIRTJnCTE7rS5A/SEIqhVEuW5orI4USRJYoxNSWgt3ix2Z/WSZbmvsr3cLp5/idQ7t31LexrMbXcpu5p9OYNLYmWyhY2fsLr9a/RqA//vgKtTEsMIaw23T38QtaRmXv27vO9/H19o500Y+VXjiMoSVsmHqytz5iW5WpQEaZu6CEk1uI+egUiA59c8A8D5SZ7VvjfTy4/gpZP+x9UHXYtJa2Z91zp+Pe8CbvniRlp9mfM72hdLjdJqvbxnQ0rjUDmVqoyguWIfR+7e82v/Rqe/nXJzJWePOy+eoQ2IVq3l9mkPYNaaWdu5mgs++AlbXVvIM+Rz27T70Kg0KYtNEARBELJNSW9luzM7ku1dPmXGcq5oI580FbnpU9kedCrjuTxqe2oDEeLCVlBOWFahlmRc7QObwd1f22OV7ZWWqp2+HnYpyXafTiRGM4nBaKYDO7BjzFq81dhGcvVB1/Lu6fO498iHOLx0OgDOoAMAvXr3hVk5se+rLMOzY2amqbJWA3tvIw/QqVaKsnxtmTfSMtlEsj3Bymw5VOUZmTFKJNsTrSI3B7NeQzASTYsq0aGo61Dir8jNQasWf6aJNDaWbO/dGCOAwxfCH1I2rPTOtxMSozfZXtuR+tcsracJgIh5eCXbg5EgT656BICzx52XskpXgENKpnHlgdcDsDiwmHM/PJ3/bXypr628PsdEm6RcCHc3rE9ZnAMV6KgDwKkb/EzBtza/TntPO0XGYk4ddVp8AosTrVrLORPO49VT3+K00WciIfHRtvc5661Teebbv+IPZ/6N3fKJhxGRJYroorOpLmVxGH3KDSjZXj3gx25zbeWVDco89CsPvB6dOrU3qEvN5dxwqDK/vb2nFbWk5rZp95OfI25MCIIgCEI8ZVsb+R2V7SLZniyVeUple0MaVLZHPEola49OtP7OBmqNhk7JDoC7rT4hazR5lWR7uWXnynZiz6VQjshZZJpOjZL89LTUJnQdrVrL8VUn8OfjnuQ/J7/O/vmTMWpMnDzyzN0eb444ANBZh1/HzExUZVHmsTe46/Z6nEuv3CcNdYlk+76ILF6CXTd7HAt/eywzRotdYommUkmML7EAmd9KvreF/AjRQj7hepPtqxuduP2hFEeTHrY7lN3aBWYdeo06xdFkt5EFZgBq06Cy3ehXqnAl++AqRjPV/za+SLN3OwU5hfx8/AWpDofTx/yM2w6/n3xVPo5AN3/55gHOff80Pqx7h0g0QruuHABfc2orjAci6lAu7ntyygb1+GAkyPNr/wHABftdlPIk6Z7kGfK5+bBbef7Elzmg8ED8ET9/Xf0EZ79zOp/Uz9vtaIBMYTTbqFcrlRAt65ekLI7coLIpSFdQM6DHybLMn7++n4gcZlrZUUwrOyoR4Q3YURXHcc6EC1FLGi494BqmFB2c6pAEQRAEIev0JtvbXIEURxIfXV4xsz3ZdrSRT31lO16lUCSoE62/s4VDoyS7ezobEnL+7e5YZbt558p2tU9JtkeMIjGaadwG5d5KqLMuaWvW2Efy1xOe54WTF6BX63d7jFV2AmCwDb7QQkieSqvSRn67p4FINLLH4/wm5fmmcjYmJa5MJpLtSSJJUqpDGBayZW57XadS5Vqdb0xxJNkvTw9VeTlEojJLa7tSHU5aaI611ysTLeQTrq+yPQ26cdiCSjs6XV7lPo7MHt3+Lv619u8A/HrSlRi16fGae1T5cVxluYprDryJgpxCWrxN3LP0Fi766Gy+sNmQAblzS6rD7DeNR6lGjljLB/X4t7a8QZuvlaKcIk4ddXo8Q0uI8XkT+NsJz3L3jPsoMhbT7G3ips+v47JPLmZjd+ZskvihNssEAAL1X6dkfTkapSiivE5ZSkcN6LGfb/+U5a1folVpuWLKdYkIb9AumXwV75y+kLPG/TLVoQiCIAhCVurt1pYtle0OX6yyXbSRT5reNvKNXb6Ub6BV9ygjEMM5ItmeLTw6JdkddjYl5Pzb91DZbggoGzdUFpFszzS9Y9V6x6ylg3AoiB2lkMiUJ5LtmaDYWIpOrScUDdHi2/PrT9Gca1n704WM+vl9SYwuM4lku5BVepPtazM82S4q25Nr2kil88TiLWJuO0BzbF57qWghn3AjC5XK9jZ3IKWdFeRolMKosqvZXDgiZXEk2z++ewJf2Mu43InMqj4l1eHsRC2pOWXkGbx40lv8v8lXY9Za2OrczBPmOs4rLWabb12qQ+w3o68ZAJW9ah9H7ioYCfLcGmVDxHn7XZi2Ve0/JEkSs6pP5H8/epOLJ/0GvVrPitblnPf+z7jvq7tx+LtTHeKAhUumAGDqWJ2S9V1dLRglpSItr3x0vx8XCPt5/JsHAfjZ+POpsAz8eZho6bLRRxAEQRCyUW9lu7MnhD+058qtTOAPRfAGlZ9BVLYnT0Wsst0dCOPsSW1HRG1AuW8lG0Xr72zhz1ESk5KrOe7ndgWcuINKtXG5eedkuzGoFBzpRBVy5ondWzF40qfS2NPd1ve/zbliA0cmUEkqKmIdL+pdW/d4XEH5aEpG7o8+R+Sp9kUk24WsMqG0t428O8WRDI2obE+u6SOVHcGLxdx2YEcb+VKbqGxPNFuOlgKz0n5pawrntnvd3X1JLHvp8Ei2b3Fs4p3a1wC4/MDrUEnp+ZHIoMnhFxN+xb9PeZdzJlyIFg0rDXrutzdyw8Ir2JwBldK5IWVEgbGwesCPfTtW1V6YU8iPR58R58gSz6DJ4ZLJl/LfU95gZtUsonKU1za9wplv/4j/rH+RcDRzxpfYRh0KQKV/A3I0mvT1Hds3AdBGHjpD/9+fXlr/LC2+ZoqMJZwz4aJEhScIgiAIQpqyGjQYtMpn/dYMr253+JTPjmqVhNWgSXE0w0eOTt133Z7qVvKGoLJpV2UuTGkcQvxEzEqyW+drifu5N3Yrm/RNWvMurb9tESXZbsgb3Lg3IXX0hcpYNVsg/hs0Bsvbpdz3cWBGoxWbwTJFpUW5B1zvFvPY4yE97ywLwiCNK7EgSdDhCdDuzsx5XLIsi8r2JDsslmxf3+Kmw5OZz5t4anYoNyDKRRv5pEiHVvLOZmUHoxMTBpMtZXEkiyzLPL7yIaJylKMrZnJA4UGpDmmfLDorl0y+ikfG38PZLjdqWebL5i+46KOzuWvJTWz3pE/7sO+LRiIURpWNTLbSgc3ZDkVCPL9GmdV+3n4X7nEuWCYoNZdxz5EP8tTMZxiTOw530M3DKx7gnPd+ytLm1M1AH4jy8YcQktXk46R9e23S1/e1Kmt2avpfedHs2c5L654F4LIpc8nRiPc1QRAEQRhuJEmiJFbd3uLM7GR737x2o1aMq0yy3lbyDV2+lMZhCjsA0IrW31lDFRu3luNvjfu5e8fmhSLhnWYyy9EoubH52pZ8kWzPNNYSZaxaYaQ1JRvhd8fvVJ6/Lin77ylmkyprNQANrrqUxpEtRLJdyCpGnYbqWII6U+e2d3qDeAJhJAkq88RN4WTIN+n6RhCIVvLfayNvF23kk2FUX7Ldk7IYvO3KDsYO1fDYHb+4aSErWpeiVWn5zQH/l+pwBmTM6MO4pbObtxqbObrkGAA+rn+fc987nUdW3ENnT3p16HB0NKOXQkRkibzS6gE99p3aN2nxNVOQU8hpo89MTIBJdlDxwfxzzsvceOgt2PR2tjpruXL+b7jus6tpcNenOry9MhjN1GuUXc+t65O/QSDSVQeAK6e83495bOVDBKNBDio6lGMqTkhQZIIgCIIgpLveVvKZPre929ebbBdVg8lWmad0nkx1Zbs1qiRIDXaRbM8Wujxl/rYtFN9r+dXt37CyfTkAPxn7K7Rqbd/3XI4OdFJYWbeg/9dXQnrIr1DGqlmkHtzO9LiPHXQpbeQ9antqAxEGpMqiFMU0uOtSG0iWEMl2Iev0tpJf35KZyfZtsRbyZbYc9Bp1iqMZPmaMis1t35xeiapUaIpVtos28skxskCZ274lhW3kw11KVbRbl/0X7KFIiCdX/RGAs8b+kjJzRYojGhiDyUYbeVSFw1xkP4OnZ/2bQ0tmEJHDvLH5v/zi3VN4evVfcAfT4z2wu3kLAB1SHlpd/yvTQ5EQz34Xm9U+8VcZXdX+Q2qVmjPGnMWrP3qbn43/JWpJw8LGBfzsnTN4YuWf07q1fLtlIgChhq+TvrbWpWxGCPbzb/ar5sV8sf1T1JKGqw+6QVR/CYIgCMIw1ptsb3Nldie7vsp2Ma896Sp7K9u7U1fZLkej2GTlOs+YW5KyOIT4MhYos9Tzo/FLmoYiIR5efhcAJ9aczk/GXbjT993t2wFwYUKfI0aYZpock4VOlAryzsaNKY5GEXW3A9Cjs6c2EGFARBv5+BLJdiHrTChRKpQzdW57XYfywb26QHzYSaYZowsAWDTM57ZHonLfbv8yUdmeFOnQRl52KRdaPTnZf8H+5pb/0uDeRq4+j19OzMz5ze1apc2br3kjY3PH8+DRj/PosU8zMX8y/oifF9Y9w8/fPYWX1z9HIJza6h1fqzKioEs7sI0c7259ixZfM/mGgqypav8hq97K3KnX89LJr3BY6TRC0RDPrXmGK+f/Boe/O9Xh7Va0dAoAls7VSV87x6u8Tkm5I/Z5bGdPB/cvuw2AM8b8jGrbqITGJgiCIAhCeiuxZVdle56obE+6ilzlHl0q28h7XV3oJKUVuCW/NGVxCPFlL6kGwCz14HM74nLOf294njpXLXZ9Lr+edNUu3/d2NQHgkOxxWU9Ivo7YeDVPS/JHvO2WT7mfHtTlpTgQYSB628h3+TvwBDMzl5ZORLJdyDq97cAztY18b2W7mNeeXIfW5KFRSTR09aR8BlcqtbsDRKIyapVEkUUk25NhZKFS2b61w0M0KqckBq1HudAKm7N7Vpcz4ODZ754C4MJJl2HSmlMc0eC4jVUARDu39H3twKJDeOL45/nDEY9QbR2JO+jiqVWPcs57p/LOltcIR8MpiTUU65rg0ff/ZlA4uqOq/dyJF2DQZPdrUY1tJH8+9knuPfIhjBojK1qXc/4Hv2BTd3rsUP8+++jDABgR2JD02XC5wRYAdIUj93pcOBri9iW/paOnnRHWkVy4/6XJCE8QBEEQhDSWLW3kRWV76vSOeUxlG3lPZ7PybzkHnUF0IswWRosdr6y8Rjlbh15d2uiu559rnwbgiinXYdXtOkPb71CeS26NSIxmKrdBuX8X6kqPimRVTxcA4RzxnMokJq2ZPINSgChayQ+dSLYLWWdCmZJs39zmIRCOpDiagavrjFW254vK9mQy6TVMqbQDsGgYt5Lf7lAuHEusBtQq0XI3GSpzc9CqJfyhKE3O1Fy4G/2tAEi27J7V9dyav+IJuRllG8vJNaenOpxBC9qrAdA563b6uiRJHFF+LP+Y/Qo3HXonxcZS2nvaeHD5nVzwwZmsaluR9Fgll5JsDw1gI8e7tW/T7G0iz5DPGWN+kqjQ0ookSRxfdQLPzP4X5eYKmr1NXPzReXza8EmqQ9tJ+biDCMoabHhpqVuXtHXlaJTiqPI6ZSnde5X6kysfYXX715i0Zu6e8UeMWrF5URAEQRCGu5K+NvKZnWzvjiXb80zafRwpxFtvZXtjdw+ynJpN8j0OZfOpU2VNyfpC4nSqlNGW3vaGIZ1HlmUeWXEPwUiAqcWHMXPESbs9LhKbr92jzx/SekLq9I5Xkxz1KY5EoQsoyXbZWJDiSISBqhKt5ONGJNuFrFNmM2A1aAhHZTa3eVIdzoCJyvbUmd7XSj5+c5IyTXMs2Vtqy+5K0nSiUauoylMu3FPVSt4aVC60dPlVKVk/GdZ3reHNzf8F4PIDr0WtUqc4osFTF4wGwOrb/UWVWqVmTs2pvHDSm1x54PXY9Lk0uLdx6+Lrkl7hrvcqO+ZlW2W/jg9HQ/zjO2UXvlLVPrwqNkbZR/PsnBc5uPhQesI93LBwLn//9imicnKryPdEZzCyVasku1tXf5y0dR1t2zFIIaKyRF7pnivb59W9y/82vQTAzYfd1dcSTRAEQRCE4a3Yqgcyv7K92xcCIFe0kU+6MrsBSYKeUIQOTzAlMQSdynW7W21PyfpC4ji1hQAEuxuHdJ6P699neeuX6FQ65k79HZK0hyIaj7KROWgoHNJ6QgrZlXssvePWUs0QVEbhqUziOZVpqqw1gKhsjweRbBeyjiRJ32sln3mzJnZUtotke7LNGKXs6FyypSNlO5VTrdnRO699eCW4Uq23lXxte/I3CMnRKIVRpZuDqTA7k+1rOlZz7YL/R0SOcET5MUwtPizVIQ2JuXQsAEXhpr0ep1Pr+MnYc3j55Lex63NxBLr5pm1ZMkLsYw0oyXZ9/r7nbAO8t/WdWFV7HmeOOSuRoaUtu97On497gp+O+zkAf1v9JDd/fj094fQYcdJRdgwAhi0fJm1NZ/NmANqkfLT63W8G29y9gQeX3wXAeRN/zRHlxyYtPkEQBEEQ0ltvG/lWVyCjr/X7ZraLNvJJp9eo+zokNHan5nN52N0OQI8mNyXrC4nj0xcBIDv3fo2/N66Ak8e/eQiA8/b7NRWWPd/f0fQozyVZJEYzlq5ASZBa/c0pjkRhCivJdq1VVLZnmsreynZXXWoDyQIi2S5kpUyd2+7wBXH2KDuVR4g28kl3YFUuOVo1HZ4gG1ozb6NGPPS2MS+1i8r2ZBpZqGyuqe1IfmW7192NSVI2WeSWVid9/URb1baCaz/7DZ6Qh0kFB3LzYXenOqQhy6ucAEA+TrzO7n0eb9KaOapiJgCf1n+U0Nh+qCCiVF+Yi6v3eWwkGumb1f7LCcOvqv37NCot1x18IzcfdhsalYb5DR9z8UcX0OwZ/M2XeMk/6DQAxvtW0ONNznulv3ULAJ3akt1+3xVwcsuiuQQifg4tmcEF+/0mKXEJgiAIgpAZimKV7cFwFEesOjwT9c1sF5XtKVGRq1yfNKRobrvsVTbJB/Qi2Z5tQqZiAFSelkGf46+r/0R3oIsR1pH8bNwFez1W71c6ekqW4kGvJ6SWNdbxrTA2bi3VrFEnAHqbeE5lmipLNQANoo38kIlku5CVJmZosn1rLNFWajNg0GZui+NMpdOoOKQmD4BFm4dnK/mm2Mz2MtvwTXKlwqiC3sr25CfbXS1bAXBiwmCyJX39RFrWsoTrF15OT9jH1OLDePDoJzBpzakOa8hMtlw6UX5XXQ39m5t9bOUsABZu/4RQJDk3GHu8bnJRkrF5ZXufsw2wvPUrtnsasepsnDl2eFa1/9Bpo8/gieOfJs+Qx6buDVzwwS/4pu3rlMZUNfFQmikkRwpSu/SdpKwZ7q4DwJNTtsv3ItEId315E83e7ZSayvn94fdk9JgIQRAEQRDiT69R91WDZ3Ir+d6Z7bmisj0lKmNz2xu6UlPZrupRku1hg5iznW1kSykA+p7BJU5Xt3/DO7WvAXDdwb9Hq9bu9XhTSLnnqbXtfjOzkP7yy2PjBfHh7u5IaSxyNIpNVu79GPNEsj3TVMbG7zW6txGJRlIbTIYTyXYhK40vtQBKsj2TWoRti7WQF1XtqdPbSn7x5tR+UEmVZqdoI58KfZXtKWgj72lTdi52qrKrfdii7Z9x0+dXEYj4Obz0CO494k/kZFGldJtGSTp6mjf26/gDCg8iz5CPO+hiRdvSRIbWp7OpFgC3nIPZvu8bQh/UvQfACSNmk6MR74O9phQdxHNzXmJc7ni6A91c9vGveX3T/1IWj6RSUVdwNADhte8lZU2tqwGAoKVyl+89t+YpvmpZjF5t4O4Zf8Sqz65NQ4IgCIIgxEdvK/lMTrZ39baRF5XtKVGRp1yjNKaosl3r7wIgahTJ9myjtpUDYA62DfixoUiIh2PjtE4ZeQaTCw/c52NsEaVDnjGvdMDrCenBaLbRhVJs2Ll9U0pj8bq60EpKktYsnlMZp8RYhlalJRgN0uYbfHcNQSTbhSw1ttiCSoJuX4g2dyDV4fRbXadS1SrmtafOjNHKbJmlW7sIR6Ipjib5mmIz20ttoo18MvXObG9y+vEFw0ldO9TVCIBLV5TUdRNpQcM8fr/oWkLREEdVHM/dMx5Br8mu57TLqMxfi3Rs7tfxapWao/taySdn1ra7RUm2d6iLkCRpr8f6w34W1H8CwOzqExMeW6YpMZXy9KznmFk1i4gc5t6v7uKBr+4hHE1NG1T9/qcAMNrxBdFI4nc+m3zblf+RO2Knr3+x/VP+ufZpAK4/+PeMzh2X8FgEQRAEQchMJbFW8q3OzEy29wQj+EPKPYpc096rVoXE6G0jn6qZ7YagkiBVmbNro7wAhgJlU3FueOCFP//e8Bx1rlpy9Xn8v8lX7/P4aCRCrqy0/Dbn79o5TMgcHWqlM4Endu8lVTxdSoLWKxsw5IicRqZRq9SUm5XXoHp3XWqDyXAi2S5kJYNW3Ze8WptBreR3VLaLN6ZUmVhqxW7U4gmEWdXoTHU4SRUIR+jwKJtTRGV7cuWZdNiNyg2Trcme2+5Sku09OdnR6umjune5Y8kNROQwM6tO5LZp9++zhVomCtqqAdA5tvb7McdWzQaUBGUwEkxEWDvxdyhdE5y6fT+3vti+EG/YS6mpjMmFUxIcWWYyaHL4wxEPcOkBVwLwv03/4cr5v8Hh7056LKMOmY1bzqEAB7WrPkv4erlB5eLdUFDT97V6Vx1/+PIWAH4y5hecUH1ywuMQBEEQBCFz9Va2t7oypyDj+3qr2rVqCbNek+JohqdUt5E3hR0AaCzZs1FeUFgKlc30+XI3kXD/CzAa3fX8c42y+fjyA6/rV5cvl6O9rwrZXiiS7ZnMnaNUkQc7+39fKBF6upXrdafKmtI4hMGrsir3WhpEsn1IRLJdyFoTMnBu+47KdtE+N1VUKolpI4dnK/mW2A5/vUZFrjH7kpPpblRhaua2az3NAITN5UldNxHe2fIa9yy9hagc5aSa07j5sLvRqLLzRpQqX5mBbvE19PsxkwqmUJBTiCfkYVnLkkSF1kd2KLH1GPfdRuzDWAv5WSPmoJLEx9M9kSSJX+1/MQ8d/SeMGiMrWpdz/ge/YHN3ctvG6fQGNlgOB8D1zVsJXSsaiVAcVdopWsuUuXS+kJffL5qLL+xlcuFBXDrlmoTGIAiZprq6GkmSdvnn8ssvB8Dv93P55ZeTn5+P2WzmzDPPpLV15xmh9fX1nHzyyRiNRoqKirj++usJD+DmryAIQrrJ9DbyffPajbp9do0SEqMyTylK2O7oIRpN/shKS8QBgN4mku3ZxlZUQUSW0EhRXB3N/XqMLMv8ccUfCEaDHFx8ODOr+tchztWmFFw4MKPTi0KbTBYwVQAgOepTGkfQ1Q6AW2VPaRzC4FValC6C9a661AaS4cTdTCFrTeib2+5OcST9Jyrb08P0WCv5RVuGV7K9t4V8uT1HXLynwMiC3rntyU22G/3KDlTJltnJ9tc2/ZsHl9+JjMxpo3/K9YfcilqlTnVYCWMsHQtAUWh7vx+jklQcU3ECAJ82fJSQuL5P424CIGrddc7297kCLhY3fQHAnJqTEh5XNjiq4hiemf0vys0VNHubuOijc1nQMD+pMYTHzAGgrPXThK7jbK1HJ4UJyypyS2uQZZn7vrqNOlctBTmF3D7tATQqsUFMEL5v2bJlNDc39/0zb948AM466ywArrnmGt5++21eeeUVPvvsM5qamjjjjDP6Hh+JRDj55JMJBoMsXryY559/nueee45bb701JT+PIAhCPJTYeivbMzPZ3hVLtueZxLz2VCmxGlCrJEIRmVZ3cp9HcjSKXVaKiYy52dGVTthBo9XRJdkBcLVv69djPt72Hital6JT65l78O/6fR/PF2v57RCJ0cyXq3REyPH2/75QIoTdSrK9R2tPaRzC4FVZqgFocPfv9UfYvews9xIEMq+y3dkT6rt4GiEq21Nqxiilsv3rbQ56ghFydNmbsPu+JkcPAKX27JptnSl6R1/UdniSuq41qFSM6vL3nhBNZy+vf46nVj0KwNnjzuPSA67J+g0j+VUTACikmyavE4Np3+3iAI6tmsX/Nr3Eou0LCEQC6NX6hMVo8ivJdnXu3p9b8xs+JhQNMdo+hlH2MQmLJ9uMso/m2TkvcvPn17O89St+u/Aa/t/ky7hw/0uS8vyvmX464a9voiZaT23tGkpH7peQdRzNmwFol/LRa3W8tO5ZPmv8GI1Kwx3THyI/pyAh6wpCJiss3HmW63333ceoUaM4+uijcTqdPPPMM7z00kscd9xxADz77LNMmDCBL7/8ksMPP5yPPvqItWvX8vHHH1NcXMyUKVO46667uOGGG7j99tvR6Xaf6AkEAgQCO9ozu1zKdVgoFCIUCiXop01fvT/zcPzZBSGe4vW3lG9UboG2OHsy8u+y3aVcr9tzNBkZfzqIx3Op1GagsbuHrW1uCoyJua0ejspEwmEkSUJWKZ/rfW4H+ZISd46tkHBYPAdSrbfjT7w6/zjU+RRGuvG1byMcPmyvx7qCTh5b+RAAvxx/EcWGkj0+J8KRKJFwlHBYRhVV0dOtJGY9mjzyxWtJWhjsc0mTpyTbLYFmwkn4XYajUSLhCGEpiiTvqOGNepT7ij3aXPHalKHKjEqXhG2urUn7HUb6nvchQqr0vofb388NItkuZK2JsWR7bbsHfyiCQZveCdP6WFV7oUWPSczfSqmaAhOlNgPNTj/Lt3Vx5JjCfT8oCzQ7Y8l2m2gjlQojC1NQ2S7LFEY7QAJT4YjkrRsnsizz/Jq/8uyapwA4b+IlXLj/pVmfaAcw5xbiwIwdDx3bNlAx8dB+PW5i/mSKjCW0+Vr4qnkRR1Ycl7AYc0NKS2JjYfVej+ttIT+7WlS1D5Rdb+fPxz3Bo18/zH83vMxfVz/BJscmbpt2JzmaxG7cs+YWsk4/mUnBlTQvez1hyfaeNmX+XKeulKaWL3n6278AcPWBN7J/wQEJWVMQskkwGOSFF15g7ty5SJLEihUrCIVCzJw5s++Y8ePHU1VVxZIlSzj88MNZsmQJkyZNorh4R+Xc7NmzufTSS1mzZg0HHnjgbte69957ueOOO3b5+kcffYTROHw3E/d2FhAEYWiG+rfU6AXQUN/h4r333otLTMm0uFkC1PhdnRkZfzoZynMpJ6ICVLz32Ze0r01eK/mAq41qoEfW8c2Xi5O2rrBvyz77JC7nKZaV+9it65fTEdr7ZvrXfa/jCHZTpCqiqrGIJds/3Of5N8T+Hd28GoDuiJEtH30wpJiF+Fo4/+MBHe/v7uZQoDDcyvwU/i71rco1uzOoZskn+34uCumnJ6rkBDr97Sz4+C30UuIKc35o/scDe96ngs/n69dxIqMnZK0ii548k44ub5CNrW4mV9hTHdJeiXnt6UOSJKaPKuDVrxtZtLlz2CTbm2Iz28vsItmeCqP6ku0eZFlOSsLY4+oiT1J+77ml1QlfL55kWeZvq//MS+ufBeDiSVdw7sSLUxxVcrVoyrGHN+Bp2gD9TLarJBXHVs7iPxv+yfyGjxKWbI9GIn0bOWylNXs8rs3XytetywFlXrswcBqVlusOvpHR9rE8sOwPzK+fR4O7noeOepRCfWLfv1wjToBNK7Ft+xi4JSFryF11AGwzFXDvkhuJylFOqjmNH406MyHrCUK2eeONN3A4HFxwwQUAtLS0oNPpsNvtOx1XXFxMS0tL3zHfT7T3fr/3e3ty0003MXfu3L7/73K5qKysZNasWVit1jj8NJklFAoxb948TjjhBLRaMe5CEAYrXn9Lnd4gD65egCckMXPWHHSazJqsuemTzVBXy8RRVZx00sRUh5OR4vFc+jywhk1fbyevaiwnHTsqzhEqwlGZDn8YjSShjlX71a9aCFvAIVmZdvzshKwrDEw4HGbZZ59wyNHHo9EMPcWyqe5V6P6aAiOM38vveHXHN6z4bAUANx/5ByYVTNnreUORKO5QlMIcNTqVitVNH4FH6UB33CxxDZ4OwuEwC+d/zFHHzRzQc6nH44THb8Ym+TjksIOx2BLb9S0UjdLWE8GiVaFV73gPrd38LwhATnENB4nXp4z1+DtP4Ah0UzZ1DGNzJyR8vWAwxIrP53PczJkY9tA5LV30dmzbF5FsF7KWJElMKLWwaHMn65pdaZ9s3xZLtot57elhxuh8Xv26kcXDaG57c6yNfJlNtJFPhao8E2qVhDcYoc0doNia+N+Ds6VO+TemfrchTweyLPOXbx7g1U0vA3DFlOs4a9wvUxxV8jlzKsG9gXDH5gE97tjKE/jPhn+ypOkz/OEeDJr4b7DpbmukQooQllXkley5a8K8bR8gIzOl8CBKzWVxj2M4OW30GVRbq7nx82vZ1L2BCz74BX+Y/kBC1yw79HTY9CDjA9/S0dmKLT/+8yM1rgb8ksTjtjacQRfjcifyf1NvGhYdLAQhHp555hlOPPFEysoS/xqr1+vR63etgtBqtcM62Tzcf35BiJeh/i0VWTVo1cq8bUcgSnlO8qq24sHpjwCQbzaI15QhGspzqfeeXZMzkLDfgxSVUYelnZLtIbdyb8qttlOgEb//dKLRaNDE4XcSsZRBN+h6Wvd4vlAkxKPf3AfAKSPP4MCSQ/Z5XlmKopYjSpxqFVq/8lySzcVoxGtJWtFoNAP6nVhyC+jGQi5uXC3byC0oTWB0IEeiqDUSGo0azfeS7YaQAwCVpSgufwtCalRZa3C0d7Pd18jEwskJXy8SVbrDaDTpf63U3/gyaxunIAzQ+JLeue3uFEeyb3WxNvKisj09zBit7Ab8drsTp294zJtpcigVzqWisj0ldBoVlbnKf/stbcmZ2+5rrwOgU5U5M4+jcpSHlt/Vl2ifO/V3wzLRDhC0VgOgddQN6HHj8/anxFRGT7iHL5u/iH9gQHfzFgDapTw02j3vUP1ga28L+RMTEsdwM6XoIJ6b8xLjcsfTHejmqs8u5XP/56xqX8l2TyOBSGDfJxmAkpoJbFWNQCNFqVvyRlzP3cvY08jd+bk0SC5s+lzumvEwenVm3RwXhFTZtm0bH3/8MRdfvKPzS0lJCcFgEIfDsdOxra2tlJSU9B3T2tq6y/d7vycIgpCJVCqJIouyobkl1tUtk3T5ggDkGtO7+ivbVeQp1+yN3f1rKRsvYU87AD6NPanrCsmjylU2qZe4vkOORnd7zL83PMc2Vy25+jz+3+SrB7WOPqAk21WWosEFKqSVdrXy2dzdWpuyGIyxZLvGMjw6w2arSovyGtTgrkttIBlswMn2hQsX8qMf/YiysjIkSeKNN97Y5Zh169Zx6qmnYrPZMJlMHHLIIdTX1/d93+/3c/nll5Ofn4/ZbObMM8/c5WJeEOJhQmlvsr1/rR5SSVS2p5diq4FRhSZkGZbUdqY6nKRois1sL7eLyvZUGVloBmBLR3Lmtgc7GwFw6TLjIiscDXPv0lt5p/Y1VJKKmw69kx+PPivVYaWMlK+0LTT76vdx5A8eJ0kcWzkLgPn1iZmn5WurA6Bbu+dK563OWjZ0r0ctaTh+xKyExDEclZhKeXrWc8ysmkU4GuZD/4dc+unFnP7myRz570OZ+cpR/PydM7ly/m+4c8nveXLlY/xv439Y0DCfNR3f0uprJRzt/yazppJjAdBsTsyMuC8NbbxpMSMhcfu0+yk2JXa3viBkk2effZaioiJOPvnkvq9NnToVrVbLJ5/smC+6YcMG6uvrmTZtGgDTpk3j22+/pa2tre+YefPmYbVamThRtC4WBCFzlcS6uLW6Mi/Z3u1Vku15JpFsT6XKXKVApqGrJ6nryrFke0CXl9R1heSpmn4mXllPtdxI7bJdr60a3fX8c83TAFx+4HVY9YPrTmgKdQGgtYkNlNnAbVCuj4MddSmLwRJxAKCzZca9RWH3qizVADS4tqU2kAw24DbyXq+XAw44gAsvvJAzzjhjl+9v2bKFI444gosuuog77rgDq9XKmjVrMBh2JG+uueYa3n33XV555RVsNhtXXHEFZ5xxBosWLRraTyMIPzCh1AIoyfZkzUAerB2V7SLZni5mjC5gS7uXxVs6mLN/dn8IdftDuP1hAEptorI9VUYWmJiPMrc9KVxKsr0nJ/2f3+FoiLu+vJkFDfNQS2puOfwejqsa3rOgjKVjYTUUBrcP+LHHVc7m5fXP8WXzF/hCPoza+HZVCXcpGwC8hj0/tz6sU6rap5VNx663x3X94c6gyeEPRzzA/msn8/q3rxDOidDR004gEsAVdOIKOtni3PP4AQmJPEM+hcZCCnIKKcwppCCniEJjEYU5hVRYKhkR66xgm3IqND3HePdSggE/On38Nmytal3BU3nK5cq51b/koOJD43ZuQch20WiUZ599lvPPP3+n2Y82m42LLrqIuXPnkpeXh9Vq5corr2TatGkcfvjhAMyaNYuJEydy7rnn8sADD9DS0sItt9zC5Zdfvts28YIgCJmi2Kq8hmVisr0rlmzPFcn2lKrMU66bmp09hCLRneYWJ5LKpxSBhAwi2Z6tzLZ8VuXPYXrXm0hf/Q0OO6nve7Is88cVfyAYDXJIyTRmVg2+M5wt0g2AMVeMccsGAXMFeEFyDqwII55ssgskyBHJ9oxWGUu217u3pjaQDDbgZPuJJ57IiSfu+QX9d7/7HSeddBIPPLBjRuSoUaP6/rfT6eSZZ57hpZde4rjjjgOUHfcTJkzgyy+/7LvA/75AIEAgsKPtZe9A+lAoRCg0PNo7f1/vzzwcf/aBGpFrQKOScPnD1He4KUvT9tjeQJh2t/IcL7dpxe82Sfb1t3RYtZ1/LtnGF5s6sv530tChJHetBg06lZz1P2+8xet1eURebxt5d0J+B+GoTCQcRpIkZJWExtMEQMhUSjicvr/zYCTAnUtvYknz52hVWn5/2L3MKDs6rWMeinA4vNO/98RaNhqAEjpocHejzzH3e40ayyjKTBU0eRv5ovFTjqsceGV5OBIlEo4SDsuoojvfZJKcykaOgKmc8G6ey7Is97WQn1k5a7fHCEN3xsifUFBn56jjZqJWq3GH3HT0tCv/+Dvo6GmnvaeNjp6O2Nfa6ejpICJH6PR30OnvANbt9tw11pGcUDWb40ecQAd2CiQHy798l3HTTx1wnOFolEg4QliKIsnKc6nL38Fti64jLEmc4PFxzuRLs/ZvXoivSN9raIiQKn032kJir+c+/vhj6uvrufDCC3f53iOPPIJKpeLMM88kEAgwe/Zsnnjiib7vq9Vq3nnnHS699FKmTZuGyWTi/PPP584770xYvIIgCMlQbI21kc/AZHt3rI18nmgjn1KFZj06jYpgOEqL09+XfE80rV9JtsvGzBkBJwyc+cjL4M03meL5grqmreSV1QDw8bb3WNG6FJ1azzVTbx50MVk0EiFXdoIElkKRbM8Gsr0KWsHgaUzJ+n6vmzxJyWmY80UXukxWFSuoaHDXE5WjqCQxgXygBpxs35toNMq7777Lb3/7W2bPns0333xDTU0NN910E6eddhoAK1asIBQKMXPmzL7HjR8/nqqqKpYsWbLbZPu9997LHXfcscvXP/roI4zG4Tvfet68eakOISMUGtQ0+yReeGcB++fJqQ5ntxq9ABrMGpnP54vfa7Lt6W/JFwYJNbUdXl56/T3sWVzIs65bAtSYVSHee++9VIeTsYb6utzmBNCwpr4jKb+Hilhle5tHpvuTxLQTH6qgHOQl70tsDm9Gg4af5/wc1To/S9alZ7zxtOyzT/b6fTkqUyQbsUo+Fr/7Xwy55QM6/5jwKJpo5PVvXiRn4+DfHzfs5mvF3cpO2Fafivkf7doCryHcQJN3Ozp0RNcFmb8+MS3IBcXC+R/v8jUDGioopYLvXRDrIKqN4pN9uKIu3LJ7539H3bhkF22RNra6avnbd0/yt++eZERZIT/zRDAse5HtnqHfAI7IEf7h+QfdkW5GBYNc2q5i2cL5Qz6vMLzM/3jX53268fkSN+911qxZyPLuX9sNBgOPP/44jz/++B4fP2LECPGZUBCErFMSS7a3ZtjMdlmW6fYqG7RyTdoURzO8qVQSFfYcaju8NHT5kpZs1weVamRMItmezSomHMKa9/Znv9B3NH/yJHnnPoAr4OSxlQ8BcP7ESyg3Vw76/K6uFkolZR68rUAk27OBvrAGNoAt0JyS9T1dymjooKzGZMlNSQxCfJSaylBLGgIRP+2+VjHCbxDimmxva2vD4/Fw3333cffdd3P//ffzwQcfcMYZZ/Dpp59y9NFH09LSgk6nw2637/TY4uJiWlpadnvem266iblz5/b9f5fLRWVlJbNmzcJqtcbzR8gIoVCIefPmccIJJ6DVig/Z+zLf9y1vrmrGVDGOk44Zmepwduv971pg9WrGlNo56aTDUh3OsNGfv6WXmr7k2+0ujDVTOGlK9n4QdS9vhPVrGVtRyEknHZTqcDJOvF6X290B/rL2M7qCEsefMBu9Vh3HKJXK9g5/GI0koVZJ+FbeDEDF/ocz8vD0a8nuC3m5Zcm1bHZuxqDO4e7pD3Ng0SGpDivhwuEwyz77hEOOPn6n1r+70/JdGdbIZiqKzIw5amC/wyJHDZ998hmbIpuZfNQMTNr+V8YDhCJR3KEohTlqdKqdd7y2rr4NgMr9D2PCkXN2eewfv34QNsMxVccz5/CBV0IL/RMOh1k4/2OOOm7mPp9LA+EOuvls+6fMq/+QFW3L2KYPcL8+F5W8mYN0b3JC1WyOrjgOq65/n9ND0ShtPREsWhVatYrHVj7ENuc2DGh5tLUJt24/ph2ffq9RQnoKBkOs+Hw+x82ciUGX3tV/vR3bBEEQhOTYMbM9sI8j04s3GCEYURJkYmZ76lXkGant8NLYnby57TkhBwAai2jTnO0cky6Ar69j/PZXCQXv4qlVj+IIdFNjHcXZ484b0rldHc2UAt1YMOiyuKJoGLEUK7mOwkhrStb3OpR8nkOyoVGJSuhMplFpKTdXUu/eSr27TiTbByHule0AP/7xj7nmmmsAmDJlCosXL+app57i6KOPHtR59Xr9bmfDabXaYZ1sHu4/f3/tV27jzVXNbGzzpO1/r0ancqFXU2BO2xiz2d7+lmaMLuTb7S6+3OrgrENGJDmy5Gl1Ky3pynON4jk4BEN9XS7N1WDRa3AHwmx3hRhXEr/ZxwBSVEYdlvqS7QXRTqV9WMlINJr0+r27gy5uXHQVazpXY9Kauf/IvzCp8MBUh5VUGo1mn78XZ04leDYT7agd8O9wbP5EqizV1Lvr+Kp1MSdUnzygx8tSFLUcUeL8wazCgkg7ALbS0Wh+8DcRjoaZ36h0gThp5Cm7fF+IP41GE9f/zrnaPE4beyanjT2Tjp4OPtz8NvO/eoBvDTqWty1jedsyHvz6PqaXHcHsESdyZMXRGDR7HuUjR6KoNRIajZr5De/z+pb/AHBBeBLV4S0ssVVQnmavUUL6ikSVam6NJv2vldI9PkEQhGxTZOlNtmdWZXt3bF67XqMiJ84bsoWBq8hVPtc2dCeuQ80PWaIOAHS2wqStKaTG6KN/QcfXd1NIN8/Ne5B3Pa8DcO3Bt6BVD+2zo7dzOwAOVS4lQ45USAf5Fcp4QSte2p2dmG35SV0/4FCS/G6VDVHXnvmqrCOod2+lwb2NQ0qmpTqcjBPX7SYFBQVoNBomTpy409cnTJhAfX09ACUlJQSDQRwOx07HtLa2UlIiXuaF+JtQqlRVrWt2pziSPdvWoXxAH5FvSnEkwg/NGK18SFm8pWOPrTizQZNDudlQZt9zMkRIPEmSGFmovA7UtnsSupbX2YVZUnbi55ak10YSR6CbuQv+H2s6V2PRWfnjMX8ddon2/vJblN+d2rF1wI+VJIljYrPa5zd8FLeYvG4HdpTnb37Zrh1llrUspcvfhV2fy6GloptLpivIKeCcSb/ieudI3m/YzmmRMYy2jyEcDbOwcQG/W3QDs189lt8vuokvti8kFNnzjOpN3et5cLkyE/r8/S5hauxGeNg6+FaJgiAIgiAIvXor21tc/oy6vu+b127SDXpWsxA/lblK6/iGruQl221RJwA59uKkrSmkhlZvYF3ZGQSBl7tfA+BHI8+Myz2RYKwK2aPJG/K5hPRgstjpxgJAZ+PmpK8fdiuFFl6NLelrC/FXaakGoN5Vl9I4MlVck+06nY5DDjmEDRt2nt65ceNGRoxQbgZPnToVrVbLJ5/smEO6YcMG6uvrmTZN7JYQ4q832V7X6cUXDKc4mt2r6/QCUF2QnFlPQv8dPCIPnVpFs9PP1g5vqsNJmGanknQts8e3kloYuFGFSivv2gQ/3xwtSnLWhQmD2Z7QtQai0b2Nyz4+j43d67Drc3n0mKcZn7dfqsNKW1L+KADMnm2DevxxVUqyfVnLYtzB+LQz7mraAijPLZNt14v4D+qUGcAnjJiFRiWqOrOFf+RsKsIRztu+jZdO/h8vn/w/LtjvYsrM5fSEe/iw7j3mLriSE187nnuX3smK1mVE5Wjf491BJ3csuY5gJMDhpUdwwX6/wdzTBIAqL702BAmCIAiCkJmKrUrXTF8wgjuQnveHdqcrVtluN4oW8umgMk8pUkhUG/l/rnmOWxddzSf17+ML+fD7PJgkpSOmOT97xxsKO5TOvJxnbDaatFGsGgv/74Cr43LeiLsNAL8+udXPQmJ1qJVNOO6W2qSvLXuUZLtfJ+ras0Ffst098IIeYRBt5D0eD5s379gls3XrVlauXEleXh5VVVVcf/31nH322Rx11FEce+yxfPDBB7z99tssWLAAAJvNxkUXXcTcuXPJy8vDarVy5ZVXMm3aNA4//PC4/WCC0KvArKfArKfDE2B9i5uDqtLvxX9bp6hsT1c5OjUHVtlZurWLRVs6GVk4sJnGmaLJoVwkltpEZXuq9Va2b0lwZbuvvQ6ADlUB9oSu1H+r2r/mli+uwRV0Umoq5/6jHmOEtSbVYaU1Q8lY+A4KQtsH9fga22iqrSOpc9WyaPsC5tQMfX66u6UOgA5VIT+c8OQP9/BZw3wAZlefNOS1hPRRNe0Mot/ezpjIZuq3b2FU+RgumzKGSw+4gjWd3/Jh3fvM2/YhXf5OXt/8Kq9vfpWinCJmjpjNMZUn8MTKJ2jxNVFmquCWw+9BJanICymVF4aiXTskCIIgCIIgDJRRp8Fi0OD2h2lz+bEaMmPj547K9syIN9tV9Fa2J6iN/Ftb3mSLcwtLmz/HoDZwcO7B/CzHwMG+MCaLPSFrCunFZ1Hxt1ylUvgsVz4WnTUu55U8SsvvUE5BXM4npAeXoRS8mwl2piBB6usCICQ2cGSFqlj3zAb34Ap6hrsBV7YvX76cAw88kAMPVFqXzJ07lwMPPJBbb70VgNNPP52nnnqKBx54gEmTJvH3v/+dV199lSOOOKLvHI888ginnHIKZ555JkcddRQlJSW89tprcfqRBGFXE0qVdirr07CVfE8wQkusTWp1vqhsT0czRisfQhdv7khxJIkhyzLNzlgbeZFsT7neDR217YmtbA92NgLg0hUldJ3+mrftPa5d8P9wBZ1MzJvEkzP/JRLt/ZBbMR6A4mg7Qf/gKiuOrZoNwPyGD+MSU6BT+VDu0u86Hujz7QvxhX2UmsqYVHBAXNYT0kNecQUbtcrzsfHL1/u+LkkS+xdM5tqDb+Dd0+fx2PF/49RRp2PWWmjraeOl9f/iknnnsbL9S7QqHXcf8UcsOivhUJCiqPK+aysdnZKfSRAEQRCE7FNijbWSdwZSHEn/dXmVMTy5orI9LVTGZra3ugL4Q5G4n//+ox7iF+MvptRUgT/i54uOL7iipIgTRpTy8Io/sLJt+U4dooTsIssyf1xxD2EJpvt6uLjlK7zO7ricW9OjXF/JpsK4nE9IDwFzBQCSoz7pa2v8nQBEckSyPRtUxe7Dtvla6AknpntLNhtwsv2YY45BluVd/nnuuef6jrnwwgvZtGkTPT09rFy5kh//+Mc7ncNgMPD444/T1dWF1+vltddeE/PahYSa2De3PT4tcuOpPjbjyZajFS3B0lTv3PYltZ1Eo5kz162/urxBAuEokgTFNn2qwxn2vj+zPaFzBF1KJXRPTmrff2VZ5l9rn+buL28mFA1xVMXxPHLs38g1iBli/WEvKscr61FLMp2NGwd1jmNjc9uXtyzFFXAOOSbZoWzk6DHu2uLww1gL+dnVJ4l5k1mos+J4AExbP9rt99UqNYeWHMYth9/OB2fO58GjHuW4yplIKM+Fn4z5JaPsYwHobt6KRooSlDXYi6uS8wMIgiAIgpD1vj+3PVN0e3fMbBdSL8+kw6hTAzu6BMbTKPsozt//Ml448S2emvkvjjcdSn44glst8Xbtq1z96cX89O05PLHyj2zsWpfY+wZC0s3b9h4rWpeiU+m5oEuPWfJT98nf4nJuQ0BJtqssIg+TVexKNbLBM7iOh0OhDyiV7ZhEt4RsYNPbsensgDLmUxiYuM5sF4R0NSGNk+1989pFVXvamlxhx6RT4/CFWJuGz6Gh6q1qLzDr0WvUKY5GqM43IUng8ofpjN1USQStR5mFHDanbuZbOBrigWV38PdvHwfg7HHnccf0BzFoRIeF/pJUKlrUyu/QvX3DoM4xwlrDKNtYInKYz7fPH3JMWo+SbI9Yy3f6ujPgZHHTFwDMqREt5LNR0SFnADCh5xu8bsdej9WpdRxdeSz3HfUwb5z6IXOqf8IF+1/a931X8xYAWlVFqNTivUkQBEEQhPgosijJ9tYMSrZ3xdrIi8r29CBJEhWx6vaGBM1t711nQv4kfqI6iE8atnNjh5WTak7DrDXT3tPGfzb8k1/P+znnvn8az333lGj7mwWcAQePrXwIgPP3u4RQ9TkAVG56ETk69G4GppCSGNXZRLI9m+jyqwGwBpqTvnZOSOm6oDGLZHu2qBSt5AdNJNuFYaE32b6+xZ12lcnbYsl2Ma89fWnVKg4bqVS3L8rCVvLbYzuxy2I7/IXUMmjVlNuVC/dEtpLP8SuzuiRb+T6OTAx30MVvF17Be1vfQCWpuGbqzVw2ZS4qSXw0Gahug9IyLNi+edDnOLZKqW7/tGH3FckDYepRLvA0eTtXI8+vn0c4GmZM7jhG2kYNeR0h/ZSPOYBGqRSdFKZ2yVv9flyBsZBLDrgBtbQjqR5orwWgWyduBAmCIAiCED8lsW5umZRsF5Xt6aeyd257V2Lmtn9f1NOOGhhDMTccejuv/fgT7prxR46pPAGdWk+DexvPrnmKX773Yy756Bf8Z8O/aPe1JjwuIf7+uupPOAPd1FhHcfa486iZeQleWU+13EjtV+8P+fy2qJIYzckrHfK5hPRhKVXurxRGWpK+timidEfU2dJjRKUwdJXWagDq3XUpjSMTiTvawrAwstCETq3CEwjTmMBdp4NR16l8MBeV7elt+qhYsn1LZ4ojib/m3mS7XVQTp4veue1b2j0JW8MWagNAl1eZsDX2pMXbxJWf/IoVrUvJ0eRw7xF/4rTRP016HNnCb6kGQN29ddDn6G0l/3XrVzj8XUOKJzesPLdMhdU7ff3DOuXmwJxqUdWerSSVivrCo5X/s/69IZ1L7lZ2UXuNqdkQJAiCIAhCdtoxsz1zku1dsWR7rki2p43KPOUeXjLuMUo+pegjpFdGrenVeo6qOI47pj/IGz/+hJsOvYtDS2agltRs6F7LEysf5qy35/B/n/6at7e8GpdRYUJ89YR72NC1lg/r3uFvq//M7764hl++92Pe3fo6ANcefAtatRaTLZdV+XMAkL4aWiv5SDhMrqw8F6wF4hormxRUjAbAhhePM7n3rW2x55TBVpzUdYXEqYrdY6x3Df4e43ClSXUAgpAMWrWKMcVm1jS5WNvsoiqNEtuisj0zzBittMNZtrWLYDiKTpM9e5V628iX2kSyPV2MLDCxcGM7tQlMthdEOkACU9GIhK2xO+u71nDT51fT5e+gIKeQe4/8C2Nzxyc1hmwj54+CVjB5Bt/iqcJSxdjcCWzsXsfC7fM5ddRPBnWeSDhMYbQTJLCVjuz7equ3ha/blgMwa8ScQccppD/j5B/Bx/9mjGsx4VAQjXZwN4V1bmUcQcia/A1BgiAIgiBkr6JYsr3VHUhxJP3XHWsjnyfayKeNHW3kE1/ZrulRNkNHjLu2aTZpzcyp+RFzan5Et7+LBQ0f8Un9B3zbsZJv2pbxTdsyHv36Xg4rOYKZI07k6IqZqFViRFOyuAJOtrlq2ebaSl3s3/WuWlp8e273/csJFzGp8MC+/2856nJ4402meBdR11RLXtnIPT52r7F0tZInyURlCWuBqGzPJkaLnW4s5OKms3EzZlt+UtYNBQPkoeQ1jHki2Z4tRBv5wRPJdmHYmFBqZU2Ti3XNLubsnz4tSes6YpXtBemzAUDY1bhiC/kmHZ3eICsbHBxak5fqkOKmr428XbSRTxejCpXNN4lqI+91dVMoKb93e3F1QtbYnS+2f8pdS27CH/EzyjaW+476C0VG8YF8qHJKxsBayA9uH9J5jq2cxcbudXxa/9Ggk+1drduokiKEZDV5xTvayH+07QMADiyaSrEpfd6DhfgbNXUmzo9N5OJm1TefMvbQ2YM6j7lHeT6rc6vjGJ0gCIIgCMNdb2V7b4e3TNDtCwGQa9KmOBKhV0WsjXxjEtrI64NKsl3aTbL9+3INeZw+5mecPuZnNHu3M7/+Qz7Z9gFbnBtZ1LSARU0LmFp8GLccfg95huQk44YDWZbp7GnvS6Zvc9VS56ql3rWVLv+eq4xz9XmMsNZQZR1JtXUkI6w1VNtGUpCzczvu8vEHs0a7P/uFvqP5kyfJO/fBQcXp6VCurxyShZxBbogW0leHupjciBtPay3sd1hS1vR0tVEMRGUJS664t5ctqqw1gJJsl2UZSZJSHFHmEMl2Ydjondu+rtmV4kh2CIQjNDmVCzxR2Z7eVCqJaaPyeWd1M4s2d2RVsl1Utqef3jbytR2JSbY7m5VWQC5M5FjsCVnjh/638UUe++YhZGQOLZnB7dPvx6Q1J2XtbGevUDoDlETb6AoG0Or0gzrPsZWz+OvqP7GyfTld/s5B3YDpfW61q/LJ1ez4mPlBndJSXLSQz34arY5vrdM51DUP76q3YJDJ9vyQMm8up2hwlRuCIAiCIAi7M6rIjEYl0eYOsK3Tm/b3YmRZ7pvZnisq29NGb2V7MtrI54SUOdtqS2G/H1NqKuecCRdyzoQLqXVs5uP693h140usaF3KRR+ezW3T7mNK0cGJCjnr1Tm38MqGF1nlXsa9b9+HN7TnroRFxpK+ZHqVtYZq6yhGWGuw6e39Xs8x6QL4+jombH+VUOAutPqBF8v0dCvV9E5VLuLuX/Zx6UvBt5lgR13S1vR2K9fsTsmMWiPSjNmizFSBWlLTE/bR0dNGoSiS6jfxVyAMGxNKLQCsb3GnOJIdGrp6kGUw6zXki9lbaW/G6ALeWd3M4i0dXHPC2FSHEzfNorI97YyMVbbXd/kSMrbA16G0AupQFWCP65l3FYlGeGzlQ7y26WUATh31E64+6EY0KvERJF7sxVX0yDpypCBdTVsorp44qPOUmssZn7cf67vW8FnDx5w+5uwBn8PbXgdAt6aI3NjXtjg2s6l7AxqVhuOqThhUbEJmkcedCMvmUdG2YFCPDwX8FMqxcQRlY+IbnCAIgiAIw5pZr+Hg6ly+rO1iwYZ2zp+e3sl2dyBMOCoDItmeTnpntnd6g3gDYUz6xF3fmiPKTGTdIGcij7SP5hL7VcwacTK3Lb6eOlct1yy4hAv3v4xzJlyISsqeMYmJ5gh08+x3T/L2lleJyBHlixFQSSrKTBWMsI6k2jaSKksNI6zKP0bt0F9jRh/9Czq+vpsCHCz67CUmzLpwwOcIOpXEqFuTh+g1l30C5nLwAY76pK3pd7YB4JJsWJK2qpBoWrWWUlM5jZ56GtzbRLJ9AMS7qTBsTChRKtvru3y4/aEUR6Oo6+id124ULTkywIxRSsuub+odeAPhFEcTH+FIlBaXUtleZhd7W9NFidWAUacmEpWpT0BbunBXAwAuXdE+jhyannAPtyya25do/80B/8fcqb8TifY4U6nVtKiVmWuuxvVDOtdxlUoV8oKGjwb1+HCXcmHnzSnr+9qHde8DML3sCGx625DiEzLDqGmnEZQ1VMlNbN+0asCP726uRS3J+GUt9qLyBEQoCIIgCMJwdsw45TpowYa2FEeyb71V7TlaNTk6MWs7XdhytFgNynVtoqvbbVEl2Z5jH9r1e7VtFE+d8CKzq08hKkf5+7ePccPCK3EEuuMRZlYLRUL8Z/0/OefdH/HG5v8SkSNMLz2as41n8/TMl/ngzCW8ePJb3HPko1wy+Srm1PyICfn7xyXRDqDVG1hXfiYA9m+fG9Q5oq5WAPx6MUIgK9mVMX56z9DGCw5EyKW8h3o09qStKSRHpbUagHp3XUrjyDQi2S4MG7kmXd9srg1pUt1e16kk26sL0nsntaCoyjdSkZtDOCrzVV1XqsOJizZ3gKgMGpVEgXlwraeF+JMkiZqC3rnte25HNliyU/nw3ZOTuP3MnT3tXD3/IhY3fYZOreeO6Q/y8/EXiI1FCdJlqAAg0LZ5SOc5plKpPF/V/jUdPQO/+ah2NQIQMisJUlmW+TDWQn72iBOHFJuQOUzWXNbnTAGgZdnrA368q3kLAG2qIiSVuFwRBEEQBCG+jhmntONeUtuJPxRJcTR71xVLtueJbohpp29ue3fi5rYHA36sknJ+c97Qr99zNDncfNjd3HDI7ejUer5qWcTFH57Nt+3fDPnc2UiWZRY2zuf8D87giVV/xBPyMNo+lkeOeZq7pj/EJN0kRtpGo1cn/n5a6fGXEZZV7Bf6jsZ1ywb8eMnbDkDY2P9xBELm0BVUA2ANNCVtzYhHeU71aHP3caSQaaos1QDUu7amNpAMI+5eCcNKbyv5dJnbvq1T+cBcnW9McSRCf/VWty/e3JHiSOKj2answC6xGVCrRBI0nYyKzW3/x6KtOH3x7cah8yofvsPmsn0cOTi1js1c+vF5bOhei02fyyPH/K0viSskRo95BACq7tohnafYVMp++ZORkVnQ8PGAH5/jU+bASXYl+f9txyqavU0YNUaOrDh6SLEJmcVTrfzN5zfMG/BjA+3KBV2XrjSuMQmCIAiCIACMK7ZQYjXgD0VZujW9N9J3+2Lz2k3aFEci/FBlntIdsCEB3eh6ebqU1t9hWYXJVhC385408jSemvkCVZZq2nvauPrTi3lp3bNE5Wjc1sh0G7vX83+fXszvF81lu6eBPEM+vz3kNv52wsscVHxI0uPJK6thpXkGAJ7Pnxjw43U9SmI0akpsh0MhNSwlowEojLQmbU3Jq9wbD+ntSVtTSI5Ki3KPscG9LcWRZBaRbBeGlQmlSiv5tc3pVdk+Il9UtmeK6aOVdkuLNnemOJL42O6ItZC3iRby6eb86SPI0ar5sraLHz/+BZvb4ve6leNXPnxLtvi3Z17WsoQr5l9Aq6+ZSssInpz5T/YvOCDu6wg7k/NGAmByD30+17GVs4DBtZK3BpSbQfp85YN5b1X70ZXHYdCI15nhpPywMwAYF1yHo31grewkh3JB5zOJFvKCIAiCIMSfJEl91e3p3kq+y6tsvBbz2tNPZayyvSGBbeS9sWS7Q7KiUsd3jMAo+xj+esKLzKw6kYgc4a+r/8TNn1+NM+CI6zqZprOnnfu+uo1LPvo5K9tXoFPrOXfixbx40lucPPJ01KrUjXOQD7kEgAM6P8DrHNhGIUNQuY+ptohkezbKLx8FgB3PgJ8bg6XuUZ5TYYMYTZBtqqw1gGgjP1Ai2S4MK73J9vSrbBfJ9kwxPVbZvrbZ1dfOLZM1O5SLwlK7IcWRCD80dUQer146nXJ7DnWdPk57fDHz18dnh6otpNxQ0uVVxuV8vd6tfZ0bFl6JN+ThgMKpPHH8Pyk3x3cNYff0xWMAyAs0DvlcvV0Ivu1YSZuvZUCPLYgqu+UtJTWEoyHmbVMS9nOqTxpyXEJmKaoczWb1KFSSTN2SgbWS17obAIhYxeuHIAiCIAiJ0Zts/2xDe4oj2btu0UY+bVXkKpuJE9lG3u9U7gG4VbaEnN+oNXHL4fdw7cG3oFPpWNL8Ob/+6Oes6VidkPXSWSDs559rnuac907l/a1vIiNzfNUcXjjxDS6edEXc5q8PxchDT6ROVYlJCrD146cH9FhzSEmM6uyie1g2MtnycKB0yOzcviUpa2oD3QDIpvh13RDSQ28b+VZvM4GwP7XBZBCRbBeGld5k+4YWN5GonNJYguFo3wdy0UY+cxRa9IwrVsYRLNmS+dXtzc5YZbtdVJymo4llVt66YgaH1uThCYS56PnlPLlgC7I8tNevgojS6slYOCIeYRKVo/xt9Z95YNkdROQwJ4w4iYeOfhKrPjE3BIRd2SrGA1AabSESDg/pXIXGYiYVHAjAggG0APc4u7CidGzJKxvJV81LcQS6yTPkcUjJYUOKSchMraXHAqDf/OGAHmfpUUZdqPJq4h6TIAiCIAgCwIzRBWhUErUdXuo7E5csHaqu3jbyorI97VTmxSrbuxJX2R5yKZtBPBp7wtaQJIlTR/2EJ2Yqm+Vbfc1cOf9C/rvhX0O+95AJonKUeXXv8sv3T+OZ7x6nJ9zDxPzJPHH8P7l12n0Um9InOS2pVNSPPgeAqs0vIkf73/bfFnUAYMpNn59HiK92dTEA7pbNSVnPEFKS7SpTYVLWE5LHrs/FrLUgI9PoaUh1OBlDJNuFYaWmwIRBq6InFGFbrIV7qmx39BCVIUerptCiT2kswsD0tZLfkvlz25tile1lNlHZnq7yzXpeuOgwfnFYFbIM93+wnv/7z0r8ocigztfj6sYsKb/33JLqIccXjAS568ubeXHdPwA4b+Il/O6wP6BTi5tByZRXWkNQ1qCTwnQ1DX0X83FVswH4tL7/reS7mpR58Q7MmCz2vhbyM0fMRqPSDDkmIfPkHnQaAOO9ywj09P9zV0FY6ahgLBqZiLAEQRAEQRCwGLRMHZELwIKN6dtKXlS2p6++ZHsCK9ujHiXZ7tfmJmyNXmNyx/P0rJc5pvIEInKYx1c+zC2L5uIOpkd30ET4rmMll318Hncv/R1tvhaKjCX8/vB7eeL459mvYHKqw9utmuN/jVc2UC03UvvVe/16TCQcJFdWfo/mgopEhiekkEtfBkCwoy4p65nDDgC0VjGaINtIktRX3d4gWsn3m0i2C8OKWiX1VSWvS/Hc9h3z2o1IkpTSWISBmRFrJb94cxYk252xNvJiZnta02lU3HP6JO46bX/UKok3Vzbx078uocU58FY+zpatALgwkWOxDykuWZZ5aPmdzK//ALWk4cZD7+CiSZeJ17QUUGs0NKtKAHA2rh/y+Y6uOB4JibVd39Ls7d+8bXer8tzqVBfRE/axoHE+ALNFC/lhq3r/abSSj1EKsHlp/24EBf09FKHMmMstH53I8ARBEARBGOaOGackCBakcSv57t7KdpFsTzvlsQ6Bbn8YZ08oIWtIXuW+U1Cfl5Dz/5BJa+b2aQ/wfwfdiFal5Yvtn3LxRz9jfdeapKyfLC3eJu5YfAOXf3IB67q+I0eTw8WTLueFE99g5ogT0/qehsmWy6r8OQCovupfK3lfVysqSSYiS9jyixMZnpBCAXO58j+cyalEtkSdABhsorI9G1ValW6o9a661AaSQUSyXRh2elvJr29J7c7MbR1Ksl3Ma888h43MQ62SqOv0sd2RuHZhydDsEG3kM8m5h4/gXxcdSq5Ry+pGJz967Au+qe8e0Dl8HdsA6FQNfabS27Wv8mHdO6gkFfce+SdOrPnxkM8pDF6XXtmhHmgdesuw/JxCDiiaCvS/lXwg9txy6kr4vPEzesI9lJsr2D9/0pDjETKTpFJRm38UAOE17/brMb2dGXyyHku+aHEoCIIgCELi9M5tX7ylY9CdwxKt26skcXON2hRHIvyQSa8hP7YJoqErMdXtGr+SbI8a8xNy/t2RJInTx/yMx45/jlJTOS3eJq745AJe2/TvjG8r7wt5+dvqP3Pue6cxv+FDJCROqjmNF096i3Mn/hq9JjO6PlqPvgyAA7yL6Nxeu8/jfV3NAHRLNjRa8VqSrWR7JQB6T2PC14pGothj3RKMuSUJX09IvspYZXu9qGzvN5FsF4ad8SW9le2pTbbXxWaCjSgQ89ozjcWgZXKFMot6UQZXt/tDETpjLenK7JlxQSHA9FEFvHXFEYwrttDuDnD2377k1RX9/yAd7lKOdeqG1uZpfdca/vz1/QD8etKVHFY6Y0jnE4bOa6kCQOre98V2fxxbOQsYQCt5p/Lc8pvK+CDWQn52dXpXBQiJp9/vFABGdS8kGtn3TWxPs7JZpE1dhKQSlyqCIAiCICTO+BILJVYD/lCUr7Z2pTqc3eqd2Z4nZranpap85Z7eki2dCTm/LhDbXG8c+mb5gRqftx9Pz3qZI8uPIxQN8aev7+P2Jb/FE0xtp9DBiEQjvLPlNc5571ReXPcPgtEgU4oO5m+zXuaGQ28nPyezKnPLxh3MGu3+aKQoLZ88sc/jQw4l2e5U2RMcmZBKuvwaAKz+5oSv5XN1opGiAJjzRLI9G42wKs8n0Ua+/8QdLGHY6a1sT3Ub+d6Z8aKyPTNlQyv55lgL8hytGluO2NmaSSrzjLx62XRmTSwmGI5y7SuruPudtYQj0X0+VnIqLcF7DIP/MOwMOLht0XWEoiGOKD+Gn4+/YNDnEuInmqvMtza6t8XlfEdXzEQlqdjQvZbtnn23IdPFdk+7LQUsaVoMiBbyAow6dA5e2UAh3dR9+8U+jw+0K+MIHDpR1S4IgiAIQmJJksTRY5UkW7q2ku+d2S7ayKens6YqlaR/mb+p73cVTzkhJdmusqQmGWzRWblrxsNcMeU61JKGBQ3zuGTeL9jYPfTRZcmyxbGRS+b9nAeX30mXv5NycyV/OOIRHj3macbmjk91eIPmmPQrACY0vUYosPcRg1FXKwBebXLGEQipYSlR7gkVRFoTvpanq0X5t5yDPkcUEmajSovSRr7BvS3ju5oki0i2C8PO+FiyfbujB6cvMTOV+mNbb2V7vnhDykTTRystvBZt6czYN5zmWAv8UrtBVJ5mILNew1O/nMpVxykzjf/+xVYufH75PmfFab3KDteweXCJrKgc5Q9Lf0eLr5lycyU3HnqneP6kCX2R8lzIDcSnZViuIY8Diw4B+lfdbvIrF1srTT1E5DDjcsdTYxsZl1iEzKUzGFlvPhQAxzdv7vsBjnoAvMaKRIYlCIIgCIIA7Gglv2BjW4oj2VU0KvfNbM8Tyfa0dPYhlYwvseDyh3n0441xP7857ABAZx1aZ7qhkCSJs8b9kseOf5ZiYynbPQ1c/vF5vLn5lbS/H/bF9k+5/JPz2ezYiFlr4fIp1/L8nNc4ovzYjL+PMfqYX9BOLgU42Lzgxb0f7FGSr3598jskCMmTXxG7J4Qbn9uR0LV6HMr9H6fKmtB1hNQpN1ehklR4Qx66/Inp3pJtRLJdGHZsOVrKY/Op16Vobns4EqWhW0m2i8r2zHRQVS56jYp2d4DNbZ5UhzMoTbHK9nIxrz1jqVQSc2eN4/FfHIRBq2LhxnZOf3wRW9r3/JzsTYhiH1wi619r/87S5kXo1HrunP4QFp34YJ0urBXKrvzSSHO/2nX3R18r+YZ9J9tzQ8oF/PKoUlkvqtqFXqHRcwAobf50n8caYl0UIrbKhMYkCIIgCIIAMGNMARqVRG27N2FztwfL5Q8RjeUy7WJme1pSqyRu/dFEAF5YWs/G1vh20bTKTgAM9uK4nncwJuZP4u+z/s30sqMJRoP8ccUfuOvLm/CFvKkObReyLPPSume55Yu59IR7mFp8GC+e9CY/HXcuWnV2/C1pdXrWl58JgP275/d6rNqndO4I54hkezYz2/JxouQZOho3J3StoFPZoOZR2xK6jpA6OrWOEmMZIFrJ95dItgvD0o5W8qlJtjc7/YQiMjqNihKrmJWdiQxaNYdUK+2XMnVue1NvZbtNPAcz3cmTS/nfb6ZTZjNQ2+HltMcX8emG3Vdm2ELK1/V5A09kLWtZwrPfPQnA3Kk3Mzp33OCDFuIuv3w0IVmNQQrR3RKfVvJHVRyPWlKz2bGBhr20pw+HghTKXTRp1KzvqUVC4oTqOXGJQch8I6afTkSWGBmto3Xbhr0ea/E3AaDJr05CZIIgCIIgDHdWg5aDRuQCsGAP11Cp0hVrS27Wa9Br1CmORtiT6aMKmDWxmEhU5q531sat2jscDmJH2Uhvzk2PmchWvY17jniUSw+4BrWk5pP6D7j4o5+xvmtNqkPrE4wEue+rW/nr6j8hI/PjUWfxwFGPYTdkXwv1suMvJSyr2C/0HY3rlu3xOL1fuW8pm1PXIUFIjna18lrhbt6S0HXCbuU55dPkJnQdIbUqrUor+XpXXWoDyRAi2S4MSxNLLUDqku11sXntI/KMqFSZ3bZoOPt+K/lM1OzsTbaLyvZssH+5jbeuPIJDqnNx+8Nc9Nwy/rZwyy4X+gUR5QOxsXDEgM7f5mvhriU3ISNzysgzOLHmx3GLXYgPjVZHi0qpeHA0xmeGnk1vZ2rxYcDeW8l3tWxDI0V5x2gG4KDiqRQbU199IaQHe34J63X7AdC09LW9HlsQVrpv5BSPSnhcgiAIgiAIsKOV/KdpNre9t4V8rik7KnGz2c0nTUCrlvh8UwcL4vQ88nQpmz+isoQ5L32urSRJ4mfjz+dPx/59R1v5T87nP+v/SVSOpjS2bn8Xcxdcwgd1b6OSVFx90I3MPfh3aFTZ+TeUW1bDSvMRAHgXPrHH44xB5b6lypw+zyMhMVx6ZWRksLMuoevIsW4JAb1ItmezKks1APWisr1fRLJdGJZ2VLbHt71Tf9V1xJLtooV8RpsxSmm/9GVtJ+FIai8oBqPJIdrIZ5sCs54XLz6cnx1SSVSGe95bz7X/XYU/pLQUdzu7MEvKJovckup+nzcUCXHboutxBh2MzZ3AVQfdkIjwhTjo1JcD4G/ZFLdz9raSn9/w4R6PcTZvBeBti7KZbXb1yXFbX8gOjirleWSum7fHYwI9HgpwAJBbNjoZYQmCIAiCIHDMWKXac/GWjr5rp3TQ5Q0BkGcU89rTXXWBiV/NqAHgrnfXEorDPSJvd2wmsmRGrdEM+XzxNqnwQJ6Z/R+OrphJOBrmiVV/5IaFV6Zstu8WxyZ+M+8cvu1YiVlr5oGjHuOMMT9LSSzJJB96CQCTuz7A49z9f3tLuBsAfZp0SBASx29W7gnhiE+3wz1R+ZTnWkifn9B1hNSqsijva6KNfP+IZLswLPUm2ze0ulOSJK3rVOaA1RQYk762ED/7l9uwGjS4/WG+a0pNl4Sh6Gsjbxdt5LOJTqPi3jMmccep+6FWSbz2zXbO/tuXtLr8dMUSoi5M5Fjs/T7n4ysfZm3Xt5i1Fu6c/hB6tT5B0QtD5TUpHQukrtq4nfPIiuPQqDRsdW6mzrn7VmS+9jo2arXU6VRoVVqOq5wZt/WF7FB8yGkATAisxu3Y/U2g7u3K88srG7DkihaHgiAIgiAkx4RSC8VWPf5QlK+2dqU6nD47KttFsj0TXHHcaPJNOmrbvbzw5dATXQFHKwAuKX1nIlt0Vu6Y/iDXTr0FnVrPVy2LuOjDn7KsZXFS41jctJDLPzmfFl8z5eZKnpj5Lw4pmZ7UGFJl5CFzqFNVYpICbPv46d0eY48qr2vGvLJkhiakgGyvAkDvaUzoOlq/8pySjdk3nkHYobeN/N7GSgo7iGS7MCxV5Rkx6tQEw9G+lu7JtK1TVLZnA7VK4vCRsVbyGTi3vdmpVLaLNvLZR5Ikzp9ezb8uPBS7UcuqBgc/+ssXrF6zFoAOVUG/zzVv23u8vvnfANxy+B8o7d0lK6SlaK6y69QQx12nFp2VQ4qnAfBpw+5byUe6G3jPrGwgm152BFa9NW7rC9mhfPQktqkq0EoRape8vttjvK3KJpFWdTGSSlymCIIgCIKQHJIkcfRYpZV8vFqAx0N3bGZ7rqhszwhWg5a5s8YC8OjHm/p+f4MVcinPRY/GPtTQEkqSJE4d/RP+dsKL1NhG0+Xv5LrPLuPJVY8QioQSurYsy/xn/T+5+fOr6Qn7mFJ0ME/O/BcjrDUJXTedSCoVDaPPAaBq80vI0Z2LysLBAHbZA4C1QCTbs50uX3nuW/wtCV3HEFS6JUjmwoSuI6RWbxv5Zu92gpGhvacNB+IuljAsqVQS40qUVrdrU9BKvreyvVok2zPejNFK0nLxlsxKtrv8ITyBMABlorI9a00fXcCbl89gbLGZNneAJStXA+DS9u/D8FbnZh5adicA5068mGllRyUsViE+tEVjAMj1x3cX8zGxVvKfNsxDluVdD3DV875JeU+bXX1SXNcWskdj0bEAqDe+v9vvhzuUZLsjNmdOEARBEAQhWY4Zp3TVWbCxLcWR7NDlE8n2THP2wZWML7Hg7Anxp0+GNtor4lGS7T3azJiJXGMbzV9nvsBpo38KwL/XP8/ln5xPo7s+IeuFIiEeWHYHT6z6IzIyp4w8g4ePfhKb3p6Q9dJZ9fG/xisbGCE3smXpuzt9z93VjEqSCcsqrHmijXy2s5SMBKAwkthke07YAYBGJNuzWp6hAKPGRFSO0uRpSHU4aU8k24Vha8fc9uS2/45EZepjyfYR+aKNfKabMVqpbF9e151Ws932pTk2r91u1GLUpd/sLyF+RuSbeO2yGcycUEyZpLRu9uXsO5HlC3m5ddF1+CN+phYfxq/2uzTRoQpxYC0fB0BJpGmXHe1DcUT5MWhVWra5aql1bt7l+42hepq0GgxoOaJcbMoQds865VQAxrm/JBQM7PJ9yaHciPObKpIalyAIgiAIwozRBahVErXtXhq6fKkOB9hR2Z5n0qY4EqG/NGoVvz9lIgD/+nIbm9sGX+AjeZWijqA+c9o06zUGrpl6M3fN+CMWnZUN3Wu5+KOfMa/u3X0/eAAcgW6u/ew3vLf1DVSSiisPvJ7rDv49GtXw/Fsx2XJZlX8iAOplO7eS93Y2A+CQrKg14v5ftsuvGA1ALm68bkfC1rFElHPr7cUJW0NIPUmSqLQoreTrxdz2fRLJdmHYSlWyvcXlJxiJolVLlNlF++5MN6rQTJFFTyAc5ett3akOp9/65rWLFvLDglmv4W/nTuWoCjUAtpIRez1elmUeWHYH9e46CnOKuPXwe1Gr1MkIVRii/IoxRGQJkxSguy1+u07NOguHlswAYMFuWsmv0Cvzug427YdBI7plCLtXM+UYurBixceWZfN2+b7Bux2AsK0q2aEJgiAIgjDM2XK0TK1SKogXbEiP6vYur9KCW8xszywzRhcwc0IxkajM3e+uG/R51H5ls3wkJ3OS7b2OqjiOf8z+L5MLD6In7OPupb/jnqW34AsNfZRnnXMLv5n3S1a1r8CkNXPvkX/mJ2PPQZKkOESeuSxHXwbAFO8iOrfX9n3d74gl29WZ9zwSBs5sy8eF0nWws3HXQol4sctKPiVHJNuzXlVsLEe9qy61gWQAkWwXhq2JpUob+WQn27d1KB8sK/OMqFXD+4NgNpAkqa+V/KIMaiXf5FSS7eWihfywoVJJTL7kaZqu3kbx7Ov2euyrm17i04aPUEsabp/+IHaDuCjLFFq9gRaV0gLT0bA+ruc+tkppJT+//sOdWsmHIkEWG5Uq+uMqZsV1TSG7qDUaNtmVTRs93721y/etfiXZrsmrTmZYgiAIgiAIABw9Lr3mtnfH2sjniTbyGed3J09Aq5ZYsKGdTwe5eUMXUDY0YyyIY2TJU2Qs4dFjnuZX+/0GlaTiw7p3+PVHP2dD19pBn/PL5i+47JPzafZup8xUwRPHP8/hpUfEMerMVT5uKmu0k1BLMq2fPN739YhTaSfu1WTGOAJh6NrVSgLc3Vq7jyMHx+91kiMp70/mXDGaINvtlz+ZQ0qmUWwUv+t9Ecl2YdgaV6JUtre6AnTFWnMlg5jXnn2mj1JayS/a3JniSPqvt428qGwfhnQmZL1lj9/+rmMlT6x8BIDLpsxl/4IDkhWZECedunIAelqHNiPwh2aUHY1OrafRU88mx4a+ry/cMg+nWkV+OMJR406M65pC9pHGnwLAiI6Fu4w6KIy0AmAqHpn0uARBEARBEI6JJdsXb+lMizFxvW3kRWV75qkpMHH+tGoA/vDuOkKRgY/4ygkq3RNVGTwTWa1Sc8H+v+HRY/9OkbGERk89l31yHv/Z8C+icv//m8iyzCsbXuCmz6/CG/JwQOFUnjzhX1TbRiUw+szjmPwrAMY3vU4ooNz3i7qVzR5+fWZu2hAGzqlXRkcG2rcm5PyeLuW6PShrMFpsCVlDSB+njzmbh45+khOqT051KGlPJNuFYcus1/TNTE9mdfu2TqWyXcxrzx7TY5XtqxsduPyhFEfTP31t5EVlu/A93f4ublt8PRE5zHGVszlzzM9THZIwCB5TrAV355a4nteoNfVVDXy/lfxHtUqF8jHeEFaL6IIg7N2ow0/GL2spl1tpWP9139f9Xjd5KJ/HcivGpio8Qcga27dv55e//CX5+fnk5OQwadIkli9f3vf9Cy64AEmSdvpnzpw5O52jq6uLc845B6vVit1u56KLLsLj8ST7RxEEQUiaiaVWiix6ekIRltV1pTocunor20WyPSNdefwY8kw6Nrd5eGlp/YAfb4rNRNZaMzfZ3uuAwoN4ZtZ/OLL8OMLRME+sfJgbFl5Jl3/fRSuhSIiHlt/FYysfIipHOanmNB4++inselGp/UOjj/457eRSgIMtn74AgManJNtDOSLZPlz4zRUASI6Bv+706/wOJdneLVmRVCK9KAi9xF+DMKxNKEn+3Pa6WLJdVLZnj3J7DtX5RqIyLK1N/QV5f/S2kS8Tle1CTCQa4c4lN9LR006VpYbrD7lt2M88y1QRuzJPyeDaFvdzH1u5cyv5nrCPZc5vADi0R7yvCftmNNtYb5wKQMeK1/q+7mlWOjG4ZCNmu7gRJAhD0d3dzYwZM9Bqtbz//vusXbuWhx9+mNzcnW9Kz5kzh+bm5r5/Xn755Z2+f84557BmzRrmzZvHO++8w8KFC7nkkkuS+aMIgiAklSRJHD02PVrJhyNRnD2xme2ijXxGsuVomXuCson0kY834vANrKumNeoEwJAlM5Gteht3zXiYuVN/h06t56uWRVz04U9Z1rJkj49xBhxct/BS3ql9DQmJy6Zcy28PuQ2tWpvEyDOHVqdnffmZANjXPK98za+MvJRNRSmLS0gu2aYUYOg9jQk5f8CpbOBwq+wJOb8gZCqRbBeGtQmlvcl2d9LW3BZrIy8q27NLb3X7os3pP7e9vtPH2iZlg0mZXSTbBcU/vnuCr9u+IkeTw10zHsKoFa9RmUpTOAYAu78h7ueeVnYUBrWBZu92NnavY1nLQoJyiMpQiCKpLO7rCdnJV6Ns2ijY/knf1/ytSou73vlygiAM3v33309lZSXPPvsshx56KDU1NcyaNYtRo3ZutarX6ykpKen75/vJ+HXr1vHBBx/w97//ncMOO4wjjjiCv/zlL/z73/+mqakp2T+SIAhC0hwzTklILRjknO14mbe2FVkGu1ErKtsz2M8OqWRcsQWHL8SfPun/mK9oNIJNVu5VGrNoJrIkSfx49Fn8deaL1FhH0eXv5LrPLuWpVY8SiuzcKXKbayuXfnwuK9uWk6Mxcu+Rf+LsceeKooB9KJ15GSFZzcTQGhrXfoUxqHQPUFnFddZwoSuoBsDib07I+cNuZTOaV2tPyPkFIVNpUh2AIKTShFJlbnGyKttlWRaV7VlqxqgCXlpaz+It6Z1sb3P7OfcfS3H5w4wvsXBglT3VIQlpYNH2z3hh3TMAXH/IbWLuWYazlCnVEyXhJoLRaFzbeuVocphWdhSfNnzEgsYP2eKsBeBkj4+gSSTbhf6pmn4GrL2TceGNNLZsw1pYSaSrDgCHoQzREFIQhuatt95i9uzZnHXWWXz22WeUl5dz2WWX8etf/3qn4xYsWEBRURG5ubkcd9xx3H333eTn5wOwZMkS7HY7Bx98cN/xM2fORKVSsXTpUk4//fRd1g0EAgQCgb7/73Ip11ihUIhQKDNGLcVT7888HH92QYinZP8tHV5tQ62S2NLuZWubi4rc1GxQ/+tCZSTUzw+pIBoJE039CPmMl6rX5RvnjOVXz6/gX0u2cfbUckYV7v1+YDgq4+5ooUJSZprn2PIJh7PrvaTKPILHjn2Op1Y/yttbX+Xl9c/xdetX3HLoHygzV7C89UvuXHoT3pCHEmMZd09/mBrb6LT67xAOh3f6d7qwFpaz0jyDQ7wL8Sx8nNKw0oFTYykkLD6TpKV4P5eMBSMAKIy0xPV3Ho5GiYQjRN3KZjS/1p5Wf5NCZon0Pe9DhFTpvYmqv58bRLJdGNZ6K9s3t3kIRaJo1Ylt9tDmDuAPRVGrJMpTdMEmJMa0UcqNyY2tHtrcfoos6TcL3eUPcf4/lrGt00dlXg7/vPDQhD/nhfTX5GnknqW3AHDGmJ9zfNWcfTxCSHf5VeOIyhIWqYetXS3YCuKbBD+2chafNnzEpw0f9s3YO8nrpamqMq7rCNkrv2QEGzRjGRfeSP3i19j/x1ejdSrz5HpM5SmOThAyX21tLU8++SRz587l5ptvZtmyZVx11VXodDrOP/98QGkhf8YZZ1BTU8OWLVu4+eabOfHEE1myZAlqtZqWlhaKinZuN6rRaMjLy6OlpWW36957773ccccdu3z9o48+wmgcvh1z5s2bl+oQBCErJPNvaYRJTa1b4onXF3BEiZy0dXttdcPKBg1qSabMs4n33ut/RbSwb6l4Xd4/V8V33Srm/vNz/t+E6D6P9zuamIAyYmn5558lPsAUOYwDMRt1vN7zOhu613Lxhz/jAN0BLA8uJ0qUKnUVv9D8gpblW2hhS6rD3a1ln32y74OSzG9Vku1Tuj8iiBYkqGtopeWjD1IdmrAXC+d/HJfzhAJe9gNycfPKm/9Fl2ONy3l7aWJd6RxBDUs++TCu5xaGn/kfx+d5n0g+n69fx4lkuzCsVeTmYNFrcAfCbGn3ML4kvm8+P1TX4e1bVyQ5s0ueScfEUitrm10s2dLJj6ekV7LAH4pw8fPLWdfsosCs418XHkaRNf02BAjJFYgE+P/t3Xd4VGX6xvH7TMmQXoCEBCmhhY6hI1UBQUXsiqKoKLggrouIbVdcXZWfgq6CigVdK+q6rth2FZQFlN5EpdfQCRDSIZlyfn+MjCKghJxkJpnv57q8hMnJmWf0njPvM+8575mw4G4VugvUsmZbjW53V7BLggVckdHKNmqqjg4qZ8c6yyfbu6b2UKQjUgeP+M9mblRqU7rbowNJTLbj9B2s21cZWRsVtW2WpDsVWbxb0s/3lwNw5nw+nzp27KjHH39ckpSZmakff/xRL774YmCyfciQIYHt27Rpo7Zt26px48aaO3eu+vbte0bPe//99+uuu34eS+Tn56tevXo6//zzFRdXsX1WKHK73Zo9e7b69+8vp5N7ywJnKhjvpazorXr6q806FFFHF16YWSnP+UujZ3wnKVuXtz9LQy5tVenPX10F87jconORLpy6UGtzbYpt2lE9m9Y65bYen6lVC7+Qtkl5tnh16zugEiutfN00QBcXX6fHlz6oHw99p6WlSyVJ5ze4SGMzH1CEPTRvo+DxeLRs3tfq1LuvHI7QmmIxff217Zl3lO7boSj5Vx3qdO6Fqp3ManShyOPxaP6cr9TrvH6WZWnL+ifU2LddjbNmqMmYf1uy4qHb51P2Ea9ytr4nHZVqJDdUZjU/PqHilJa6teKbOTqvXz/ViAjN4/wxx1Zs+z2h9UkAVDLDMNQ8NVbLth/Wur35FT/Z/tMS8g1YQr5a6t6kptbuzdeCzQdDarLd4/Xpj++u0tJtOYp1OfT6zZ3VsBYZhPTsyv/Tptz1incl6uFzJslp54vg6uJARF3VKT2oI/s2STqzSZNTcTlq6Jy03vp6h/+s+PMLjkiSolLSLX0eVG+1OlwmZU1T8+IVyivKU0KJ/35yjpqNglwZUPWlpqaqZcuWxz3WokULffjhh6f8nUaNGqlWrVravHmz+vbtqzp16ig7+/j7FXs8HuXk5KhOnZPfO9blcsnlcp3wuNPpDOvJ5nB//YBVKvO91LdlHT391WYt3pYjn2GTy2GvlOeVpG0Hi/TVev/xd2Svxhw/KkAwjsvNUhN04zkN9eq32/T4Fxv1RUaKHKe4CMfwmfIU+lcQK7QnKNpR/TNQN66enj1vut5eO12fbv1QVzW7XtdkDKsS92d3OBxyhOD/o11Nhip940RJkse0KbF2mhwcT0Kaw+Gw7P9RyaDnVPrxJWp/ZKEWfjpFmVeOL/c+Ta9PdochV+lhSZItOjkks4+qwevzrxzkcIR+r3S69XFpLcLesaXk1+0tqPDn2n7Iv+REw5rhu4xidXZOE/+ZyQs2H5LPV/lLzZ2MaZr680c/atba/Ypw2PTysI5qXTc+2GUhBHy+daY+3/qRDBma0HWikqNSgl0SLFQY7b862DxUMUvtZSZ3Cvz58sKDkqSEOo0r5LlQPdVr3kG7jRTVMNzatuRzJXv9y1JHpzDZDpRX9+7dtWHDhuMe27hxoxo0aHDK39m1a5cOHTqk1NRUSVK3bt2Um5urFStWBLaZM2eOfD6funTpUjGFA0CIaJkap+RYl4pLvVq27XClPvdr326TaUrnZtRW05TYSn1uVKw/ntdUiVFObc4u1IylO35zW1/hAUlSsTOxMkoLCQ6bQze1/oM+HDxbQ5rfWCUm2kNZev8ROmL6rxYtNKJls1feSUMIvvS23bWsyZ2SpPbrJmnHuuWW7TvK7f9ctMfWtmyfQHXAZDvCXqs0/2T7V+v2B86oqShZXNlerXVumCSXw6bduUd0+4yVKirxBLskPfnlBr2/fKdshjT12szAveUR3jbnbtAzK/1nON/SZrQ61uka5IpgNXeCf8LSlb+9QvbfKL6pHIZDSfZYpfq8KjGdSqydWiHPherJsNmUVauXJMlc87ESVChJSqzbNJhlAdXC2LFjtXjxYj3++OPavHmzZsyYoZdfflm33367JKmwsFDjx4/X4sWLtX37dn399de65JJL1KRJEw0Y4F8KskWLFho4cKBGjBihpUuXasGCBRozZoyGDBmitDSWIAVQvRmGod7N/JMIczdk/87W1skpKtUHK3ZKkkb04gTE6iY+yqm7+jeTJD09e6Pyit2n3rjIf0JzqSupMkpDNRQVm6BtsR0kSQ55g1wNguHsqx/Q9zU6qobhVsRHt+pocaEl+43x5kmSnHFMtgO/xGQ7wt4FbVKVEOXU1gNF+mjV7gp9ru0H/Ve2p9fiyvbqKNrl0BNXtFWE3ab//rhPV0xbqJ05xUGrZ/o3WzVtrv+q1omXt9GAVidf8hPhpbC0QA8tvFul3hJ1S+2poS1uCXZJqACOWv6rzOOP7KyQ/beq1VafXbZAE1L9S5EdsNXiTHmUWWTrwZKkFgWLJEm5ilF0fPhcvQNUlE6dOumjjz7Su+++q9atW+tvf/ubnnnmGQ0dOlSSZLfb9f3332vw4MFq1qyZbrnlFnXo0EHffPPNccvAv/POO2revLn69u2rCy+8UD169NDLL78crJcFAJWqT0ayJGnuxgOV9pxvL87SUbdPrdLi1K0RJ8pXR9d2rq+myTHKLXbr2a83nXI7+xH/MvKeGky248wltjlfpiTD6ZJ8TLiHG5vdrpo3/EOHFK90X5bWv3GnJfuN8/nvXx2ZyAqZwC8x2Y6wF1fDqVG9/ZMSf5+9USWeihl8mKbJle1h4NLMunp3ZBfVinFp/b4CXfL8Ai3ZeqjS6/hwxS49+vk6SdI9AzN0Taf6lV4DQo/P9GnSsgnaW7RLdaLT9ECXR2UzGApURzFpGZKkFM+eCnsOh80pM8d/ktphJ00Wyq5xp/7KV5QSDP/46ICdHAFWGTRokH744QcdPXpU69at04gRIwI/i4yM1Jdffqns7GyVlpZq+/btevnll5WScvx7MCkpSTNmzFBBQYHy8vL02muvKSYmprJfCgAERY+mtWS3GdqcXahdhyv+JPqjbq/eXLRdkjSyVyOW0K6mHHabHhzUUpL05qLt2nLg5FeaRpTkSJLMqFqVVhuqH1fvO3XwDz9oz6g1ko2T48NRUspZyur1tCSp26F/68ev3y3X/jylJYr/qX+PTuSiLuCX+IYdkDSsW0Mlx7q0O/eI3l9WMVcBHiwsVVGpVzZDOisxskKeA6GhQ4MkfTKmu1rXjVNOUamGTl+id5ZkVdrzz1m/X/d8+L0k6ZYe6YGTSYA31ryuxXvnyWlz6pFzJivOFR/sklBBatX3L0+YoEIV5OyvsOcx8vz3GiyOZAl5lJ0zwqUNsT/fxiLPRY4AAEBoiI90qn39BEnS3A0Vf3X7zFW7dbCwVGnxNXRhG8ZE1VmvZrV1XvNkeXymHv/pIolfq1HqvyeyEcNkO8rHF5vKRHuYa9Hrci1MHiJJarLoXh3cs+2M91Wc6/9+yWsaiklgGXngl5hsByRFRth1x3lNJElT52zWkVLrr24/dlV7WkKkXA4GOdVdWkKkPrjtHA1qmyqPz9SfP/pRD878UW6vr0Kfd/n2HI1+Z6W8PlOXZ9bVny9swRnxCHD73DJk6I7M+5SR1DLY5aAC1YiOV7b8Sw7m7NxQYc/jKvRfOe+JrVthz4HqzdvsgsCfj0TXC2IlAAAAxwssJV/Bk+0+n6np3/onP27uni6nna9rq7s/X9RCDpuhr9dna/5JblUQ7cmVJEXEJVdyZQCqo1bDntJme2MlqkB5bw+X1+M5o/0cPeyfbM8zYmR3OKwsEajyGL0BP7mmU32dlRipAwUleuOnpbustP2Qf9mxhiwhHzYiI+yaem2mxg/IkGFIby3O0g2vLlFOUWmFPN/6ffka/voyHXX7dF7zZD1xZVvZbEy042cj296m5/u9q4vSLwt2KagEB5xpkqTiPRU32R59ZK8kyZbAJCnOTKOul8pn+v/simJ5agAAEDp6N/Nftbdwy8EKu+WgJM3dmK3N2YWKdTk0pDPj6nDQuHaMhnVrKEl69PO18vzqwow4X54kyRXPbZYAlF9EjSjpyldVbLrUuvQ7rX7v4TPaT2l+tiQp32ClTODXmGwHfhLhsGlsP/+yu9PmblH+Ubel+//5fu1Rlu4Xoc0wDN1+bhO9ckNHRUfYtXhrjgY/963W78u39Hl25hRr2KtLlX/Uow4NEvX8de05Gx4n1TihGasdhImCqPqSJN+hLRX2HAml/rOaXbUaVthzoHqLTaylEpv/9jpnOaz9bAQAACiPVmlxqh3rUnGpV8u3H66w53l5/lZJ0rVd6iu2hrPCngeh5c6+TZUQ5dTG/YV69xe3tDR9PiWY/sn2qCQm2wFYo27Tdlrd5gFJUudt07Rl1dwy78Nb4F+Jo8iRYGFlQPXATAzwC5dm1lWT5BjlHXFr+k/NjlW4sj289WuZoo9u7676SVHadfiILn9hob5cs8+SfR8sLNENry5RdkGJMlJi9dqNnRQZwa0KgHBXmtBQkhSRt71C9m/6fEr2+c9qjquTXiHPgfBQcv7/advZY+Xo/5dglwIAABBgGEbg6va5G7Ir5Dl+2JWnxVtz5LAZuumchhXyHAhN8VFO3dXff9HP07M2KO+I/6KfwvzDijD8KynEJqUGrT4A1U+7wWO0PKaPnIZXif/5g4rycsq2g6KDkqQjzsQKqA6o2so82T5//nxdfPHFSktLk2EYmjlz5nE/v+mmm2QYxnH/DBw48LhtcnJyNHToUMXFxSkhIUG33HKLCgsLy/VCACvYbYbuPt8/0J3+7TYdLCyxbN9c2Y5mKbH6+PbuOqdxTRWXenXbWys05etNMk3zjPdZcNStm/6xVNsPFatuQqTevKWz4qM4Ex6AZK/VRJIUd2Tn72x5ZgrzDira8H9O1kxjsh1nztb+enn63Cczli8TAQBAaOmTcWyyvWLu2/7KN/4LPQa1TVVaQmSFPAdC13Wd66tpcowOF7s19etNkqT8Q/5bdRWZNeSK5IIdANYxbDbVv/EV7VVt1TX3a+sbfyjT79uKD0mSSl1JFVEeUKWVebK9qKhI7dq10/PPP3/KbQYOHKi9e/cG/nn33XeP+/nQoUO1Zs0azZ49W5999pnmz5+vkSNHlr16oAIMaFVHberGq7jUq2lzrVl61zRNbTvon2xvWIuBcjhLjI7QG8M7B85Yf3r2Ro2ZsUrFpZ4y7+uo26uRb67Qj7vzVTM6Qm/d0lkpcTUsrhhAVRWT6j95LMWzu0L2n7/X/8XgIcWrBvfaBgAAQDXUs0lt2QxpU3ahducesXTfu3OP6PMf/BOrt/ZsZOm+UTU47Db9ZVBLSdLrC7dr64FCFeX4b9WVa+OeyACsF5tYSwcGPC+vaahz/myt/uzF0/5d5xH/ZLs3ksl24NfKPNl+wQUX6NFHH9Vll112ym1cLpfq1KkT+Ccx8edlJdatW6cvvvhC06dPV5cuXdSjRw9NnTpV7733nvbs2XNmrwKwkGEYGj8gQ5L01uIs7bGgmcotdqvgqH8ytX4SV7aHO6fdpr8ObqX/u7yNnHZDn/+wV1dOW6Rdh4tPex9en6k/vfedFm09pBiXQ6/f3FmNajPZBeBnSfVa+P+tfBXmHbJ8/8UHtkuSDtqTLd83AAAAEArio5xqX9//vabVS8n/49tt8vpMndO4plrXZWI1XPVuVlvnZtSWx2fq8f+s15E8/2R7IZPtACpI0079tbj+CElSm1UPa+/WNaf1e67Sw/4/RNWqqNKAKstRETudO3eukpOTlZiYqPPOO0+PPvqoatasKUlatGiREhIS1LFjx8D2/fr1k81m05IlS046iV9SUqKSkp+X887Pz5ckud1uud3uingJIe3Yaw7H115ZujaMV+eGiVq6/bCe/WqDHr2kVbn2t3l/niSpTpxLdvnkdvusKBPlFOz30hWZqWqQVENj3l2ttXvzNfi5b/X8tWerY4Pfvu+NaZp68JN1+mLNPjnthl64rp2ap0RxTAiiYGfpdHl8prwejwzDkGkzgl0OTsHj8Rz37zPlio7RIcWrpvJ0cPsa1WjVzYryAtwHt0uSClx15Anx7Icrq7JU0Tw+n7werzyGT4ZZ5nOBgeN4A7l3yx3in3WhPm4AAPj1yait5VmHNXfDAQ3t0sCSfeYfdeu9Zf7bPY3oxVXt4e7PF7XU/E3z9dW6/Tq3eKs6SCrmnsgAKlC7oY9p7VML1dL9o9z/HC73XfPljHD95u9EunMlSbaY2pVQIVC1WD7ZPnDgQF1++eVKT0/Xli1b9MADD+iCCy7QokWLZLfbtW/fPiUnH38FlMPhUFJSkvbt23fSfU6cOFEPP/zwCY/PmjVLUVHhe5Xw7Nmzg11CtdYtWloqhz5YvktNPFlKLsets5YfMCTZFaMj+s9//mNZjbBGsN9LYzKk6evt2l3k1vWvLtWV6T6dk3Lq+7h/vsOmWbttMmTq+sZeHV6/RP9ZX4kF45SCnSVUL8vmfV3ufTQ2klXTzNOWpV9p5758C6r6WcTutZKkg95o7Z71haX7hrXmz/kq2CUAlW7OV6Gf++Li01/VCAAQPH0ykjV51kYt3HxQpR6fIhzlPznwvaU7VFjiUdPkGPVpxqRFuGuSHKMbujbQ6wu3a9euXZJTKolgsh1AxbE7HIq+7jXlv3GuMjwbteCte9T+lmd/83divLmSJEccn1vAr1k+2T5kyJDAn9u0aaO2bduqcePGmjt3rvr27XtG+7z//vt11113Bf6en5+vevXq6fzzz1dcXFy5a65q3G63Zs+erf79+8vpdAa7nGpt9VsrNXfjQa32nqW/X9j2jPezec5mafNWtW9aTxdeWL6r5GGdUHovXV7q0X3/XqP/rtmv97faFVG7nu6/IENO+/FN/OuLsjRr0QZJ0iODW2lIp7OCUS5+JZSy9Fs8PlMHj3rkMAzZQ/xqv3Dm8Xi0bN7X6tS7rxyO8g3Vtm5+WyrYpOQor1r0HWBRhX7bN74qlUhRdVuo+/kDLd03rOHxeDR/zlfqdV6/cmepIrl9PmUf8SrWaTvhcw8oq9JSt1Z8M0fn9eunGhERwS7nNx1bsQ0AENpapsapVoxLBwtLtHx7js5pUr7lc0s9Pr327XZJ0oiejWQY9GaQ/tSvqT5atVtJ7p9WdK1RM8gVAajukus11Q+dH1fnpXeq2563tHpBfzXvPuiU28f5/Kv31ohPqawSgSqjwr91a9SokWrVqqXNmzerb9++qlOnjrKzj7/HkcfjUU5OjurUqXPSfbhcLrlcJy5h4XQ6Q3pSo6KF++uvDOMHNtfcjd/qsx/2afS5TdUy7cxO7th5+KgkKb12LP/PQlAovJfinU69cH0HPf+/zZo8a6PeWrJTWw4W6/nr2isx2v9F8cxVu/XYf/wT7Xef30w3nJMezJJxEqGQpd9i+EzZPQaT7VWEw+GQw1G+PLkT0qUCyZW/vdz7+rXYEv+9BJ010+UI4dzjpyyF8P8j0+uT3WHI4bDLwWQ7ysnr868O5HCE9meypJCvDwDgZ7MZ6t2stj5cuUtzNx4o92T75z/s0b78o6oV49IlmWkWVYmqLiEqQmP7NVXsF/7JdjOKyXYAFa/N+cO0eNNX6nr4U531vz8qL6OD4mulnrCdz+tVvFkgGVJ0IpPtwK9V+LdZu3bt0qFDh5Sa6n+DduvWTbm5uVqxYkVgmzlz5sjn86lLly4VXQ5QJq3S4jWorT+7T8/ecMb72X7Iv0Rkw5rhe9sD/D7DMDTmvKZ66YYOio6wa+GWQ7rk+QXauL9A/9uQrbs/WC1Jurl7Q91+bpMgVwugKrDVbCxJii3eafm+a3n8k+1RydbctxIAAAAIVX0y/Evmzt2Q/Ttb/jbTNPXK/G2S/L29y2Evd22oPoZ2baB6Ef7vECPik39nawCwRtMbpyrLdpZq67D2vnGLTJ/vhG0K8w7KYfgfj0k6+UWzQDgr82R7YWGhvvvuO3333XeSpG3btum7777Tjh07VFhYqPHjx2vx4sXavn27vv76a11yySVq0qSJBgzwL13aokULDRw4UCNGjNDSpUu1YMECjRkzRkOGDFFaGmdzIvTc1b+Z7DZDX63L1oqsw2e0j6xDRZKkhrWirSwN1dSAVnX079HdVS8pUjtyinXZ8ws0+u2V8vhMXXJ2mh68qCXLzAE4LdFpGZKkZPduS/d7pCBXteX/TExIbWTpvgEAAIBQ07NpLdkMaeP+Qu3OPXLG+1m45ZDW7s1XpNOuoV3qW1ghqgOn3aZGfW/Wyvo3qXG77sEuB0CYiIqJ15HBr6jUdCjzyCKt+nDSCdsU5vgvuCgwIxVRI7KySwRCXpkn25cvX67MzExlZmZKku666y5lZmZqwoQJstvt+v777zV48GA1a9ZMt9xyizp06KBvvvnmuGXg33nnHTVv3lx9+/bVhRdeqB49eujll1+27lUBFmpUO0ZXtvffF3vSl+tlmmaZfj+v2K3DxW5JUgOubMdpyqgTq09u76FujWqqqNSrI26vejerrUlXtpON5b8BnKakes0lSbV1WEeL8s54P6bPp72bV2vNh/+nrGcuVOJz/v2aphSfxPJhAAAAqN4SoiKUWT9RUvmubn95/lZJ0tUdz1JCVIQltaF6Seh6g+pcM1mq0zbYpQAIIw1ad9WyZmMlSR3XP6Uda5cd9/Mjh/2T7Xm2+EqvDagKynzP9j59+vzmZOOXX375u/tISkrSjBkzyvrUQND8sV9TfbRqtxZvzdGCzYfUo+np358rK8d/VXtyrEtREWV+yyGMJUZH6M1bOmvqnM06UHBUDw5qqQgH97IFcPpiEmvrsGKVqAIdzNqgs1p2Pu3fzc/Zr93L/yvb1jlqmLtYrXTw5x8aUqkcKolIkOEpkiISrC8eAAAACCF9mtXWiqzDmrvhgIZ2KfutlDbsK9C8jQdkGNLwHukVUCEAAGcu86r79N3T83T20aWKmHmrjjZcoBpRMZKkknz/iWYF9gRxOSFwImb+gNNQNyFSQ7vW1z8WbNekL9ere5Pup72M98/3a2cJeZSd027TXf2bBbsMAFXYfkeaEj0bVLhng/Qbk+3ukqPasXqujq6bpeTshWrq2aSGxs8nWJaaDq13tVZuWk/Ftxmo5GYdVeiVkl0MJwEAAFD99clI1lOzN2rh5oMq9fjKfDL89G/8V7UPbFVHDfiOCAAQYgybTcnDXtXBl3sq3bdDi964Q2eP+ockyVvgn2w/4uDKduBk+HYUOE2j+zTR+8t2avWuPM1au18DWtU5rd/LOui/sp0l5AEAwZAXWU8q2CDvwU3HPW76fNq/bY0Ofvcfxeyap4zi79TJOPrzBoa0zdZAu2t2kzOjr+plnq+zomN11k8/dnt9ktdbeS8EAAAACKJWaXGqFROhg4WlWr49R+c0Of1VD7Pzj+rj7/ZIkkb0alRRJQIAUC6JyWdpXe+nVWvecHU7NFPLvuqn1v2Gyld0SJJUEpEU5AqB0MRkO3Caase6NLx7up7732Y9NWuD+rVIkf007p0duLK9FmctAwAqX2lcQ6lAcuRuV0HOfu1a8V/ZtvxPDXMXq6UO/LyhIeUoTptjO6m04bmqk3mBktLSxTnLAAAAgGSzGerVrLb+vXK35m48UKbJ9jcWbVep16cODRLV/qd7vwMAEIpa9LxMC9d/pXP2z1DTxffpQIuush3xT7Z7ajDZDpwMk+1AGYzo1UhvLtqujfsL9cnq3bos86zf/Z2sQ1zZDgAIHqNmY2m3lHn4S0W89Lka/Gpp+A2u1spN66G41gNVt0UXNbHbg1gtAAAAELr6ZCT7J9s3ZOuBC1uc1u8Ul3r09uIdkqQRPbmqHQAQ+loNe0qbnl6qpt7N2vXOcDkjakuSvFE1g1wZEJqYbAfKID7SqT/0aawnv9igv8/epEFt0+S0//Y9urhnOwAgmGIbtJW+l2oYbknSNlt97a7ZTY5m/VS/fT/VjY5X3SDXCAAAAFQFvZrWks2QNu4v1J7cI0pLiPzd3/lg+S7lHXGrYc0o9W+ZUglVAgBQPhGuGjKuek3F7/ZX69Lvtb2kjmRItujTX9UFCCe/PUsI4AQ3ndNQtWJc2pFTrH8u3/mb2xaWeHSwsESSVJ8r2wEAQVCvVTctaD9Z37b+mzYPW6H4e75Ty1umqVnPK1QjmkXiAQAAgNOVEBWhs+slSJLmbjjw2xtL8vpMTf92qyTplh7pp3U7QgAAQkHdJm20ut1fJEkNtE+SZI+tHcySgJDFZDtQRlERDo05t7EkacrXm3TU7T3ltseWkK8ZHaG4Gs5KqQ8AgF9rcf5wtRx0u5LS0oNdCgAAAFCl9clIliTN3ZD9u9t+uWafduYcUWKUU1d2qFfRpQEAYKl2g0ZrWcx5Mn46VywyKia4BQEhisl24Axc26W+6iZEan9+id5alHXK7bJ+WkKe+7UDAAAAAABUfX0y/Ff1Ldh8UKUe3ym3M01TL8/3X9V+Q9cGioywV0p9AABYxbDZ1PCml2T+9Pe6xsGg1gOEKibbgTPgcth1Z7+mkqQX5m5WwVH3Sbfb/tOV7dyvHQAAAAAAoOprnRavWjERKir1anlWzim3W5F1WN/tzFWEw6YbujWsvAIBALBQTHxN5V48XVl9Jkvtrgl2OUBIYrIdOEOXZ9ZVo9rROlzs1qvfbjvpNtsP+ifbGzDZDgAAAAAAUOXZbIZ6NfVf3T7vN+7bfuyq9ssz66p2rKtSagMAwHKGIXvry1R69g2SPSLY1QAhicl24Aw57DaN658hSZr+zTblFJWesM32n5aRb1iLZeQBAAAAAACqg94/LSU/9xST7dsOFmn2uv2SpFt7pldaXQAAAKh8TLYD5XBB6zpqlRanwhKPXpy35YSfZx3iynYAAAAAAIDqpFfT2rIZ0ob9BdqTe+SEn7/67VaZpnRe82Q1SY4NQoUAAACoLEy2A+Vgsxm6e4D/6vY3Fm7XvryjgZ8Vl3q0P79EkpTOZDsAAAAAAEC1kBgdoXb1EiRJ8zYef3V7TlGp/rVilyRpRM9GlV0aAAAAKhmT7UA59WlWW50aJqrE49PUOZsCj+/I8S8hnxDlVHyUM1jlAQAAAAAAwGJ9miVLkuZuyD7u8bcXZ+mo26c2dePVtVFSMEoDAABAJWKyHSgnwzA0fkBzSdL7y3YGlo7fftA/2c4S8gAAAAAAANVLn5/u275g8yGVenySpKNur95ctF2S/17thmEEqzwAAABUEibbAQt0Tk9S72a15fGZeuYr/9XtxybdG9aMCmZpAAAAAAAAsFibuvGqGR2hwhKPVmQdliTNXLVbBwtLVTchUhe2SQ1yhQAAAKgMTLYDFrn7fP+922d+t1sb9hVo+yGubAcAAAAAAKiObDZDvZv5r26fuzFbPp+pV77ZKkm6uXtDOe187QoAABAOGPUBFmlzVrwubFNHpik9NWsDV7YDAAAAAABUY71/Wkp+3oYD+t+GbG05UKRYl0PXdKoX5MoAAABQWZhsByx0V/9mshnSrLX7tXKHfwkxrmwHAAAAAACofno1rS2bIa3fV6BJX26QJF3Xpb5iaziDXBkAAAAqC5PtgIWaJMfq8vZnSZKOun2SuLIdAAAAAACgOkqMjlC7egmS/BPuDpuhm7o3DGpNAAAAqFxMtgMWu7NvUznthiQp1uVQUnREkCsCAAAAAABARejTLDnw54vbpSk1PjKI1QAAAKCyMdkOWKxeUpSu61xfktSgVpQMwwhyRQAAAAAAAKgIfX66b7sk3dozPYiVAAAAIBiYbAcqwNj+zXRF+7M0tl+zYJcCAAAAIMzs3r1b119/vWrWrKnIyEi1adNGy5cvD/zcNE1NmDBBqampioyMVL9+/bRp06bj9pGTk6OhQ4cqLi5OCQkJuuWWW1RYWFjZLwUAQl7bs+L1h96Nde/A5mqVFh/scgAAAFDJmGwHKkBCVISeurqd+rZICXYpAAAAAMLI4cOH1b17dzmdTv33v//V2rVr9dRTTykxMTGwzZNPPqkpU6boxRdf1JIlSxQdHa0BAwbo6NGjgW2GDh2qNWvWaPbs2frss880f/58jRw5MhgvCQBCmmEYuu+C5hrVp3GwSwEAAEAQOIJdAAAAAAAAsMYTTzyhevXq6R//+EfgsfT0n5c1Nk1TzzzzjP7yl7/okksukSS9+eabSklJ0cyZMzVkyBCtW7dOX3zxhZYtW6aOHTtKkqZOnaoLL7xQkydPVlpaWuW+KAAAAAAAQhST7QAAAAAAVBOffPKJBgwYoKuuukrz5s1T3bp1NXr0aI0YMUKStG3bNu3bt0/9+vUL/E58fLy6dOmiRYsWaciQIVq0aJESEhICE+2S1K9fP9lsNi1ZskSXXXbZCc9bUlKikpKSwN/z8/MlSW63W263u6Jebsg69prD8bUDVuK9BKtUlSx5fKa8Ho8Mw5BpM4JdDk7B4/Ec9+9Q5fH65PX45PGYsvlY5DgUVZks+XzyerzyGD4ZJllC+XgDuXfLHeKfdac7bmCyHQAAAACAamLr1q2aNm2a7rrrLj3wwANatmyZ/vjHPyoiIkI33nij9u3bJ0lKSTn+llcpKSmBn+3bt0/JycnH/dzhcCgpKSmwza9NnDhRDz/88AmPz5o1S1FRUVa8tCpp9uzZwS4BqBZ4L8EqZAlWWjbv62CXcFo2BLsA/K75c74KdglApZvzVejnvri4+LS2Y7IdAAAAAIBqwufzqWPHjnr88cclSZmZmfrxxx/14osv6sYbb6yw573//vt11113Bf6en5+vevXq6fzzz1dcXFyFPW+ocrvdmj17tvr37y+n0xnscoAqi/cSrFJVsuTxmTp41COHYcge4lf7hTOPx6Nl875Wp9595XCE7hSL2+tTgdun2pF2Rdi4GjkUeTwezZ/zlXqd1y+0s+TzKfuIV7FOm5x2soTyKS11a8U3c3Rev36qERER7HJ+07EV235P6L57AQAAAABAmaSmpqply5bHPdaiRQt9+OGHkqQ6depIkvbv36/U1NTANvv379fZZ58d2CY7O/u4fXg8HuXk5AR+/9dcLpdcLtcJjzudzpCe1Kho4f76AavwXoJVQj1Lhs+U3WMw2V5FOBwOORyhmyfT8Mluev11MkEa0hwOhxwhfGwyvT7ZHYYcDjtZQrl5faYkyeEI7c9kSaddH+8KAAAAAACqie7du2vDhuMXC924caMaNGggSUpPT1edOnX09dc/L3uan5+vJUuWqFu3bpKkbt26KTc3VytWrAhsM2fOHPl8PnXp0qUSXgUAAAAAAFUDV7YDAAAAAFBNjB07Vuecc44ef/xxXX311Vq6dKlefvllvfzyy5IkwzD0pz/9SY8++qiaNm2q9PR0Pfjgg0pLS9Oll14qyX8l/MCBAzVixAi9+OKLcrvdGjNmjIYMGaK0tLQgvjoAAAAAAEILk+0AAAAAAFQTnTp10kcffaT7779fjzzyiNLT0/XMM89o6NChgW3uueceFRUVaeTIkcrNzVWPHj30xRdfqEaNGoFt3nnnHY0ZM0Z9+/aVzWbTFVdcoSlTpgTjJQEAAAAAELKYbAcAAAAAoBoZNGiQBg0adMqfG4ahRx55RI888sgpt0lKStKMGTMqojwAAAAAAKoN7tkOAAAAAAAAAAAAAEAZMdkOAAAAAAAAAAAAAEAZMdkOAAAAAAAAAAAAAEAZMdkOAAAAAAAAAAAAAEAZMdkOAAAAAAAAAAAAAEAZMdkOAAAAAAAAAAAAAEAZOYJdwJkwTVOSlJ+fH+RKgsPtdqu4uFj5+flyOp3BLgeosngvwSpVJUsen6mCIx7ZZMhuBLsanIrH489Tbm6eHI7QzZPbZ6rY45Wr1CEngQpJnp+OTbl5eXKE8LHJ7TVVeNQjn8Mup40soXxKfvGZ7HZFBLuc33Ssnz3W31Y39O1VY3wIhDreS7BKVckSfXvVQN8Oq9C3IxxVx769Sk62FxQUSJLq1asX5EoAAAAAADhzBQUFio+PD3YZlqNvBwAAAABUB7/XtxtmFTyN3ufzac+ePYqNjZVhhN9ZNPn5+apXr5527typuLi4YJcDVFm8l2AVsgQrkSdYhSwhHFWl3JumqYKCAqWlpclmq353eKNvrzpZBEIZ7yVYhSzBSuQJViFLCEdVKfen27dXySvbbTabzjrrrGCXEXRxcXEhH0SgKuC9BKuQJViJPMEqZAnhqKrkvjpe0X4MfbtfVckiEOp4L8EqZAlWIk+wCllCOKoquT+dvr36nT4PAAAAAAAAAAAAAEAFY7IdAAAAAAAAAAAAAIAyYrK9CnK5XHrooYfkcrmCXQpQpfFeglXIEqxEnmAVsoRwRO4RKsgiYA3eS7AKWYKVyBOsQpYQjqpj7g3TNM1gFwEAAAAAAAAAAAAAQFXCle0AAAAAAAAAAAAAAJQRk+0AAAAAAAAAAAAAAJQRk+0AAAAAAAAAAAAAAJQRk+0AAAAAAAAAAAAAAJQRk+0AAAAAAAAAAAAAAJQRk+0AAFQRpmkGuwQAAMKWz+cLdgkAACDE0bcDABA8werbDZMRAH6yY8cOLViwQPv371eHDh3Us2fPYJcEVFk+n082G+czofyOHDkin8+n6OjoYJeCKm7r1q3auHGjBg4cGOxSUMVt27ZNn332mbKzs5WRkaHrr78+2CUBFerAgQOKjIxUTEwMYzwEHX07YB2O6bAKfTusQt8OK9CzIxwFu293VOqzIWT98MMPuuCCC9SiRQutXLlSGRkZGjJkiP74xz8GuzSgStmzZ4+ioqKUkJAgr9cru90e7JJQha1du1bjxo3TwYMH5fV69c9//lNNmjSRaZoyDCPY5aEK+e6779ShQwe98sorwS4FVdwPP/yg888/X506ddLGjRsVHR2tVatW6amnngp2aUCFWLdunS6++GL16NFDzz77rOLj45mcQdDQtwPWoG+HlejbYRX6dliBnh3hKBT6dr4hgLZt26ZLLrlEw4YN02effaYNGzaoRYsW+vLLL4NdGlClrF+/Xu3atdPgwYN18OBB2e12eb3eYJeFKmrt2rXq1auX0tPTNXLkSMXExOjGG2+UJBmGwdJ0OG2rV69Wjx49NHbsWA0fPvyEn7MsMk5XVlaWrrjiCt1000365JNPtHTpUl111VVaunSpcnJygl0eYLldu3bp5ptvlsPh0JYtW3T//fcrLy9PNpuNYycqHX07YA36dliJvh1WoW+HFejZEY5CpW9nsj3MeTwezZgxQx06dNC9994rp9OpWrVq6bbbbtOCBQu0efPmYJcIVAl79uzRyJEj1ahRI0nSDTfcQOOOM3b06FHdd999uvLKK/XCCy9oxIgRuuuuu9S4cePA8nScIY/TsX79evXq1UvDhw/X5MmT5fV69f777+vpp5/WlClT5PV6uToTp8Xn8+mTTz5Rs2bNdPfdd8vn8ykuLk5XXnmlVq9ezZgR1dLcuXMVGRmp119/XYMGDdKqVauOa9wZ46Gy0LcD1qBvh5Xo22EV+nZYgZ4d4SpU+naWkYfi4+M1YMAAxcfHBx6rWbOmDMNQaWlpECsDqo6lS5fK5XLpscce0549e/Tcc8/phhtu0FtvvaVatWqxNB3KxOv1Kjs7WxdffHHgsQULFmjWrFnq1KmTSktLde+99+raa69VVFRUECtFqJsxY4YKCgrUu3dv5eTk6Oqrr1ZxcbGys7NVWlqqKVOm6D//+Y+aNWvGMof4TYZhKC0tTYMHD1bNmjUl+Zv5mjVrKiYmRm63O8gVAta77rrrFB8fr65du6pr164yTVMff/yx7r//fj3++ONKSEg4bmk6xnuoSPTtQPnRt8NK9O2wCn07rEDPjnAVKn27YbKeTdjLyclRUlKSJAVCV1xcrPbt2wfOhpKk2bNnq3///sEsFQhpX375pQYMGCBJeu+99/T8888rJiZGb775pmrXrk3jjjLp06eP8vPz9fDDD2vevHl64YUX9Pe//11nn3223nnnHb3//vuaPXu22rZtG+xSEeJGjRql2bNny+FwqEmTJpo6daoSEhJUXFys6667Trm5uVq5ciXHJ/yu/Px8xcXFSdJxjUrr1q31/PPPq3fv3pKkDz/8UFdccUXQ6gQqitfr1eTJkzVz5kxlZmZq4sSJio+P17PPPqs777wz2OWhmqNvB6xB3w4r0bfDKvTtsAI9OxC8vp31R8JQdna2vv32W3399dfas2ePkpKSZJqmTNMMHICPHj2q/Px8lZSUSJIefPBBDRs2TLt37w5m6UBIO9awS9I111yjMWPGqLCwUMOGDQssTTdp0iRlZWUFsUpUFa+88opq1Kiht99+W//85z81adIk3XbbberSpYumTJkip9Opf/3rX8EuEyHM4/FIkqZNm6b+/fsrNjZWkydPVnp6uhITE1W3bl098sgj2rVrl5YuXRrkahGK9uzZo88//1zvvPOOtmzZori4OPl8vuPGjG63W8XFxYFluSZMmKCrr75a27dvD2LlwJnZuXOnZs6cqQ8++OCEZRY9Ho/sdrvGjRunSy+9NLA03ciRIzV27Fht2rQpSFWjuqJvByoGfTusRN+O8qJvR3nQsyMchWrfzjLyYeaHH37QddddJ5/Pp/z8fCUmJupf//pX4Cz4Y4qLi1VQUCCXy6WJEydq0qRJWrBggerWrRukyoHQsn37ds2bN0+5ubnq2bOn2rVrFzi79NiZ8FdddZUk6bnnntOwYcOUlpam1157TYMHDw5m6QhBv8xTjx49lJmZqaZNm2rhwoUqKChQ//79dfbZZ0vyf6nqdrvVsGHDwL0GgWMKCwsVExMjSXI4HIHj0bRp0/S///1PDRs2lKTA0nOlpaWqVauWUlJSglg1QtEPP/ygK6+8UlFRUTp06JAKCgo0d+5ctWvXLrCNz+dTcXGxiouLFRUVpcmTJ2vSpElaunRpIGtAVfH9999rwIABSkpKUmFhobKzszVx4kRdffXVSktLk8PhkMfjkcPh0N133y3TNPXII4/I5XJp5cqVatq0abBfAqoR+nbAGvTtsBJ9O6xC3w4r0LMjHIV0324ibGzcuNFMSUkx7733XnPbtm3m//73P3Pw4MHmqFGjTLfbbfp8vsC2ubm5Zvv27c1LLrnErFGjhrl8+fIgVg6Elu+//96sVauW2b59ezMjI8N0OBzm3Xffba5cuTKwjdvtNk3TNH0+n/nOO++Y0dHRZmJiorlq1aogVY1QdbI8jRs37rjj7jnnnGPedNNNpmmaZl5envnYY4+Z9erVM7du3RqsshGCfvzxRzMxMdGcPn36cY97PJ5T/s748ePNPn36mIcPH67g6lCVbN682UxLSzPvu+8+c//+/ebmzZvN6667zjz//PPNoqKi47b1+Xxm586dzW7dupk1atQwly1bFqSqgTOXk5NjZmZmmvfee6+Zm5tr7t2715w0aZIZFRVl3nnnneaWLVsC23q9XtM0TXP06NFmXFyc+eOPPwarbFRT9O2ANejbYSX6dliFvh1WoGdHOAr1vp3J9jBRXFxsDh8+3Bw2bNhxzfmECRPMdu3anbD9/v37zcjISDMmJoYmA/iF/Px8s2fPnua4cePMo0ePmqZpmq+//rrZrFkzc8iQIeaiRYsC2/7yoB4dHc2XsTjB7+Xpm2++MU3TNF977TWzUaNGZu3atc2ePXua9erVO+5LImDnzp1mu3btzPr165sRERHmq6+++pvbr1ixwhw/frwZHx9vrl69upKqRFVw9OhRc8yYMebQoUMDX0CbpmlOnz7dzMjIMEtKSo7bvrCw0KxXr55Zo0YNsoQqKzs722zevLn5+eefH/f4m2++adaqVcu85557zCNHjgQe/9e//mVGRETwWQzL0bcD1qBvh5Xo22EV+nZYgZ4d4SrU+3aWkQ8j9evXV3JysgzDkM/nk81m06BBg/TPf/5TeXl5iomJCSynVaNGDY0aNUq33XbbCUvVAeHMMAwdOnRILVu2lMvlkiTdeOONqlWrlv7yl7/oxRdfVFpamurXry+bzabZs2fr888/1/z589WqVasgV49Q83t5euWVV5SRkaEhQ4aoXbt2+uSTT9SwYUP17t1b6enpQa4eocLr9eqTTz5R48aNNX78eM2aNUu33nqrJGn48OEnbL9161a9/fbb+u9//6t58+apbdu2lV0yQpjL5VLjxo1VUlIih+PnVqFPnz56+OGHdeDAAaWkpAR+5nQ6dffdd+vCCy9UkyZNglU2cMZM01RBQYEOHz4cuO91SUmJXC6XbrjhBnk8Ht1yyy3q06ePLrjgAknSFVdcoa1bt7JUNyoEfTtQfvTtsBJ9O6xA3w6r0LMjHFWFvp3J9jARGRmpYcOGBQZ5hmEE/u12u2UYhmw2myQpOztbycnJeuKJJ447YAPhzjRNFRcXy263Kz8/X9LPB/WLLrpIbrdbw4cPV7du3XTbbbdJkvr376+lS5cqOTk5mKUjBJ1unrp27apRo0apffv2at++fZCrRiiy2+3q1q2bUlJS1LVrV7Vv316maZ6ycW/YsKFuv/12jR8/XqmpqcEoGSFu+PDhiouLO+HxY5M+xyZ5Nm3apKZNm2rMmDGBcSRQ1RiGoUaNGmnw4MG644471LVrV6WmpsrtdsvhcOjmm2/W/Pnz9cQTT+jcc8+V3W6X0+lkoh0Vgr4dKD/6dliJvh1WoW+HlejZEW6qQt/OOyyMHGvYTdOUYRgyTVNFRUU6evSoIiIiZBiGxo8fr3bt2uno0aMcgIFfMQxDycnJuvTSS/XnP/9ZmzZtksvlUmlpqSTp0ksv1ahRozRp0iQVFRXJ4/FIEg07Tup08zR58mQVFhbKNM0gV4xQlpmZqSuuuEKSFBERofHjx+uvf/2rbr31Vr322muS/F8KffbZZ9q7d68aN25Mw45TOta0HzvueL1eHTlyRKZpKjIyUoZh6J577lH37t2Vn5/PmBFV2rGc/+lPf1KTJk10zTXXaM+ePXI6nfJ6vZKkBg0ayDRN1ahRQ06nM5jlIgzQtwPlQ98OK9G3w0r07bAKPTvCTVXo23mXhRGfzyfJP1D0eDwyDEMxMTFyOp1yuVz6y1/+opdeekkzZ85UjRo1OAgDv3LsoD5+/Hj17t1b5557rrKyshQRERF4fzVu3FgJCQlyOp1cYYLfdLp5SkxMDHyxCpyuqKgojRs3LtC4T58+Xffee69uvPFGPt/xu345ZpT8V2FERkbKNE3ZbDY9+OCDmjZtmj799NOTnk0PVCXHct6yZUuNGzdOHo9HgwYN0tatWwNjuUOHDikmJibwBRZQkejbgfKhb4eV6NtRkejbcabo2RFuqkLfzogyTHi9Xtntdh04cEC1a9cOBDAiIkKJiYkaNWqU/vGPf2jhwoXq0KFDkKsFQtOxK0tiY2M1ceJEjR07Vp07d9bMmTPVunVrxcbG6ocfflBkZKRKS0sVERER7JIRwsgTrHRsqTDp5yvhoqOjdffdd8s0TY0cOVLx8fGaNWsWZ8bjNx0bM+7fv1+SlJKSIunnMePo0aP1wQcfMGZEtXEs8/n5+br44ouVmJioxx57TK1bt1aPHj0kSYsXL9Y333yjyMjIIFeL6o6+HSg/+ixYiTzBSvTtsAI9O8JRVejbmWyvZo6dsfHLMymPDfaysrLUtGlT/f3vf9ftt98uyX+2x3fffadNmzZp8eLFyszMDErdQFVw7KB+6NAhpaSk6OWXX9ZDDz2kPn36qEWLFoEma+7cuYqJiQl2uQhx5AlWOVWjJUkul0tZWVmKj4/XwoUL1aJFi2CViSrA5/PJbrcrKytLLVq00KOPPqq77rpLpmnq4MGDWrdunXbs2KElS5bo7LPPDna5QLl5PB45HA5lZWWpUaNGevHFFzVixAh9/PHHeuONN7R582ZFRkZq6tSpysjICHa5qEbo24GKQ58FK5EnWIW+HVagZ0c4qip9u2GyDl61sW7dOk2ZMkW7du1S+/btdd5556l3796SpB07dqhLly667LLL9NxzzwXOotu3b5/uuece3XvvvWrVqlUwywdC2rGzT7OyspSRkaEnnnhCd955pyRp5syZysrKkiRddNFFatKkSTBLRRVAnmCVX2bpl42W5P8i/4MPPtDo0aP15ZdfckYzAvbu3avDhw+rZcuWJ/xs3759atu2ra644go9//zzgTFjaWmp7rvvPg0fPlytW7eu7JKBctmyZYvefvttbd26VZ07d9YNN9wQWE5xz5496tChgy677DJNnTpVdrs9yNWiuqNvByoOfRasRJ5gFfp2lBU9O8JRVe/bmWyvJtavX6+uXbuqb9++qlWrlr766islJydr4MCBeuihh/SPf/xDmzZt0mOPPXbC/YOKi4sVFRUVpMqB0HK6g5nnnnsuJA/qCC3kCVY5k0ZL8o8PoqOjVa9evcosFyFs3bp16tixozp16qQXX3xRzZs3l/TzMoYfffSRNm7cqHvuueeEMaPb7ZbT6QxG2cAZ++GHHzRw4ECdffbZstls+uKLL3THHXfo6aeflmmaeuGFF7Rv3z498sgjgcwfez8AVqNvB6xBnwUrkSdYhb4dVqBnRziqDn07k+3VgNfr1bhx43To0CG99dZbkqTdu3dr6tSp+uyzz3T11VdrwoQJQa4SCH3lGcwAv0aeYBWyBKscOHBAV155pZKSkrR06VI1a9ZML7zwwnHLFIZaswKUx65du3T++efroosu0qRJkyRJs2bN0mWXXaYFCxbo7LPPPu7emUBFom8HrMHYGFYiT7AKWYIV6NkRjqpL385kezVx+eWXy+v16uOPPw48lp2drRdeeEEff/yxbrvtNv3hD38IYoVAaGMwAyuRJ1iFLMFKS5cu1QsvvKCxY8cqOTlZHTp0UEZGxgmZOoZsoSozTVMvvviiPvnkE73++utKSUmRx+PRwYMH1bNnT7311lvq2rVrsMtEmKFvB8qHsTGsRJ5gFbIEq9CzI9xUp749tE8FwO86dq5Ehw4dVFxcrB07dgR+lpycrBEjRqh58+aaOXOmSkpKglUmEPK2bdum9PR0/fWvf9Xy5cu1YcMGjR49WuvWrQts88vBC+cp4beQJ1iFLMFKzZs31x133KE2bdooNTVVy5Yt0/r160/IlNfrlSSadlRphmGoS5cuyszMVEpKiiTJ4XCoTp06cjgc2rt3b5ArRDihbweswdgYViJPsApZglXo2RFuqlPfzpXt1cSyZct03nnnacyYMfrrX/8ql8sVOLNp1apV6tChgxYuXFhlzgIBKlt+fr42bdqkzMxM2Ww27d69Wx07dlTz5s2PO3vQ6/Vyjy78LvIEq5AlVJTS0lJFRERoz5496tChQyBTjRs31jPPPKO6detq6NChwS4TOCPHWtxff6l57O+tWrXSgw8+qCFDhkiSPv74YzVu3FitW7eu/GIRVujbgfJhbAwrkSdYhSyhItCzo7qrbn07V7ZXQXl5eSooKJDkD59pmurUqZNefvllPfnkk3riiSeUn58fCGViYqJatWqlyMjIYJYNhLS4uDh16NBBNptNpaWlqlu3rlasWHHc2YOlpaV66qmn9M477wS7XIQ48gSrkCWUx6/HjL8UEREhj8ejtLQ0rVy5UuvXr9eYMWN0/fXXa8KECerQoUMwSgbK5VjmT3aFh2EY8ng88vl8ioyMVEJCgiTpgQce0JVXXqnY2NhKrhbVHX07YD3GxrASeYJVyBLOFD07wlF17dsdwS4AZbN27VrddNNNGjp0qG6++WbFxcXJ5/NJkq699loVFRVp5MiR2rVrly677DK1bt1aL730kvLy8pScnBzk6oHQkZeXJ5vNptjY2BPub/PrwUz79u01ZswY1axZU5988om+++674BWOkESeYBWyBKucbMz4aw6HQ16vV6mpqVq8eLHS09OVmJioRYsWqXnz5kGoGjhzp5P5Y1cSeTwe2Ww2/e1vf9OUKVO0aNEiNWjQoLJLRjVG3w5Yg7ExrESeYBWyBCvQsyMcVeu+3USVkZWVZbZt29ZMSkoyW7VqZb700ktmXl6eaZqm6fP5Atv95z//MTt16mTWqVPHzMjIMBs2bGiuXLkyWGUDIWfNmjVmp06dzGeeeSbwHjoZj8djmqZpbt++3TQMw0xKSuK9hBOQJ1iFLMEqvzVmPJni4mLzjjvuMGNiYsw1a9ZUYqWANcqa+W7dupkZGRmmy+Uyly1bVomVIhzQtwPWYGwMK5EnWIUswQr07AhH1b1vZxn5KsLn82n27Nk666yztGjRInXt2lWTJk3Se++9F1h6zufzyefz6YILLtCnn36qr776Sm+88YYWL16szMzMYL8EICTs2LFD1157rbZs2aJXXnkl8B46GbvdriNHjuipp55SdHS0vvnmG95LOA55glXIEqzye2NG6cTl6Xbv3q0lS5bo66+/VsuWLYNRNnDGypJ5n8+ngoIC7d27V5s3b9by5cvVsWPHYJaPaoa+HbAGY2NYiTzBKmQJVqBnRzgKh76dZeSrCJvNpl69eik5OVnNmjXT9OnTdeutt2rSpEmSpGuuuUbx8fHy+XwyTVMpKSlKSUkJctVAaPnlQf2DDz7Qk08+GXgPDRkyRHFxcScs/8RgBqdCnmAVsgQrne6Y8Zfq1aunOXPmKDo6OhglA+VSlswbhqHY2Fi9+uqrql27tlq3bh3M0lEN0bcD5cfYGFYiT7AKWYJV6NkRjsKhbzfMX58mgyrl1ltv1bx58zR+/PjAB/tbb72lSy655KT3OwDC3aZNm7R+/XpdfPHFko5/D51sMFNSUiKPx8NgBidFnmAVsoSKdqox4+DBg0/IF1AdnCzzb7zxhgYPHqzExMRgl4cwQ98OlA1jY1iJPMEqZAkViZ4d4ag69e1MtldRXq9Xdrtd0s+BHDdunJYvX66ZM2dqxYoVatCgQZCrBKoGBjOwEnmCVcgSrMCYEeGGzCOUkEfAOoyNYSXyBKuQJZQX40WEo+qYeybbqxCfzyebzRb4u9vtltPplCSNGDFCr776qqKjozVv3jy1b98+WGUCVUZ1PKgjeMgTrEKWUF6MGRFuyDxCCXkErMXYGFYiT7AKWUJ5MF5EOKruubf9/iYIhl+fA+H1emWz2XTgwAEtXLhQkuR0OuX1eiVJ0dHRSkxM1JIlS6pkEIHK4vP5An+22+1yu92SpOnTp6tPnz4aPXq03n//fc2aNYtBMX4XeYJVyBLOFGNGhBsyj1BCHoGKwdgYViJPsApZwplgvIhwFI65Z7I9xHg8Hkk/h9Hn88nj8chutysrK0tnn322vv/++8D2drtd7777rqZMmaJZs2apZcuWQakbCEXheFBHxSFPsApZghUYMyLckHmEEvIIWIexMaxEnmAVsoTyYryIcBTOuWeyPYSsW7dOf/zjH3XVVVdp7NixWrRokWw2mxwOh3bv3q1WrVrp4osv1m233Xbc711++eXKyspShw4dglQ5EFrC+aAO65EnWIUswSqMGRFuyDxCCXkErMHYGFYiT7AKWYIVGC8iHIV77rlne4hYs2aNevbsqWuuuUaGYSgnJ0cffvihpk2bpuuuu07r1q3TP//5T02cOPG4+xoAON66des0depUHThwQGlpaRoyZIi6desmSdq9e7cyMjJ0/fXXa9q0aTIMI/B7JSUlys7OVr169YJVOkIQeYJVyBKswpgR4YbMI5SQR8AajI1hJfIEq5AlWIHxIsIRuWeyPSSUlJRo6NChSktL05QpUyRJe/fu1XnnnaetW7fq8ccf17hx42Sa5nEf5ACOx0EdViJPsApZglUYMyLckHmEEvIIWIOxMaxEnmAVsgQrMF5EOCL3fo5gFwDJ7XZr06ZN6t+/vyT/cjWpqanq3r27GjVqpPHjx6t58+a66KKLglwpELpKSkr00EMP6frrrz/uoL569WrdfvvtysvL07hx49S+fftqfVCHNcgTrEKWYCXGjAg3ZB6hhDwC5cfYGFYiT7AKWYJVGC8iHJF7P07DCgEul0sNGjTQsmXLlJ+fL4fDoaysLH388cf605/+pBtvvFETJ05UcXFxsEsFQtaxg3qrVq0kHX9Q79evn8aPH6/PP/+cQTFOC3mCVcgSrMSYEeGGzCOUkEeg/Bgbw0rkCVYhS7AK40WEI3Lvx2R7EPl8PkmS0+lU3759tWbNGg0aNEgPPPCAWrVqpSuvvFL9+/fXgAEDtHv3brnd7iBXDIQuDuqwEnmCVcgSrMCYEeGGzCOUkEfAOoyNYSXyBKuQJZQX40WEI3J/PCbbgyA3N1eSZLPZ5PF4JEl33nmnRo0apUaNGmnjxo167LHHNG3aNEn+D/y4uLhglQuENA7qsBJ5glXIEqzAmBHhhswjlJBHwDqMjWEl8gSrkCWUF+NFhCNyf3Lcs72SrVu3ThdddJGuv/56PfLII3I4HCotLVVERISGDRumYcOGye12y+l0Bn5n1qxZqlOnjiIiIoJYORBacnNzlZCQEDioOxwO3XnnnUpMTNScOXMCB/U777xTUvgc1HFmyBOsQpZgFcaMCDdkHqGEPALWYGwMK5EnWIUswQqMFxGOyP2pGaZpmsEuIlzs3LlTgwcPVlFRkVwul6666ipNmDBBkgIf7JJkmqYMw9DChQs1Y8YMvfXWW/rmm2/Utm3bYJYPhIxfH9QlBQ7qx/z6oD5q1Cht3bpVM2fOVGRkZKXXjNBFnmAVsgSrMGZEuCHzCCXkEbAGY2NYiTzBKmQJVmC8iHBE7n8bV7ZXEtM09e677yotLU1/+tOftGDBAr377ruSpAkTJsjhcMjr9cput8swDPl8Ph08eFArV67U/Pnzq30QgdO1c+dOXXfddXI4HProo4/kcDg0YcIERUREHHdQP/bvYwf1GTNm6JtvvmFQjOOQJ1iFLMEqjBkRbsg8Qgl5BKzB2BhWIk+wClmCFRgvIhyR+9/HZHslMQxDw4YNU0pKivr376927dpJkt59912ZpqmHHnpIdrtdPp9PNptNNptNgwcP1rnnnqvY2NggVw+EBg7qsBJ5glXIEqzEmBHhhswjlJBHoPwYG8NK5AlWIUuwCuNFhCNy//tYRj6I9u7dq5deeknvv/++hgwZooceekiSNHPmTF188cWy2+1BrhAIPfv27dOXX36pG2+8UdnZ2XrhhRdOeA8dO6gfU1BQEDYHdZQNeYJVyBIqEmNGhBsyj1BCHoGyY2wMK5EnWIUsoaIwXkQ4IvfH48r2CrR3717t3LlThw8fVr9+/QLh8vl8MgxDqampGjlypCTpvffek2maysvL07PPPqtdu3YpLS0tmOUDIalOnTq68cYbJUnJycm67bbbJPnfQ5L00EMPyWazHXdQZ1CMUyFPsApZQnkwZkS4IfMIJeQRsB5jY1iJPMEqZAlnivEiwhG5Lxsm2yvI999/r8GDB8vlcmn//v1KTU3VhAkTNGDAACUlJcnn80mS0tLSdNttt8k0TT3yyCNKSEjQsmXLwi6IwKlwUIeVyBOsQpZgFcaMCDdkHqGEPALWYGwMK5EnWIUswQqMFxGOyP0ZMGG57Oxss3nz5uYDDzxgbtmyxdy9e7d5zTXXmC1atDAfeughMzs72zRN0/T5fIHfueGGG8y4uDhzzZo1wSobCDmrV682GzRoYDZr1syMj483mzdvbs6YMcM8dOiQaZqm6fV6A++jPXv2mBMmTDANwzATExPN5cuXB7N0hCDyBKuQJViFMSPCDZlHKCGPgDUYG8NK5AlWIUuwAuNFhCNyf2Zsvz8dj7I6cOCAjh49qssvv1yNGjVSWlqa3nvvPQ0ePFj//ve/9frrr6u4uFiGYUiSXn31VX366aeaO3euWrZsGeTqgdBw4MABXXPNNRo6dKj++9//au3atWrXrp3+9re/acqUKTpw4MBx91BKTU3Vtm3bFBsbq2+//VYdOnQIYvUINeQJViFLsBJjRoQbMo9QQh6B8mNsDCuRJ1iFLMEqjBcRjsj9mWGyvQK43W55PB4VFxdLko4cOSJJ+r//+z+de+65mjZtmjZv3hzYftCgQVq5cqUyMzODUi8Qijiow0rkCVYhS7ASY0aEGzKPUEIegfJjbAwrkSdYhSzBKowXEY7I/ZkxTNM0g11EddS5c2fFxMRozpw5kqSSkhK5XC5JUqdOndSkSRO9++678nq9gfvFAPjZ6tWrNWjQIM2YMUM9e/bUkSNHFBkZKUm688479emnn2rmzJlq27atJGn//v0qLi5Wenp6MMtGiCJPsApZgtUYMyLckHmEEvIIlA9jY1iJPMEqZAlWYryIcETuy47JdgsUFRXJ5/PJNE3FxcVJklatWqWBAweqb9++mjFjhiTJ4/HI4XBo3Lhx2rRpkz755JNglg2EPA7qsBJ5glXIEs4UY0aEGzKPUEIegYrB2BhWIk+wClnCmWC8iHBE7q3BMvLltHbtWl1++eXq3bu3WrRooXfeeUeS1KJFCz377LOaPXu2rrrqKrnd7sC9YLKzsxUdHS2PxyPOdQD8ioqKVFBQoPz8/MBjL730ktasWaPrrrtOkuRyueTxeCRJvXr1UlFRkSQxKMYJyBOsQpZgFcaMCDdkHqGEPALWYGwMK5EnWIUswQqMFxGOyL11HMEuoCpbu3atevXqpWHDhqljx45asWKFbr75ZrVs2VKZmZkaPHiwoqOjNXr0aLVt21bNmzdXRESEPv/8cy1evFgOB//5Acn/Xho7dqwOHDig/fv368knn9TQoUMDB/U77rhDV111lWbMmBEYBP/yoG632wP3WQLIE6xClmAVxowIN2QeoYQ8AtZgbAwrkSdYhSzBCowXEY7IvbVYRv4M5eTk6Nprr1Xz5s317LPPBh4/99xz1aZNG02ZMiXwWEFBgR599FHl5OSoRo0aGjVqlFq2bBmMsoGQc7KD+tSpU7VkyRJlZmaquLhYX3/9tUaPHq2YmJgTDuqtW7cO9ktACCFPsApZglUYMyLckHmEEvIIWIOx/9hvxQAAA4FJREFUMaxEnmAVsgQrMF5EOCL31mOy/Qzt379fgwcP1uTJk9WzZ0/5fD7ZbDYNHz5cpaWlevvtt2WapkzTDCyvICmwHQAO6rAWeYJVyBKsxJgR4YbMI5SQR6D8GBvDSuQJViFLsArjRYQjcm89rvM/QykpKXr77bfVtGlTSZLX65XNZlPdunWVlZUlSTIMQ4ZhKD8/X3FxcYHHAPi53W7l5ubqyiuvlPTzwTo9PV05OTmSFDiox8bG6oknnjhuO+CXyBOsQpZgJcaMCDdkHqGEPALlx9gYViJPsApZglUYLyIckXvr8clSDseC6PP55HQ6Jfk/xLOzswPbTJw4UdOnT5fH45FEGIFfOnZQ79mzpyT/QV2S6tatGxj4GoYhm82m/Pz8wO/xPsLJkCdYhSzBaowZEW7IPEIJeQTKh7ExrESeYBWyBCsxXkQ4IvfWYrLdAjabTb9cjf/YB/qECRP05z//WX379pXDwSICwMlwUIeVyBOsQpZQERgzItyQeYQS8gicOcbGsBJ5glXIEqzGeBHhiNxbg/9CFjFNU4ZhyOFwqF69epo8ebKefPJJLV++XO3atQt2eUDIO3ZQPzbo/eVB/dFHH9WqVas4qOO0kSdYhSzBaowZEW7IPEIJeQTKh7ExrESeYBWyBCsxXkQ4Ivflx6eMRY59iDudTr3yyiuKi4vTt99+q/bt2we5MqDq4KAOK5EnWIUswUqMGRFuyDxCCXkEyo+xMaxEnmAVsgSrMF5EOCL35ccy8hYbMGCAJGnhwoXq2LFjkKsBqpZfH9QfffRRDuo4Y+QJViFLqAiMGRFuyDxCCXkEzhxjY1iJPMEqZAlWY7yIcETuz5xh/nIxfliiqKhI0dHRwS4DqLKWL1+uzp0768cff1TLli2DXQ6qOPIEq5AlWI0xI8INmUcoIY9A+TA2hpXIE6xClmAlxosIR+T+zDDZDiAkcVCHlcgTrEKWAAAAAD/GxrASeYJVyBIAoLIx2Q4AAAAAAAAAAAAAQBlxz3YAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMqIyXYAAAAAAAAAAAAAAMro/wEkqNyPhAQybwAAAABJRU5ErkJggg==",
- "text/plain": [
- "