forked from abhi4578/Parallelization-of-PSO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mpipso.c
195 lines (185 loc) · 6.84 KB
/
mpipso.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_math.h>
#include <string.h>
#include <time.h>
#include <mpi.h>
#include<sys/time.h>
#define PI 3.14159265358979323846
double nDimensions, mVelocity, nIterations, seed;
double x_min = -32.768;
double x_max = 32.768;
struct timeval TimeValue_Start;
struct timezone TimeZone_Start;
struct timeval TimeValue_Final;
struct timezone TimeZone_Final;
long time_start, time_end;
double time_overhead;
double ackley(double x[], double nDimensions);
double ackley(double x[], double nDimensions) {
double c = 2*M_PI;
double b = 0.2;
double a = 20;
double sum1 = 0;
double sum2 = 0;
int i;
for (i=0; i<nDimensions; i++) {
sum1 = sum1 + gsl_pow_2(x[i]);
sum2 = sum2 + cos(c*x[i]);
}
double term1 = -a * exp(-b*sqrt(sum1/nDimensions));
double term2 = -exp(sum2/nDimensions);
return term1 + term2 + a + M_E;
}
double Griewanks_function(double x[], double nDimensions);
int main(int argc, char *argv[]) {
int i,j;
double nParticles;
//Argument handling START
for(i=1; i < argc-1; i++) {
if (strcmp(argv[i], "-D") == 0)
nDimensions = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-m") == 0)
nParticles = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-V") == 0)
mVelocity = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-i") == 0)
nIterations = strtol(argv[i+1],NULL,10);
else if (strcmp(argv[i], "-s") == 0)
seed = strtol(argv[i+1],NULL,10);
}
if (nDimensions == 0)
nDimensions = 2;
if (nParticles == 0)
nParticles = 8;
if (mVelocity == 0)
mVelocity = 60;
if (nIterations == 0)
nIterations = 1;
if (seed == 0)
seed = 1;
gettimeofday(&TimeValue_Start, &TimeZone_Start);
int size,myrank,distributed_particles;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&size);
MPI_Comm_rank(MPI_COMM_WORLD,&myrank);
if(myrank==0)
{
distributed_particles=(int)nParticles/size;
//printf("%d distributed_particles\n",distributed_particles );
}
MPI_Bcast(&distributed_particles,1,MPI_INT,0,MPI_COMM_WORLD);
if(myrank==0)
{
distributed_particles+=(int)nParticles%size;
//printf("%d distributed_particles\n",distributed_particles );
}
double result[(int)distributed_particles];
int step;
double a,b;
double c1, c2, rho1, rho2, w, fit;
c1 = c2 = 1.496;
w = 0.7298;
int recievingdata[((int)nDimensions+1)*size];
int sendingdata[(int)nDimensions+1];
//Random number generator initialization
gsl_rng_env_setup();
gsl_rng * r = gsl_rng_alloc(gsl_rng_default);
gsl_rng_set(r, time(0));
double positions[(int)distributed_particles][(int)nDimensions];
double velocities[(int)distributed_particles][(int)nDimensions];
double pBestPositions[(int)distributed_particles][(int)nDimensions];
double pBestFitness[(int)distributed_particles];
double gBestPosition[(int)nDimensions];
double gBestFitness = DBL_MAX;
//particle initialization
for (i=0; i<distributed_particles; i++) {
for (j=0; j<nDimensions; j++) {
a = x_min + (x_max - x_min) * gsl_rng_uniform(r);
b = x_min + (x_max - x_min) * gsl_rng_uniform(r);
positions[i][j] = a;
pBestPositions[i][j] = a;
velocities[i][j] = (a-b) / 2.;
}
pBestFitness[i] = ackley(positions[i],(int)nDimensions);
if (pBestFitness[i] < gBestFitness) {
memmove((void *)gBestPosition, (void *)&positions[i], sizeof(double) * nDimensions);
gBestFitness = pBestFitness[i];
}
}
//actual calculation
for (step=0; step<nIterations; step++) {
for (i=0; i<distributed_particles; i++) {
for (j=0; j<nDimensions; j++) {
// calculate stochastic coefficients
rho1 = c1 * gsl_rng_uniform(r);
rho2 = c2 * gsl_rng_uniform(r);
// update velocity
velocities[i][j] = w * velocities[i][j] + \
rho1 * (pBestPositions[i][j] - positions[i][j]) + \
rho2 * (gBestPosition[j] - positions[i][j]);
// update position
positions[i][j] += velocities[i][j];
if (positions[i][j] < x_min) {
positions[i][j] = x_min;
velocities[i][j] = 0;
} else if (positions[i][j] > x_max) {
positions[i][j] = x_max;
velocities[i][j] = 0;
}
}
// update particle fitness
fit = ackley(positions[i], nDimensions);
// update personal best position?
if (fit < pBestFitness[i]) {
pBestFitness[i] = fit;
// copy contents of positions[i] to pos_b[i]
memmove((void *)&pBestPositions[i], (void *)&positions[i],
sizeof(double) * nDimensions);
}
// update gbest??
if (fit < gBestFitness) {
// update best fitness
gBestFitness = fit;
// copy particle pos to gbest vector
memmove((void *)gBestPosition, (void *)&positions[i],
sizeof(double) * nDimensions);
}
}
for(int k=0;k<(nDimensions);k++)
sendingdata[k]=gBestPosition[k];
sendingdata[(int)nDimensions]=gBestFitness;
MPI_Gather(&sendingdata,nDimensions+1, MPI_INT,&recievingdata,nDimensions+1, MPI_INT, 0, MPI_COMM_WORLD);
if(myrank==0)
{
int min=gBestFitness;
int pos=-1;
for(int k=0;k<size;k++)
{ //printf("%d\n",recievingdata[k*((int)nDimensions+1)+((int)nDimensions)] );
if(min>=recievingdata[k*((int)nDimensions+1)+((int)nDimensions)])
{
min=recievingdata[k*((int)nDimensions+1)+((int)nDimensions)];
pos=k*((int)nDimensions+1);
}
}
gBestFitness=min;
for(int k=pos;k<nDimensions+pos;k++)
gBestPosition[k-pos]=recievingdata[k];
}
MPI_Bcast(&gBestPosition,nDimensions,MPI_INT,0,MPI_COMM_WORLD);
// MPI_Bcast(&gBestFitness,1,MPI_INT,0,MPI_COMM_WORLD);
}
if(myrank==0)
{
printf("Result: %f\n", gBestFitness);
gettimeofday(&TimeValue_Final, &TimeZone_Final);
time_start = TimeValue_Start.tv_sec * 1000000 + TimeValue_Start.tv_usec;
time_end = TimeValue_Final.tv_sec * 1000000 + TimeValue_Final.tv_usec;
time_overhead = (time_end - time_start)/1000000.0;
printf("\n Time in Seconds (T) : %lf\n",time_overhead);
}
gsl_rng_free(r);
MPI_Finalize();
}
//mpicc mpipso.c -lm -lgsl -lgslcblas -o mpi