forked from fizx/libbow-osx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vpc.c
612 lines (559 loc) · 19.1 KB
/
vpc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
/* Produce a vector-per-class description of the model data in a barrel */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <[email protected]>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
double bow_wi2dvf_sum (bow_wi2dvf *wi2dvf)
{
int wi, max_wi, dvi;
double sum = 0;
bow_dv *dv;
max_wi = MIN (wi2dvf->size, bow_num_words ());
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
sum += dv->entry[dvi].weight;
}
return sum;
}
/* Given a barrel of documents, create and return another barrel with
only one vector per class. The classes will be represented as
"documents" in this new barrel. */
bow_barrel *
bow_barrel_new_vpc (bow_barrel *doc_barrel)
{
bow_barrel* vpc_barrel; /* The vector per class barrel */
int max_ci = -1; /* The highest index of encountered classes */
int num_classes = bow_barrel_num_classes (doc_barrel);
int wi;
int max_wi;
int dvi;
int ci;
bow_dv *dv;
bow_dv *vpc_dv;
int di;
int num_docs_per_ci[num_classes];
bow_cdoc *cdoc;
double sum = 0;
assert (doc_barrel->classnames);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* Create an empty barrel; we fill fill it with vector-per-class
data and return it. */
/* This assertion can fail when DOC_BARREL was read from a disk
archive that was created before CLASS_PROBS was added to BOW_CDOC */
assert (doc_barrel->cdocs->entry_size >= sizeof (bow_cdoc));
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
num_classes,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* Make sure to set the VPC indicator */
vpc_barrel->is_vpc = 1;
bow_verbosify (bow_verbose, "Making vector-per-class... words :: ");
/* Count the number of documents in each class */
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] = 0;
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train)
num_docs_per_ci[cdoc->class]++;
}
/* Update the CDOC->WORD_COUNT in the DOC_BARREL in order to match
the (potentially) pruned vocabulary. */
{
bow_wv *wv = NULL;
int wvi;
bow_dv_heap *heap = bow_test_new_heap (doc_barrel);
while ((di = bow_heap_next_wv (heap, doc_barrel, &wv,
bow_cdoc_yes)) != -1)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->word_count = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
if (bow_wi2dvf_dv (doc_barrel->wi2dvf, wv->entry[wvi].wi))
cdoc->word_count += wv->entry[wvi].count;
}
}
}
/* Initialize the WI2DVF part of the VPC_BARREL. Sum together the
counts and weights for individual documents, grabbing only the
training documents. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
ci = cdoc->class;
assert (ci >= 0);
assert (ci < num_classes);
if (ci > max_ci)
max_ci = ci;
if (cdoc->type == bow_doc_train)
{
float weight;
/* The old version of bow_wi2dvf_add_di_text_fp() initialized
the dv WEIGHT to 0 instead of the word count. If the weight
is zero, then use the count instead. Note, however, that
the TFIDF method might have set the weight, so we don't
want to use the count all the time. */
if (dv->entry[dvi].weight)
weight = dv->entry[dvi].weight;
else
weight = dv->entry[dvi].count;
if (bow_event_model == bow_event_document)
{
assert (dv->entry[dvi].count);
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci, 1, 1);
}
else if (bow_event_model == bow_event_document_then_word)
{
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf), wi, ci, dv->entry[dvi].count,
(bow_event_document_then_word_document_length
* weight / cdoc->word_count));
sum += (bow_event_document_then_word_document_length
* weight / cdoc->word_count);
}
else
{
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci,
dv->entry[dvi].count,
weight);
}
}
}
/* Set the IDF of the class's wi2dvf directly from the doc's wi2dvf */
vpc_dv = bow_wi2dvf_dv (vpc_barrel->wi2dvf, wi);
if (vpc_dv) /* this could be null if all of this word's
occurrences are in non training docs */
vpc_dv->idf = dv->idf;
if (max_wi - wi % 100 == 0)
bow_verbosify (bow_verbose, "\b\b\b\b\b\b%6d", max_wi - wi);
}
#if 0
bow_verbosify (bow_progress, "vpc_sum=%f\n", sum);
bow_verbosify (bow_progress, "wi2dvf_sum=%f\n",
bow_wi2dvf_sum (vpc_barrel->wi2dvf));
#endif
bow_verbosify (bow_verbose, "\b\b\b\b\b\b");
/* xxx OK to have some classes with no words
assert (num_classes-1 == max_ci); */
if (max_ci < 0)
{
int i;
bow_verbosify (bow_progress, "%s: No data found for ",
__PRETTY_FUNCTION__);
for (i = 0; i < num_classes; i++)
bow_verbosify (bow_progress, "%s ",
bow_barrel_classname_at_index (doc_barrel, i));
bow_verbosify (bow_progress, "\n");
}
bow_verbosify (bow_verbose, "\n");
/* Initialize the CDOCS and CLASSNAMES parts of the VPC_BARREL.
Create BOW_CDOC structures for each class, and append them to the
VPC->CDOCS array. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc cdoc;
const char *classname = NULL;
cdoc.type = bow_doc_train;
cdoc.normalizer = -1.0f;
/* Make WORD_COUNT be the number of documents in the class.
This is for the document event model.*/
cdoc.word_count = num_docs_per_ci[ci];
if (doc_barrel->classnames)
{
classname = bow_barrel_classname_at_index (doc_barrel, ci);
cdoc.filename = strdup (classname);
if (!cdoc.filename)
bow_error ("Memory exhausted.");
}
else
{
cdoc.filename = NULL;
}
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_verbosify (bow_verbose, "%20d model documents in class `%s'\n",
num_docs_per_ci[ci], cdoc.filename);
/* Add a CDOC for this class to the VPC_BARREL */
bow_array_append (vpc_barrel->cdocs, &cdoc);
/* Add an entry for this class into the VPC_BARREL->CLASSNAMES map. */
bow_str2int (vpc_barrel->classnames, classname);
}
if (doc_barrel->method->vpc_set_priors)
{
/* Set the prior probabilities on classes, if we're doing
NaiveBayes or something else that needs them. */
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
}
else
{
/* We don't need priors, so set them to obviously bogus values,
so we'll notice if they accidently get used. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = -1;
}
}
return vpc_barrel;
}
/* Like bow_barrel_new_vpc(), but it also sets and normalizes the
weights appropriately by calling SET_WEIGHTS from the METHOD of
DOC_BARREL on the `vector-per-class' barrel that will be returned. */
bow_barrel *
bow_barrel_new_vpc_merge_then_weight (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel;
assert (doc_barrel->method->name);
/* Merge documents into classes, then set weights. */
vpc_barrel = bow_barrel_new_vpc (doc_barrel);
bow_barrel_set_weights (vpc_barrel);
/* Scale the weights */
bow_barrel_scale_weights (vpc_barrel, doc_barrel);
/* Normalize the weights. */
bow_barrel_normalize_weights (vpc_barrel);
return vpc_barrel;
}
/* Same as above, but set the weights in the DOC_BARREL, create the
`Vector-Per-Class' barrel, and set the weights in the VPC barrel by
summing weights from the DOC_BARREL. */
bow_barrel *
bow_barrel_new_vpc_weight_then_merge (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel;
/* Set weights, then merge documents into classes. */
bow_barrel_set_weights (doc_barrel);
vpc_barrel = bow_barrel_new_vpc (doc_barrel);
bow_barrel_scale_weights (vpc_barrel, doc_barrel);
bow_barrel_normalize_weights (vpc_barrel);
return vpc_barrel;
}
/* Set the class prior probabilities by counting the number of
documents of each class. */
void
bow_barrel_set_vpc_priors_by_counting (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
double prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length - 1;
int di;
/* Zero them. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Add in document counts. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc;
bow_cdoc *vpc_cdoc;
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (doc_cdoc->type != bow_doc_train)
continue;
if (doc_cdoc->class >= vpc_barrel->cdocs->length)
{
/* This can happen if all of the documents in a certain class
contain only words that are not in the vocabulary used
when running bow_barrel_new_vpc() above. */
bow_error ("Number of classes in class barrel do not match\n"
"number of classes in document barrel!");
}
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs,
doc_cdoc->class);
vpc_cdoc->prior += doc_cdoc->prior;
}
/* Sum them all. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
if (prior_sum)
{
/* Normalize to set the prior. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
/* printf ("ci=%d prior_sum=%f prior=%f\n", ci,prior_sum,
cdoc->prior);*/
/* xxx We allow "cdoc->prior >= 0.0" because there may be no
training data for some class. Is this good? */
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}
else
{
bow_verbosify (bow_progress, "WARNING: All classes have zero prior\n");
}
}
/* Like bow_barrel_new_vpc, but uses both labeled and unlabeled data.
It uses the class_probs of each doc to determine its class
membership. The counts in the wi2dvf are set to bogus numbers. The
weights of the wi2dvf contain the real information. The normalizer
of each vpc cdoc is set to the fractional number of documents per
class. The word_count of each vpc cdoc is rounded integer for the
number of documents per class. The word_count of each document
cdoc is set to the sum of the counts of its corresponding word
vector. This is to get correct numbers for the doc-then-word event
model. */
bow_barrel *
bow_barrel_new_vpc_using_class_probs (bow_barrel *doc_barrel)
{
bow_barrel* vpc_barrel; /* The vector per class barrel */
int num_classes = bow_barrel_num_classes (doc_barrel);
int wi;
int max_wi;
int dvi;
int ci;
bow_dv *dv;
bow_dv *vpc_dv;
int di;
float num_docs_per_ci[num_classes];
bow_cdoc *cdoc;
assert (doc_barrel->classnames);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* Create an empty barrel; we fill it with vector-per-class
data and return it. */
/* This assertion can fail when DOC_BARREL was read from a disk
archive that was created before CLASS_PROBS was added to BOW_CDOC */
assert (doc_barrel->cdocs->entry_size >= sizeof (bow_cdoc));
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
num_classes,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* Make sure to set the VPC indicator */
vpc_barrel->is_vpc = 1;
bow_verbosify (bow_verbose, "Making vector-per-class... words :: ");
/* Count the number of documents in each class using the class probs */
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] = 0.0;
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled) {
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] += cdoc->class_probs[ci];
}
}
/* Update the CDOC->WORD_COUNT in the DOC_BARREL in order to match
the (potentially) pruned vocabulary. */
{
bow_wv *wv = NULL;
int wvi;
bow_dv_heap *heap = bow_test_new_heap (doc_barrel);
while ((di = bow_heap_next_wv (heap, doc_barrel, &wv,
bow_cdoc_yes)) != -1)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->word_count = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
if (bow_wi2dvf_dv (doc_barrel->wi2dvf, wv->entry[wvi].wi))
cdoc->word_count += wv->entry[wvi].count;
}
}
}
/* Initialize the WI2DVF part of the VPC_BARREL. Sum together the
counts and weights for individual documents, grabbing only the
training documents. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled)
{
float weight;
/* The old version of bow_wi2dvf_add_di_text_fp() initialized
the dv WEIGHT to 0 instead of the word count. If the weight
is zero, then use the count instead. Note, however, that
the TFIDF method might have set the weight, so we don't
want to use the count all the time. */
if (dv->entry[dvi].weight)
weight = dv->entry[dvi].weight;
else
weight = dv->entry[dvi].count;
for (ci = 0; ci < num_classes; ci++)
{
/* do the right thing based on the event model */
if (bow_event_model == bow_event_document)
{
assert (dv->entry[dvi].count);
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci, 1,
cdoc->class_probs[ci]);
}
else if (bow_event_model == bow_event_document_then_word)
{
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf), wi, ci, 1,
(bow_event_document_then_word_document_length
* weight * cdoc->class_probs[ci] / cdoc->word_count));
}
else
{
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci,
1,
weight * cdoc->class_probs[ci]);
}
}
}
}
/* Set the IDF of the class's wi2dvf directly from the doc's wi2dvf */
vpc_dv = bow_wi2dvf_dv (vpc_barrel->wi2dvf, wi);
if (vpc_dv)
vpc_dv->idf = dv->idf;
if (max_wi - wi % 100 == 0)
bow_verbosify (bow_verbose, "\b\b\b\b\b\b%6d", max_wi - wi);
}
bow_verbosify (bow_verbose, "\b\b\b\b\b\b\n");
/* Initialize the CDOCS and CLASSNAMES parts of the VPC_BARREL.
Create BOW_CDOC structures for each class, and append them to the
VPC->CDOCS array. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc cdoc;
const char *classname = NULL;
cdoc.type = bow_doc_train;
cdoc.normalizer = num_docs_per_ci[ci];
/* Make WORD_COUNT be the number of documents in the class.
This is for the document event model.*/
cdoc.word_count = rint (num_docs_per_ci[ci]);
if (doc_barrel->classnames)
{
classname = bow_barrel_classname_at_index (doc_barrel, ci);
cdoc.filename = strdup (classname);
if (!cdoc.filename)
bow_error ("Memory exhausted.");
}
else
{
cdoc.filename = NULL;
}
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_verbosify (bow_verbose, "%20f model documents in class `%s'\n",
num_docs_per_ci[ci], cdoc.filename);
/* Add a CDOC for this class to the VPC_BARREL */
bow_array_append (vpc_barrel->cdocs, &cdoc);
/* Add an entry for this class into the VPC_BARREL->CLASSNAMES map. */
bow_str2int (vpc_barrel->classnames, classname);
}
if (doc_barrel->method->vpc_set_priors)
{
/* Set the prior probabilities on classes, if we're doing
NaiveBayes or something else that needs them. */
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
}
else
{
/* We don't need priors, so set them to obviously bogus values,
so we'll notice if they accidently get used. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = -1;
}
}
return vpc_barrel;
}
/* Set the class prior probabilities by doing a weighted (by class
membership) count of the number of labeled and unlabeled documents
in each class. This uses class_probs to determine class
memberships of the documents. */
void
bow_barrel_set_vpc_priors_using_class_probs (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
float prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length;
int di;
/* Zero them. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Count each document for each class according to the
class_probs. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
bow_cdoc *vpc_cdoc;
if (doc_cdoc->type == bow_doc_train ||
doc_cdoc->type == bow_doc_unlabeled)
{
for (ci = 0; ci < max_ci; ci++)
{
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
vpc_cdoc->prior += doc_cdoc->class_probs[ci];
}
}
}
/* Sum them all. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
/* Normalize to set the prior. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}