-
Notifications
You must be signed in to change notification settings - Fork 5
/
extract_structs.py
executable file
·894 lines (763 loc) · 32.7 KB
/
extract_structs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
#!/usr/bin/env -S python3 -u
import argparse
import arguments_parsing_common
import compress_pickle
import ctypes
import numpy as np
import os
from copy import deepcopy
from constants import (
POINTERS_FILE,
STRINGS_FILE,
EXTERNAL_REFERENCES_FILE,
FUNCTIONS_FILE,
VIRTUALS_TO_OFFSETS_FILE,
BITMAP_FILE,
DOUBLY_LINKED_LISTS_FILE,
TREES_FILE,
RESULTS_FILE
)
from constants import (
TREES,
CIRCULAR_DOUBLY_LINKED_LISTS,
LINEAR_DOUBLY_LINKED_LISTS,
ARRAYS_OF_STRINGS,
ARRAYS_OF_POINTERS,
LINKED_LISTS,
DERIVED_STRUCTURES,
CHILDREN_STRUCTURES
)
from elftools.elf.elffile import ELFFile
from memory_objects import LinkedList, DoubleLinkedList, PointersGroup, Tree, PointersArray, MemoryObject
from multiprocessing import Pool
from numpy._typing import NDArray
from tqdm.auto import tqdm as ProgressBarIterator
from typing import Callable, Any, Counter, overload
RawDoublyLinkedLists = tuple[
tuple[list[
tuple[
NDArray[np.int64],
np.int32,
NDArray[np.int64],
np.int32
]],
dict[np.int64,int]
],
tuple[list[
tuple[
NDArray[np.int64],
np.int32,
NDArray[np.int64],
np.int32
]],
dict[np.int64,int]
]
]
RawTreesRoot = list[list[
tuple[
tuple[np.int64, np.int64],
NDArray[np.uint64]
]
]]
#######################
# Children extraction #
#######################
def build_linked_list(pointers_set:set[int]) -> LinkedList:
linked_list = LinkedList(list(pointers_set), (0,), False)
linked_list.determine_shape()
linked_list.find_strings()
return linked_list
def extract_children_linked_lists(
cyclics: list[DoubleLinkedList],
linears: list[DoubleLinkedList],
trees: list[Tree],
arrays: list[PointersGroup],
most_common_offset: tuple[int, ...],
pointers: dict[int,int]
) -> dict[str, list[LinkedList]]:
children_linked_lists:dict[str,list[LinkedList]] = {
'cyclics': [],
'linears': [],
'trees': [],
'arrays': []
}
primitive_structures:list[tuple[str,list]] = [
('cyclics', cyclics),
('linears', linears),
('trees', trees),
('arrays', arrays)
]
minimum_offset = min(most_common_offset)
# For each primitive structure list
for structure_name, structure_set in primitive_structures:
print(f'Defining first level of children lists for {structure_name}...')
children_lists_pointers:list[set[int]] = []
lists_pointers:set[int] = set()
# For each structure
for structure in structure_set:
structure: PointersGroup
# If it's not referenced, discard
if not structure.referenced:
continue
# Else, for each child offset
for offset in structure.children_lists_offset:
# For each near pointer
for left_pointer in structure.near_pointers[offset][0]:
lists_pointers.clear()
pointed = left_pointer
# Till we can find new valid pointers of the list
while True:
if pointed in lists_pointers:
break
# Add them
lists_pointers.add(pointed)
if pointed not in pointers:
break
pointed = pointers[pointed] + minimum_offset
# Remove the starting pointer
lists_pointers.remove(left_pointer)
# If the list is long enough, add the list pointers
if len(lists_pointers) > 2:
children_lists_pointers.append(deepcopy(lists_pointers))
children_lists_pointers.sort(key= lambda pointers_list: len(pointers_list), reverse= True)
# Discard if no children list
if not children_lists_pointers:
continue
# Discard the invalid pointers lists (intersecting ones)
assigned_children_pointers = children_lists_pointers[0]
lists_to_discard:list[set[int]] = []
for children_list in children_lists_pointers[1:]:
if assigned_children_pointers.intersection(children_list):
lists_to_discard.append(children_list)
else:
assigned_children_pointers.update(children_list)
for children_list in lists_to_discard:
children_lists_pointers.remove(children_list)
# Build and add the LinkedLists
with Pool() as pool:
linked_lists = pool.map(build_linked_list, children_lists_pointers)
children_linked_lists[structure_name] = linked_lists
print(f'Found {len(children_linked_lists[structure_name])} derived children linked lists')
return children_linked_lists
######################
# Derived extraction #
######################
def derive_structures(
primitive_structure: PointersGroup,
assigned_pointers: set[int],
max_structure_size: int
) -> list[PointersGroup]:
derived_structures:list[PointersGroup] = []
for offset in primitive_structure.valid_near_offsets:
##############################
# Step 1: filter out offsets #
##############################
# Ignore autostructural offsets
if offset in primitive_structure.autostructural_offsets:
continue
# Ignore structural offsets
if offset in primitive_structure.structural_offsets:
continue
# Ignore child offsets
if offset in primitive_structure.children_lists_offset:
continue
###############################
# Step 2: filter out pointers #
###############################
pointers, null_pointers_count = primitive_structure.near_pointers[offset]
# Ignore short pointers collections
if len(pointers) < 3:
continue
# Ignore if at there is more than 10% NULLs
if null_pointers_count > 0.1 * len(primitive_structure.pointers_list):
continue
# Ignore strings
if pointers.intersection(primitive_structure.strings):
continue
# Ignore backward pointers
if pointers.intersection(primitive_structure.pointers_list):
continue
# Ignore autopointers
if pointers.intersection(primitive_structure.autopointers_set):
continue
# Ignore already assigned pointers
if pointers.intersection(assigned_pointers):
continue
########################################################################
# Step 3: get the destination pointers and filter out the invalid ones #
########################################################################
destination_pointers = list({
primitive_structure.pointers[pointer] for pointer in pointers
})
# Ignore short pointers collections
if len(destination_pointers) < 3:
continue
# Ignore if at there is more than 10% NULLs
if len(destination_pointers) < 0.9 * len(primitive_structure.pointers_list):
continue
# Finally get the structure
structure = PointersGroup(destination_pointers)
structure.determine_shape(max_structure_size, fake=False)
structure.find_strings()
derived_structures.append(structure)
return derived_structures
def extract_derived_structures(
cyclics: list[DoubleLinkedList],
linears: list[DoubleLinkedList],
trees: list[Tree],
arrays: list[PointersGroup],
lists: list[LinkedList],
assigned_pointers: set[int],
max_structure_size: int,
external_references: set[int]
) -> dict[str, list[PointersGroup]]:
derived_structures:dict[str,list[PointersGroup]] = {
CIRCULAR_DOUBLY_LINKED_LISTS: [],
LINEAR_DOUBLY_LINKED_LISTS: [],
TREES: [],
ARRAYS_OF_POINTERS: [],
LINKED_LISTS: [],
}
primitive_structures:list[tuple[str,list]] = [
(CIRCULAR_DOUBLY_LINKED_LISTS, cyclics),
(LINEAR_DOUBLY_LINKED_LISTS, linears),
(TREES, trees),
(ARRAYS_OF_POINTERS, arrays),
(LINKED_LISTS, lists),
]
for structure_name, structure_set in primitive_structures:
print(f'Defining first level of derived structures for {structure_name}...')
with Pool() as pool:
to_derive = [
(primitive_structure, assigned_pointers, max_structure_size)
for primitive_structure in structure_set
if external_references.intersection(primitive_structure.pointers_list)
]
derived_structures_lists = pool.starmap(derive_structures, to_derive)
for derived_structure_list in derived_structures_lists:
derived_structures[structure_name].extend(derived_structure_list)
print(f'Found {len(derived_structures[structure_name])} derived structures')
return derived_structures
##########################
# LinkedLists extraction #
##########################
def extract_linked_lists(external_reference:int, most_common_offset:tuple[int, ...]) -> list[LinkedList]:
linked_lists:list[LinkedList] = []
# For each offset
for offset in most_common_offset:
# Keep track of every pointer and uniques
pointers_list = []
pointers_set = set()
current_pointer = external_reference
pointers_list.append(current_pointer)
loop = False
# While the pointer is in Memory, is not null and is new, then get the next pointer and cycle
while True:
if current_pointer not in MemoryObject.pointers:
break
if MemoryObject.is_pointer_null(current_pointer):
break
current_pointer = MemoryObject.pointers[current_pointer] + offset
if current_pointer in pointers_set:
loop = True
break
pointers_list.append(current_pointer)
pointers_set.add(current_pointer)
# If the chain is at least 3 pointers long, we have a linked list
if len(pointers_list) >= 3:
linked_list = LinkedList(pointers_list, (offset,), loop)
linked_list.determine_shape()
linked_list.find_strings()
if linked_list.embedded_strings.values() or linked_list.pointed_strings.values():
linked_lists.append(linked_list)
return linked_lists
def extract_referenced_linked_lists(pointers:dict[int,int], external_references:set[int], assigned_pointers:set[int], most_common_offset:tuple[int,...]) -> list[LinkedList]:
print('Finding referenced linked lists...')
linked_lists:list[LinkedList] = []
candidates = [
reference for reference in external_references
if reference in pointers and reference not in assigned_pointers
]
candidates_and_offset = [
(candidate, most_common_offset) for candidate in candidates
]
with Pool() as pool:
possible_linked_lists_lists = pool.starmap(extract_linked_lists, candidates_and_offset)
possible_linked_lists:list[LinkedList] = []
for possible_linked_lists_list in possible_linked_lists_lists:
possible_linked_lists.extend(possible_linked_lists_list)
possible_linked_lists.sort(
key=lambda linked_list: len(linked_list.pointers_list),
reverse=True
)
visited_pointers:set[int] = set()
for linked_list in possible_linked_lists:
if visited_pointers.intersection(linked_list.pointers_list):
continue
if assigned_pointers.intersection(linked_list.pointers_list):
continue
visited_pointers.update(linked_list.pointers_list)
linked_lists.append(linked_list)
print(f'Found {len(linked_lists)} linked lists')
return linked_lists
#####################
# Arrays extraction #
#####################
def get_pointers_array_if_pointers_group(pointers_list:list[int]) -> PointersGroup|None:
pointers_array = PointersArray(pointers_list)
return pointers_array.structure
def extract_pointers_arrays(pointers:dict[int,int], assigned_pointers:set[int], external_references:set[int]) -> list[PointersGroup]:
print('Finding pointers arrays...')
# Pointers of pointers but not autopointers nor already assigned
autofree_pointers = {
pointing: pointed
for pointing, pointed in pointers.items()
if pointing != pointed and pointing not in assigned_pointers
}
# Arrays of pointers
raw_arrays_of_pointers = extract_arrays_pointers(
autofree_pointers,
cpu_features
)
# PointersGroups of those arrays if valid PointersGroup
# filtering out the externally referenced ones
with Pool() as pool:
arrays_of_pointers = pool.map(
get_pointers_array_if_pointers_group,
filter(
lambda pointers_list: external_references.intersection(pointers_list),
raw_arrays_of_pointers
)
)
# Take only the valid PointersGroups
arrays_of_pointers = [
array_of_pointers for array_of_pointers in arrays_of_pointers
if array_of_pointers is not None
]
print(f'Found {len(arrays_of_pointers)} arrays of pointers')
return arrays_of_pointers
def extract_arrays_pointers(pointers:set[int]|dict[int,int], cpu_features:dict[str,Any]) -> list[list[int]]:
pointers_arrays = []
ordered_pointers = sorted(pointers)
for alignment in range(cpu_features['pointer_size']):
keys:NDArray[np.uint32|np.uint64] = np.array([
pointer for pointer in ordered_pointers
if pointer % cpu_features['pointer_size'] == alignment
], dtype=cpu_features['numpy_uint_type'])
diff_keys_groups = np.split(
keys,
np.where(np.diff(keys) != cpu_features['pointer_size'])[0] + 1
)
for keys_group in ProgressBarIterator(diff_keys_groups):
if len(keys_group) < 3:
continue
keys_group = [cpu_features['uint_conversion_function'](key) for key in keys_group]
pointers_arrays.append(keys_group)
return pointers_arrays
#############################
# Strings arrays extraction #
#############################
def extract_strings_arrays(pointers:dict[int,int], strings:dict[int,str], cpu_features:dict[str,Any]) -> list[PointersArray]:
print('Finding arrays of strings...')
# Define first strings candidates
candidates = {
pointer for pointer in pointers
if pointers[pointer] in strings
}
strings_arrays = [
PointersArray(pointers_list)
for pointers_list in extract_arrays_pointers(
candidates,
cpu_features
)
]
print(f'Found {len(strings_arrays)} arrays of strings')
return strings_arrays
####################
# Trees extraction #
####################
@overload
def get_shape_and_strings(structure_object:Tree) -> Tree:
structure_object.determine_shape()
structure_object.find_strings()
return structure_object
def get_tree_nodes(root:np.uint64, pointers:dict[int,int], offsets:tuple[np.int64,np.int64], levels:int) -> list[int|None]:
"""
Returns the pointers as tree nodes
"""
# elements list will contain every tree pointer
elements:list[int|None] = [int(root)]
converted_offsets = [int(np.int32(offset)) for offset in offsets]
new_elements = []
# For each level of depth
for level in range(levels + 1):
# Reset new elements
new_elements.clear()
# For each new element in the new subtree (given by level)
for new_element in elements[2 ** level - 1:]:
# No root, append two terminating leaves as children
if new_element is None:
elements.append(None)
elements.append(None)
continue
# Otherwhise we have a subtree
# For each offset
for offset in converted_offsets:
# If we have the corresponding pointer, we add the corresponding children
if (new_element + offset) in pointers:
new_elements.append(pointers[new_element + offset])
continue
# Else, we add another terminating null leaf
new_elements.append(None)
# Obviously, if we have no subroot, we have no subtree, hence quit
if all([element is None for element in new_elements]):
break
# If we have subtrees, add them
elements.extend(new_elements)
return elements
def extract_trees(tree_roots_raw:RawTreesRoot, pointers:dict[int,int], assigned_pointers:set[int]) -> list[Tree]:
#############################
# Step 1: Extract the trees #
#############################
print('Converting trees...')
trees_lists:list[list[Tree]] = []
# For each tree level and associated level list
for level, level_list in enumerate(tree_roots_raw[1:], start=2):
new_trees:list[Tree] = []
# For each couple of root-offsets
for offsets, roots in level_list:
for root in roots:
root:np.uint64
# Get the tree nodes as an array
nodes = get_tree_nodes(root, pointers, offsets, level)
# If it is a valid tree, append to new_trees
try:
if offsets[0] < offsets[1]:
normalized_offsets = (int(offsets[0]), int(offsets[1]))
else:
normalized_offsets = (int(offsets[1]), int(offsets[0]))
new_trees.append(
Tree(
nodes,
normalized_offsets,
level
)
)
except RecursionError:
print('[!] Loop detected')
# Append the new trees
trees_lists.append(new_trees)
######################################################
# Step 2: Remove tree with already assigned pointers #
######################################################
print('Removing trees with already assigned pointers...')
filtered_trees_list:list[list[Tree]] = []
# For each tree list
for trees_list in trees_lists:
filtered_trees:list[Tree] = []
# For each tree
for tree in trees_list:
# Remove the ones that uses already assigned pointers (i.e. append valid ones only)
if not assigned_pointers.intersection(tree.pointers_list):
filtered_trees.append(tree)
filtered_trees_list.append(filtered_trees)
#############################
# Step 3: Deduplicate trees #
#############################
print('Deduplicating trees...')
reduced_trees_list:list[list[Tree]] = []
# Invert the trees so that higher trees comes before lower trees
filtered_trees_list.reverse()
# For each tree_list
for index, trees_list in enumerate(filtered_trees_list):
reduced_trees:list[Tree] = []
# For each tree
for tree in trees_list:
# Add the tree to the reduced ones
reduced_trees.append(tree)
# Retrieve used pointers
tree_pointers = set(tree.pointers_list)
# Remove every subsequent (lower) tree from trees_lists if they share pointers with the actual tree (higher)
for sub_index in range(index + 1, len(filtered_trees_list)):
filtered_trees_list[sub_index] = [
sub_trees_list for sub_trees_list in filtered_trees_list[sub_index]
if not tree_pointers.intersection(sub_trees_list.pointers_list)
]
reduced_trees_list.append(reduced_trees)
reduced_trees_list.reverse()
#####################################
# Step 4: Define shapes and strings #
#####################################
print('Defining shapes and finding strings in trees...')
final_trees:list[Tree] = []
# Get shape and string for each tree
with Pool() as pool:
for tree_list in reduced_trees_list:
if not tree_list:
continue
shaped_tree_list = pool.imap(get_shape_and_strings, tree_list)
final_trees.extend(shaped_tree_list)
###########################################################
# Step 5: Get the most common trees by most common offset #
###########################################################
final_trees.sort(key=lambda tree: tree.levels, reverse=True)
most_common_trees_offsets = Counter([
tree.destination_offsets for tree in final_trees
if tree.levels == final_trees[0].levels
]).most_common(1)[0][0]
most_common_trees = [
tree for tree in final_trees
if tree.destination_offsets == most_common_trees_offsets
]
most_common_trees.sort(key=lambda tree: tree.levels, reverse=True)
print(f'Most common offset in trees: {most_common_trees_offsets}, {len(most_common_trees)}/{len(final_trees)}')
return most_common_trees
################################
# DoublyLinkedLists extraction #
################################
def differentiate_cyclic_linear_doubly_linked_lists(doubly_linked_lists:list[DoubleLinkedList]) -> tuple[list[DoubleLinkedList], list[DoubleLinkedList]]:
cyclics = []
linears = []
for doubly_linked_list in doubly_linked_lists:
if doubly_linked_list.is_ciclic:
cyclics.append(doubly_linked_list)
else:
linears.append(doubly_linked_list)
return cyclics, linears
@overload
def get_shape_and_strings(structure_object:DoubleLinkedList) -> DoubleLinkedList:
structure_object.determine_shape()
structure_object.find_strings()
return structure_object
def extract_linear_cyclic_doubly_linked_lists(doubly_linked_lists_raw:RawDoublyLinkedLists, uint_conversion_function:Callable[[int],int]) -> tuple[list[DoubleLinkedList], set[int], tuple[int, ...]]:
"""
Extracts linear and cyclic doubly linked lists.
Returns:
- A list of DoublyLinkedLists
- A set of assigned pointers
- The most common offset
"""
############################################
# Step 1: Extract every doubly linked list #
############################################
# Define dict of doubly linked lists and the total
doubly_linked_lists:dict[tuple[int, ...],list[DoubleLinkedList]] = dict()
total_doubly_linked_lists = 0
# Extract linear doubly linked lists
for list_ in doubly_linked_lists_raw[0][0]:
linear = DoubleLinkedList(
[uint_conversion_function(i) for i in list_[0]],
[uint_conversion_function(i) for i in list_[2]],
(int(list_[1]), int(list_[3])),
False
)
sorted_structural_offsets = tuple(sorted(linear.structural_offsets))
if not sorted_structural_offsets in doubly_linked_lists.keys():
doubly_linked_lists[sorted_structural_offsets] = list()
doubly_linked_lists[sorted_structural_offsets].append(linear)
total_doubly_linked_lists += 1
# Extract cyclic doubly linked lists
for list_ in doubly_linked_lists_raw[1][0]:
cyclic = DoubleLinkedList(
[uint_conversion_function(i) for i in list_[0]],
[uint_conversion_function(i) for i in list_[2]],
(int(list_[1]), int(list_[3])),
True
)
sorted_structural_offsets = tuple(sorted(cyclic.structural_offsets))
if not sorted_structural_offsets in doubly_linked_lists.keys():
doubly_linked_lists[sorted_structural_offsets] = list()
doubly_linked_lists[sorted_structural_offsets].append(cyclic)
total_doubly_linked_lists += 1
print(f'Total doubly linked lists: {total_doubly_linked_lists}')
############################################################################
# Step 2: Reconstruct relations between cicles and remove degenerates ones #
############################################################################
print('Reconstructing relations between cicles...')
# Filter out degenerate doubly linked lists
# Degenerates are those dll whose structs have different distances between prev and next pointers (check `memory_objects.py` for more)
not_degenerate:dict[tuple[int, ...],list[DoubleLinkedList]] = dict()
for offset in doubly_linked_lists.keys():
not_degenerate[offset] = [
doubly_linked_list for doubly_linked_list in doubly_linked_lists[offset]
if not doubly_linked_list.is_degenerate
]
#########################################################################
# Step 3: Get the most common doubly linked lists by most common offset #
#########################################################################
most_common_offset = sorted([
(len(doubly_linked_lists_by_offset), offset) for offset, doubly_linked_lists_by_offset in not_degenerate.items()
], reverse=True)[0][1]
most_common_doubly_linked_lists = not_degenerate[most_common_offset]
most_common_doubly_linked_lists.sort(
key=lambda doubly_linked_list: len(doubly_linked_list.pointers_list),
reverse= True
)
print(f'Most common offset in cicles: {most_common_offset}, {len(most_common_doubly_linked_lists)}/{sum([len(doubly_linked_lists_) for doubly_linked_lists_ in doubly_linked_lists.values()])}')
######################################
# Step 4: Register assigned pointers #
######################################
assigned_pointers:list[int] = []
for doubly_linked_list in most_common_doubly_linked_lists:
assigned_pointers.extend(doubly_linked_list.pointers_list)
assigned_pointers.extend(doubly_linked_list.inverse_pointers_list)
unique_assigned_pointers = set(assigned_pointers)
#####################################
# Step 5: Define shapes and strings #
#####################################
print(f'Defining linear/cyclic doubly linked lists shapes and strings...')
with Pool() as pool:
most_common_doubly_linked_lists = pool.map(get_shape_and_strings, most_common_doubly_linked_lists)
return most_common_doubly_linked_lists, unique_assigned_pointers, most_common_offset
################
# Working data #
################
def load_data_files(dataset_directory:str) -> dict[str, Any]:
"""
Loads data files from the dataset directory.
The returned dictionary has the following keys and types:
- pointers: dict[int, int]
- virtual_to_offset: mappings.IntervalsMappingOffsets
- bitmap: bitarray.bitarray
- strings: dict[int, str]
- doubly_linked_lists_raw: RawDoublyLinkedLists
- trees_roots_raw: RawTreesRoot
- external_references: set[int]
- functions: set[int]
"""
print('Loading data files...')
# Load data files
pointers = compress_pickle.load(os.path.join(dataset_directory, POINTERS_FILE))
strings = compress_pickle.load(os.path.join(dataset_directory, STRINGS_FILE))
external_references = set([
reference for reference in set(compress_pickle.load(os.path.join(dataset_directory, EXTERNAL_REFERENCES_FILE)))
if reference in pointers and reference not in strings
])
functions = set(compress_pickle.load(os.path.join(dataset_directory, FUNCTIONS_FILE)))
return {
'pointers': pointers,
'virtual_to_offsets': compress_pickle.load(os.path.join(dataset_directory, VIRTUALS_TO_OFFSETS_FILE)),
'bitmap': compress_pickle.load(os.path.join(dataset_directory, BITMAP_FILE)),
'strings': strings,
'doubly_linked_lists_raw': compress_pickle.load(os.path.join(dataset_directory, DOUBLY_LINKED_LISTS_FILE)),
'trees_roots_raw': compress_pickle.load(os.path.join(dataset_directory, TREES_FILE)),
'external_references': external_references,
'functions': functions
}
def get_cpu_features(elf_filename:str, max_size:None|int) -> dict[str, Any]:
# Load the elf file object
print('Defining CPU features...')
with open(elf_filename, 'rb') as file:
elf_file = ELFFile(file)
# Based on the machine architecture, define the results
if '386' in elf_file.get_machine_arch():
features = {
'uint_conversion_function': lambda x: ctypes.c_uint32(x).value,
'int_conversion_function': lambda x: ctypes.c_int32(x).value,
'pointer_size': 4,
'max_structure_size': 4096,
'numpy_uint_type': np.uint32
}
else:
features = {
'uint_conversion_function': lambda x: ctypes.c_uint64(x).value,
'int_conversion_function': lambda x: ctypes.c_int64(x).value,
'pointer_size': 8,
'max_structure_size': 8192,
'numpy_uint_type': np.uint64
}
if max_size is not None:
features['max_structure_size'] = max_size
return features
def parse_arguments() -> dict:
parser = argparse.ArgumentParser()
parser.add_argument('elf_file', type=str, help='The virtual machine ELF dump file')
parser.add_argument('dataset', type=str, help='Dataset directory. The directory must contain the results from the `extract_features.py` script (extracted_xxx.lzma), the result from the `trees.py` script (extracted_trees.lzma) and the result from `doubly_linked_lists.py` script (extracted_doubly_linked_lists.lzma)')
parser.add_argument('-max_size', type=int, default=None, help='Maximum structure size. If not specified, it is automatically defined')
parser.add_argument('-debug', action='store_true', default=False)
return arguments_parsing_common._get_dict_arguments(parser)
def get_shape_and_strings(structure_object:PointersGroup) -> PointersGroup:
structure_object.determine_shape()
structure_object.find_strings()
return structure_object
if __name__ == '__main__':
# Parse arguments
arguments = parse_arguments()
# Get CPU features
cpu_features = get_cpu_features(arguments['elf_file'], arguments['max_size'])
# Load data files
data_files = load_data_files(arguments['dataset'])
# Prepare MemoryObject class
MemoryObject.prepare(
data_files['pointers'],
cpu_features['pointer_size'],
data_files['virtual_to_offsets'],
data_files['bitmap'],
data_files['strings'],
data_files['external_references'],
data_files['functions'],
arguments['elf_file']
)
# Get most common doubly linked lists and the first set of assigned pointers
doubly_linked_lists, assigned_pointers, most_common_offset = extract_linear_cyclic_doubly_linked_lists(
data_files['doubly_linked_lists_raw'],
cpu_features['uint_conversion_function']
)
# Differentiate the doubly linked lists by linearity
cyclic_doubly_linked_lists, linear_doubly_linked_lists = differentiate_cyclic_linear_doubly_linked_lists(doubly_linked_lists)
# Get the most common trees
trees = extract_trees(
data_files['trees_roots_raw'],
data_files['pointers'],
assigned_pointers
)
# Get arrays of strings
strings_arrays = extract_strings_arrays(
data_files['pointers'],
data_files['strings'],
cpu_features
)
# Get arrays of pointers
arrays_of_pointers = extract_pointers_arrays(
data_files['pointers'],
assigned_pointers,
data_files['external_references']
)
# Get linked lists
linked_lists = extract_referenced_linked_lists(
data_files['pointers'],
data_files['external_references'],
assigned_pointers,
most_common_offset
)
# Get derived structures
derived_structures = extract_derived_structures(
cyclic_doubly_linked_lists,
linear_doubly_linked_lists,
trees,
arrays_of_pointers,
linked_lists,
assigned_pointers,
cpu_features['max_structure_size'],
data_files['external_references']
)
# Get children linked lists
children_linked_lists = extract_children_linked_lists(
cyclic_doubly_linked_lists,
linear_doubly_linked_lists,
trees,
arrays_of_pointers,
most_common_offset,
data_files['pointers']
)
print('Saving results...')
compress_pickle.dump({
TREES: trees,
CIRCULAR_DOUBLY_LINKED_LISTS: cyclic_doubly_linked_lists,
LINEAR_DOUBLY_LINKED_LISTS: linear_doubly_linked_lists,
ARRAYS_OF_STRINGS: strings_arrays,
ARRAYS_OF_POINTERS: arrays_of_pointers,
LINKED_LISTS: linked_lists,
DERIVED_STRUCTURES: derived_structures,
CHILDREN_STRUCTURES: children_linked_lists
}, os.path.join(arguments['dataset'], RESULTS_FILE))