-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathadversarial_test.py
348 lines (278 loc) · 9.26 KB
/
adversarial_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import gc
import argparse
import json
import math
from functools import partial
import tqdm
import pandas as pd
import numpy as np
import torch
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
from datasets.sound_dataset import SoundDataset
from networks.classifiers import HierarchicalCNNClassificationModel
from ops.folds import train_validation_data
from ops.transforms import (
Compose, DropFields, LoadAudio,
AudioFeatures, MapLabels, RenameFields,
MixUp, SampleSegment, SampleLongAudio)
from ops.utils import load_json, get_class_names_from_classmap, lwlrap
from ops.padding import make_collate_fn
from networks.classifiers import ResnetBlock
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(42)
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--train_df", required=True, type=str,
help="path to train dataframe"
)
parser.add_argument(
"--train_data_dir", required=True, type=str,
help="path to train data"
)
parser.add_argument(
"--test_data_dir", required=True, type=str,
help="path to test data"
)
parser.add_argument(
"--test_df", required=True, type=str,
help="path to train dataframe"
)
parser.add_argument(
"--val_size", required=True, type=float,
help="size of the validation set"
)
parser.add_argument(
"--device", type=str, required=True,
help="whether to train on cuda or cpu",
choices=("cuda", "cpu")
)
parser.add_argument(
"--batch_size", type=int, default=64,
help="minibatch size"
)
parser.add_argument(
"--epochs", type=int, default=100,
help="number of epochs"
)
parser.add_argument(
"--lr", default=0.01, type=float,
help="starting learning rate"
)
parser.add_argument(
"--max_samples", type=int,
help="maximum number of samples to use"
)
parser.add_argument(
"--features", type=str, required=True,
help="feature descriptor"
)
parser.add_argument(
"--max_audio_length", type=int, default=10,
help="max audio length in seconds. For longer clips are sampled"
)
parser.add_argument(
"--batches_to_save", type=int, default=3,
help="how many batches to save"
)
parser.add_argument(
"--classmap", required=True, type=str,
help="path to class map json"
)
args = parser.parse_args()
train_df = pd.read_csv(args.train_df)
test_df = pd.read_csv(args.test_df)
if args.max_samples:
train_df = train_df.sample(args.max_samples).reset_index(drop=True)
test_df = test_df.sample(args.max_samples).reset_index(drop=True)
all_train_fnames = [
os.path.join(args.train_data_dir, fname) for fname in train_df.fname.values]
all_test_fnames = [
os.path.join(args.test_data_dir, fname) for fname in test_df.fname.values]
fnames = np.concatenate([all_train_fnames, all_test_fnames])
labels = np.concatenate([np.ones(len(train_df)), np.zeros(len(test_df))])
train_fnames, val_fnames, train_labels, val_labels = train_test_split(
fnames, labels, test_size=args.val_size, shuffle=True)
audio_transform = AudioFeatures(args.features)
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.features = torch.nn.Sequential(
torch.nn.BatchNorm1d(audio_transform.n_features),
torch.nn.Conv1d(audio_transform.n_features, 32, kernel_size=1),
ResnetBlock(32),
torch.nn.MaxPool1d(kernel_size=2, stride=2),
torch.nn.BatchNorm1d(32),
torch.nn.Conv1d(32, 32, kernel_size=3),
ResnetBlock(32),
torch.nn.MaxPool1d(kernel_size=2, stride=2),
torch.nn.BatchNorm1d(32),
torch.nn.Conv1d(32, 64, kernel_size=3),
ResnetBlock(64)
)
self.pool = torch.nn.AdaptiveMaxPool1d(1)
self.classifier = torch.nn.Sequential(
torch.nn.BatchNorm1d(64),
torch.nn.Conv1d(64, 1, kernel_size=1)
)
def forward(self, x):
x = x.permute(0, 2, 1)
x = self.features(x)
x = self.classifier(x)
x = torch.sigmoid(x)
nonpooled = x
x = self.pool(x).squeeze(-1)
return x.squeeze(1), nonpooled.squeeze(1)
train_loader = torch.utils.data.DataLoader(
SoundDataset(
audio_files=train_fnames,
labels=train_labels,
transform=Compose([
LoadAudio(),
SampleLongAudio(max_length=args.max_audio_length),
audio_transform,
RenameFields({"raw_labels": "labels"}),
DropFields(("audio", "filename", "sr")),
]),
clean_transform=Compose([
LoadAudio(),
])
),
shuffle=True,
drop_last=True,
batch_size=args.batch_size,
num_workers=4,
collate_fn=make_collate_fn({"signal": audio_transform.padding_value}),
)
validation_loader = torch.utils.data.DataLoader(
SoundDataset(
audio_files=val_fnames,
labels=val_labels,
transform=Compose([
LoadAudio(),
SampleLongAudio(max_length=args.max_audio_length),
audio_transform,
RenameFields({"raw_labels": "labels"}),
DropFields(("audio", "filename", "sr")),
]),
clean_transform=Compose([
LoadAudio(),
])
),
shuffle=False,
drop_last=False,
batch_size=args.batch_size,
num_workers=4,
collate_fn=make_collate_fn({"signal": audio_transform.padding_value}),
)
model = Model().to(args.device)
optimizer = torch.optim.Adam(model.parameters(), args.lr)
for epoch in range(args.epochs):
print(
"\n" + " " * 10 + "****** Epoch {epoch} ******\n"
.format(epoch=epoch)
)
model.train()
with tqdm.tqdm(total=len(train_loader), ncols=80) as pb:
for sample in train_loader:
signal, labels = (
sample["signal"].to(args.device),
sample["labels"].to(args.device).float()
)
probs, nonpooled = model(signal)
optimizer.zero_grad()
loss = torch.nn.functional.binary_cross_entropy(probs, labels)
loss.backward()
optimizer.step()
pb.update()
pb.set_description("Loss: {:.4f}".format(loss.item()))
model.eval()
val_probs = []
val_labels = []
with torch.no_grad():
for sample in validation_loader:
signal, labels = (
sample["signal"].to(args.device),
sample["labels"].to(args.device).float()
)
probs, nonpooled = model(signal)
val_probs.extend(probs.data.cpu().numpy())
val_labels.extend(labels.data.cpu().numpy())
auc = roc_auc_score(val_labels, val_probs)
print("\nEpoch: {}, AUC: {}".format(epoch, auc))
model.eval()
# plot probabilities
loader = iter(validation_loader)
directory = "plots/"
os.makedirs(directory, exist_ok=True)
for n in range(args.batches_to_save):
with torch.no_grad():
sample = next(loader)
signal, labels = (
sample["signal"].to(args.device),
sample["labels"].to(args.device).float()
)
probs, nonpooled = model(signal)
nonpooled = nonpooled.data.cpu().numpy()
signal = signal.data.cpu().numpy()
labels = labels.data.cpu().numpy()
for k in range(len(signal)):
fig = plt.figure(figsize=(20, 7))
fig.suptitle(str(labels[k]))
ax = fig.add_subplot(211)
ax.imshow(np.transpose(signal[k]))
ax = fig.add_subplot(212)
ax.plot(nonpooled[k])
ax.set_ylim(0, 1)
ax.set_xlim(0, len(nonpooled[k]) - 1)
fig.savefig(os.path.join(directory, "plot_{}_{}.png".format(n, k)))
plt.close()
# compute average scores for classes
class_map = load_json(args.classmap)
names_with_labels = [
fname for fname in val_fnames if fname in all_train_fnames]
labels = pd.DataFrame({
"fname": [os.path.basename(fname) for fname in names_with_labels]}).merge(
train_df, on="fname", how="left").labels.values
loader = torch.utils.data.DataLoader(
SoundDataset(
audio_files=names_with_labels,
labels=[item.split(",") for item in labels],
transform=Compose([
LoadAudio(),
MapLabels(class_map),
SampleLongAudio(max_length=args.max_audio_length),
audio_transform,
DropFields(("audio", "filename", "sr")),
])
),
shuffle=False,
drop_last=False,
batch_size=args.batch_size,
num_workers=4,
collate_fn=make_collate_fn({"signal": audio_transform.padding_value}),
)
all_probs = []
all_labels = []
with torch.no_grad():
for sample in loader:
signal, labels = (
sample["signal"].to(args.device),
sample["labels"].to(args.device).float()
)
probs, nonpooled = model(signal)
all_probs.extend(probs.data.cpu().numpy())
all_labels.extend(labels.data.cpu().numpy())
all_probs = np.array(all_probs)
all_labels = np.array(all_labels)
scores = all_labels * np.expand_dims(all_probs, -1)
mean_scores = scores.sum(axis=0) / all_labels.sum(axis=0)
classnames = get_class_names_from_classmap(class_map)
pd.options.display.max_rows = 100
print()
print(pd.DataFrame({"classname": classnames, "scores": mean_scores}))