-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathpredict_2d_cnn.py
125 lines (103 loc) · 3.46 KB
/
predict_2d_cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import gc
import argparse
import json
import math
from functools import partial
import pandas as pd
import numpy as np
import torch
from mag.experiment import Experiment
from mag.utils import green, bold
import mag
from datasets.sound_dataset import SoundDataset
from networks.classifiers import TwoDimensionalCNNClassificationModel
from ops.folds import train_validation_data_stratified
from ops.transforms import (
Compose, DropFields, LoadAudio,
AudioFeatures, MapLabels, RenameFields,
MixUp, SampleSegment, SampleLongAudio,
AudioAugmentation, FlipAudio, ShuffleAudio)
from ops.utils import load_json, get_class_names_from_classmap, lwlrap
from ops.padding import make_collate_fn
mag.use_custom_separator("-")
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--experiment", type=str, required=True,
help="path to an experiment"
)
parser.add_argument(
"--test_df", required=True, type=str,
help="path to test dataframe"
)
parser.add_argument(
"--output_df", required=True, type=str,
help="where to save resulting dataframe"
)
parser.add_argument(
"--test_data_dir", required=True, type=str,
help="path to test data directory"
)
parser.add_argument(
"--classmap", required=True, type=str,
help="path to class map json"
)
parser.add_argument(
"--batch_size", type=int, default=32,
help="batch size used for prediction"
)
parser.add_argument(
"--device", type=str, required=True,
help="whether to train on cuda or cpu",
choices=("cuda", "cpu")
)
parser.add_argument(
"--num_workers", type=int, default=4,
help="number of workers for data loader",
)
args = parser.parse_args()
class_map = load_json(args.classmap)
test_df = pd.read_csv(args.test_df)
with Experiment(resume_from=args.experiment) as experiment:
config = experiment.config
audio_transform = AudioFeatures(config.data.features)
all_predictions = np.zeros(
shape=(len(test_df), len(class_map)), dtype=np.float32)
for fold in range(config.data._n_folds):
print("\n\n ----- Fold {}\n".format(fold))
loader_kwargs = (
{"num_workers": args.num_workers, "pin_memory": True}
if torch.cuda.is_available() else {})
test_loader = torch.utils.data.DataLoader(
SoundDataset(
audio_files=[
os.path.join(args.test_data_dir, fname)
for fname in test_df.fname.values],
labels=None,
transform=Compose([
LoadAudio(),
audio_transform,
DropFields(("audio", "filename", "sr")),
]),
clean_transform=Compose([
LoadAudio(),
MapLabels(class_map=class_map),
]),
),
shuffle=False,
batch_size=args.batch_size,
collate_fn=make_collate_fn({"signal": audio_transform.padding_value}),
**loader_kwargs
)
model = TwoDimensionalCNNClassificationModel(
experiment, device=args.device)
model.load_best_model(fold)
model.eval()
val_preds = model.predict(test_loader)
all_predictions += val_preds / config.data._n_folds
result = pd.DataFrame(
all_predictions, columns=get_class_names_from_classmap(class_map))
result["fname"] = test_df.fname
result.to_csv(args.output_df, index=False)