forked from TUM-DAML/gemnet_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.yaml
64 lines (54 loc) · 1.03 KB
/
config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
num_spherical: 7
num_radial: 6
num_blocks: 4
emb_size_atom: 128
emb_size_edge: 128
emb_size_trip: 64
emb_size_quad: 32
emb_size_rbf: 16
emb_size_cbf: 16
emb_size_sbf: 32
emb_size_bil_trip: 64
emb_size_bil_quad: 32
num_before_skip: 1
num_after_skip: 1
num_concat: 1
num_atom: 2
cutoff: 5.0
int_cutoff: 10.0
triplets_only: False
direct_forces: False
mve: False
loss: "rmse"
forces_coupled: False
envelope_exponent: 5
extensive: True
rho_force: 0.999
ema_decay: 0.999
weight_decay: 0.000002
learning_rate: 0.001
decay_steps: 4500000
decay_rate: 0.01
staircase: False
decay_patience: 5
decay_factor: 0.5
decay_cooldown: 5
agc: False
grad_clip_max: 10.0
restart: null
tfseed: 1234
data_seed: 42
scale_file: "scaling_factors.json"
comment: "GemNet"
output_init: "HeOrthogonal"
logdir: "logs"
dataset: "data/coll_v1.2_train.npz"
val_dataset: "data/coll_v1.2_val.npz"
num_train: 0 # derived from dataset
num_val: 0 # derived from dataset
patience: 5
evaluation_interval: 7500
save_interval: 7500
warmup_steps: 3750
batch_size: 32
num_steps: 1500000