-
Notifications
You must be signed in to change notification settings - Fork 84
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
FIX: fix path suffix condition in core/read.py (#641)
* Fix for documents with unknown number of multiple suffixes > 1 * test * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * remove stray addition --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Brigitta Sipőcz <[email protected]>
- Loading branch information
1 parent
aee9a46
commit 72b415f
Showing
8 changed files
with
337 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
--- | ||
title: "Test chunk options in Rmd/Jupyter conversion" | ||
author: "Marc Wouts" | ||
date: "June 16, 2018" | ||
jupyter: | ||
kernelspec: | ||
display_name: Python | ||
language: python | ||
name: python3 | ||
--- | ||
|
||
# Custom Formats | ||
|
||
```{python echo=TRUE} | ||
import pandas as pd | ||
x = pd.Series({'A':1, 'B':3, 'C':2}) | ||
``` | ||
|
||
```{python bar_plot, echo=FALSE, fig.height=5, fig.width=8} | ||
x.plot(kind='bar', title='Sample plot') | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
102 changes: 102 additions & 0 deletions
102
tests/test_execute/test_custom_convert_multiple_extensions_auto.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,102 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "raw", | ||
"id": "d0aefb9b", | ||
"metadata": {}, | ||
"source": [ | ||
"---\n", | ||
"title: \"Test chunk options in Rmd/Jupyter conversion\"\n", | ||
"author: \"Marc Wouts\"\n", | ||
"date: \"June 16, 2018\"\n", | ||
"---" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "c67b3701", | ||
"metadata": {}, | ||
"source": [ | ||
"# Custom Formats" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "ef881a36", | ||
"metadata": { | ||
"echo": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd\n", | ||
"x = pd.Series({'A':1, 'B':3, 'C':2})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "f7710843", | ||
"metadata": { | ||
"fig.height": 5, | ||
"fig.width": 8, | ||
"name": "bar_plot", | ||
"tags": [ | ||
"remove_input" | ||
] | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"<Axes: title={'center': 'Sample plot'}>" | ||
] | ||
}, | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
}, | ||
{ | ||
"data": { | ||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGvCAYAAACJsNWPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAi3UlEQVR4nO3de1DVdf7H8ddB5eAFUDduIqGNhuIFFW/YTJqh6BJJs5Vr00CmjGtguezkLG6rabNz3MxLmxdiC5mtdXS18n5J8bYFrXkrbSdaLwEVoK56QCpo4fv7o/HU+QnqQfQj8HzMfGc83/P98n0f9uzy3O/5nnNslmVZAgAAMMTL9AAAAKBlI0YAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAGGWz2fTiiy/e9uPm5OTIZrPpyy+/vO3HBuCOGAGagePHj+vRRx9VeHi4fHx8FBoaqjFjxui1114zPVqztHr1ai1dutT0GECzQYwATVxeXp4GDx6sTz75RCkpKVq2bJmmTp0qLy8vvfrqq6bHa5aIEaBxtTY9AICb86c//Un+/v76+OOP1bFjR7f7zp49a2YoAPAAZ0aAJu7UqVPq06fPVSEiSYGBgW63V61apdGjRyswMFB2u12RkZFauXLlVft169ZNDz30kPbt26fBgwerbdu26tevn/bt2ydJevfdd9WvXz/5+PgoOjpaR48eddv/qaeeUocOHXT69GnFxcWpffv26tKli+bPn68b+aLwr7/+Wk8//bSCgoJkt9vVp08fZWdn39Dvw2azKS0tTX//+98VERHhmvHAgQM3tP+KFSvUp08f2e12denSRampqbp06ZLr/lGjRmnr1q0qLCyUzWaTzWZTt27dbuhnA6gbZ0aAJi48PFz5+fk6ceKE+vbte81tV65cqT59+ujhhx9W69attXnzZj3zzDOqra1Vamqq27YnT57UE088oWnTpunJJ5/UK6+8ooSEBGVmZmr27Nl65plnJEkOh0OPP/64CgoK5OX10/+/qamp0bhx4zR8+HC9/PLL2rFjh+bOnav//e9/mj9/fr0zlpWVafjw4a6oCAgI0Pbt2zVlyhSVl5dr5syZ1/2d7N+/X2vXrtWzzz4ru92uFStWaNy4cTp48OA1f0cvvvii5s2bp9jYWE2fPl0FBQVauXKlPv74Y3344Ydq06aN/vCHP8jpdOqrr77SkiVLJEkdOnS47kwArsEC0KS9//77VqtWraxWrVpZMTEx1qxZs6ydO3da1dXVV2377bffXrUuLi7Ouueee9zWhYeHW5KsvLw817qdO3dakqy2bdtahYWFrvWvv/66Jcnau3eva11ycrIlyZoxY4ZrXW1trRUfH295e3tb586dc62XZM2dO9d1e8qUKVZISIh1/vx5t5l+/etfW/7+/nU+hp+TZEmyDh065FpXWFho+fj4WI888ohr3apVqyxJ1pkzZyzLsqyzZ89a3t7e1tixY62amhrXdsuWLbMkWdnZ2a518fHxVnh4+DXnAHDjeJkGaOLGjBmj/Px8Pfzww/rkk0/08ssvKy4uTqGhodq0aZPbtm3btnX92+l06vz58xo5cqROnz4tp9Pptm1kZKRiYmJct4cNGyZJGj16tO6+++6r1p8+ffqq2dLS0lz/vnKmo7q6Wrt3767zsViWpXfeeUcJCQmyLEvnz593LXFxcXI6nTpy5Mh1fycxMTGKjo523b777rs1YcIE7dy5UzU1NXXus3v3blVXV2vmzJluZ3hSUlLk5+enrVu3Xve4ABqGGAGagSFDhujdd9/VxYsXdfDgQWVkZKiiokKPPvqo/v3vf7u2+/DDDxUbG6v27durY8eOCggI0OzZsyXpqhj5eXBIkr+/vyQpLCyszvUXL150W+/l5aV77rnHbd29994rSfV+tse5c+d06dIlZWVlKSAgwG2ZPHmypBu7KLdnz55Xrbv33nv17bff6ty5c3XuU1hYKEmKiIhwW+/t7a177rnHdT+Axsc1I0Az4u3trSFDhmjIkCG69957NXnyZK1bt05z587VqVOn9OCDD6pXr15avHixwsLC5O3trW3btmnJkiWqra11+1mtWrWq8xj1rbdu4MLU67kyw5NPPqnk5OQ6t+nfv/9NHwfAnYUYAZqpwYMHS5JKSkokSZs3b1ZVVZU2bdrkdtZj7969t+T4tbW1On36tOtsiCR98cUXklTvu08CAgLk6+urmpoaxcbGNvjY//nPf65a98UXX6hdu3YKCAioc5/w8HBJUkFBgdsZnerqap05c8ZtHpvN1uDZAFyNl2mAJm7v3r11npXYtm2bpJ9edrhyRuPn2zqdTq1ateqWzbZs2TLXvy3L0rJly9SmTRs9+OCDdW7fqlUr/epXv9I777yjEydOXHV/fS+x/H/5+flu15YUFxdr48aNGjt2bL1ndmJjY+Xt7a2//OUvbr+jN998U06nU/Hx8a517du3v+plLQANx5kRoImbMWOGvv32Wz3yyCPq1auXqqurlZeXp7Vr16pbt26uay3Gjh0rb29vJSQkaNq0abp8+bL++te/KjAw0HX2pDH5+Phox44dSk5O1rBhw7R9+3Zt3bpVs2fPrvfshCQtWLBAe/fu1bBhw5SSkqLIyEhduHBBR44c0e7du3XhwoXrHrtv376Ki4tze2uvJM2bN6/efQICApSRkaF58+Zp3Lhxevjhh1VQUKAVK1ZoyJAhevLJJ13bRkdHa+3atUpPT9eQIUPUoUMHJSQkePDbAeDG4Dt5ADSC7du3W08//bTVq1cvq0OHDpa3t7fVo0cPa8aMGVZZWZnbtps2bbL69+9v+fj4WN26dbP+/Oc/W9nZ2W5vcbWsH9/aGx8ff9WxJFmpqalu686cOWNJshYuXOhal5ycbLVv3946deqUNXbsWKtdu3ZWUFCQNXfuXLe3zV75mT9/a69lWVZZWZmVmppqhYWFWW3atLGCg4OtBx980MrKyrru7+PKjG+//bbVs2dPy263WwMHDnR767FlXf3W3iuWLVtm9erVy2rTpo0VFBRkTZ8+3bp48aLbNpcvX7aeeOIJq2PHjpYk3uYL3CSbZTXCVWcA8DNPPfWU1q9fr8uXL9/2Y9tsNqWmprq9RATgzsY1IwAAwChiBAAAGEWMAAAAo7hmBAAAGMWZEQAAYBQxAgAAjGoSH3pWW1urb775Rr6+vnwMMwAATYRlWaqoqFCXLl3cvg37/2sSMfLNN99c9U2hAACgaSguLlbXrl3rvb9JxIivr6+kHx+Mn5+f4WkAAMCNKC8vV1hYmOvveH2aRIxceWnGz8+PGAEAoIm53iUWXMAKAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRHsXIypUr1b9/f9fHssfExGj79u3X3GfdunXq1auXfHx81K9fP23btu2mBgYAAM2LRzHStWtXLViwQIcPH9ahQ4c0evRoTZgwQZ999lmd2+fl5WnSpEmaMmWKjh49qsTERCUmJurEiRONMjwAAGj6bJZlWTfzAzp37qyFCxdqypQpV903ceJEVVZWasuWLa51w4cP14ABA5SZmXnDxygvL5e/v7+cTidflAcAQBNxo3+/G3zNSE1NjdasWaPKykrFxMTUuU1+fr5iY2Pd1sXFxSk/P7+hhwUAAM1Ma093OH78uGJiYvT999+rQ4cOeu+99xQZGVnntqWlpQoKCnJbFxQUpNLS0mseo6qqSlVVVa7b5eXlno4JAACaCI9jJCIiQseOHZPT6dT69euVnJys/fv31xskDeFwODRv3rxG+3lAS9Xt91tNj9BsfLkg3vQIQLPl8cs03t7e6tGjh6Kjo+VwOBQVFaVXX321zm2Dg4NVVlbmtq6srEzBwcHXPEZGRoacTqdrKS4u9nRMAADQRNz054zU1ta6vaTyczExMcrNzXVbt2vXrnqvMbnCbre73j58ZQEAAM2TRy/TZGRkaPz48br77rtVUVGh1atXa9++fdq5c6ckKSkpSaGhoXI4HJKk5557TiNHjtSiRYsUHx+vNWvW6NChQ8rKymr8RwIAAJokj2Lk7NmzSkpKUklJifz9/dW/f3/t3LlTY8aMkSQVFRXJy+unky0jRozQ6tWr9cILL2j27Nnq2bOnNmzYoL59+zbuowAAAE3WTX/OyO3A54wADcMFrI2HC1gBz93yzxkBAABoDMQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjPIoRhwOh4YMGSJfX18FBgYqMTFRBQUF19wnJydHNpvNbfHx8bmpoQEAQPPhUYzs379fqamp+uijj7Rr1y798MMPGjt2rCorK6+5n5+fn0pKSlxLYWHhTQ0NAACaj9aebLxjxw632zk5OQoMDNThw4d1//3317ufzWZTcHBwwyYEAADN2k1dM+J0OiVJnTt3vuZ2ly9fVnh4uMLCwjRhwgR99tln19y+qqpK5eXlbgsAAGieGhwjtbW1mjlzpu677z717du33u0iIiKUnZ2tjRs36u2331Ztba1GjBihr776qt59HA6H/P39XUtYWFhDxwQAAHc4m2VZVkN2nD59urZv364PPvhAXbt2veH9fvjhB/Xu3VuTJk3SSy+9VOc2VVVVqqqqct0uLy9XWFiYnE6n/Pz8GjIu0CJ1+/1W0yM0G18uiDc9AtDklJeXy9/f/7p/vz26ZuSKtLQ0bdmyRQcOHPAoRCSpTZs2GjhwoE6ePFnvNna7XXa7vSGjAQCAJsajl2ksy1JaWpree+897dmzR927d/f4gDU1NTp+/LhCQkI83hcAADQ/Hp0ZSU1N1erVq7Vx40b5+vqqtLRUkuTv76+2bdtKkpKSkhQaGiqHwyFJmj9/voYPH64ePXro0qVLWrhwoQoLCzV16tRGfigAAKAp8ihGVq5cKUkaNWqU2/pVq1bpqaeekiQVFRXJy+unEy4XL15USkqKSktL1alTJ0VHRysvL0+RkZE3NzkAAGgWGnwB6+10oxfAAHDHBayNhwtYAc/d6N9vvpsGAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKI9ixOFwaMiQIfL19VVgYKASExNVUFBw3f3WrVunXr16ycfHR/369dO2bdsaPDAAAGhePIqR/fv3KzU1VR999JF27dqlH374QWPHjlVlZWW9++Tl5WnSpEmaMmWKjh49qsTERCUmJurEiRM3PTwAAGj6bJZlWQ3d+dy5cwoMDNT+/ft1//3317nNxIkTVVlZqS1btrjWDR8+XAMGDFBmZuYNHae8vFz+/v5yOp3y8/Nr6LhAi9Pt91tNj9BsfLkg3vQIQJNzo3+/b+qaEafTKUnq3Llzvdvk5+crNjbWbV1cXJzy8/Pr3aeqqkrl5eVuCwAAaJ5aN3TH2tpazZw5U/fdd5/69u1b73alpaUKCgpyWxcUFKTS0tJ693E4HJo3b15DRwMA3ME4Y9c4mtPZugafGUlNTdWJEye0Zs2axpxHkpSRkSGn0+laiouLG/0YAADgztCgMyNpaWnasmWLDhw4oK5du15z2+DgYJWVlbmtKysrU3BwcL372O122e32howGAACaGI/OjFiWpbS0NL333nvas2ePunfvft19YmJilJub67Zu165diomJ8WxSAADQLHl0ZiQ1NVWrV6/Wxo0b5evr67ruw9/fX23btpUkJSUlKTQ0VA6HQ5L03HPPaeTIkVq0aJHi4+O1Zs0aHTp0SFlZWY38UAAAQFPk0ZmRlStXyul0atSoUQoJCXEta9eudW1TVFSkkpIS1+0RI0Zo9erVysrKUlRUlNavX68NGzZc86JXAADQcnh0ZuRGPpJk3759V6177LHH9Nhjj3lyKAAA0ELw3TQAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKOIEQAAYBQxAgAAjCJGAACAUcQIAAAwyuMYOXDggBISEtSlSxfZbDZt2LDhmtvv27dPNpvtqqW0tLShMwMAgGbE4xiprKxUVFSUli9f7tF+BQUFKikpcS2BgYGeHhoAADRDrT3dYfz48Ro/frzHBwoMDFTHjh093g8AADRvt+2akQEDBigkJERjxozRhx9+eLsOCwAA7nAenxnxVEhIiDIzMzV48GBVVVXpjTfe0KhRo/Svf/1LgwYNqnOfqqoqVVVVuW6Xl5ff6jEBAIAhtzxGIiIiFBER4bo9YsQInTp1SkuWLNFbb71V5z4Oh0Pz5s271aMBAIA7gJG39g4dOlQnT56s9/6MjAw5nU7XUlxcfBunAwAAt9MtPzNSl2PHjikkJKTe++12u+x2+22cCAAAmOJxjFy+fNntrMaZM2d07Ngxde7cWXfffbcyMjL09ddf629/+5skaenSperevbv69Omj77//Xm+88Yb27Nmj999/v/EeBQAAaLI8jpFDhw7pgQcecN1OT0+XJCUnJysnJ0clJSUqKipy3V9dXa3f/e53+vrrr9WuXTv1799fu3fvdvsZAACg5fI4RkaNGiXLsuq9Pycnx+32rFmzNGvWLI8HAwAALQPfTQMAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGCUxzFy4MABJSQkqEuXLrLZbNqwYcN199m3b58GDRoku92uHj16KCcnpwGjAgCA5sjjGKmsrFRUVJSWL19+Q9ufOXNG8fHxeuCBB3Ts2DHNnDlTU6dO1c6dOz0eFgAAND+tPd1h/PjxGj9+/A1vn5mZqe7du2vRokWSpN69e+uDDz7QkiVLFBcX5+nhAQBAM3PLrxnJz89XbGys27q4uDjl5+fXu09VVZXKy8vdFgAA0Dx5fGbEU6WlpQoKCnJbFxQUpPLycn333Xdq27btVfs4HA7NmzfvVo/W6Lr9fqvpEZqNLxfEmx4BAHCb3JHvpsnIyJDT6XQtxcXFpkcCAAC3yC0/MxIcHKyysjK3dWVlZfLz86vzrIgk2e122e32Wz0aAAC4A9zyMyMxMTHKzc11W7dr1y7FxMTc6kMDAIAmwOMYuXz5so4dO6Zjx45J+vGtu8eOHVNRUZGkH19iSUpKcm3/m9/8RqdPn9asWbP0+eefa8WKFfrHP/6h3/72t43zCAAAQJPmcYwcOnRIAwcO1MCBAyVJ6enpGjhwoObMmSNJKikpcYWJJHXv3l1bt27Vrl27FBUVpUWLFumNN97gbb0AAEBSA64ZGTVqlCzLqvf+uj5dddSoUTp69KinhwIAAC3AHfluGgAA0HIQIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCKGAEAAEYRIwAAwChiBAAAGEWMAAAAo4gRAABgFDECAACMIkYAAIBRxAgAADCqQTGyfPlydevWTT4+Pho2bJgOHjxY77Y5OTmy2Wxui4+PT4MHBgAAzYvHMbJ27Vqlp6dr7ty5OnLkiKKiohQXF6ezZ8/Wu4+fn59KSkpcS2Fh4U0NDQAAmg+PY2Tx4sVKSUnR5MmTFRkZqczMTLVr107Z2dn17mOz2RQcHOxagoKCbmpoAADQfHgUI9XV1Tp8+LBiY2N/+gFeXoqNjVV+fn69+12+fFnh4eEKCwvThAkT9Nlnn13zOFVVVSovL3dbAABA8+RRjJw/f141NTVXndkICgpSaWlpnftEREQoOztbGzdu1Ntvv63a2lqNGDFCX331Vb3HcTgc8vf3dy1hYWGejAkAAJqQW/5umpiYGCUlJWnAgAEaOXKk3n33XQUEBOj111+vd5+MjAw5nU7XUlxcfKvHBAAAhrT2ZOO77rpLrVq1UllZmdv6srIyBQcH39DPaNOmjQYOHKiTJ0/Wu43dbpfdbvdkNAAA0ER5dGbE29tb0dHRys3Nda2rra1Vbm6uYmJibuhn1NTU6Pjx4woJCfFsUgAA0Cx5dGZEktLT05WcnKzBgwdr6NChWrp0qSorKzV58mRJUlJSkkJDQ+VwOCRJ8+fP1/Dhw9WjRw9dunRJCxcuVGFhoaZOndq4jwQAADRJHsfIxIkTde7cOc2ZM0elpaUaMGCAduzY4bqotaioSF5eP51wuXjxolJSUlRaWqpOnTopOjpaeXl5ioyMbLxHAQAAmiyPY0SS0tLSlJaWVud9+/btc7u9ZMkSLVmypCGHAQAALQDfTQMAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjiBEAAGAUMQIAAIwiRgAAgFHECAAAMIoYAQAARhEjAADAKGIEAAAYRYwAAACjGhQjy5cvV7du3eTj46Nhw4bp4MGD19x+3bp16tWrl3x8fNSvXz9t27atQcMCAIDmx+MYWbt2rdLT0zV37lwdOXJEUVFRiouL09mzZ+vcPi8vT5MmTdKUKVN09OhRJSYmKjExUSdOnLjp4QEAQNPncYwsXrxYKSkpmjx5siIjI5WZmal27dopOzu7zu1fffVVjRs3Ts8//7x69+6tl156SYMGDdKyZctuengAAND0eRQj1dXVOnz4sGJjY3/6AV5eio2NVX5+fp375Ofnu20vSXFxcfVuDwAAWpbWnmx8/vx51dTUKCgoyG19UFCQPv/88zr3KS0trXP70tLSeo9TVVWlqqoq122n0ylJKi8v92Tc26626lvTIzQbd/p/1k0Fz8nGw3Oy8fC8bBxN4Tl5ZUbLsq65nUcxcrs4HA7NmzfvqvVhYWEGpoEJ/ktNTwC44zmJO01Tek5WVFTI39+/3vs9ipG77rpLrVq1UllZmdv6srIyBQcH17lPcHCwR9tLUkZGhtLT0123a2trdeHCBf3iF7+QzWbzZGT8THl5ucLCwlRcXCw/Pz/T4wCSeF7izsNzsvFYlqWKigp16dLlmtt5FCPe3t6Kjo5Wbm6uEhMTJf0YCrm5uUpLS6tzn5iYGOXm5mrmzJmudbt27VJMTEy9x7Hb7bLb7W7rOnbs6MmouAY/Pz/+C4Y7Ds9L3Gl4TjaOa50RucLjl2nS09OVnJyswYMHa+jQoVq6dKkqKys1efJkSVJSUpJCQ0PlcDgkSc8995xGjhypRYsWKT4+XmvWrNGhQ4eUlZXl6aEBAEAz5HGMTJw4UefOndOcOXNUWlqqAQMGaMeOHa6LVIuKiuTl9dObdEaMGKHVq1frhRde0OzZs9WzZ09t2LBBffv2bbxHAQAAmiybdb1LXNFsVFVVyeFwKCMj46qXwQBTeF7iTsNz8vYjRgAAgFF8UR4AADCKGAEAAEYRIwAAwChipIXiW5MBAHcKYqQFqaioUFZWloYOHaqoqCjT4wCAcXv27FFkZGSd3/PidDrVp08f/fOf/zQwWctCjLQABw4cUHJyskJCQvTKK69o9OjR+uijj0yPhRbsv//9r+vfxcXFmjNnjp5//nn+Rx+33dKlS5WSklLnJ636+/tr2rRpWrx4sYHJWhbe2ttMlZaWKicnR2+++abKy8v1+OOPKzMzU5988okiIyNNj4cW6vjx40pISFBxcbF69uypNWvWaNy4caqsrJSXl5cqKyu1fv1619dNALdaeHi4duzYod69e9d5/+eff66xY8eqqKjoNk/WsnBmpBlKSEhQRESEPv30Uy1dulTffPONXnvtNdNjAZo1a5b69eunAwcOaNSoUXrooYcUHx8vp9Opixcvatq0aVqwYIHpMdGClJWVqU2bNvXe37p1a507d+42TtQyefxx8Ljzbd++Xc8++6ymT5+unj17mh4HcPn444+1Z88e9e/fX1FRUcrKytIzzzzj+gqJGTNmaPjw4YanREsSGhqqEydOqEePHnXe/+mnnyokJOQ2T9XycGakGfrggw9UUVGh6OhoDRs2TMuWLdP58+dNjwXowoULCg4OliR16NBB7du3V6dOnVz3d+rUSRUVFabGQwv0y1/+Un/84x/1/fffX3Xfd999p7lz5+qhhx4yMFnLwjUjzVhlZaXWrl2r7OxsHTx4UDU1NVq8eLGefvpp+fr6mh4PLZCXl5fKysoUEBAgSfL19dWnn36q7t27S/rxlHmXLl1UU1Njcky0IGVlZRo0aJBatWqltLQ0RURESPrxWpHly5erpqZGR44ccX0ZLG4NYqSFKCgo0Jtvvqm33npLly5d0pgxY7Rp0ybTY6GF8fLy0vjx411fPrZ582aNHj1a7du3l/TjF5Tt2LGDGMFtVVhYqOnTp2vnzp268ifRZrMpLi5Oy5cvd8Uybh1ipIWpqanR5s2blZ2dTYzgtps8efINbbdq1apbPAlwtYsXL+rkyZOyLEs9e/Z0ewkRtxYxAgAAjOICVgAAYBQxAgAAjCJGAACAUcQIAAAwihgBAABGESMAAMAoYgQAABhFjAAAAKP+D22J+/qTJEVoAAAAAElFTkSuQmCC", | ||
"text/plain": [ | ||
"<Figure size 640x480 with 1 Axes>" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"x.plot(kind='bar', title='Sample plot')" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"jupytext": { | ||
"text_representation": { | ||
"extension": ".Rmd", | ||
"format_name": "rmarkdown" | ||
} | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.8" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.